
Attention for Adversarial Attacks: Learning from your Mistakes

Florian Jaeckle*, Aleksandr Agadzhanov*, Jingyue Lu, M. Pawan Kumar,
Department of Engineering Science

University of Oxford
{florian,pawan}@robots.ox.ac.uk, alexagadzhanov97@gmail.com, jingyue.lu@spc.ox.ac.uk

Abstract
In order to apply Neural Networks in safety-critical settings,
such as healthcare or autonomous driving, we need to be
able to analyse their robustness against adversarial attacks.
As complete verification is often computationally prohibitive,
we rely on cheap and effective adversarial attacks to esti-
mate their robustness. However, state-of-the-art adversarial
attacks, such as the frequently used PGD attack, often require
many random restarts to generate adversarial examples. Each
time we perform a restart we ignore all previous unsuccess-
ful runs. In order to alleviate this inefficiency, we propose a
method that learns from its mistakes. Specifically, our method
uses Graph Neural Networks (GNNs) as an attention mecha-
nism, to greatly reduce the search space for the attacks. The
architecture of the GNN is based on the neural network we
are attacking, and we perform forward and backward passes
though the GNN mimicking the back-propagation algorithm
of PGD attacks. The GNN outputs a smaller subspace for the
PGD attack to focus on. Using our method, we manage to
boost the attacks’ performance: the GNN increases the suc-
cess rate of PGD by over 35% on a recent published dataset
used for comparing adversarial attacks, while simultaneously
reducing its average computation time.

Introduction
The success of deep learning relative to traditional machine
learning in various areas such as image recognition, natural
language processing, or recommendation systems has moti-
vated its usage in more safety-critical applications; examples
of which include healthcare and autonomous driving. De-
spite AI’s high level of performance, often beating humans
on tasks like computer vision, researchers both in academia
and industry have called for machine learning based ap-
proaches to be regulated more heavily, especially due their
lack of explainability and vulnerability towards malicious
attacks. Szegedy et al. (2013) were the first to show that neu-
ral networks are susceptible to so-called adversarial attacks.
These are methods that slightly perturb an image to get a
trained neural network to misclassify it, often with a high
level of confidence. Tiny perturbations that are impercepti-
ble to the human eye are often enough to trick the network,
as shown in Figure 1. Many different adversarial example

*These authors contributed equally.
Copyright © 2022, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

Figure 1: An example of the effect of adversarial attacks on
the image classification neural networks taken from Akhtar
and Mian (2018). Top: original images which are correctly
classified by the neural network with very high levels of con-
fidence. Bottom: same images as above but with small engi-
neered perturbations added to them so that the network now
misclassifies them with high levels of confidence.

generation methods have been proposed in the literature.
These are important for both evaluating the robustness of
neural networks (verification) as well as making them more
robust (adversarial training).

In this work we focus on white box attacks; in this setting
the attacker has access to the network architecture, as well
as its weights. White box attacks are often used for verifica-
tion and adversarial training as in both cases we have access
to the network weights. Moreover, even in a black box set-
ting, where the attacker doesn’t have access to the network
architecture or weights, we can perform a white box attack
on a surrogate model as adversarial examples tend to gener-
alize across different network architectures (Szegedy et al.
2013). Numerous methods aiming to generate adversarial
examples have been proposed in the literature. Most of the
state-of-the-art approaches are iterative methods using tech-
niques from the standard optimziation literature (Moosavi-
Dezfooli, Fawzi, and Frossard 2016; Carlini and Wagner
2017; Dong et al. 2018; Madry et al. 2018). They start at
an (often random) initial point and aim to arrive at an adver-
sarial example using many optimization steps. To improve
performance most of these attacks use random restarts. We
highlight two challenges or weaknesses of this approach.
Firstly, the search space is often large as it tends to be high-
dimensional, and secondly at every restart we ignore all pre-



vious unsuccessful optimization attempts. We aim to allevi-
ate both of these points using a new attention mechanism.
Our method aims to greatly reduce the search space for the
attack, by learning from its past mistakes, thereby increasing
its chances of finding an adversarial example more quickly.

To this end, we propose to use a Graph Neural Network
to reduce the search space for PGD attacks (Madry et al.
2018), one of the most commonly used methods to generate
adversarial examples. We treat the Neural Network we are
attacking as a graph and mimic the forward-backward na-
ture of the back-propagation algorithm used by PGD using
message passing in our GNN. Our GNN takes as input the
targeted neural network as well as information from previ-
ous unsuccessful PGD attacks and outputs a new input do-
main that is smaller than the previous search space. Our ap-
proach manages to increase the number of properties which
we manage to attack successfully by over 35% compared to
using PGD with random restarts on a given time frame.

Code for all experiments is available at https://github.
com/AleksandrAgadzhanov/GNN Attention Mechanism

Related Work
Many different types of adversarial attacks exist. We fo-
cus on white-box image-dependent targeted attacks, as they
can be seen as the strongest form of attacks. We work with
white-box image-dependent attacks as they are widely used
for both verification and adversarial training; we further note
that one can create an untargeted attack using an ensemble
of targeted ones.

Adversarial Attack Methods. Serban, Poll, and Visser
(2020) separate adversarial attacks into three main cate-
gories. The first, which we focus on in this work, aims
to find an adversarial example given an allowed perturba-
tion norm. Examples include the Fast Gradient Sign Method
(FGSM) (Goodfellow, Shlens, and Szegedy 2015), Pro-
jected Gradient Descent (PGD) (Madry et al. 2018), Itera-
tive FGSM (Kurakin, Goodfellow, and Bengio 2016), and
Iterative FGSM with Momentum (Dong et al. 2018). A sec-
ond type of attacks aims to find an adversarial example with
the smallest possible perturbation. The first such attack was
proposed by Szegedy et al. (2013) using limited-memory
box constrained optimization. Other methods have been pro-
posed by Moosavi-Dezfooli, Fawzi, and Frossard (2016) and
Carlini and Wagner (2017). A third line of research focuses
on attacks that use machine learning based methods to learn
to generate better adversarial examples, such as ATNs (Fis-
chetti and Jo 2018), GAPs (Poursaeed et al. 2018), Adv-
GANs (Xiao et al. 2018), and AdvGNNs (Jaeckle and Ku-
mar 2021).

Attention Mechanisms. Attention mechanism have been
widely used in computer vision (Itti, Koch, and Niebur 1998;
Ramachandran et al. 2019); their application has been partly
inspired by human vision. To the best of our knowledge,
very limited work has been done to use attention mechanism
for generating adversarial examples. Chen et al. (2017) pro-
pose several techniques to reduce the search space and (Cui
et al. 2020) use active subspaces to generate adversarial ex-
amples. Recently, Wang et al. (2022) published a method

that uses attention information to generate universal adver-
sarial perturbations. Concurrent work by Jia et al. (2021)
uses generative networks to improve the initialization for
adversarial attacks used for adversarial training. Unlike our
method their learnt initialization method is only conditioned
on the natural image as well as the gradient information from
the target network and doesn’t learn from past attacks. Fur-
thermore, the design of their network differs from our Graph
Neural Network based approach.

Graph Neural Networks. We introduce an attention
mechanism utilizing Graph Neural Networks (GNN). GNNs
have recently been used in neural network verification in
branch-and-bound based algorithms: both to learn a branch-
ing strategy (Lu and Kumar 2020) and to learn better bounds
(Dvijotham et al. 2018; Gowal et al. 2019; Jaeckle, Lu,
and Kumar 2021). Recently Jaeckle and Kumar (2021) used
GNNs to learn to generate adversarial examples. We argue
that that GNNs are well suited for our problems, as we can
treat the neural network we are attacking as a graph and sim-
ulate the back-propagation algorithm of adversarial attacks
using message passing.

Problem Definition
We now outline the problem definition along with some stan-
dard algorithms to solve it. Throughout this work we write
scalars in non-bold italic lowercase or uppercase letters (λ
or L); vectors will be written as bold non-italic lowercase
letters (z); the i-th element of a vector z will be denoted as
zi; matrices will be denoted as bold non-italic uppercase let-
ters (W); the element of the matrix W appearing in the i-th
row in the j-th column will be denoted as Wi,j .

We are given an L-layer (convolutional) Neural Network
f : Rd 7→ Rm, that takes as input a d-dimensional vector,
in our case an image, and outputs an m-dimensional vector,
corresponding to the m different classes of our classification
problem. Given weights W(j), biases b(j), and a non-linear
activation function σ, f can be defined as follows:

x̂(i+1) = W(i+1)xi + bi+1, for i = 0, . . . , L− 1, (1)
xi = σ(x̂i), for i = 1, . . . , L− 1. (2)

Throughout this work we use ReLU activations, as they are
the most commonly used activation for feed-forward neural
networks (Ramachandran, Zoph, and Le 2017). Here x(0) ∈
Rd, is the input image, and x(L) is the output vector. As we
are considering image classification problems in this work,
f(x)j = x

(L)
j , can be interpreted as the confidence value

that the input belongs to the j-th class; the image thus gets
classified as argmaxj f(x)j by f .

An adversarial example is an input vector that is close to
a natural image but one that gets misclassfied by our net-
work. That is, given a real image x with true label y, x′ is
an adversarial example if it lies near x and f(x)y < f(x)ŷ
for some incorrect class ŷ. There are many ways to com-
pute the similarity between two images; we use the infinity
norm, as it’s been widely used in the literature (Madry et al.

2 of 13



2018; Dong et al. 2018). We require that the distance be-
tween x and x′ is less than some given parameter ϵ, that is
d(x,x′) := ∥x− x′∥∞ := maxj |xj − x′

j | ≤ ϵ
We can formulate the problem of finding adversarial ex-

amples as an optimization problem:

maxx′∈B(x,ϵ) L(x
′, y, ŷ) = f(x′)ŷ − f(x′)y, (3)

where B(x, ϵ) is an ϵ-sized infinity norm-ball around x:

B(x, ϵ) := {x′ | d(x,x′) ≤ ϵ}. (4)

We call L the adversarial loss and x′ an adversarial exam-
ple if L(x′, y, ŷ) > 0. Many algorithms to solve (3) have
been proposed in the literature. The first method was the
fast gradient sign method (FGSM) (Goodfellow, Shlens, and
Szegedy 2015) that takes a single step towards the sign of the
adversarial gradient:

x′ = x+ ϵ sgn(∇xL(x
′, y, ŷ)). (5)

Madry et al. (2018) proposed what is commonly referred
to as the PGD attack, a method that applies the FGSM step
iteratively. This corresponds to running Projected Gradient
Descent on the negative adversarial loss:

xt+1 = ΠB(x,ϵ)

(
xt + α sgn(∇xL(x

′, y, ŷ)
)
. (6)

To improve the success rate of the attack, we can perform
random restarts where we initialize x0 ∈ B(x, ϵ) randomly
each time. However, each time we initialize x0, we ignore all
previous unsuccessful attacks as well as the structure of the
input domain as well as the optimization problem in general.
We propose using an attention mechanism, that significantly
reduces the search space thus leading to better initializations
and a more efficient attack. Our attention method utilizes
Graph Neural Networks (GNNs); we will describe the GNN
framework in the next section

GNN Framework
Our method is motivated by two observations: firstly, neural
networks can be interpreted as a graph, with the neurons be-
ing nodes, and the weights being edges; secondly common
adversarial attacks, such as PGD attack, can be described
as taking a forward and a backward pass through this net-
work to generate the adversarial gradient. These observa-
tions naturally lead to the idea of using Graph Neural Net-
works to help with the generation of adversarial examples.
The structure of our GNN is based on the neural network
we are trying to attack and the message passing algorithm
mimics the forward-backward steps used by the PGD at-
tack. Our method is based on work by Lu and Kumar (2020)
who use GNNs to make better branching decisions for Neu-
ral Network complete verification problems and by Jaeckle
and Kumar (2021) who deploy GNNs to generate adversar-
ial examples directly.

Overview
Given a Neural Network f that we are trying to attack,
we create a corresponding Graph Neural Network Gf =
(V,E). V is the set of vertices in the GNN; we create one
vertex for every neuron in the original network f . Similarly,

Figure 2: GNN Framework. On the left is the original neu-
ral network that we’re trying to attack, and on the right is the
GNN with the embedding vectors initialized for each node.
There is a one-to-one correspondence between the nodes of
the GNN and the neurons of the original neural network f ,
and between the GNN edges and the NN weights. The nodes
are separated into input, hidden, and output layers.

E describes the set of edges, where we have an edge be-
tween two nodes if and only if the two corresponding neu-
rons are connected in f . We further create a feature vector
zv ∈ Rp for every v ∈ V . These contain important infor-
mation about the node that we pass to the GNN. Next, we
create a multi-dimensional learnt embedding vector µv ly-
ing in feature space for every v ∈ V . Once we have created
an embedding vector for every node, we start the forward-
backward messaging passing algorithm that updates embed-
ding vectors based on information from previous and later
layers. Finally, we use another learnt function that takes the
embedding vectors corresponding to the nodes in the input
layer and outputs a new branching suggestion to decrease
our current search space.

Components
The structure of our GNN including nodes, edges, and node
embedding vectors is depicted in Figure 2. We now describe
each part in more detail.

Nodes. We create one node for every neuron in the original
network f . We denote the set of nodes in the GNN as V .

Edges. The set of edges E in the GNN is based on the
weights in the original network. The edge weight corre-
sponds to the weights in f . The edges influence the message
passing algorithm described below.

Node Features. We compute a feature vector zv for ev-
ery v ∈ V . We separate all nodes into three categories: in-
put nodes, hidden nodes, and output nodes. We use different
methods to generate the node features for each of them. The
feature vectors for the input, hidden, and output layers are of
dimension pinp, phid, and pout respectively. We aim to use
information that encapsulates as much useful information of
the respective node as possible, while at the same time be-
ing cheap to compute. Some of the features we use include
current bounds of the node as well as information from pre-
vious unsuccessful PGD attacks. We aim to learn from the
unsuccessful attempts to increase the chance of success in
the future. This forms a contrasts to the traditional approach
of using random restarts that ignore all previous runs. A de-
tailed explanation of how we compute these features can be
found in Appendix A.

3 of 13



Figure 3: GNN Message Passing. The forward update steps
are depicted in the top row, and the following backward
pass in the bottom row. Embedding vectors are updated us-
ing learnt functions that take as input both feature vectors
and embedding vectors from previous or later layers respec-
tively. We can perform several rounds of this message pass-
ing cycle.

Node Embeddings. Embedding vectors are multi-
dimensional vectors that lie in feature space, and are
generated using learnt functions. We initialize the embed-
ding vectors for the input layer using a learnt function
Finp : Rp 7→ Rd that is parameterized by θ0 and takes as
input the feature vector for the input layers (z0):

µ0
j = Finp(z

0
j ;θ

0). (7)

We describe the Finp in greater amount of detail in Ap-
pendix B. All other embedding vectors are initialized and
updated using functions that take both local feature vectors
as well as neighbouring embedding vectors as input. we de-
scribe this update procedure in the next subsection. Unlike
the feature vectors, the embedding vectors are influenced by
neighbouring nodes and thus include information about the
state of the entire problem. In particular, once we’ve com-
pleted the message passing algorithm, the embedding vec-
tors of the input layer are influenced by all other embeddings
and can thus be used to generate a new branching direction.

Message Passing
The power of the GNN lies in the message passing al-
gorithm. We initialize and update embedding vectors in a
forward-backward manner that is based on the gradient com-
putation procedure used by PGD. We now describe these
forward-backward update steps of the GNN in greater de-
tail.

Forward Pass. We iteratively update one layer at a time,
starting with the first hidden layer. We compute the embed-
ding vector for the j-th node in the i-th layer using a learnt
function Fhid : Rphid+d 7→ Rd, that takes as input the local
feature vectors of the i-th layer (zij), the embedding vectors
from the previous layer (µi−1), and the edge matrix (E) as
follows:

µi
j = Fhid(z

i
j ,µ

i−1, E;θ1) ∀i ∈ {1, · · · , L−1}. (8)

Next, we compute the embedding vector for the j-th node
of the output layer, using another learnt function Fout :

Rpout+d 7→ Rd that takes the local feature vector of the cor-
responding node (zij) and the embedding vectors from the
final hidden layer (µL−1) to compute an embedding vector
for the final layer:

µL
j = Fout(z

L
j ,µ

L−1;θ2). (9)

Once we have finished the forward passes, all embedding
vectors have been influenced by all embeddings from previ-
ous layers, so as long as they corresponding nodes are con-
nected via a path in the original network f . As we main fo-
cus lies on the embedding vectors of the input layer we now
need to send the information backwards.

Backward Pass. At this point we have computed an em-
bedding vector for every node in the GNN, and every em-
bedding vector is influenced by embedding vectors from all
previous layers. We now perform a backward pass, to send
information back from the output layer to the input layer, in-
spired by the nature of the the back-propagation algorithm
that is used to compute the gradient for the PGD attack. For
all hidden layers we update the embedding vectors as fol-
lows:

µi
j = Bhid(z

i
j ,µ

L+1;θ3) ∀i ∈ {1, · · · , L− 1}. (10)

Like for the forward pass, the backward function takes as
input the feature vector, but instead of using the embedding
vectors from the previous layer, we now use the embedding
vector for the following layer, as we’re passing information
backwards. Once we have updated all hidden layers we up-
date the embedding vector for the input layer:

µ0
j = Binp(z

0
j ,µ

1;θ4). (11)

At this point all embedding vectors have been updated based
on information from all other layers. We can repeat this
forward-backward update scheme if we like. We note that
at any point we only need to keep embedding vectors for
one single layer in memory. Once we’ve completed the mes-
sage passing steps, we need to use the embedding vectors to
make a branching decision.

In Appendix B we define and describe the four differ-
ent functions implementing the forward-backward messag-
ing passing scheme in greater detail. All functions can be
implemented efficiently using functions from standard deep
learning packages.

Making a Branching Decision
We now use the embedding vectors of the input layer (µ0)
to output a new branching decision. We aim to split each
input node separately. For the j-th node, given a lower bound
lj and an upper bound uj we want to generate new tighter
bounds l̄j and ūj such that lj ≤ l̄j ≤ ūj ≤ uj . We use a
learnt function g : Rd 7→ 2 to get[

l̂j
δj

]
= g(µ0

j ;θ5). (12)

Here, l̂j can be interpreted as the new lower bound, and δj as
the offset parameter, which defines the difference between

4 of 13



the new upper and lower bounds. To ensure feasibility we
take

l̄j ← max{min{l̄j , uj}, lj}. (13)
This leads to a new lower bound lying in between the old
lower and upper bounds. Next we compute the new upper
bound ūj using both the new lower bound and the offset
parameter:

ūi ← max{min{l̄j + θj , ui}, l̄j}. (14)

This leads to a new upper bound lying in between the new
lower bound and the old upper bound. In the next section we
describe how to evaluate the strength of these new bounds
and how to train a GNN successfully.

GNN Training
Having described the GNN framework along with its mes-
sage passing algorithm, we now show how to train it, to learn
to output better branching decisions. We first describe the
loss function that we are trying to optimize over and that ex-
plains how well our GNN is performing. We then outline the
training dataset used to learn the optimal GNN.

Objective Function
Let us first denote the set of learnable parameters as

Θ =
[
θT
0 θT

1 θT
2 θT

3 θT
4 θT

5

]T
. (15)

We use a supervised learning approach to train our GNN.
Our training dataset contains adversarial examples that have
been generated by successful PGD attacks. We aim to train
the GNN to output new bounds that contain these adversarial
examples whilst being as tight as possible.

Given an adversarial example xPGD returned by a success-
ful PGD attack, and bounds l̄(Θ) and ū(Θ) outputted by
the GNN, we define a loss for each of the d input nodes. The
loss consists of two parts. The first one checks whether the
adversarial example lies within the bounds:

L1,i(Θ) =


0 if l̄i(Θ) ≤ xPGD,i ≤ ūi(Θ)

l̄i(Θ)− xPGD,i if xPGD,i < l̄i(Θ)

xPGD,i − ūi(Θ) if xPGD,i > ūi(Θ)
(16)

The loss is zero if the adversarial example lies within the
bounds and increases linearly with the distance between the
true adversarial example and the bounds returned by the
GNN. Note, we simplified notation to improve clarity: the
output of the GNN l̄i(Θ) is not only influenced by the learnt
parameters Θ, but also by information needed to initialized
the feature vectors and the network f .

We also want to encourage the bounds to be as tight
as possible, in order to significantly reduce the size of the
search space. To this end, we define a second loss term that
encourages tightness of the bounds:

L2,i(Θ) =
ūi(Θ)− l̄i(Θ)

ui − li
. (17)

Our final loss function is a normalized combination of the
two sums describing both the tightness of the bounds and

whether they include the ground truth:

L(Θ) =
1

d

d∑
i=1

L1,i(Θ) + λ · L2,i(Θ) (18)

Here, λ is a fixed parameter that determines the relative
weighting of the two loss functions. If λ is small then the
GNN focuses on minimizing the first loss term and in the
process becomes more conservative to ensure that we don’t
exclude the ground truth from the new subspace. If, on the
other hand, λ is large, then the GNN becomes more risky and
aims to output a much smaller subspace. We fix the value of
λ to be 0.033. We will try to minimize this loss using the
Adam optimizer (Kingma and Ba 2015) with a learning rate
of 1e-4 and no weight decay.

Training Dataset
We now describe the training dataset we used to learn a suc-
cessful GNN. It is based on the adversarial training dataset
proposed by (Jaeckle and Kumar 2021). They attack a con-
volutional neural network they call the ‘Base’ model. It’s
been trained robustly on the CIFAR10 dataset (Krizhevsky,
Hinton et al. 2009) using the methods of Madry et al. (2018)

against l∞ perturbations of size up to ϵ =
8

255
(the amount

typically considered in empirical works). They created a set
of 4515 properties, each a tuple consisting of a natural im-
age (xi), a true label (yi), an incorrect target label (ŷi), and
an allowed perturbation value (ϵi). The perturbation value
is uniquely chosen for each tuple: it is large enough so that
there exist at least one adversarial example in the infinity
norm ball around the natural image that it defines; but at the
same time small enough so that the adversarial examples are
hard to find. The Base network classifies all of these images
correctly, so ϵi > 0 for all training points i.

Before we further describe the training dataset, we remind
the reader of the experimental setting that our GNN will be
used in: we aim to generate an adversarial example for a
given network, and image. If the first PGD run manages to
find one, we can move on to the next image. However, if the
first iteration of the PGD attack was unsuccessful, we want
to use the GNN to learn from this and focus our attention to
a smaller input domain, from which we run the next PGD
attack. We now need to create a training dataset with which
we can simulate this experimental setup. For each data point
(xi, yi, ŷi,) in the training set, we need to generate an ad-
versarial example xPGD, i in order to define the GNN objec-
tive function (18). We thus need to run PGD repeatedly until
we succeed in finding an adversarial example. As mentioned
above, the GNN tries to learn from previous unsuccessful
attacks by including some of this information in its feature
vectors. We there also store information from at least one
unsuccessful PGD attack on this data point. Once we have
generated a big enough training dataset we can start training
a GNN by optimizing over (18).

Experiments
We now evaluate the performance of our method by compar-
ing it to that of the baseline. We think of our method as a tool

5 of 13



Algorithm 1: PGD Attack with Random Restarts
Input: Neural Network f , natural image x, true label y,
incorrect target label ŷ, perturbation size ϵ
Parameters: step size α, iteration parameter T , restart
parameter R
Output: an adversarial example or
None

1: for r = 0, . . . , R do
2: sample x0 from B(x, ϵ) uniformly at random
3: for t = 0, . . . , T do
4: if L(xt, y, ŷ) > 0 then
5: Return: xt

6: else
7: xt+1 = ΠB(x,ϵ) (x

t + α sgn(∇xL(x
t, y, ŷ)) .

8: end if
9: end for

10: Return: None
11: end for

that can be applied to existing attacks, rather than create an
entirely new one. More specifically, our main aim is to boost
the performance of the PGD attack and make it more effec-
tive. We thus compare our method against the standard PGD
attack using random initializations, to evaluate whether our
method is indeed able to improve on the baseline.

Experimental Set-Up. We use a similar experimental
setup as Jaeckle and Kumar (2021). We run white-box tar-
geted image-dependent adversarial attacks on the CIFAR10
dataset (Krizhevsky, Hinton et al. 2009). We attack a convo-
lutional neural network they call the ‘Base’ model: it con-
sists of two convolutional layers followed by two fully con-
nected ones and use the ReLU activation function. We attack
100 properties, all different to the ones seen during training.
We report the percentage of properties successfully attacked
over time, both for the baseline and our method. We use this
particular dataset, as it only consists of challenging adver-
sarial properties. As is the case for the training dataset, every
data point in the test set is a tuple consisting of a natural im-
age (xi), a true label (yi), an incorrect target label (ŷi), and
an allowed perturbation value (ϵi). The perturbation norm is
image dependent to ensure that at least one adversarial ex-
ample exists in B(x, ϵ), it’s small enough so that it is difficult
to find. Both the baseline and our method are implemented
in Pytorch (Paszke et al. 2017) and are run on a single GPU
each.

Baseline. We compare our method against the standard
PGD attack (Madry et al. 2018) with random initializations.
PGD tries to find an adversarial example by first choosing
a starting point x0 ∈ B(x, ϵ) uniformly at random and then
running the following update step for 100 iterations:

xt+1 = ΠB(x,ϵ)

(
xt + α sgn(∇xL(x

′, y, ŷ)
)
. (19)

We stop early if we’ve found an adversarial example, that is
if for any t, we get L(x′, y, ŷ) > 0. We pick α = 0.1 and
perform a total of 210 restarts or until we’ve found an adver-
sarial example. The baseline method is further described in
Algorithm 1.

Algorithm 2: PGD Attack with GNN Attention
Input: Neural Network f , natural image x, true label y,
incorrect target label ŷ, perturbation size ϵ
Parameters: step size α, iteration parameter T , restart
parameter R, GNN parameters Θ
Output: an adversarial example or
None

1: initialize an empty dictionary dict to store information
of the PGD attack for the GNN

2: sample x0 from B(x, ϵ) uniformly at random
3: for t = 0, . . . , T do
4: if L(xt, y, ŷ) > 0 then
5: Return: xt

6: else
7: xt+1 = ΠB(x,ϵ) (x

t + α sgn(∇xL(x
t, y, ŷ)) .

8: add L(xt, y, ŷ) and xt+1 dict
9: end if

10: end for
11: Initialize feature vectors z using (dict, f,x, y, ŷ,B(x, ϵ)

as described in Appendix A
12: Initialize and update embedding vectors µ using the

forward-backward message passing algorithm defined
by equations (7) - (11) and in Appendix B

13: Generate a new bounded input set BGNN using equa-
tions (12) - (14)

14: for r = 0, . . . , R do
15: sample x0 from BGNN uniformly at random
16: for t = 0, . . . , T do
17: if L(xt, y, ŷ) > 0 then
18: Return: xt

19: else
20: xt+1 = ΠBGNN

(xt + α sgn(∇xL(x
t, y, ŷ)) .

21: end if
22: end for
23: Return: None
24: end for

Our Method. Our method consists of three parts. We first
run PGD with no restarts with the same hyper-parameters
as above. If the attack has been successful we move on to
the next image. If unsuccessful we then use the GNN, that
has been trained as described in the previous section. The
GNN takes as input the current bounds, the image we are
trying to attack and data from the unsuccessful PGD attack,
to output new, tighter bounds. We then run PGD on the new
bounds a further 99 times or until we have found an adver-
sarial example. We perform two iterations of the forward-
backward message passing procedure described above as the
embedding vectors tend to converge after two passes. In Al-
gorithm 2 we summarize the entire algorithm, including the
initial PGD attack, the execution of the GNN, and the final
PGD attacks with the new GNN computed bounds. In the
Appendix, we explore different variations of our method,
including calling our method up to 6 times after a varying
number of restarts to further decrease the search space and
learn from more unsuccessful attacks. We also describe the
hyper-parameter used for the GNN.

6 of 13



Figure 4: Comparing our method against PGD with random
restarts. We note that for any given time, our method out-
performs the baseline, finding adversarial examples for 40%
more properties.

Results. We compare our method against the baseline in
Figure 4. Our method significantly boost the performance
PGD compared to when using random initializations. We
increase the number of properties successfully attacked by
over 35% while decreasing the average time taken to do so.
One downside of our method compared to using random ini-
tializations is the one-off cost associated with training the
GNN. However, we argue that in most applications, such as
verification or adversarial training, we don’t just call the ad-
versarial attack once, but a large number of times. The im-
proved performance of the GNN thus makes up for the one
time training cost.

Conclusion
In this work we have shown how to improve an existing ad-
versarial attack method using a Graph Neural Network as an
attention mechanism that learns from previous unsuccess-
ful PGD attacks and greatly decreases the search space for
future attacks. By improving the starting point for the next
attack, PGD has a higher chance of converging to find an
adversarial example in less time. Our method leads to a 39%
increase in the attack success rate for a given timeout, com-
pared to using PGD with random initializations.

Being able to compute adversarial examples efficiently is
important for making neural networks more robust and im-
proving explainability; both are important for their applica-
tion in safety-critical situations and form an important area
of research.

There is a lot of potential for future work to build on our
method and to extend it. This could include using a similar
approach to work for other attack methods that currently use
random initializations, such as the the Carlini Wagner attack
(Carlini and Wagner 2017), MI-FGSM, the iterative fast gra-
dient sign method with momentum (Dong et al. 2018), or au-
toattack (Croce and Hein 2020). One could also combine it
with other attack methods that use learning to output adver-
sarial examples such as AdvGAN (Poursaeed et al. 2018),
ATN (Baluja and Fischer 2017), or AdvGNN (Jaeckle and
Kumar 2021). Moreover, the GNN based approach could be
extended to work on larger or deeper neural networks, or

those containing residual connections.

References
Akhtar, N.; and Mian, A. 2018. Threat of adversarial attacks
on deep learning in computer vision: A survey. Ieee Access,
6: 14410–14430.
Baluja, S.; and Fischer, I. 2017. Adversarial transformation
networks: Learning to generate adversarial examples. arXiv
preprint arXiv:1703.09387.
Carlini, N.; and Wagner, D. 2017. Towards evaluating the
robustness of neural networks. In 2017 IEEE Symposium on
Security and Privacy (SP), 39–57. IEEE.
Chen, P.-Y.; Zhang, H.; Sharma, Y.; Yi, J.; and Hsieh, C.-
J. 2017. Zoo: Zeroth order optimization based black-box
attacks to deep neural networks without training substitute
models. In Proceedings of the 10th ACM workshop on arti-
ficial intelligence and security, 15–26.
Croce, F.; and Hein, M. 2020. Reliable evaluation of adver-
sarial robustness with an ensemble of diverse parameter-free
attacks. In International conference on machine learning,
2206–2216. PMLR.
Cui, C.; Zhang, K.; Daulbaev, T.; Gusak, J.; Oseledets, I.;
and Zhang, Z. 2020. Active subspace of neural networks:
Structural analysis and universal attacks. SIAM Journal on
Mathematics of Data Science, 2(4): 1096–1122.
Dong, Y.; Liao, F.; Pang, T.; Su, H.; Zhu, J.; Hu, X.; and Li,
J. 2018. Boosting adversarial attacks with momentum. In
Proceedings of the IEEE conference on computer vision and
pattern recognition, 9185–9193.
Dvijotham, K.; Gowal, S.; Stanforth, R.; Arandjelovic, R.;
O’Donoghue, B.; Uesato, J.; and Kohli, P. 2018. Train-
ing verified learners with learned verifiers. arXiv preprint
arXiv:1805.10265.
Fischetti, M.; and Jo, J. 2018. Deep neural networks and
mixed integer linear optimization. Constraints, 23(3): 296–
309.
Goodfellow, I. J.; Shlens, J.; and Szegedy, C. 2015. Explain-
ing and harnessing adversarial examples. The International
Conference on Learning Representations.
Gowal, S.; Dvijotham, K.; Stanforth, R.; Mann, T.; and
Kohli, P. 2019. A dual approach to verify and train deep net-
works. In Proceedings of the 28th International Joint Con-
ference on Artificial Intelligence, 6156–6160. AAAI Press.
Itti, L.; Koch, C.; and Niebur, E. 1998. A model of saliency-
based visual attention for rapid scene analysis. IEEE
Transactions on pattern analysis and machine intelligence,
20(11): 1254–1259.
Jaeckle, F.; and Kumar, M. P. 2021. Generating Adversar-
ial Examples with Graph Neural Networks. Conference on
Uncertainty in Artificial Intelligence.
Jaeckle, F.; Lu, J.; and Kumar, M. P. 2021. Neural Network
Branch-and-Bound for Neural Network Verification. arXiv
preprint arXiv:2107.12855.
Jia, X.; Zhang, Y.; Wu, B.; Wang, J.; and Cao, X. 2021.
Boosting Fast Adversarial Training with Learnable Adver-
sarial Initialization. arXiv preprint arXiv:2110.05007.

7 of 13



Kingma, D. P.; and Ba, J. 2015. Adam: A method for
stochastic optimization. In International Conference on
Learning Representations.
Krizhevsky, A.; Hinton, G.; et al. 2009. Learning multiple
layers of features from tiny images. Technical report, Cite-
seer.
Kurakin, A.; Goodfellow, I.; and Bengio, S. 2016. Ad-
versarial examples in the physical world. arXiv preprint
arXiv:1607.02533.
Lu, J.; and Kumar, M. P. 2020. Neural Network Branching
for Neural Network Verification. In International Confer-
ence on Learning Representations.
Madry, A.; Makelov, A.; Schmidt, L.; Tsipras, D.; and
Vladu, A. 2018. Towards Deep Learning Models Resis-
tant to Adversarial Attacks. In International Conference on
Learning Representations.
Moosavi-Dezfooli, S.-M.; Fawzi, A.; and Frossard, P. 2016.
Deepfool: a simple and accurate method to fool deep neural
networks. In Proceedings of the IEEE conference on com-
puter vision and pattern recognition, 2574–2582.
Paszke, A.; Gross, S.; Chintala, S.; Chanan, G.; Yang, E.;
DeVito, Z.; Lin, Z.; Desmaison, A.; Antiga, L.; and Lerer,
A. 2017. Automatic differentiation in pytorch.
Poursaeed, O.; Katsman, I.; Gao, B.; and Belongie, S. 2018.
Generative adversarial perturbations. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recogni-
tion, 4422–4431.
Ramachandran, P.; Parmar, N.; Vaswani, A.; Bello, I.; Lev-
skaya, A.; and Shlens, J. 2019. Stand-Alone Self-Attention
in Vision Models. Advances in Neural Information Process-
ing Systems, 32.
Ramachandran, P.; Zoph, B.; and Le, Q. V. 2017. Searching
for activation functions. arXiv preprint arXiv:1710.05941.
Serban, A.; Poll, E.; and Visser, J. 2020. Adversarial exam-
ples on object recognition: A comprehensive survey. ACM
Computing Surveys (CSUR), 53(3): 1–38.
Szegedy, C.; Zaremba, W.; Sutskever, I.; Bruna, J.; Erhan,
D.; Goodfellow, I.; and Fergus, R. 2013. Intriguing proper-
ties of neural networks. arXiv preprint arXiv:1312.6199.
Wang, Z.; Huang, X.; Yang, J.; and Kasabov, N. 2022. Uni-
versal Adversarial Perturbation Generated by Using Atten-
tion Information. In Advances in Intelligent Systems Re-
search and Innovation, 21–39. Springer.
Weng, T.-W.; Zhang, H.; Chen, H.; Song, Z.; Hsieh, C.-J.;
Boning, D.; Dhillon, I. S.; and Daniel, L. 2018. Towards
fast computation of certified robustness for relu networks.
arXiv preprint arXiv:1804.09699.
Xiao, C.; Li, B.; Zhu, J.-Y.; He, W.; Liu, M.; and Song, D.
2018. Generating adversarial examples with adversarial net-
works. In Proceedings of the 27th International Joint Con-
ference on Artificial Intelligence, 3905–3911.

APPENDIX
We now present the appendix supplementing the main pa-
per. In section A we describe in greater detail how the node

feature vectors are created and in section B we show how
the message passing functions are implemented.

A Node features
This section explains how the feature vectors can be con-
structed for the input, hidden and output layers. As men-
tioned above, we aim to design the features so that they cap-
ture the maximum possible information needed to make a
good branching decision while keeping the computational
complexity as low as possible.

Input node features
Firstly, the original lower and upper bounds on the i-th input
node li and ui are selected as this node’s features as they are
very indicative of the influence of this node on the output of
the network.

If the GNN framework is invoked after some initial ad-
versarial PGD attack is unsuccessful, then the information
obtained from this attack can be used to generate more fea-
tures for the nodes of the network. It should be noted that
if this initial adversarial PGD attack is successful, then the
GNN framework does not need to be invoked at all since the
given property was proven to be false by a single randomly
initialised PGD attack. Otherwise, all the available informa-
tion can be provided to the GNN for it to make a branching
decision. The first and obvious choice of a feature which can
easily be obtained for each input node from an unsuccessful
PGD attack is the value of this node at the end of the PGD
attack.

Finally, information about the gradients of the output of a
given neural network with respect to all of its inputs through-
out the unsuccessful adversarial PGD attack can also be in-
dicative of the location of a valid adversarial attack within
the input domain. One option would be to provide the gra-
dients at each step of the unsuccessful PGD attack to the
GNN. However, since the number of steps of a PGD at-
tack can vary and sometimes be in the order of thousands
or tens of thousands, it might be excessive to do that as this
will introduce redundancy and lead to higher computational
complexity which is undesirable. Hence, in this project the
following information about the gradients of the network’s
output with respect to each input was selected to enter the
feature vectors of the corresponding input nodes:

• The mean gradient over all steps of an unsuccessful PGD
attack

• The median gradient over all steps of an unsuccessful
PGD attack

• The maximum gradient over all steps of an unsuccessful
PGD attack

• The minimum gradient over all steps of an unsuccessful
PGD attack

• The standard deviation of the gradients over all steps of
an unsuccessful PGD attack

• The gradient at the last step of an unsuccessful PGD at-
tack

8 of 13



Hidden node features
The features of all the activation nodes of a given neural net-
work should be designed to contain information about the
propagation of the numerical values through the network
which in its turn can help the GNN to deduce the overall
effect of each of the network’s inputs on its output. As in
the case of the input node features, it is sensible to include
the lower and upper bounds on each activation node in its
feature vector. However, while the exact lower and upper
bounds on the input nodes are directly available from in-
put constraints, obtaining the bounds on all the activation
nodes is much more difficult. Computing the exact minima
and maxima of the nodes of the activation and output lay-
ers is in general an intractable problem which means that
approximate solutions have to be used to calculate the rea-
sonably tight lower and upper bounds on these nodes. We
compute these intermediate bounds using linear bound re-
laxations (Weng et al. 2018) This function made it possible
to obtain the approximate lower and upper bounds for all the
activation and output layer nodes given the bounds on all the
input layer nodes.

Since the unsuccessful PGD attack after which the GNN
framework is initialised contains the values for each node
of each layer at the end of the attack, a third feature which
should enter the feature vectors of all the activation nodes is
the value of the corresponding node at the end of the PGD
attack.

The fourth feature which describes each activation node
quite well and hence should be included in its feature vec-
tor is its associated bias in the original network. Mathe-
matically, for i-th node of k-th activation layer where k ∈
{1, 2, ..., L− 1}, the bias which should enter its feature vec-
tor is given by bki .

The fifth feature is based on relaxations of the ReLU non-
linearity and is taken from work by (Lu and Kumar 2020).
Activation nodes are quite specific due to their nonlinear na-
ture and so specifying all of the above features might still
not be enough to fully describe them. In case of the ReLU
activation function, the state of any activation node can be-
long to one of the three cases. Denoting the lower and upper
bounds of the i-th node of the k-th activation layer as as lki
and uk

i respectively and the node values before and after the
ReLU function is applied as x̂k

i and xk
i respectively, these

cases can be visualised as shown in Figure 5. In all parts of
the figure, the ReLU function is plotted in blue and its part
being considered based on the values of the lower and upper
bounds is indicated in red.

In the first case, shown on the left, both lower and upper
bounds on a particular activation node happen to be non-
positive. Such activation node is referred to be in its block-
ing state as it has zero as its output for all possible inputs
given by the lower and upper bounds, i.e. it blocks all the in-
formation. In the same way as it was done in (Lu and Kumar
2020), the final state which measures ambiguity, denoted by
βk
i , of each such activation node will be given by βk

i = 0 as
there is no ambiguity associated with this node.

The second case, shown in the middle, arises when both
lower and upper bounds on a particular activation node are

Figure 5: Three cases of the state of a ReLU activation node
based on this node’s bounds. Left: blocking state due to both
lower and upper bounds on a node being non-positive in
which case the output of such ReLU activation node is al-
ways zero. Middle: passing state due to both lower and up-
per bounds on a node being non-negative in which case the
output of such node is always equal to its input. Right: am-
biguous state due to the lower and upper bounds being neg-
ative and positive respectively in which case the output can
be either zero or equal to the input depending on the exact
input to the node.

non-negative. In this case, the activation node is referred to
be in its passing state because this time its output will be
equal to its input for all possible inputs given by the lower
and upper bounds. The final state of such activation node
is also given by βk

i = 0 because, as in the first case, there
is no ambiguity involved in the propagation of information
through such activation node.

In the final case, shown on the right, the lower and upper
bounds on a particular activation node turn out to be negative
and positive respectively. The state of such activation node is
referred to as ambiguous since its output can be either zero
or equal to its input depending on the exact input value. To
define βk

i , the same approach which was used in (Lu and
Kumar 2020) can be followed whereby the intercept of the
triangle formed by the section of the ReLU between lki and
uk
i and the line connecting the ends of this section, indicated

by the dashed line in the figure, is considered. The equation
of this line can easily be shown to be:

xk
i (x̂

k
i ) =

uk
i

uk
i − lki

x̂k
i −

uk
i l

k
i

uk
i − lki

(20)

As uk
i → 0 and/or lki → 0, the intercept of the above line

tends to zero, and as uk
i becomes more positive and/or lki

becomes more negative, it increases. Hence, the intercept of
the above line is a suitable measure of ambiguity of a ReLU
node and therefore for each ambiguous activation node:

βk
i = − uk

i l
k
i

uk
i − lki

(21)

where βk
i in the equation above is necessarily positive since

for an ambiguous node uk
i > 0 and lki < 0.

Output node features
The output node features need to be informative of the state
of the output of a given neural network to provide the GNN
with the information about the input-output relationship of
the network. The output feature vectors can be constructed
using the same features as in the case of the activation nodes
apart from the ambiguity descriptor. Hence, four features to
enter the feature vector of each output node are:

9 of 13



• Lower bound on the output node
• Upper bound on the output node
• Node value at the end of an unsuccessful PGD attack
• Node bias in the original network

Having described in greater detail how we compute the
node feature vectors z, we now turn our attention to the im-
plementation of the message passing algorithm.

B Message Passing Functions
There are 5 learnt functions that implement the GNN mes-
sage passing algorithm: Finp, Fhid, Fout, Bhid, Binp; and
one learnt function that turns the embedding vectors into a
branching decision: g. Some of these functions are inspired
by the work of Lu and Kumar (2020). Each of the six func-
tions will now be discussed in detail in turn. From here on
we refer to Fhid and Bhid as Fhid and Bhid respectively, to
highlight that the state of the activation function, in our case
the

Forward pass — input layer
The first network of interest is the one corresponding to the
function Finp. It has already been mentioned in the Section
that it, along with all the other networks, has a form of a
multi-layered fully-connected network. This network in par-
ticular should simply process a local feature vector of the
given input node and return an updated input embedding
vector. Hence, this neural network will be designed to have
a single stage with one activation layer containing ReLU ac-
tivation functions, as depicted in Figure 6.

Figure 6: Structure of the forward input embedding vector
update network

It is important to make a few assumptions for the simplic-
ity of the design of all the auxiliary neural networks, includ-
ing the one above, in accordance with (Lu and Kumar 2020).
Firstly, it will be assumed that all the embedding vectors, i.e.
the ones of the input, activation and output nodes, are of the
same size. Secondly, all the activation layers of all the auxil-
iary neural networks will be assumed to have the same size.
Finally, the two sizes from the previous two points will be
assumed to be equal, as shown in Figure 6.

Figure 7: Structure of the forward activation embedding vec-
tor update network

Forward pass — hidden layer
The network corresponding to the function Fact should take
a local feature vector of the activation node as well as all
the embedding vectors of all the previous layer nodes prop-
agated to this node as inputs and return an updated activa-
tion embedding vector. In contrast to the simple network de-
scribed in Subsection B, in this case there are three stages to
be considered which are explained below in turn.

The overall structure of the neural network which imple-
ments the update function Fact is shown in Figure 7 where,
since the network is fully-connected, the connections be-
tween layers are illustrated by single arrows for better visu-
alisation purposes. The first stage, appearing in the top left
corner of the figure and denoted by Fact−lf , is meant to pro-
cess the local features of the i-th node of the k-th activation
layer where k ∈ {1, 2, ..., L − 1}. This stage has the exact
same structure as the network implementing Finp. It should
be noted at this point that a further assumption has to be
made for simplicity which says that the outputs of all the in-
termediate stages of all the auxiliary neural networks should
have their size equal to that of the activation layers of these
networks, as shown in Figure 7. Denoting the parameters of
the first stage of the network as θ0

1 and its output as Rk
i , the

operation of Fact−lf can be written as:

Rk
i =

{
Fact−lf (zki ;θ

0
1) if βk

i > 0

0 otherwise
(22)

where it is important to note that the condition for the first
statement means that the pass through the first stage should
only be made if the node is ambiguous, as explained in Sub-
section A. Otherwise, the output from the first stage is set to
the zero vector of appropriate size, in accordance with (Lu
and Kumar 2020).

The second stage of the network, denoted by Fact−nb and
appearing in the bottom left corner of Figure 7, needs to
process the embedding vectors of the previous layer, i.e.
those of the neighbouring nodes, hence the subscript. To
do that, these should first be propagated forward and com-
bined at the current node of the current activation layer.

10 of 13



Considering the i-th node of the k-th activation layer where
k ∈ {1, 2, ..., L − 1} and the weight matrix Wk connecting
this layer with the previous (k − 1)-th layer, this is done by
taking j-th embedding vector of the previous layer in turn,
multiplying it by the corresponding weight W k

i,j and then
summing over j. Mathematically, the resulting vector which
contains information about the combined embedding vectors
of the previous layer, denoted by Ek

i , can be computed as:

Ek
i =

∑
j
W k

i,j · µk−1
j (23)

where it is very important to note that, in contrast to the con-
ventional pass through the original neural network, the bias
of the i-th node of the k-th activation layer is not applied
when computing Ek

i .
Once Ek

i is computed, the final processing step involves
considering the amount of information which passes through
the activation node. By looking at the equation (20) from
Subsection A, it can be seen that as uk

i → 0, i.e. as the node
tends to its blocking state, the slope of this equation, given
by uk

i

uk
i −lki

, tends to 0. On the other hand, as lki → 0, i.e. as the
node tends to its passing state, the slope tends to 1. When the
node is in its ambiguous state, however, the slope lies in the
range (0, 1). Hence, the slope of (20), which will be denoted
by αk

i , is a suitable and well-defined measure of informa-
tion passing through the node. Using the method from (Lu
and Kumar 2020) and denoting the parameters of the second
stage network as θ1

1 and its output as Nk
i , the operation of

Fact−nb can be mathematically defined as follows:

Nk
i = Fact−nb

([
αk
i · (Ek

i )
T (αk

i )
′ · (Ek

i )
T
]T

;θ1
1

)
(24)

where the two vectors are concatenated to form one vector
of double the size and (αk

i )
′ is defined as:

(αk
i )

′ =

{
1− αk

i if 0 < αk
i < 1

αk
i otherwise

(25)

The third and final stage of the network, denoted by
Fact−com and appearing on the right in Figure 7, com-
bines the information obtained from the local features, given
by Rk

i , and that from the neighbouring embedding vectors,
given by Nk

i , to return the updated embedding vector of a
particular activation node. Denoting the parameters of this
stage as θ2

1, its operation can be defined in the following
way for all k ∈ {1, 2, ..., L− 1}:

µk
i = Fact−com

([
(Rk

i )
T (Nk

i )
T
]T

;θ2
1

)
(26)

Forward pass — output layer
The final forward update network is the one associated with
the function Fout. Its operation is completely analogous to
that of Fact since it has to take a local output feature vec-
tor as well as all the embedding vectors of the last activa-
tion layer nodes propagated forward as inputs and return an

Figure 8: Structure of the forward output embedding vector
update network

updated output embedding vector. This is achieved by a net-
work structure involving two stages, as shown in Figure 8.
The first stage, denoted by Fout−lf and appearing in the top
left corner of the figure, processes the local output features
and has almost the same structure as the network implement-
ing Fact−lf from Figure 7. Denoting the parameters of the
first stage as θ0

2 and its output as RL
i , its operation is defined

as:

RL
i = Fout−lf (zLi ;θ

0
2) (27)

Since the ReLU activation function is not applied to the
output nodes of the original neural network, there is no need
for either a conditional statement in the equation above or for
further processing applied to the embedding vectors of the
last activation layer once they are propagated forward and
combined to form the vector EL

i . This vector is obtained in
exactly the same way as before according to equation (23).
Hence, the second and last stage of this update network, de-
noted by Fout−com and shown on the right in Figure 8, con-
catenates RL

i directly with EL
i to produce an updated em-

bedding vector at its output. Denoting the parameters of this
stage as θ1

2, its operation can be defined in the following
way:

µL
i = Fout−com

([
(RL

i )
T (EL

i )
T
]T

;θ1
2

)
(28)

Backward pass — hidden layer
The first neural network which performs the backward up-
date on the embedding vectors is the one corresponding to
the update function Bact. The operation of this function is
very similar to that of Fact in that it also takes a local fea-
ture vector of a particular activation node as one of the inputs
and returns an updated embedding vector for this node. The
second input, however, unlike in the case of Fact, should
consist of the propagated and combined embedding vectors
of the next rather than previous layer nodes. In addition, due
to the features selected in Subsection A for the activation
nodes in this project being slightly different to the features
selected in (Lu and Kumar 2020), the design of the network
implementing Bact will also be a bit different. This network,

11 of 13



similarly to Fact, has three stages to it which are all shown
in Figure 9.

Figure 9: Structure of the backward activation embedding
vector update network

The first stage of this network, denoted by Bact−lf , is
completely analogous to Fact−lf . Denoting the parameters
of Bact−lf as θ0

3 and its output, similarly to the case of the
first stages of the forward update networks, as Rk

i where
k ∈ {1, 2, ..., L − 1}, the operation of the first stage can
be defined as follows:

Rk
i =

{
Bact−lf (zki ;θ

0
3) if βk

i > 0

0 otherwise
(29)

where the condition for the first statement is the same as in
case of equation (22) and implies that the pass through the
network defined by Bact−lf is only made if the activation
node under consideration is ambiguous whereas otherwise
the output from this stage is set to the zero vector of the
appropriate size.

The structure of the second stage, denoted by Bact−nb, is
exactly the same as the one of Fact−nb. The only difference
is that to form the vector Ek

i , the embedding vectors of all
the nodes of the next layer now have to be propagated back-
wards and combined. Using the same notation as in Subsec-
tion B and again noting that bias is not applied when propa-
gating embedding vectors, Ek

i is obtained as:

Ek
i =

∑
j
W k+1

i,j · µk+1
i (30)

Denoting the parameters of the second stage of the net-
work as θ1

3 and its output, similarly to the case of the output
of Fact−nb, as Nk

i , its operation is then defined in the same
way as the operation of Fact−nb:

Nk
i = Bact−nb

([
αk
i · (Ek

i )
T (αk

i )
′ · (Ek

i )
T
]T

;θ1
3

)
(31)

where αk
i and (αk

i )
′ are defined in the same way as before.

The third and final stage of this network, denoted by
Bact−com, is again the same as the one associated with
Fact−com. Denoting its parameters as θ2

3, Bact−com is de-
fined can be the following way or k ∈ {1, 2, ..., L− 1}:

µk
i = Bact−com

([
(Rk

i )
T (Nk

i )
T
]T

;θ2
3

)
(32)

Backward pass — input layer
The second network which performs the backward update
on the embedding vectors and concludes one round of up-
dates is the one associated with the function Binp. In the
same way the network implementing Fout was similar to the
one implementing Fact, this network is very similar to the
previous one implementing Bact. It should take a local fea-
ture vector of an input node together with all the embedding
vectors of the first activation layer nodes propagated back-
wards as before and return an updated embedding vector for
this input node. The structure of the network implementing
Binp consists of two stages, as shown in Figure 10, and can
be observed to be almost identical to the one which appeared
in Figure 8.

Figure 10: Structure of the backward input embedding vec-
tor update network

The first stage of the above neural network, denoted by
Binp−lf , processes the local feature vector of the given input
node in a similar way to all the networks mentioned above.
Denoting the parameters of this stage as θ0

4 and its output as
R0
i , the operation of Binp−lf can be defined in the following

way:

R0
i = Binp−lf (z0i ;θ

0
4) (33)

Again, since the ReLU activation functions are not ap-
plied at the input nodes, there is no need for either a condi-
tional statement in the equation above or for further process-
ing of the vector E0

i of the propagated backwards and com-
bined embedding vectors of the first activation layer nodes.
The vector E0

i is obtained in the same way as before in ac-
cordance with equation (30). The second stage of Binp then
becomes identical to the second stage of Fout so the vectors
R0
i and E0

i can be directly concatenated and passed through
this stage, denoted by Binp−com, to obtain the updated em-
bedding vector of a particular input node. Denoting the pa-
rameters of this stage as θ1

4, Binp−com is defined as:

12 of 13



µ0
i = Binp−com

([
(R0

i )
T (E0

i )
T
]T

;θ1
4

)
(34)

Branching decision
The last auxiliary neural network involved in the GNN
framework is the one which implements the function g by
computing the new lower bound l̄i and δ̄i, the offset from it,
which defines the new upper bound for each input node. By
doing so, g can potentially greatly reduce the search space
where a valid PGD attack is most likely to be and thus make
the future PGD attacks more likely to succeed. The network
implementing g, the structure of which is shown in Fig-
ure 11, has only one stage which takes an embedding vec-
tor of a particular input node and returns a two-dimensional
vector of l̄i and δ̄i.

Figure 11: Structure of the bounds update network

13 of 13


