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ABSTRACT

By investigating iterative methods for a constrained linear model, we propose a new
class of fully connected V-cycle MgNet for long-term time series forecasting, which
is one of the most difficult tasks in forecasting. MgNet is a CNN model that was
proposed for image classification based on the multigrid (MG) methods for solving
discretized partial differential equations (PDEs). We replace the convolutional
operations with fully connected operations in the existing MgNet and then apply
them to forecasting problems. Motivated by the V-cycle structure in MG, we
further propose the FV-MgNet, a V-cycle version of the fully connected MgNet,
to extract features hierarchically. By evaluating the performance of FV-MgNet
on popular data sets and comparing it with state-of-the-art models, we show that
the FV-MgNet achieves better results with less memory usage and faster inference
speed. In addition, we also develop ablation experiments to demonstrate that the
structure of FV-MgNet is the best choice among the many variants.

1 INTRODUCTION

Long-term time series forecasting has played an important role in numerous applications across an
array of sectors, including retail (Böse et al. (2017); Courty & Li (1999)), healthcare (Lim et al.
(2018); Zhang & Nawata (2018)), and engineering (Zhang et al. (2019); Gonzalez-Vidal et al. (2019)).
Various deep learning models have been developed for time series forecasting, among which recurrent
neural networks (RNN) are probably the most extensively studied (Connor et al. (1994); Hewamalage
et al. (2021)). Recently, following its success in natural language processing (NLP) and computer
vision (CV) research (Vaswani et al. (2017); Devlin et al. (2019); Dosovitskiy et al. (2021); Rao et al.
(2021)), the Transformer model has become one of the most popular research directions in time series
forecasting (Li et al. (2019); Zhou et al. (2021); Wu et al. (2021)). Efficient self-attention has been
introduced, and many structures have been proposed to handle time-series forecasting tasks, such
as decomposing the sequence (Wu et al. (2021)), designing a special linear attention structure (Li
et al. (2019); Zhou et al. (2021)), and applying Fourier transform (Wu et al. (2021)) or wavelet
transform (Zhou et al. (2022b)) to the self-attention structure. However, the Transformer model has a
high computational cost, and many experiments have found that forecasting results degenerate as the
length of the input sequence increases (Wen et al. (2022)).

By investigating iterative methods for a constrained linear model, we propose a new class of fully
connected V-cycle MgNet for long-term time series forecasting. This is the first time an MgNet
type model has successfully been applied to this field. One of the main technologies this model is
used for is to replace the convolutional operations with fully connected operations in the existing
MgNet (He & Xu (2019)), which is a CNN model proposed for image classification based on the
multigrid (MG) methods (Xu (1992); Xu & Zikatanov (2002; 2017)) for solving discretized partial
differential equations (PDEs). The other technology, that we propose, is a V-cycle version of the
fully connected MgNet to extract features hierarchically, motivated by the V-cycle structure in MG,
where different frequency information can be captured through the size transformation between
grids. By evaluating the performance of the FV-MgNet on popular data sets and comparing it with
state-of-the-art models, we present that the FV-MgNet achieves better results with much less memory
usage and faster inference speed (as shown in Figure 1 and Table 1). We also demonstrate that
numerical results do not degenerate as the length of the input increases (as shown in Table 3).
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Figure 1: Computational efficiency benchmark on the Exchange multivariate dataset, batch size is 16.
Time usage is measured for one epoch training time. Left: Memory usage as output length, input
length is fixed to 96. Right: Epoch time usage as output length, input length is fixed to 96.

Table 1: Parameters for the Exchange dataset with input length and output length fixed to 96.

Methods FV-MgNet FiLM N-HiTS FEDformer Autoformer Informer Transformer

Params (M) 0.12 9.44 1.73 16.31 12.14 12.45 11.66

This paper is organized as follows. In section 2, we review some of the related work. In section 3, we
first consider the time series forecasting problem as a constrained linear model and solve it using
the multigrid method, an iterative method, and then we introduce FV-MgNet models for forecasting
problems. Numerical experiments and a Conclusion are given in Sections 4 and 5, respectively.

2 RELATED WORK

Recurrent neural networks are widely used in time series prediction problems. LSTM (Graves (2012))
and GRU (Chung et al. (2014)) can alleviate the inherent problems such as gradient disappearance
and gradient explosion through a gating mechanism. Many works based on LSTM and GRU have
proposed numerous time series prediction models (e.g. (Wen et al. (2017); Salinas et al. (2020);
Guo et al. (2019); Fan et al. (2019)). However, the single-step prediction method cannot accurately
capture long-term time series features, and it is difficult to parallelize. More recently, a convolutional
neural network has been applied to this task and a temporal convolutional network (TCN) was
proposed (Sen et al. (2019)). Although this method is efficient, there is also a prediction bottleneck
in the long-term time series prediction problem. With the innovation of Transformers in NLP and
CV (Vaswani et al. (2017); Devlin et al. (2019); Dosovitskiy et al. (2021)), Transformer-based
models have also been proposed, and perform well, in time series forecasting (Li et al. (2019);
Zhou et al. (2021); Wu et al. (2021)). Transformer-based models excel in modeling long-term
dependencies for sequential data. Furthermore, many efficient Transformers are designed in time
series forecasting to overcome the quadratic computation complexity of the original Transformer
without performance degradation. LogTrans (Li et al. (2019)) adopts log-sparse attention and
achieves N log2 N complexity. Reformer (Kitaev et al. (2020)) introduces a local-sensitive hashing
that reduces the complexity to N logN . Informer (Zhou et al. (2021)) uses a KL-divergence-based
method to select top-k in the attention matrix and costs N logN in complexity. Most recently,
Autoformer (Wu et al. (2021)) introduced an auto-correlation block in place of canonical attention to
perform sub-series level attention, which achieves N logN complexity with the help of Fast Fourier
transform (FFT) and top-k selection in the auto-correlation matrix. Fedformer (Zhou et al. (2022b))
designs frequency domain attention by applying Fourier or wavelet transform. ETSformer (Woo
et al. (2022)) proposes exponential smoothing attention (ESA) and frequency attention (FA), which
improves accuracy and efficiency.

Recently, many non-Transformer models have also achieved good results in forecasting problems.
FiLM (Zhou et al. (2022a)) applies Legendre Polynomial projections, Fourier projections, and low-
rank approximations in time series forecasting. The NBEATS (Oreshkin et al. (2019)) model was
proposed to design a double residual structure with fully connected layers, which has achieved good
results in univariate prediction. N-HiTS (Challu et al. (2022)) adds a multi-scale structure to NBEATs,
so that it can better capture the information from different periods in the sequence and achieve
improved results in a multivariate model. In NBEATS and N-HiTS, we observe fully connected
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layers; multi-scale structures are important to help improve model performance. MgNet (He & Xu
(2019)) is a CNN model proposed for image classification based on the multigrid, which has been
a successful method for solving PDEs. MgNet is explained by using multigrid ideas to solve a
constrained linear model (He et al. (2021)) so that it has a well-designed multiscale structure. We
investigate the fully connected layers and multiscale structure under the MgNet framework to solve
forecasting problems.

3 METHODOLOGY

In this section, we present our proposed model, FV-MgNet, for time series forecasting using the
constrained linear model and a multigrid structure; a detailed description of FV-MgNet is given in
Algorithm 1. Considering the data-label pair as (f, y) where f ∈ RI is the input time series and
y ∈ RO is the predicted time series, we propose the following feature extraction and interpolation
scheme as an interpretable model to build the mapping from f to y:

Input: f feature extraction−−−−−−−−−−−−−−−−−→
constrained linear model: Au=f

Feature: u
feature interpolation: I−−−−−−−−−−−−−−−→

neural network approximation
Output: y. (1)

To summarise, we have
y = I(u(f)). (2)

Here, we denote u ∈ RI′
as the feature vector. In general, the information contained in the feature

(essential dimension) should be less than or equal to the information from the data (embedded
dimension), such as in, for example, manifold learning (Tenenbaum et al. (2000); Roweis & Saul
(2000); Donoho & Grimes (2003)); precisely, I ′ ≤ I . To extract more intrinsic features but retain as
much information as possible, we take I ′ = I while adopting a V-cycle structure (similar to U-Net
architecture) for feature extraction. First, we propose to apply the constrained liner model (He et al.
(2021)), which was originally designed for vision tasks for feature extraction. Then, we propose
to apply the fully connected operator as the underlying linear model instead of the convolutional
operator in image processing. Finally, we introduce the multigrid structure to construct features in
multi-resolution and reduce the computational complexity. After obtaining the feature vector u, we
propose to approximate I(u) by using a one-hidden layer ReLU neural network that can be expressed
as

I(u) ≈ W 2σ
(
W 1u

)
. (3)

The proposed model uses the multigrid method as the main framework, performs residual correction
on the input of different resolutions, integrates the information on other grids through the extension
operator, and then adopts a one-hidden layer ReLU neural network approximation for interpolation to
obtain the long horizon accurate predictions. In addition, compared to models based on transformer
architecture, our model is implemented with fully connected layers, which has a more elegant
structure with higher computational efficiency and a lower memory overhead.

3.1 CONSTRAINED LINEAR MODEL: AN INTERPRETABLE MODEL FOR FEATURE EXTRACTION

The constrained linear model (He et al. (2021)) was originally proposed for vision tasks; in this work,
we demonstrate that it can also be applied as an interpretable model for feature extraction in time
series problems. For any input time series f ∈ RI in data space, the constrained linear model is
defined as the following data-feature mapping

Au = f, (4)

where u ∈ RI′
is the underlying feature vector such that

[u]i ≥ 0, i = 1 : I ′. (5)

Here, we state that A : RI 7→ RI′
is a linear (affine) operator from the feature space to the data space.

It is crucial to solving the linear equation 4 with a nonlinear constraint equation 5. Typically, the
iterative method is an important part of solving algebraic systems. For example, given an algebraic
system Au = f , the solution can be obtained through the residual correction method

ui+1 = ui +Bi(f i −Aui), i = 1 : ν, (6)
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where Bi : RI′ 7→ RI is an approximation of the inverse of the data-feature mapping A. Recalling
the definition of the activation function σ(x) = ReLU(x) := max{0, x}, the above iterative process
can be naturally modified to preserve the constraint equation 5:

ui = ui−1 + σ ◦Biσ ◦ (f −Aui−1), i = 1 : ν. (7)

Here, σ ◦ (·) denotes the element-wise applications of the nonlinear activation function σ. As
demonstrated in (He et al. (2021)), the above iteration scheme can degenerate to the basic block of
ResNet (He et al. (2016)) if r = f − Au is chosen as the feature. However, theoretical arguments
and numerical results in (He et al. (2021)) indicate that u should be a more appropriate choice as the
feature. In this work, we also take equation 7 as the basic block in our model for feature extraction.

3.2 UNDERLYING SYSTEM A: DENSE OR SPARSE?

In vision tasks, A and Bi are generally chosen as learnable multi-channel convolution operators. For
example, the basic block for image classification in MgNet (He & Xu (2019)) is:

ui = ui−1 + σ ◦Bi ∗ σ ◦
(
f −A ∗ ui−1

)
,

where A and Bi are both convolution operators. Generally, convolutional operators are also used
in time series processing, from the frequency perspective, for signal decomposition, especially in
classical methods such as wavelet-based methods (Percival & Walden (2000); Joo & Kim (2015)).
However, in long-term time series forecasting problems, such as the data sets that we will use in §A.1,
the time series can be highly complex. For example, Figure 2 shows three typical examples in three
different data sets, which can vary significantly in frequencies and amplitudes. Thus, convolutional
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Figure 2: Some typical long-term time series from different data sets.

operators cannot process these different data sets uniformly. A more appropriate choice for the
underlying system A is to consider it as a general linear mapping without any special structures.
Consequently, we use a fully connected layer to learn the system A. Accordingly, we also choose Bi

as a fully connected layer. Thus, we have

uℓ,i = uℓ,i−1 + σ ◦Bℓ,i ◦
(
f ℓ −Aℓuℓ,i−1

)
, Bℓ,i ∈ RIℓ×Iℓ , Aℓ ∈ RIℓ×Iℓ . (8)

For simplicity, we use Aℓ ∈ RIℓ×Iℓ and Bℓ,i ∈ RIℓ×Iℓ to denote the fully connected operators with
bias, respectively. Numerical results in Table 5 demonstrate that the best combination of A and Bi is
the fully connected operator.

3.3 MULTIGRID STRUCTURE: A HIERARCHICAL FEATURE EXTRACTION SCHEME

A hierarchical feature extraction scheme for time series processing is typically standard in classical
and CNN-based methods for imaging processing. For time series signals, the multilevel structure
(multi-resolution) can help to capture different features of the signal with different frequencies. For
example, N-HiTS (Challu et al. (2022)) introduced the hierarchical structure into the forecast module
in N-BEATS (Oreshkin et al. (2019)), achieving a higher accuracy with fewer parameters.

Here, we consider the multigrid structure, which is a more mature and relevant multi-level method to
solve linear systems arising from numerical PDEs (Xu (1992); Xu & Zikatanov (2002; 2017)). In the
multigrid method, we first have a series of grids (resolutions) for the feature and data space. More
precisely, let us denote Iℓ = I

2ℓ−1 as the grid size (resolution) for the ℓ-th level grid. Correspondingly,
we have constrained linear models on different grids,

Aℓuℓ = f ℓ, (9)
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where uℓ, f ℓ, and Aℓ represent the feature, data, and underlying system in the ℓ-th level respectively.
By applying the numerical scheme in equation 7, we have the basic block in the ℓ-th level

uℓ,i = uℓ,i−1 + σ ◦Bℓ,iσ(f ℓ −Aℓuℓ,i−1), i = 1 : νℓ. (10)

Here, νℓ is the number of iterations on each level, which is a hyper-parameter of the model. Notably,
there is only one Aℓ on the ℓ-th level, while we have νℓ different Bℓ,i to learn. This is a fundamental
assumption of the constrained linear model; specifically, that there can only be one system operator
Aℓ on each level, while there can be different solving operators Bℓ,i for solving the model Aℓuℓ = f ℓ.

To integrate different grids, restriction and prolongation operators must be involved, such as different
pooling operations in typical CNN models. Recently, MgNet (He & Xu (2019)) has successfully
applied the multigrid structure to image classification problems, using convolution with stride = 2 as
the restriction operator to achieve a multi-scale transformation. The scale transformation for feature
u and data f is defined as follows:

uℓ+1,0 = Πℓ+1
ℓ ∗2 uℓ,νℓ

f ℓ+1 = Rℓ+1
ℓ ∗2 (f ℓ −Aℓ ∗ uℓ,νℓ) +Aℓ+1 ∗ uℓ+1,0,

(11)

where Πℓ+1
ℓ ∗2 and Rℓ+1

ℓ ∗2 are convolution operators with stride = 2. For the prolongation process
in image classification, MgNet uses the deconvolution operator Πℓ

ℓ+1∗2 with stride = 2, which
interpolates information on a coarse grid to a fine grid.

In our model, considering the fully connected structure, we take the restriction (sub-sampling) and
prolongation (interpolation) as linear mappings between RIℓ and RIℓ+1 . More precisely, we take
Πℓ+1

ℓ , Rℓ+1
ℓ ∈ RIℓ+1×Iℓ and Πℓ

ℓ+1 ∈ RIℓ×Iℓ+1 as fully connected layers (with bias) for restoration
and prolongation operators.

Another practical reason to introduce the multigrid structure is to further reduce the computational
complexity of the proposed model. Numerical results in Table 4 show the efficiency and improvements
obtained by introducing the multigrid structure.

3.4 FV-MGNET: A FULLY CONNECTED V-CYCLE MGNET MODEL FOR TIME SERIES
FORECASTING

By combining the feature extraction process discussed above and the feature interpolation approxima-
tion in equation 3, we have the FV-MgNet algorithm for time series forecasting.

Here, u = u1,ν1 is the feature extracted by the fully-connected constrained linear model with the
multigrid scheme. In addition, we take W1 ∈ RI×O and W2 ∈ RO×O as the fully connected layers
(with bias) to construct the one-hidden layer approximation for the feature interpolation I(u).

4 EXPERIMENTS

To verify the performance of the FV-MgNet, we conducted experiments on six popular real-world
data sets, spanning the domains electricity, economy, traffic, weather, and disease. The models we
compared included Transformer models, such as FEDformer (Zhou et al. (2022b)), ETSformer (Woo
et al. (2022)), Autofomer (Wu et al. (2021)), the fully connected layer-based model N-HiTS (Challu
et al. (2022)), and the frequency enhanced model FiLM (Zhou et al. (2022a)).

4.1 EXPERIMENT RESULTS

Forecasting result As shown in Table 2, FV-MgNet achieves the best performance on the six data sets
when compared with the other models, except for FiLM on Exchange and Traffic. Compared with
ETSformer, which achieves state-of-the-art results in Transformer type models, FV-MgNet reduces
MSE error by more than 18%; improved results were particularly obvious on the traffic and ILI data
sets, in which MSE decreases of 31% and 29% MSE, respectively, were observed. Compared with
N-HiTS, which uses the fully connected layer as the basic block, FV-MgNet reduces MSE by 8%.
Although FV-MgNet and FiLM have a comparable performance on Exchange and Traffic, FV-MgNet
outperforms FiLM by 5% MSE and 6% MAE on the other data sets. Notably, FV-MgNet achieves
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Algorithm 1 y = FV-MgNet(f, J, νℓ, I, O)

1: Input: series f ∈ RI , number of grids J, number of smoothing iterations νℓ for ℓ = 1 : J , input
length I , output length O.

2: Initialization: f1 = Wf , W ∈ RI×I , u1,0 = 0, Iℓ = I
2ℓ−1

3: for ℓ = 1 : J do
4: for i = 1 : νℓ do
5: Feature extraction (smoothing):

uℓ,i = uℓ,i−1 + σ ◦Bℓ,i ◦
(
f ℓ −Aℓuℓ,i−1

)
, Bℓ,i ∈ RIℓ×Iℓ , Aℓ ∈ RIℓ×Iℓ

6: end for
7: Note: uℓ = uℓ,νℓ

8: Restriction:
uℓ+1,0 = Πℓ+1

ℓ uℓ, Πℓ+1
ℓ ∈ RIℓ+1×Iℓ

f ℓ+1 = Rℓ+1
ℓ (f ℓ −Aℓuℓ) +Aℓ+1uℓ+1,0, Rℓ+1

ℓ ∈ RIℓ+1×Iℓ

9: end for
10: for ℓ = J − 1 : 1 do
11: Prolongation

uℓ,0 = uℓ +Πℓ
ℓ+1(u

ℓ+1 − uℓ+1,0), Πℓ
ℓ+1 ∈ RIℓ×Iℓ+1

12: for i = 1 : νℓ do
13: Feature extraction (smoothing):

uℓ,i = uℓ,i−1 + σ ◦Bℓ,i ◦
(
f ℓ −A

ℓ
uℓ,i−1

)
, B

ℓ,i ∈ RIℓ×Iℓ , A
ℓ ∈ RIℓ×Iℓ

14: end for
15: end for

Feature Interpolation:

y = W 2σ
(
W 1u1,ν1

)
, u1,ν1 ∈ RI , W1 ∈ RI×O, W2 ∈ RO×O

the best results in the longest time-series prediction of all datasets (ILI with an output length 60 and
the other data sets with an output length of 720), which indicates our model is more suitable for
long-range prediction compared to other models.

Prediction results visualization In Figure 3, we plot the prediction results of four models (FV-
MgNet, N-HiTS, FEDformer, and Autoformer) on three data sets with different temporal patterns:
ETTh1 (testset sequence 650, variable 7), ETTh2 (testset sequence 150, variable 7), and Weather
(testset sequence 185, variable 20). On ETTh1, FV-MgNet can accurately predict seasonal and trend
information and N-HiTS can partially capture trend information, whereas FedFormer and Autoformer
can only capture seasonal information. In ETTh2, all four methods can accurately capture season
information, and FV-MgNet can capture trend information more accurately than the others. In
Weather, FV-MgNet can predict both season and trend information accurately, N-HiTS can partially
capture trend information, whereas FEDformer and Autofomer cannot predict either season or trend
information.

Computational efficiency We measured the number of parameters of FV-MgNet and the other
models on the multivariate Exchange data set. As shown in Table 1, when the input length and
output length are both set to 96, the total number of parameters of FV-MgNet is only 1% of those of
the Transformer type model and FiLM, and 10% of N-HiTS. We also recorded memory usage and
running time of each epoch during the training process in Figure 1, where we set the input length to
96 and changed different output lengths. Both memory usage and running time of FV-MgNet are the
smallest. The running time of FV-MgNet is ten times faster than Autoformer and two times faster
than FiLM. The running time of FV-MgNet is ten times faster than Autoformer, two times faster
than FiLM, and 10% faster than N-HiTS. The memory usage of FV-MgNet is five times less than
Autoformer, two times less than FiLM, and 1.5 times less than N-HiTS. Furthermore, the memory
usage and running time of FV-MgNet are almost quasi-constant as the output length increases.
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Table 2: Multivariate results with different prediction lengths O ∈ {96, 192, 336, 720}. A lower MSE
or MAE indicates a better prediction. The best results are highlighted in bold.

Methods FV-MgNet FiLM N-HiTS ETSformer FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m

2 96 0.173 0.253 0.165 0.256 0.176 0.255 0.189 0.280 0.203 0.287 0.255 0.339
192 0.230 0.296 0.222 0.296 0.245 0.305 0.253 0.319 0.269 0.328 0.281 0.340
336 0.279 0.329 0.277 0.333 0.295 0.346 0.314 0.357 0.325 0.366 0.339 0.372
720 0.367 0.385 0.371 0.389 0.401 0.426 0.414 0.413 0.421 0.415 0.422 0.419

E
le
c
tr
ic
it
y 96 0.144 0.250 0.154 0.267 0.147 0.249 0.187 0.304 0.183 0.297 0.201 0.317

192 0.163 0.262 0.164 0.258 0.167 0.269 0.199 0.315 0.195 0.308 0.222 0.334
336 0.176 0.276 0.188 0.283 0.186 0.290 0.212 0.329 0.212 0.313 0.231 0.338
720 0.212 0.308 0.249 0.338 0.243 0.340 0.233 0.345 0.231 0.343 0.254 0.361

E
x
c
h
a
n
g
e 96 0.082 0.206 0.079 0.204 0.092 0.211 0.085 0.204 0.139 0.276 0.197 0.323

192 0.184 0.314 0.159 0.292 0.208 0.322 0.182 0.303 0.256 0.369 0.300 0.369
336 0.307 0.416 0.270 0.398 0.371 0.443 0.348 0.428 0.426 0.464 0.509 0.524
720 0.554 0.582 0.830 0.721 0.888 0.723 1.025 0.774 1.090 0.800 1.447 0.941

T
r
a
f
f
ic 96 0.396 0.285 0.416 0.294 0.402 0.282 0.607 0.392 0.562 0.349 0.613 0.388

192 0.417 0.295 0.408 0.288 0.420 0.297 0.621 0.399 0.562 0.346 0.616 0.382
336 0.436 0.302 0.425 0.298 0.448 0.313 0.622 0.396 0.570 0.323 0.622 0.337
720 0.468 0.315 0.520 0.353 0.539 0.353 0.632 0.396 0.596 0.368 0.660 0.408

W
e
a
th

e
r 96 0.155 0.196 0.199 0.262 0.158 0.195 0.197 0.281 0.217 0.296 0.266 0.336

192 0.201 0.239 0.228 0.288 0.211 0.247 0.237 0.312 0.276 0.336 0.307 0.367
336 0.244 0.279 0.267 0.323 0.274 0.300 0.298 0.353 0.339 0.380 0.359 0.395
720 0.313 0.329 0.319 0.361 0.351 0.353 0.352 0.388 0.403 0.428 0.419 0.428

I
L
I

24 1.647 0.764 1.970 0.875 1.862 0.869 2.527 1.020 2.203 0.963 3.483 1.287
36 1.841 0.839 1.982 0.859 2.071 0.969 2.615 1.007 2.272 0.976 3.103 1.148
48 1.831 0.853 1.868 0.896 2.346 1.042 2.359 0.972 2.209 0.981 2.669 1.085
60 1.765 0.814 2.057 0.929 2.560 1.073 2.487 1.016 2.545 1.061 2.770 1.125
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Figure 3: Visualization of the forecasting output (Y-axis) of four models (FV-MgNet, N-HiTS,
FEDformer, and Autoformer) with an output length O = 192 (X-axis) on the ETTh1, ETTh2,and
Weather data sets, respectively.
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Robustness Intuitively, if the output length is fixed, better results should be otained from a longer
input length. We set the input length to 96 and increased it from 96 to 720. As shown in Table 3, the
prediction results are reduced when we increase the input length of the Transformer type models.
However, FV-MgNet maintains stable prediction results on the ETT data set and even obtains a
significant improvement on the Weather data set. The results show that FV-MgNet can effectively
capture the features in long input sequences, and the robustness of FV-MgNet is significantly better
than Transformer models in long input sequences.

Table 3: The MSE comparisons in robustness experiment of forecasting 96 steps for the ETTm2
and weather data sets with prolonged input length.

Methods FV-MgNet FEDformer Autoformer Informer Reformer LogFormer Transformer

Metric MSE MSE MSE MSE MSE MSE MSE

E
T
T
m
2 96 0.176 0.203 0.239 0.428 0.615 0.667 0.557

192 0.173 0.275 0.265 0.385 0.686 0.697 0.710
336 0.173 0.347 0.375 1.078 1.359 0.937 1.078
720 0.180 0.392 0.315 1.057 1.443 2.153 1.691

W
ea

th
er 96 0.185 0.217 0.266 0.300 0.689 0.458 0.604

192 0.167 0.253 0.276 0.325 0.724 0.537 0.674
336 0.155 0.278 0.336 0.346 0.736 0.742 0.692
720 0.153 0.276 0.547 0.421 0.701 0.884 0.740

4.2 ABLATION RESULTS

In this subsection, we investigated the structure of MgNet for forecasting problems. We first tested
two different operators, convolutional operators or fully connected operators, for A and B under
V-cycle structure MgNet. The results in Table 5 show that both A and B, using the fully connected
operators, are significantly better than the other choices. This verifies that fully connected layers are
more suitable for time series forecasting tasks than convolution layers under the MgNet framework.
Next, we explored the structure of fully connected MgNet. We designed three models: (1) Residual
network, which uses the same dimension for A and B in different grids (the algorithm is shown in
Appendix Algorithm 2 ); (2) \-MgNet, which has only a single hierarchical structure (the algorithm
is shown in Algorithm 3 ); and (3) FV-MgNet as shown in Algorithm 1. (3) FV-MgNet as shown
in Algorithm 1. The results obtained using the residual network are poor but can be improved as a
\-MgNet after adding a one-side hierarchical structure. However, numerical results demonstrate that
FV-MgNet, MgNet with V-cycle (two-side hierarchical structure), is the best choice.

4.3 OTHER STUDIES

Details of other experimental studies are provided in the Appendix: (1) univariate forecasting
experiments, (2) Transformer models experiments under the same setting, (3) parameter sensitivity
experiments of grid number and iteration number, (4) experiments under different input lengths, and
(5) ETT full benchmark experiments.

5 CONCLUTIONS

The iterative method and multigrid method in numerical PDEs have well-developed mathematical
theories. By considering the forecasting problems from the constrained model point of view, and
taking advantage of the multigrid method and MgNet, we propose FV-MgNet models for long-term
time series forecasting. We investigated variants of FV-MgNet and found that the use of fully
connected MgNet with V-cycle gives the best results. In comparison with state-of-the-art models, we
demonstrate the good performance of FV-MgNet on different data sets, which achieves better results
with fewer parameters and faster inference speed. Furthermore, the results obtained by FV-MgNet
significantly improve as the length of the input sequence increases.
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Table 4: Ablation experiments to compare FV-MgNet, \-MgNet, and Residual model. Our numerical
results demonstrate that multigrid structure for feature extraction can indeed improve the accuracy of
the method.

Methods FV-MgNet \-MgNet Residual

Metric MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.173 0.253 0.183 0.270 0.212 0.318

192 0.230 0.296 0.247 0.311 0.275 0.340
336 0.279 0.329 0.321 0.356 0.354 0.385
720 0.367 0.385 0.434 0.422 0.482 0.462

E
le
ct
ri
ci
ty 96 0.144 0.250 0.179 0.287 0.213 0.312

192 0.163 0.262 0.204 0.305 0.262 0.349
336 0.176 0.276 0.216 0.317 0.272 0.370
720 0.212 0.308 0.280 0.369 0.341 0.436

E
x
ch

a
n
g
e 96 0.082 0.206 0.093 0.223 0.104 0.283

192 0.184 0.314 0.242 0.361 0.298 0.394
336 0.307 0.416 0.358 0.455 0.443 0.552
720 0.554 0.582 1.258 0.834 1.430 0.968

T
ra

f
f
ic 96 0.396 0.285 0.717 0.398 0.589 0.348

192 0.417 0.295 0.686 0.401 0.567 0.345
336 0.436 0.302 0.661 0.388 0.553 0.342
720 0.468 0.315 0.666 0.384 0.612 0.351

W
ea

th
er 96 0.155 0.196 0.181 0.222 0.217 0.263

192 0.201 0.239 0.218 0.259 0.255 0.308
336 0.244 0.279 0.267 0.303 0.302 0.331
720 0.313 0.329 0.335 0.345 0.389 0.403

I
L
I

24 1.647 0.764 3.123 1.130 3.261 1.280
36 1.841 0.839 3.247 1.182 3.538 1.461
48 1.831 0.853 2.890 1.063 3.295 1.198
60 1.765 0.814 3.218 1.153 3.418 1.229

Table 5: Different encoding methods for A and B, marked as (A,B), the first element represents the A
encoding method and the second element represents the B encoding method. The first row represents
the selected encoding method, where Conv represents the convolution layer, and FC represents the
fully connected layer.

(A,B) (FC,FC) (Conv,Conv) (Conv,FC) (FC,Conv)

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.173 0.253 0.464 0.383 0.304 0.379 0.355 0.351

192 0.230 0.296 0.608 0.610 0.438 0.540 0.448 0.366
336 0.279 0.329 0.893 1.276 0.481 0.624 0.588 0.487
720 0.367 0.385 1.151 2.350 0.824 1.319 0.737 0.628

E
le
ct
ri
ci
ty 96 0.144 0.250 0.407 0.336 0.340 0.418 0.349 0.423

192 0.163 0.262 0.410 0.336 0.335 0.420 0.447 0.498
336 0.176 0.276 0.393 0.316 0.460 0.507 0.423 0.493
720 0.212 0.308 0.409 0.335 0.384 0.457 0.379 0.447

E
x
ch

a
n
g
e 96 0.082 0.206 0.798 0.875 0.492 0.348 0.528 0.366

192 0.184 0.314 0.977 1.364 0.615 0.447 0.428 0.474
336 0.307 0.416 0.903 1.180 0.676 0.482 0.486 0.493
720 0.554 0.582 1.873 2.469 1.506 1.092 1.629 1.086

W
ea

th
er 96 0.155 0.196 0.256 0.174 0.174 0.258 0.168 0.251

192 0.201 0.239 0.308 0.243 0.226 0.309 0.225 0.305
336 0.244 0.279 0.351 0.289 0.321 0.362 0.296 0.365
720 0.313 0.329 0.401 0.366 0.585 0.490 0.482 0.454
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A APPENDIX

A.1 DATASETS

We considered six benchmark data sets across diverse domains. The details of these data sets are
summarized as follows. 1) The ETT1 (Zhou et al. (2021)) data set contains two sub-datasets (ETT1 and
ETT2) collected from two electricity transformers; there are two versions of each data set at different
resolutions (15min and 1h), with multiple series of loads and one series of oil temperatures. 2) The
Electricity2 data set contains the electricity consumption of clients, with each column corresponding
to one client. 3) The Exchange3 (Lai et al. (2018)) data set contains the exchange of eight countries.
4) The Traffic4 dataset contains the occupation rate of the freeway system across California (United
States). 5) The Weather5 dataset contains 21 meteorological indicators for a range of one year in
Germany. 6) the Illness6 dataset contains the influenza-like illness patients in the United States, the
detail of data sets show in Table 6.

Table 6: Summarized feature details of eight datasets.

DATASET LEN DIM FREQ

ETTM2 69680 7 15 MIN
ELECTRICITY 26304 321 1H
EXCHANGE 7588 8 1 DAY
TRAFFIC 17544 862 1H
WEATHER 52696 21 10 MIN
ILI 966 8 7 DAYS

A.2 EXPERIMENT SETTINGS

We used mean squared error (MSE) and mean absolute error (MAE) to evaluate the performance of
our model, the most widely used in previous works, for the predict length H ,

MSE =
1

H

t+H∑
τ=t

(yτ − ŷτ )
2 MAE =

1

H

t+H∑
τ=t

|yτ − ŷτ | (12)

The data sets were split into train, validation, and test sets chronologically, following a 70/10/20 split
for all the data sets except for ETTm2, which followed a 60/20/20 split (as per convention). Data
pre-processing was performed by standardization based on train set statistics.

In the experimental setting, the output lengths were set to 24, 36, 48, and 60 for the ILI data set and
96, 192, 336, and 720 for the other data sets. The input length in all the Transformer models was fixed
to 36 for the ILI data set and 96 for the other data sets. N-HiTS and FiLM determine the input length
by tuning the parameters and investigating their performance in different data sets. To fairly compare
the performance of these models, we used two ways to select the input length: 1) the input length
was fixed at 96, denoted as FV-MgNet (96), which has the same settings as the Transformer; and 2)
the input length was fixed at one of 96, 192, 336, or 720 for each data set, denoted as FV-MgNet.
This latter method can better demonstrate the advantages of FV-MgNet.

A.3 UNIVARIATE FORECASTING RESULTS

We tested the two data sets in a univariate setting and the results are shown in Table 7. Compared with
the extensive baselines, FV-MgNet achieves competitive results, especially in long-term forecasting
on ETTm2. FV-MgNet can reduce MSE error by 12%.

1https://github.com/zhouhaoyi/ETDataset
2https://archive.ics.uci.edu/ml/datasets/ElectricityLoadDiagrams 20112014
3https://github.com/laiguokun/multivariate-time-series-data
4http://pems.dot.ca.gov
5https://www.bgc-jena.mpg.de/wetter/
6https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
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Table 7: Univariate forecasting results with different prediction lengths O ∈ {96, 192, 336, 720}. A
lower MSE or MAE indicates a better prediction. The best results are highlighted in bold.

Methods FV-MgNet FiLM N-HiTS ETSformer FEDformer Autoformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.077 0.213 0.065 0.189 0.066 0.185 0.080 0.212 0.063 0.189 0.065 0.189

192 0.101 0.247 0.094 0.233 0.087 0.223 0.150 0.302 0.102 0.245 0.118 0.256
336 0.121 0.272 0.121 0.274 0.106 0.251 0.175 0.334 0.130 0.279 0.154 0.305
720 0.153 0.310 0.173 0.323 0.157 0.312 0.224 0.379 0.178 0.325 0.182 0.335

E
x
ch

a
n
g
e 96 0.123 0.245 0.110 0.259 0.093 0.223 0.099 0.230 0.131 0.284 0.241 0.387

192 0.295 0.402 0.207 0.352 0.230 0.313 0.223 0.353 0.277 0.420 0.300 0.369
336 0.337 0.486 0.327 0.461 0.370 0.486 0.421 0.497 0.426 0.511 0.509 0.524
720 0.641 0.663 0.811 0.708 0.728 0.569 1.114 0.807 1.162 0.832 1.260 0.867

A.4 COMPARISON WITH TRANSFORMER MODELS UNDER THE SAME SETTINGS

Transformer-type models set the input length I as 36 for ILI and 96 for the others. We also ex-
perimented with FV-MgNet under the same settings, and we called this model FV-MgNet(96); the
baseline of Transformer models contain FEDformer (Zhou et al. (2022b)), ETSformer (Woo et al.
(2022)), Autofomer (Wu et al. (2021)), Informer ( Zhou et al. (2021)), LogTransfomer (Li et al.
(2019)), Reformer (Kitaev et al. (2020)), the results are shown in Table 8. Compared with ETSformer,
FV-MgNet decreases MSE error by more than 8% and MAE error by 11%. On the Exchange, Traffic
and ILI data sets, the improvement was particularly obvious, with decreases in MSE error of 15%,
10%, and 25% respectively. The experimental results show that FV-MgNet can also well capture the
information in time series under the short input length.

Table 8: Multivariate results with different prediction lengths O ∈ {96, 192, 336, 720}. A lower MSE
or MAE indicates a better prediction. We set the input length I as 36 for ILI and 96 for the others.
The best results are highlighted in bold.

Methods FV-MgNet(96) ETSformer FEDformer Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m

2 96 0.176 0.252 0.189 0.280 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619
192 0.241 0.296 0.253 0.319 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827
336 0.303 0.335 0.314 0.357 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972
720 0.401 0.399 0.414 0.413 0.421 0.415 0.422 0.419 3.379 1.388 3.048 1.328 2.631 1.242

E
le
c
tr
ic
it
y 96 0.204 0.287 0.187 0.304 0.183 0.297 0.201 0.317 0.274 0.368 0.258 0.357 0.312 0.402

192 0.208 0.291 0.199 0.315 0.195 0.308 0.222 0.334 0.296 0.386 0.266 0.368 0.348 0.433
336 0.222 0.306 0.212 0.329 0.212 0.313 0.231 0.338 0.300 0.394 0.280 0.380 0.350 0.433
720 0.258 0.332 0.233 0.345 0.231 0.343 0.254 0.361 0.373 0.439 0.283 0.376 0.340 0.420

E
x
c
h
a
n
g
e 96 0.082 0.206 0.085 0.204 0.139 0.276 0.197 0.323 0.847 0.752 0.968 0.812 1.065 0.829

192 0.184 0.314 0.182 0.303 0.256 0.369 0.300 0.369 1.204 0.895 1.040 0.851 1.188 0.906
336 0.307 0.416 0.348 0.428 0.426 0.464 0.509 0.524 1.672 1.036 1.659 1.081 1.357 0.976
720 0.554 0.582 1.025 0.774 1.090 0.800 1.447 0.941 2.478 1.310 1.941 1.127 1.510 1.016

T
r
a
f
f
ic 96 0.564 0.350 0.607 0.392 0.562 0.349 0.613 0.388 0.719 0.391 0.684 0.384 0.732 0.423

192 0.546 0.345 0.621 0.399 0.562 0.346 0.616 0.382 0.696 0.379 0.685 0.390 0.733 0.420
336 0.546 0.340 0.622 0.396 0.570 0.323 0.622 0.337 0.777 0.420 0.733 0.408 0.742 0.420
720 0.565 0.347 0.632 0.396 0.596 0.368 0.660 0.408 0.864 0.472 0.717 0.396 0.755 0.423

W
e
a
th

e
r 96 0.185 0.219 0.197 0.281 0.217 0.296 0.266 0.336 0.300 0.384 0.458 0.490 0.689 0.596

192 0.231 0.256 0.237 0.312 0.276 0.336 0.307 0.367 0.598 0.544 0.658 0.589 0.752 0.638
336 0.283 0.256 0.298 0.353 0.339 0.380 0.359 0.395 0.578 0.523 0.797 0.652 0.639 0.596
720 0.358 0.343 0.352 0.388 0.403 0.428 0.419 0.428 1.059 0.741 0.869 0.675 1.130 0.792

I
L
I

24 1.648 0.805 2.527 1.020 2.203 0.963 3.483 1.287 5.764 1.677 4.480 1.444 4.400 1.382
36 1.894 0.837 2.615 1.007 2.272 0.976 3.103 1.148 4.755 1.467 4.799 1.467 4.783 1.448
48 1.962 0.856 2.359. 0.972 2.209 0.981 2.669 1.085 4.763 1.469 4.800 1.468 4.832 1.465
60 1.970 0.876 2.487 1.016 2.545 1.061 2.770 1.125 5.264 1.564 5.278 1.560 4.882 1.483

A.5 PARAMETER SENSITIVITY

Here we test the impact of the grid number J and the number of smoothing iterations νℓ on forecasting
accuracy. Table 9 shows the impact of grid number when the number of iterations is equal to 2.
We set the number of grids as 2, 3, 4, and 5, and observed that in the trade-off between prediction
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accuracy and computational efficiency, a grid number of 3 is the best choice. We then explored the
number of iterations within the grid on this condition, setting each grid iteration number as 1, 2, 3, 4,
and 5. The results in Table 10 show that the optimal number of iterations varies for different datasets,
the number of iterations equal to 3 is most suitable for the ETTm2, Exchange, and Weather data sets,
and the number of iterations equal to 4 is most suitable for the Electricity and Traffic data sets.

Table 9: The number of grids under each grid iteration is equal to 2; a lower MSE or MAE indicates
a better prediction. The best results are highlighted in bold.

Number of grid 2 3 4 5

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.244 0.317 0.183 0.268 0.176 0.266 0.175 0.262

192 0.263 0.335 0.238 0.313 0.245 0.315 0.231 0.298
336 0.336 0.376 0.283 0.334 0.298 0.350 0.306 0.360
720 0.465 0.452 0.378 0.397 0.390 0.400 0.400 0.406

E
le
ct
ri
ci
ty 96 0.243 0.376 0.154 0.262 0.149 0.253 0.152 0.256

192 0.253 0.367 0.170 0.274 0.172 0.275 0.166 0.267
336 0.263 0.366 0.182 0.287 0.178 0.280 0.201 0.301
720 0.364 0.446 0.224 0.321 0.223 0.318 0.226 0.322

E
x
ch

a
n
g
e 96 0.099 0.230 0.105 0.234 0.086 0.216 0.105 0.236

192 0.312 0.423 0.273 0.384 0.228 0.353 0.196 0.326
336 0.336 0.446 0.337 0.434 0.319 0.428 0.332 0.435
720 1.405 0.924 0.530 0.562 1.026 0.764 0.980 0.751

T
ra

f
f
ic 96 0.524 0.399 0.419 0.293 0.421 0.297 0.419 0.296

192 0.545 0.309 0.431 0.303 0.441 0.306 0.432 0.299
336 0.550 0.414 0.446 0.305 0.448 0.307 0.447 0.306
720 0.578 0.424 0.470 0.311 0.477 0.318 0.471 0.322

W
ea
th
er 96 0.180 0.265 0.158 0.221 0.159 0.209 0.160 0.209

192 0.259 0.345 0.205 0.251 0.200 0.246 0.203 0.251
336 0.329 0.326 0.242 0.280 0.246 0.281 0.247 0.292
720 0.374 0.401 0.310 0.333 0.315 0.335 0.317 0.342

A.6 INPUT LENGTH

We considered the influence of different input lengths on the forecasting error by setting the input
length I ∈ {24, 36, 48, 60} for the ILI data set and I ∈ {96, 192, 336, 720} for the other datasets.
The results are shown in Table 11. With the exception of the Exchange dataset, the forecasting error
can significantly decrease as the input length increases. This shows that with the increase in length,
FV-MgNET can better extract relevant features in the time series and make more accurate forecasting.

A.7 ETT FULL BENCHMARK

We tested our model in the four ETT multivariate data sets and the results are shown in Table 12.
ETTh and ETTm have different recording frequencies; the ETTh1 and ETTh2 data sets are recorded
hourly, whereas ETTm1 and ETTm2 are recorded every 15 minutes. We obtained comparable results
with extensive baseline models and, especially considering the MAE error in the ETTh1 and ETTh2
data sets, FV-MgNet achieves state-of-the-art results.

A.8 RESIDUAL AND \-MGNET ALGORITHM
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Table 10: The number of iterations under the grid number is 3; a lower MSE or MAE indicates a
better prediction. The best results are highlighted in bold.

Number of iteration 1 2 3 4 5

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.176 0.268 0.183 0.268 0.173 0.253 0.174 0.261 0.175 0.265

192 0.239 0.313 0.238 0.313 0.230 0.296 0.230 0.300 0.233 0.301
336 0.281 0.334 0.283 0.334 0.279 0.329 0.280 0.329 0.282 0.330
720 0.386 0.415 0.378 0.415 0.367 0.385 0.377 0.393 0.379 0.395

E
le
ct
ri
ci
ty 96 0.145 0.248 0.154 0.262 0.161 0.266 0.144 0.250 0.202 0.301

192 0.163 0.265 0.170 0.274 0.166 0.267 0.163 0.262 0.178 0.279
336 0.180 0.281 0.182 0.287 0.182 0.284 0.176 0.276 0.186 0.287
720 0.221 0.318 0.224 0.321 0.217 0.314 0.212 0.308 0.216 0.314

E
x
ch

a
n
g
e 96 0.084 0.211 0.105 0.234 0.082 0.206 0.087 0.216 0.083 0.208

192 0.161 0.295 0.273 0.384 0.184 0.314 0.208 0.338 0.186 0.315
336 0.336 0.433 0.337 0.434 0.307 0.416 0.314 0.427 0.327 0.431
720 0.996 0.757 0.530 0.562 0.554 0.582 0.632 0.613 0.916 0.719

T
ra

f
f
ic 96 0.413 0.289 0.419 0.293 0.423 0.296 0.396 0.285 0.429 0.299

192 0.434 0.301 0.436 0.303 0.435 0.301 0.417 0.295 0.440 0.304
336 0.448 0.303 0.446 0.305 0.445 0.304 0.436 0.302 0.448 0.305
720 0.472 0.314 0.472 0.318 0.470 0.313 0.468 0.315 0.472 0.315

W
ea

th
er 96 0.156 0.206 0.165 0.221 0.155 0.196 0.160 0.217 0.174 0.265

192 0.199 0.246 0.205 0.251 0.201 0.239 0.200 0.251 0.232 0.300
336 0.247 0.283 0.248 0.284 0.244 0.279 0.244 0.284 0.280 0.329
720 0.321 0.351 0.310 0.333 0.313 0.329 0.309 0.332 0.367 0.385

Table 11: Multivariate long sequence time-series forecasting results on different input lengths. ILI
input length I ∈ 24, 36, 48, 60 and others I ∈ 96, 192, 336, 720

Input length 96 192 336 720

Metric MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
m
2 96 0.176 0.252 0.173 0.251 0.173 0.253 0.180 0.260

192 0.241 0.296 0.234 0.291 0.230 0.296 0.249 0.303
336 0.303 0.335 0.295 0.330 0.279 0.329 0.304 0.341
720 0.401 0.393 0.386 0.387 0.367 0.385 0.398 0.397

E
le
ct
ri
ci
ty 96 0.204 0.287 0.162 0.259 0.144 0.250 0.151 0.252

192 0.208 0.291 0.179 0.274 0.163 0.262 0.167 0.267
336 0.222 0.306 0.194 0.289 0.176 0.276 0.186 0.286
720 0.258 0.332 0.231 0.316 0.212 0.308 0.229 0.319

E
x
ch

a
n
g
e 96 0.082 0.206 0.101 0.225 0.119 0.242 0.110 0.240

192 0.184 0.314 0.253 0.353 0.251 0.352 0.245 0.366
336 0.307 0.416 0.482 0.495 0.435 0.473 0.482 0.503
720 0.554 0.582 0.948 0.726 1.219 0.778 1.370 0.830

T
ra

f
f
ic 96 0.564 0.350 0.446 0.302 0.414 0.290 0.396 0.285

192 0.546 0.345 0.463 0.312 0.435 0.300 0.417 0.295
336 0.546 0.340 0.476 0.314 0.449 0.304 0.436 0.302
720 0.565 0.347 0.494 0.323 0.473 0.315 0.468 0.315

W
ea

th
er 96 0.185 0.219 0.167 0.203 0.155 0.196 0.153 0.198

192 0.231 0.256 0.213 0.244 0.201 0.239 0.203 0.245
336 0.283 0.296 0.263 0.284 0.244 0.279 0.256 0.285
720 0.358 0.343 0.340 0.337 0.313 0.329 0.330 0.335

Input length 24 36 48 60

I
L
I

24 3.487 1.067 1.648 0.805 1.787 0.792 1.647 0.764
36 3.785 1.135 1.894 0.837 1.990 0.873 1.841 0.839
48 2.487 0.987 1.962 0.856 1.845 0.835 1.831 0.853
60 2.387 0.971 1.970 0.876 1.812 0.824 1.765 0.814
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Table 12: Multivariate long sequence time-series forecasting results on ETT full benchmark. The
best results are highlighted in bold.

Methods FV-MgNet FiLM FEDformer Autoformer Informer LogTrans Reformer

Metric MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE MSE MAE

E
T
T
h
1 96 0.364 0.382 0.371 0.394 0.376 0.419 0.449 0.459 0.865 0.713 0.878 0.740 0.837 0.728

192 0.409 0.415 0.414 0.423 0.420 0.448 0.500 0.482 1.008 0.792 1.037 0.824 0.923 0.766
336 0.452 0.443 0.442 0.445 0.459 0.465 0.521 0.496 1.107 0.809 1.238 0.932 1.097 0.835
720 0.473 0.482 0.465 0.472 0.506 0.507 0.514 0.512 1.181 0.865 1.135 0.852 1.257 0.889

E
T
T
h
2 96 0.278 0.382 0.284 0.397 0.346 0.388 0.358 0.397 3.755 1.525 2.116 1.197 2.626 1.317

192 0.360 0.436 0.357 0.452 0.429 0.439 0.456 0.452 5.602 1.931 4.315 1.635 11.12 2.979
336 0.365 0.457 0.377 0.486 0.482 0.480 0.482 0.486 4.721 1.835 1.124 1.604 9.323 2.769
720 0.418 0.432 0.439 0.456 0.463 0.474 0.515 0.511 3.647 1.625 3.188 1.540 3.874 1.697

E
T
T
m
1 96 0.320 0.352 0.302 0.345 0.378 0.418 0.505 0.475 0.672 0.571 0.600 0.546 0.538 0.528

192 0.363 0.380 0.338 0.368 0.426 0.441 0.553 0.496 0.795 0.669 0.837 0.700 0.658 0.592
336 0.400 0.407 0.373 0.388 0.445 0.459 0.621 0.537 1.212 0.871 1.124 0.832 0.898 0.721
720 0.456 0.441 0.420 0.420 0.543 0.490 0.671 0.561 1.166 0.823 1.153 0.820 1.102 0.841

E
T
T
m
2 96 0.173 0.253 0.165 0.256 0.203 0.287 0.255 0.339 0.365 0.453 0.768 0.642 0.658 0.619

192 0.240 0.296 0.222 0.296 0.269 0.328 0.281 0.340 0.533 0.563 0.989 0.757 1.078 0.827
336 0.296 0.333 0.277 0.333 0.325 0.366 0.339 0.372 1.363 0.887 1.334 0.872 1.549 0.972
720 0.378 0.385 0.371 0.389 0.421 0.415 0.422 0.419 1.338 3.379 3.048 1.328 2.631 1.242

Algorithm 2 y = Residual(f, ν, I, O)

1: Input: series f ∈ RI , number of smoothing iterations ν, input length I , output length O.
2: Initialization: f1 = Wf , W ∈ RI×I , u0 = 0
3: for i = 1 : ν do
4: Feature extraction (smoothing):

ui = ui−1 + σ ◦Bi
(
f −Aui−1

)
, Bi ∈ RI×I , A ∈ RI×I

5: end for
Feature Interpolation:

y = W 2σ
(
W 1(uν) + b1

)
, uν ∈ RI , W1 ∈ RI×O, W2 ∈ RO×O

Algorithm 3 y = \−MgNet(f, J, νℓ, I, O)

1: Input: series f ∈ RI , number of grids J, number of smoothing iterations νℓ for ℓ = 1 : J , input
length I , output length O.

2: Initialization: f1 = Wf , W ∈ RI×I , u1,0 = 0, Iℓ = I
2ℓ−1

3: for ℓ = 1 : J do
4: for i = 1 : νℓ do
5: Feature extraction (smoothing):

uℓ,i = uℓ,i−1 + σ ◦Bℓ,i
(
f ℓ −Aℓuℓ,i−1

)
, Bℓ,i ∈ RIℓ×Iℓ , Aℓ ∈ RIℓ×Iℓ

6: end for
7: Note: uℓ = uℓ,νℓ

8: if ℓ < J then
9: Restriction:

uℓ+1,0 = Πℓ+1
ℓ uℓ, Πℓ+1

ℓ ∈ RIℓ+1×Iℓ

f ℓ+1 = Rℓ+1
ℓ (f ℓ −Aℓuℓ) +Aℓ+1uℓ+1,0, Rℓ+1

ℓ ∈ RIℓ+1×Iℓ

10: end if
11: end for

Feature Interpolation:

y = W 2σ
(
W 1uJ,νJ

)
, u1,ν1 ∈ RIJ , W1 ∈ RIJ×O, W2 ∈ R0×O
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