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ABSTRACT

With the increasing use of GPS technology, path has become essential for appli-
cations such as navigation, urban planning, and traffic optimization. However,
obtaining real-world path presents challenges due to privacy concerns and the dif-
ficulty of collecting large datasets. Existing methods, including count-based and
deep learning approaches, struggle with two main challenges: handling complex
distributions of road segments and ensuring global coherence in generated paths.
To address these, we introduce DiffPath, a path generation model based on Latent
Diffusion Models (LDMs). By embedding path into a continuous latent space and
leveraging a transformer architecture, DiffPath captures both local transitions and
global dependencies, ensuring the generation of realistic paths. Experimental re-
sults demonstrate that our model outperforms existing approaches in generating
paths that adhere to real-world road network structures while maintaining privacy.

1 INTRODUCTION

With the widespread adoption of GPS technology and mobile devices, path has become essential for
optimizing navigation systems (Thomason et al., 2020), supporting smart city planning (Lin et al.,
2020), and route planning (Bibri, 2021). However, the collection and utilization of path raise sig-
nificant privacy concerns, as such data often contains sensitive information regarding individuals’
movements (Lu et al., 2019; Monreale et al., 2023; Zhu et al., 2024a). Additionally, large-scale
collection of this data faces challenges due to regulatory constraints, such as the General Data Pro-
tection Regulation (GDPR) in Europe.

1

10
0

20
0

30
0

40
0

50
0

60
0

70
0

#Traversals

0

500

1000

1500

2000

2500

3000

3500

4000

#
Ro

ad
 S

eg
m

en
ts

Figure 1: Statistics of Road
Segment Traversals.

Recent studies have highlighted synthetic data generation as a
promising alternative that ensures privacy protection while preserv-
ing data utility (Long et al., 2023; Zhu et al., 2024a;b). Despite
the potential of synthetic path to augment datasets and substitute
real data in privacy-sensitive applications, generating synthetic data
presents two significant challenges: 1) capturing complex path
distributions, 2) ensuring global coherence in generated paths.

Path generation in urban road networks is particularly challenging
due to the inherent inhomogeneity of the limited real-world dataset,
which exhibits a clear long-tail distribution of road segment traver-
sals. Figure 1 illustrates the statistics of road segment traversal in real world dataset (details provided
in the 5.1.1), highlighting that some road segments, located in urban centers or transportation hubs,
are frequently used and well-documented. Yet many road segments, particularly in more remote
areas, are rarely traversed and thus suffer from limited data availability (Zhao et al., 2022; Zhu et al.,
2022). This imbalance prevents the existing models from learning a comprehensive understanding
of the complete road network in a city.

Existing path generation methods can be categorized into count-based methods and deep learning
methods. The count-based methods generate paths by analyzing the frequency of transitions within
historical path (Baratchi et al., 2014; Sutton et al., 1999). Due to the unevenness of limited real
datasets, many road segments lack adequate historical observations, leading the model to make
inaccurate or zero probability estimates and thus ignore these road segments during path generation.
On the other hand, deep learning methods utilize neural networks to capture complex patterns
in historical paths (Yin et al., 2017; Yu et al., 2017; Wang et al., 2022; Shi et al., 2024). Since
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high-frequency paths appear more frequently in the dataset, the model can more easily fit to these
common paths. However, low-frequency paths appear less in the data, and the model lacks sufficient
training signals on them. As a result, the model struggles to generate paths that include these rare
segments.

Another significant challenge in path generation for urban road networks is that the generated paths
conform to the constraints of the road network, but are not realistic enough because they do not
conform to most situations in reality. While ensuring connectivity between adjacent road segments
is essential, models must also consider the long-range dependencies of non-adjacent road segments
throughout the entire path to generate realistic paths (Yang et al., 2021). Ignoring the influence of
non-adjacent road segments can lead to paths that are locally coherent but globally suboptimal or
unrealistic.As illustrated in Figure 2, consider two paths from v1 to v7: P1 = [v1, v2, v7] (depicted
in blue) andP2 = [v1, v2, v4, v5, v6, v7] (depicted in red). Path P2 traverses multiple intermediate
nodes, resulting in a longer and unrealistic path. Although it is in line with the constraints of the road
network, P2 does not consider that selecting v4 will result in a longer path to reach v7, making the
entire path unrealistic. Path P1 represents the realistic path typically taken in most real-world scenar-
ios. This example demonstrates how models focusing solely on adjacent road segments might gener-
ate unrealistic paths by failing to consider non-adjacent connections that lead to more optimal routes.
Unfortunately, existing methods (Wang et al., 2022; Shi et al., 2024) neglect this critical issue.

v1

v2 v7

v6

v4 v5

v3

The real path

The unrealistic path

Figure 2: An example of
real and unrealistic path.

To address the above challenges, we propose a method called Diff-
Path for path generation in urban road networks. DiffPath is designed
to generate paths by effectively modeling complex data distributions
and capturing long-range dependencies between road segments. Diffu-
sion models have demonstrated flexibility in modeling complex distribu-
tions (Song et al., 2022; Zhu et al., 2024a; Shi et al., 2024). In DiffPath,
we embed sequences of discrete paths into a continuous latent space
where the diffusion process is applied. By iteratively denoising within
the latent space, the model learns to reconstruct the original data distri-
bution, including low-frequency paths. To further address the inherent
bias toward high-frequency paths, we design a custom loss function for

the diffusion model. Instead of predicting the added noise at each time step, the model directly
predicts the initial latent representation.

Additionally, transformers are capable of modeling long-range dependencies through a self-attention
mechanism (Peebles & Xie, 2023). To capture the correlations of both adjacent and non-adjacent
road segments, we integrate a transformer-based architecture into the diffusion model. The self-
attention mechanism enables the model to consider the long-range dependencies, ensuring global
path consistency and realistic path generation. Moreover,We introduce a new similarity score specif-
ically designed to rigorously evaluate path realism by considering both local transitions and global
coherence.In summary, we make the following main contributions:

• We present DiffPath, the first latent diffusion-based approach for path generation, effectively
modeling complex data distributions and capturing long-range dependencies between road seg-
ments.

• We introduce a custom loss function to address the long-tail distribution of road segments, ensur-
ing diverse path generation. Additionally, we enhance diffusion with positional embeddings and
a clamping mechanism for topological validity and contextual coherence.

• We validate DiffPath on two real-world datasets, showing it outperforms state-of-the-art models
in generating high-fidelity, realistic paths while preserving data privacy.

2 RELATED WORK

2.1 PATH GENERATION FOR PATTERN MINING

Many methods have been developed to apply for path pattern mining. These approaches can broadly
be categorized into two main categories: count-based and deep learning-based models.
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Early models primarily relied on count-based methods, such as Markov chain models, which gen-
erate paths by capturing local state dependencies (Sutton et al., 1999). These models assume that
the probability of transitioning to the next road segment depends solely on the current road segment,
effectively modeling short-term dependencies. However, in the large state spaces typical of urban
road networks, many state transitions are rare or absent from the training data, leading to sparsity
issues. To mitigate this, hierarchical hidden states were introduced to reduce state space complexity
and alleviate sparsity (Baratchi et al., 2014). Despite these improvements, count-based models still
predominantly rely on information from the current and neighboring states, making it difficult to
capture global dependencies and ensure long-range path consistency.

With advances in machine learning and reinforcement learning, deep learning-based models have
become increasingly prominent in path generation. Generative Adversarial Networks (GANs) have
been used to enhance path generation by integrating complex reward functions, improving both the
diversity and quality of generated paths (Choi et al., 2021; Yu et al., 2017). However, GAN-based
models often require large amounts of data and can struggle with the stability of training. Re-
searchers have also increasingly turned to sequence-to-sequence (seq2seq) models for path genera-
tion (Wu et al., 2017). These models show promise for modeling long paths by encoding sequences
of road segments and iteratively predicting subsequent road segments. However, adapting seq2seq
models to respect the topological constraints of road networks presents a significant challenge. Ar-
chitectures based on recurrent neural networks (RNNs) (Rao et al., 2020) have been explored to
capture sequential dependencies, but they often suffer from the vanishing gradient problem when
handling long sequences, limiting their ability to capture global path information.

To address some of these limitations, discrete diffusion models have been introduced (Shi et al.,
2024). These models represent road network topology using adjacency matrices during the diffusion
process, which is particularly effective for conditional task generation. However, in unconditional
generation tasks, maintaining symmetry in the adjacency matrix can inaccurately represent one-way
streets as bidirectional, introducing bias and inaccuracies in the generated paths.

2.2 DIFFUSION MODELS

The diffusion model, initially introduced as a probabilistic generation framework (Sohl-Dickstein
et al., 2015), operates through two continuous processes: a forward process that gradually perturbs
the data distribution by adding multiscale noise and a reverse process that reconstructs the data
by learning its underlying distribution (Ho et al., 2020). Subsequent advances have significantly
improved the quality of the generated samples and accelerated the sampling process. Further in-
novations include the introduction of a non-Markovian diffusion process (Song et al., 2021; Nichol
et al., 2022), which reduces the number of sampling steps, and the approach of learning the vari-
ance in the reverse process to further streamline sampling. In addition, structural optimizations have
been performed in reverse denoising neural networks to enhance the quality of the generated sam-
ples (Nichol & Dhariwal, 2021). As a cutting-edge generative model, the diffusion model has out-
performed other models in various tasks, including computer vision (Rombach et al., 2022), natural
language processing (Li et al., 2022), multimodal learning (Liu et al., 2023; Avrahami et al., 2022),
and traffic prediction (Wen et al., 2024). Recent research has used diffusion models to generate
synthetic data to improve datasets in specific domains (Zhu et al., 2024a;b), such as the generation
of spatio-temporal trajectory data. Despite their widespread application, diffusion models have not
been extensively explored for path generation. This is primarily due to the distinct nature of the
task: path generation requires adherence to road network topology and sequential constraints (Wang
et al., 2022; Shi et al., 2024), which are fundamentally different from the data structures handled in
typical computer vision or natural language tasks.

3 PRELIMINARIES

3.1 PROBLEM DEFINITION

In this section, we introduce the definitions and notation that we use in this paper.
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Definition 1 (Road network) A road network is represented as a graph G = (V,E), where V is
the set of vertices vi, each representing a road intersection, and E ⊆ V × V is the set of edges
ei = (vj , vk), representing road segments from vj to vk.

Definition 2 (Path) A path p = ⟨v1, v2, v3, . . . , vL⟩ is a sequence of connected vertices, where each
vi ∈ V represents a vertex in the path, and two consecutive vertices are connected by an edge in E.

Definition 3 (Path Generation) The objective is to develop a generative model capable of produc-
ing synthetic paths N = {p̂1, p̂2, . . . }, where the generated paths p̂i preserve the structural and
spatial characteristics of real-world paths.

Table 1: Notations

Notation Description
G = ⟨V,E⟩ A graph representing the road network with vertices V and edges E.
(v0, v1, . . . , vn) The sequence of vertices in path p.
ei The i-th road segment in path p.
vi The i-th vertex in path p.
p A real-world path.
p̂ A generated synthetic path.
zt The embedded path at time step t.
R The real-world dataset.
N The synthetic dataset.
αt, βt Hyperparameters controlling the diffusion scale.

4 METHODOLOGY

4.1 OVERVIEW

The model framework is illustrated in Figure 3. DiffPath begins by embedding the discrete path
of length l into a continuous latent space Rl×d (referred to as Encoding). The embedded data
then undergoes a forward and reverse diffusion process, allowing the model to effectively learn
and represent complex patterns and dependencies within path in the latent space. The attention
mechanism of the transformer enhances the model’s ability to process sequential data and capture
long-range patterns, enabling it to learn complex data distributions and generate new paths (referred
to as the Generation process). Finally, the sampled results are mapped from the latent space back
to discrete path (referred to as Decoding).

Real path

Denoising
network

ClampingDenoising

Generated  path

Linear

Tanh

Linear LayerNorm

Timestep
Embedding

Dropout

PositionEmbedding

Transformer
Encoder 

Linear

Tanh

Linear
Input block Output block

Position Id Timestep

(b)Denoising network detail illustration(a)Overview of diffusion process framework. 

v1

v2

v3

v4

v1

v2

v3

v4
Position

Id

Noise

Timestep

Forward  Process

Latent Space

Forward Process
Reverse Process

Figure 3: Overview of diffusion process framework. Discrete path is embedded into a continuous
latent space and processed through a diffusion model to generate synthetic path.

4.2 ENCODING AND DECODING

To apply a latent diffusion model to the discrete path generation task, we first define an embedding
function EMB(vi) that maps each discrete path node vi (e.g., intersections or road segments) into a
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vector in Rd. For a path p of length l, the embedding of the path is represented as:

EMB(p) = [EMB(v1), EMB(v2), . . . , EMB(vl)] ∈ Rl×d. (1)

In order to operate within the latent space, we leverage a Markov transition in the forward process
from the discrete path p to its latent continuous representation z0. This transition is parameterized
as:

Eϕ(z0|p) = N (EMB(p), σ0I), (2)
where EMB(p) is the embedded representation of the path, and σ0I represents the covariance matrix
of the Gaussian noise. By introducing noise into the latent space, the model captures both the
underlying structure of the path and the inherent uncertainty in the transitions. Unlike pre-trained
or fixed embeddings, we jointly learn both the path embeddings and the parameters of the diffusion
model within the training objective. This end-to-end training enables the model to learn optimal
latent representations suited to the path generation task.

During the reverse process, the continuous latent representation is gradually denoised and mapped
back to the discrete path domain. This reverse diffusion process restores the path by iteratively
refining the latent representation, using learned parameters to approximate the true distribution of
the path. We select the most probable road segment at each position based on the current denoised
representation z0. Formally, the mapping is defined as:

Dθ(p|z0) =
l∏

i=1

gθ(vi|zi), (3)

where gθ(vi | zi) is modeled by a softmax distribution over all possible road segments. The softmax
distribution ensures that the probabilities of each possible road segment are normalized, and the road
segment with the highest probability is selected. Rather than a single deterministic step, the reverse
process involves a series of stochastic updates that gradually recover the discrete path from the noisy
latent representation.

4.3 TRANSFORMER-BASED DIFFUSION PROCESS

Forward and Reverse Process The forward process begins with the initial latent representation
z0, progressively adding Gaussian noise over a series of steps, generating increasingly noisy states
z1, z2, . . . ,zT . Each transition is defined by a Gaussian distribution:

q(zt|zt−1) = N (zt;
√
1− βt zt−1, βtI), (4)

where βt represents the noise variance at time step t. By the final step T , the latent variable zT
becomes a near-Gaussian distribution.

The reverse process aims to reconstruct the original latent state z0 from the noisy state zT , using a
learned denoising model. The reverse transitions follow the Gaussian distribution:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t), σθ(zt, t)
2I), (5)

where µθ(zt, t) and σθ(zt, t)
2 are the predicted mean and variance, respectively, at each time step

t, both of which are learned parameters.

Training Objective Traditional diffusion models add noise at each step and learn to denoise the
data in the reverse process to reconstruct the original data. This approach is effective for continuous
data, where noise can be gradually removed due to the smooth nature of the data. This is typically
done by minimizing a loss function designed to predict the added noise:

min
θ

Ezt,ϵ

[
∥ϵ− ϵθ

(√
ᾱt z0 +

√
1− ᾱt ϵ, t

)
∥2
]
, (6)

where ϵ represents the noise added to the original data z0, and ϵθ (zt, t) is the model’s predicted
noise. zt represents the noisy data at time step t, and

√
ᾱt,

√
1− ᾱt are weighting coefficients of

the diffusion process.

In path generation tasks, the data consists of discrete nodes (e.g., intersections or road seg-
ments) (Yang et al., 2023). Adding noise to such discrete data at each step can cause significant
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deviations from the original structure, particularly for low-frequency road segments. Unlike contin-
uous data, discrete data lacks a range of possible values, making noise introduction more likely to
result in irreversible changes. Moreover, since the diffusion process involves iterative noise addition
and removal, errors in predicting certain road segments, especially low-frequency ones, can accu-
mulate over time. This accumulation can lead to the model ignoring or misrepresenting these road
segments during path generation.

To overcome these limitations, we build on insights from previous work (Chen et al., 2023; Li et al.,
2022) by directly predicting the latent representation z0 for the entire path. Instead of progressively
predicting noise at each step, the model learns the full path representation in one pass. This allows
the model to capture sparse or uncommon road segments by focusing on the overall path structure,
enhancing accuracy in path generation:

Ltrain(p) =

T∑
t=1

Eq(zt|z0) ∥fθ(zt, t)− z0∥2 , (7)

where fθ(zt, t) is the model’s prediction of z0 at time step t. By directly learning to predict z0. The
predicted network structure is shown in the figure 3(b). We leverage transformer with its powerful
self-focused mechanism to capture remote dependencies and sequential patterns in path. By combin-
ing time step information and location information, the model can well take into account local node
transformation and global path dependence. To further enhance the model’s performance during the
reverse process, we apply the clamping trick, a method introduced in previous research (Li et al.,
2022). In this method, the predicted latent state fθ(zt, t) is clamped to the nearest valid road seg-
ment embedding, ensuring that each step in the reverse process adheres closely to the true discrete
structure of the data. The clamping is performed as follows:

zt−1 =
√
ᾱt · Clamp(fθ(zt, t)) +

√
1− ᾱtϵ, (8)

where ϵ ∼ N (0, I), and the clamping operation ensures that the predicted vector aligns with a valid
road segment in the embedding space. This approach reduces errors during the decoding process,
improving the accuracy of the generated paths. The overall training objective combines the losses
from the embedding process, diffusion process, and decoding process. This ensures that the model
captures the full complexity of path while maintaining both local and global structure. The final loss
is expressed as:

Ltrain(P ) = Eqϕ(z0|X)

[
T∑

t=1

∥fθ(zt, t)− z0∥2 + logEϕ(z0|p)− logDθ(p|z0)

]
. (9)

The training process algorithm is as follows:

Algorithm 1 Training Process of DiffPath

1: Input: Real path p, number of diffusion steps T
2: Output: Trained model parameters θ
3: for i = 1, 2, . . . do
4: Embed p to continuous field
5: Sample t ∼ Uniform({1, . . . , T}), ϵ ∼ N (0, I), initialize z0
6: Compute zt =

√
αtz0 +

√
1− αtϵ

7: Compute the predicted ẑ0 = fθ(zt, t)
8: Compute loss Ltrain(p)
9: Backpropagate and update model parameters θ

10: end for

4.4 SAMPLING PROCESS

During the generation phase, the model begins with a noise vector zT randomly sampled from a
Gaussian distribution. The process iteratively applies the learned denoising function to the noise vec-
tor to generate realistic path. Specifically, at each time step t, the model uses the function fθ(zt, t)
to predict z0, and then samples of the distribution:

zt−1 ∼ q(zt−1 | fθ(zt, t), zt) (10)
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to obtain the next intermediate state. This iterative process continues until the model reaches the
initial state z0. The final step is to decode z0 back into the discrete path p̂ using the process
argmax pθ(p | ẑ0). This ensures that the generated path maps smoothly back into the discrete
space, maintaining the structural and statistical properties of the original data.

Algorithm 2 Generating Process of DiffPath

1: Input: Number of diffusion steps T , trained model parameters θ
2: Output: Generated discrete path p̂
3: Random sampling zT
4: for t = T, T − 1, . . . , 1 do
5: Compute fθ(zt, t)
6: Sample zt−1 ∼ q(zt−1 | fθ(zt, t), zt)
7: end for
8: Decode ẑ0 to discrete path p̂ using argmax pθ(p | ẑ0)
9: return p̂

5 EXPERIMENTS

In this section, we provide the basic experimental setup, comparison of the main results, and visu-
alization analysis. We conduct extensive experiments on two real-world pathsets to demonstrate the
superior performance of the proposed model in synthetic path datasets generation.

5.1 EXPERIMENTAL SETUPS

5.1.1 DATASET

The raw datasets consist of GPS trajectories from two cities, referred to as Chengdu and Xi’an.
The road network data for both cities was obtained from OpenStreetMap. Each road network is
modeled as an directed graph. We then employed the map-matching algorithm proposed by (Meert
& Verbeke, 2018) to align the GPS trajectory points to the road network. Consequently, the GPS
trajectories were converted into path on the graph. For training, we randomly sampled 80% of the
paths from each dataset, while 20% was set aside for testing. Please refer to the appendix B for more
details

Table 2: Statistical Information of the Chengdu and Xi’an Datasets

City Number of Vertices Number of Paths Average Path Length
Chengdu 2,865 91,070 24.737

Xi’an 2,675 63,110 24.921

5.1.2 BASELINES.

In order to directly evaluate the effectiveness of our generation model, we perform a comparative
analysis of several path generation algorithms. The N-gram model, which estimates the probability
of transition p(vt|vt−1, . . . , vt−n+1) by counting the frequency of events, effectively captures lo-
cal dependencies between paths. The Hidden Markov Model (HMM) (Yin et al., 2017) optimizes
state reduction techniques to effectively simulate the underlying structure of path sequences. Addi-
tionally, the MTNet (Wang et al., 2022) model uses an architecture based on long-range memory
(LSTM) to better capture long-range dependencies and complex sequential patterns in path. And the
latest model GDP (Shi et al., 2024), which is modeled by the method of a discrete diffusion model.
These comparisons provide a comprehensive assessment of the generative capabilities of our model
relative to established methodologies.

7
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5.1.3 EVALUATION METRICS

To evaluate the performance of our model, we employed several metrics to assess both local tran-
sitions and global structures in the generated paths. These metrics include Kullback-Leibler Edge
Visit Divergence (KLEV), Jensen-Shannon Edge Visit Divergence (JSEV) (Shi et al., 2024),
and the newly introduced Similarity Score (SS). KLEV measures the divergence between the edge
visit frequency distributions of real and generated paths, capturing first-order transitions between
adjacent nodes. It is defined as:

KLEV(P, P ′) = DKL (freq (∀(vi, vi+1) ∈ P ) ∥ freq (∀(vi, vi+1) ∈ P ′)) , (11)

where freq(·) calculates the visiting frequencies of all edges (vi, vi+1) across the real paths P and
generated paths P ′, and DKL denotes the Kullback-Leibler divergence. Similarly, JSEV provides
a more stable and symmetric alternative by replacing the Kullback-Leibler divergence with Jensen-
Shannon divergence. It is given by:

JSEV(P, P ′) = JS (freq (∀(vi, vi+1) ∈ P ) ∥ freq (∀(vi, vi+1) ∈ P ′)) , (12)

where JS(p∥q) denotes the Jensen-Shannon divergence. Like KLEV, lower JSEV values indicate
better alignment between real and generated path distributions.

While KLEV and JSEV capture first-order transitions, they do not account for multi-hop depen-
dencies between non-adjacent road segments. To better assess the overall similarity between the
generated and real paths, we define the Similarity Score (SS) as follows:

S(G,Rbest) =
|P(G) ∩ P(Rbest)| ,

|P(G)|
(13)

P(G) represents the set of adjacent node pairs in the generated path G, and Rbest is the real path with
the maximum overlap of adjacent node pairs with G. For a set of generated paths {G1, G2, . . . , Gh},
we compute the similarity score S(Gi, Rbest) for each generated path Gi with its most similar real
path Rbest. The formula for the average similarity score across the entire set is given by:

Savg =
1

h

h∑
i=1

S(Gi, Rbest), (14)

where S(Gi, Rbest) is the similarity score for the i-th generated path.

5.2 EXPERIMENTAL PERFORMANCE

5.2.1 OVERALL PERFORMANCE

Table 2 presents the performance comparison of our model and the selected baseline methods on
two real-world datasets. We randomly generated 20,000 paths for each method and calculated all
evaluation metrics. Our model outperforms other models based on neural networks in all metrics.

Table 3: Evaluations for Path generation.

City Metrics N-gram HMM GDP MTnet DiffPath (Ours)
SS 0.701 0.681 0.616 0.821 0.933

Chengdu KLEV 0.140 0.135 0.686 0.129 0.106
JSEV 0.033 0.028 0.159 0.038 0.018

SS 0.628 0.633 0.571 0.772 0.893
Xi’an KLEV 0.133 0.130 0.697 0.127 0.122

JSEV 0.031 0.025 0.147 0.033 0.023

We observe that for KLEV and JSEV, count-based models perform poorly as they depend on simple
probability estimates for transitions between neighboring nodes. This limitation hinders their ability
to capture rare or infrequent transitions, leading to lower performance on these metrics. Among the
deep learning models, our approach achieves the lowest KLEV and JSEV values, indicating that the
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distribution of the generated paths closely matches to the distribution of the real path distributions.
All these observations demonstrate the effectiveness of DiffPath.

On Similarity Score (SS), we can observe that DiffPath also achieves the SOTA compared to all
other baselines. This shows that our model is especially good at generating paths that resemble
real-world travel patterns. The transformer architecture plays a key role here by helping the model
capture long-range dependencies across different road segments, ensuring that the generated paths
reflect realistic travel routes over longer distances. In contrast, count-based models, which only
focus on immediate transitions between adjacent nodes, struggle to represent the broader structure
of paths. This limitation makes it difficult for these models to capture the full complexity of road
networks, leading to lower SS values. As a result, while count-based models may produce paths that
are locally correct, they fail to capture the overall travel patterns and structure seen in real-world
data.

We also observed that the newly proposed GDP framework did not perform well on our dataset.
This is primarily because GDP is designed for path planning tasks and focuses on conditional path
generation. While it performs well in conditional scenarios, its unconditional path generation only
ensures road network constraints without considering path distribution. Consequently, it performs
poorly on metrics like KLEV and JSEV, which evaluate distributional characteristics.

5.2.2 VISUALIZATION ANALYSIS

We visualize the randomly selected real and generated paths in two cities. Figure 4 presents a
visual comparison between the paths generated by DiffPath and the real-world paths for the cities
of Chengdu and Xi’an. From these visualizations, it is evident that the generated paths align closely
with the overall structure of the real paths, successfully capturing the major road networks in both
cities. Key intersections and primary road segments are accurately represented in the generated
paths, demonstrating the model’s capacity to replicate real-world travel patterns.

(a) Generated (Chengdu) (b) Real paths (Chengdu) (c) Generated (Xi’an) (d) Real (Xi’an)

Figure 4: The visualization results of generated path and real path in Chengdu and Xi ’an

(a) Generated (Chengdu) (b) Real (Chengdu) (c) Generated (Xi’an) (d) Real (Xi’an)

Figure 5: The visualized results of generated heat maps and real heat maps for Chengdu and Xi ’an

To further evaluate the generated paths, Figure 5 compares the heatmaps of real and generated road
segments for Chengdu and Xi’an. The heatmaps visualize the density and frequency of road segment
usage, providing insights into the model’s ability to capture the spatial distribution of traffic. In both
cities, the generated heatmaps exhibit a distribution of high-traffic areas that closely mirrors the

9
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actual heatmaps. This consistency indicates that the model effectively replicates high-frequency
travel road segments observed in the real-world data, particularly in densely connected urban areas.
More visualization results can be found in Appendix C.

5.2.3 ABLATION EXPERIMENT

For ablation experiment, we can see that the Transformer consistently performs better than UNet
across all metrics in both cities from the results in Table 4. The higher Similarity Scores (SS) for
the Transformer in Chengdu (0.933) and Xi’an (0.893) show that it captures the structure of the
paths more accurately, both in terms of local connections and overall path flow. The lower KLEV
and JSEV values for the Transformer also highlight its ability to model both common and rare road
segments more effectively, addressing the issue of long-tail distributions. Overall, the Transformer
aligns more closely with real-world paths, making it the better option for generating realistic paths
in urban road networks compared to UNet.

5.2.4 PARAMETER EXPERIMENT

We observe that increasing the embedding dimension from 32 to 256 leads to significant improve-
ments in all metrics. The results for both Chengdu and Xi’an are summarized in Table 5. For more
detailed parameter settings, please refer to the appendix B

Table 4: Comparison of Transformer and
UNet Architectures for Path Generation.

City Metrics UNet Transformer
SS 0.915 0.933

Chengdu KLEV 0.122 0.106
JSEV 0.023 0.018

SS 0.872 0.893
Xi’an KLEV 0.137 0.122

JSEV 0.027 0.023

Table 5: Comparison of different embedding di-
mensions.

City Metrics 32 64 128 256
SS 0.786 0.851 0.933 0.917

Chengdu KLEV 0.144 0.137 0.106 0.108
JSEV 0.033 0.026 0.018 0.019

SS 0.708 0.816 0.893 0.887
Xi’an KLEV 0.144 0.137 0.122 0.125

JSEV 0.033 0.026 0.023 0.023

6 CONCLUSION

In this work, we propose a path generation method based on a latent diffusion model (DiffPath).
Our approach leverages the latent diffusion model’s strength in generating discrete data and the
transformer’s ability to learn sequence features effectively. Specifically, real paths are first embedded
into a latent space, where they undergo a forward noise trajectory process, gradually transforming
them into random noise. The model then applies reverse trajectory denoising to reconstruct the paths
from noise and finally decodes the synthesized paths. The effectiveness of DiffPath is validated
through extensive experiments. Further experimental results show that the paths generated by the
model align well with the statistical characteristics of real-world paths.
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A TRAINING OBJECTIVE DERIVATION

In the context of continuous diffusion models, we start with the goal of minimizing the difference
between the true posterior mean µ̂(xt, x0) and the predicted mean µθ(xt, t) in each diffusion step.
The objective function is represented as:

∥µ̂(xt, x0)− µθ(xt, t)∥2 . (15)

Substituting the definitions of µ̂(xt, x0) and µθ(xt, t), we have:

µ̂(xt, x0) =

√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt,

µθ(xt, t) =

√
ᾱt−1βt

1− ᾱt
fθ(xt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
xt.

Substituting these into the equation:

∥µ̂(xt, x0)− µθ(xt, t)∥2 (16)

=

∥∥∥∥(√
ᾱt−1βt

1− ᾱt
x0 +

√
αt(1− ᾱt−1)

1− ᾱt
xt

)
−

(√
ᾱt−1βt

1− ᾱt
fθ(xt, t) +

√
αt(1− ᾱt−1)

1− ᾱt
xt

)∥∥∥∥2 (17)

=

∥∥∥∥√ᾱt−1βt

1− ᾱt
(x0 − fθ(xt, t))

∥∥∥∥2 . (18)

Factoring in the constant
√
ᾱt−1βt

1−ᾱt
:

=

(√
ᾱt−1βt

1− ᾱt

)2

∥x0 − fθ(xt, t)∥2 . (19)

Since
(√

ᾱt−1βt

1−ᾱt

)2

is a constant with respect to the parameters that are optimized, minimizing this
expression is equivalent to the following.

∥x0 − fθ(xt, t)∥2 . (20)

This final form highlights that the model is trained to predict x0 directly at each diffusion step, which
simplifies the optimization process and improves stability.

B IMPLEMENTATION DETAIL

B.1 CONFIGURATION

The paths in each dataset were selected based on recorded travel data, capturing real-world road
usage across various regions of the cities. Each path consists of a sequence of connected vertices
(road segments) representing actual vehicle routes.All experiments were implemented in PyTorch
and conducted on a single NVIDIA GeForce RTX 3090 GPU.

B.2 HYPERPARAMETERS

The hyperparameters specific to DiffPath include the number of diffusion steps, the embedding
dimension, and the noise schedule. We set the number of diffusion steps to 2000 and the sequence
length to 144. For the embedding dimension, taking into account computing resource consumption,
we experiment with values in d ∈ {16, 64, 128, 256}, choosing d = 128 for both city datasets.
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DiffPath is trained using the AdamW optimizer with a linear learning rate decay starting at 1e-4, a
dropout rate of 0.1, and a batch size of 64. The total number of training iterations is set to 350K. For
the noise schedule, we design a square-root (sqrt) schedule to better handle the diffusion process.

Figure 6 illustrates the evolution of the Kullback-Leibler Edge Visit Divergence (KLEV) and the
Jensen-Shannon Edge Visit Divergence (JSEV) as the number of training iterations increases.
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Figure 6: The evolution of the KLEV and JSEV as the number of training iterations increases.

C ANALYSIS OF VISUAL EXPERIMENT RESULTS

C.1 PATH LENGTH STATISTICS

We compared the frequency distribution of path lengths between the generated and real-world
paths.Figure 10 presents the path length frequency distributions for both the generated and real-
world paths in Chengdu and Xi’an. The visual comparison demonstrates that the length distribution
of the generated paths is generally consistent with that of the real paths. However, slight deviations
are observed, particularly for longer paths, where the generated paths exhibit a somewhat narrower
distribution compared to the real paths. This suggests that while the model effectively generates
paths of typical lengths, there may be room for improvement in generating longer, less frequent
paths. Despite these minor discrepancies, the overall similarity between the length distributions
indicates that the model performs well in replicating the key characteristics of the real data.
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Figure 7: Comparison of Real and Generated Path Length Distributions
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C.2 PATH DISTRIBUTION ADDITIONAL STATISTICS

To evaluate the effectiveness of our model in learning path distributions, we conducted additional
experiments and visualized the results. Specifically, we divided the dataset’s geographical area into
a 3×3 grid, resulting in nine regions. We then calculated the distribution of path starting and ending
points. For instance, a path starting in region 1 and ending in region 2 is recorded in cell (1, 2) of the
grid. The distributions of paths generated by the real dataset and DiffPath are compared as shown
below.

(a) Real (b) Generated

Figure 8: Path distribution statistics based on origin and destination flow(Chengdu)

(a) Real (b) Generated

Figure 9: Path distribution statistics based on origin and destination flow(Xi’an)

The visualization demonstrates that the statistical grid of paths generated by DiffPath closely resem-
bles that of the real dataset, indicating that the overall distribution of paths generated by DiffPath
aligns well with the real data. Furthermore, in combination with the results presented in Table3, we
can confirm that DiffPath effectively captures the real-world path distribution.

C.3 LOW FREQUENCY ROAD SEGMENTS STATISTICS

To assess the model’s capability in capturing complex path distributions, particularly low-frequency
paths, we conducted additional experiments. In these experiments, we determined the average num-
ber of road segments in the Chengdu and Xi’an datasets to be 633.90 and 473.77, respectively.
Road segments that appeared fewer than 50 times in the real data were categorized as low-frequency
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segments. The generation proportions of these low-frequency segments across various models are
presented in the figures below.
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Figure 10: Comparison of results generated by low-frequency road segments

The results demonstrate that the generation ratios of our model align most closely with the trend
line of the real dataset, indicating its superior performance in accurately capturing the distribution
of low-frequency road segments within the real data.
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