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Abstract
Multi-modal generative models typically require
abundant training data from multi-modal joint
distributions, which is often unavailable in the
life sciences. We propose to treat each modal-
ity as a marginal distribution and correct their
independent diffusion processes to sample from
their joint distribution. Specifically, we intro-
duce “joint diffusion sampling,” a method that
generates a sample from joint distributions us-
ing pre-trained models for individual (uni-modal)
marginal distributions and minimal data from the
(multi-modal) joint distribution. We demonstrate
preliminary uni- and multi-modal results for im-
ages, molecules, and Boolean values, and discuss
multi-modal applications of our approach.

1. Introduction
In the life sciences, multi-modal generative foundation mod-
els face a critical bottleneck: acquiring high-quality multi-
modal datasets is often challenging due to ethical, regu-
latory, or practical barriers (Lvovs et al., 2025; Liu et al.,
2025). While foundation models for individual modali-
ties (e.g., for proteins or molecules) are becoming increas-
ingly common (Xu et al., 2023; Liu et al., 2024; Li et al.,
2024; Guo et al., 2024; Abramson et al., 2024; Wang et al.,
2024a; Bachimanchi & Volpe, 2025; Wang et al., 2025),
data-scarcity remains a challenge for multi-modal models.

Data-limited problems with compositional structures have
been successfully modeled using diffusion models by com-
posing pre-trained models (Liu et al., 2021; Du et al., 2023;
Geng et al., 2024a;b; Wu et al., 2024; Skreta et al., 2025)
using simple transformations (e.g., addition, subtraction). In
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contrast to existing methods, which apply multiple diffusion
models to the same feature vector (e.g., s1(x)+ s2(x)), our
work coordinates pretrained foundation models for different
feature vectors (e.g., [s1(x1)

⊤ s2(x2)
⊤]⊤).

We introduce joint diffusion sampling (JDS), where the goal
is to generate a pair (A,B) of variables following a partic-
ular joint distribution. For each of these two variables, a
pre-trained diffusion foundation model is available, and a
limited amount of training data for the joint distribution is
also available. We propose a solution that guides a sample
from this compositional model toward the target distribution
using a classifier trained via positive-unlabeled learning. Un-
like prior works, we do not require an estimate of the prior
class probabilities, which is frequently difficult to estimate.

1.1. Joint sampling with positive-unlabeled data

Let X1,X2 denote two feature spaces of potentially-different
modalities, and let X := X1×X2 denote the product feature
space. Furthermore, let a bold symbol (e.g. x) indicate a fea-
ture vector and let f1(x1), f2(x2) be marginal probability
densities on X1,X2 from which it is possible to draw sam-
ples efficiently. Let f(x) be a joint probability density on
X . Given the densities f1, f2 and a training sample drawn
from f , joint sampling refers to the problem of generating
a new sample from f . We are particularly interested in the
setting where the training sample size from f is small, so
that directly training a generative model for f is impractical.

In this work, f1, f2 are accessible through pre-trained dif-
fusion models, in which case we refer to the problem as
joint diffusion sampling (JDS). Performance may be mea-
sured using a metric on a suitable feature space, such as the
CLIP-MMD score (Jayasumana et al., 2024).

1.2. Contributions and outline

Our contributions are that we 1) solve the JDS problem with
classifier guidance and 2) demonstrate that our Positive-
Unlabeled (PU) guidance is competitive with oracle classi-
fier guidance even with a label rates as low as 0.0012%.

We first detail the theoretical basis for our work, then discuss
our contribution in detail, before evaluating our approach
and discussing our limitations and related work.
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2. Background and related work
We briefly introduce copulas, diffusion models, posterior
guidance, and PU classification to set up our contributions.

2.1. Copulas

Our work is inspired by the theory of copulas. A copula
C : [0, 1]2 → [0, 1] is a joint cumulative distribution func-
tion (CDF) with uniform marginals (Nelsen, 2006). Let an
un-bolded symbol (e.g., x) denote a scalar. Furthermore,
suppose that x := [x1 x2]

⊤, and let F1(x1), F2(x2), and
F (x) be the CDFs corresponding to f1(x1), f2(x2), and
f(x). By Sklar’s theorem (Sklar, 1959), there exists a cop-
ula C such that F (x) = C(F (x1), F2(x2)). Similarly,

f(x) = f1(x1)f2(x2)c(F (x1), F (x2)) . (1)

Taking the logarithm of both sides, we get

log f(x) = log f1(x1)f2(x2) + log c(F (x1), F (x2)) ,

which is the inspiration for our approach.

2.2. Diffusion models

A diffusion model is a generative model defined in terms of
two random processes, the forward and reverse diffusion pro-
cesses. The forward process is a random process {X(t)}Tt=0

that is governed by a stochastic differential equation (SDE)
that stochastically transforms the target data distribution
X(0) to a distribution X(T ) that is easily sampled from, by
means of a simple mechanism. Let capital letters (e.g., X)
indicate random variables, and let X(t) have density f(x; t)
at time t. If the score s(x; t) := ∇x log f(x; t) is known,
one can sample from f(x;T ) and stochastically transform
back to X(0) by means of the reverse diffusion process (An-
derson, 1982). Typically in practice, the interval [0, T ] is
discretized, the forward process increasingly corrupts data
with Gaussian noise, and the score is estimated from data
using score-matching (Song & Ermon, 2019). For t = 0, the
training data is given, and for larger t, it is synthetically gen-
erated by propagating the training data through the forward
process.

2.3. Classifier guidance

Often a diffusion model is used to generate data from sev-
eral classes. Classifier guided diffusion is a technique for
sampling from a specific class that does not require retrain-
ing the model (Song et al., 2021b). In the context of two
classes, let Y ∈ Y := {+1,−1} be a binary label, and sup-
posed that labeled training data (Xi, Y i), i ∈ {1, . . . , n}
is given. The idea behind classifier guided diffusion is to
replace f(x; t) with f(x|Y = +1; t) in the definition of the
score. By Bayes’ rule, the “adjusted” score function is

∇x log f(x|y; t) = s(x; t) +∇x log η(x; t) , (2)

where η(x; t) := P(Y = +1|X(t) = x, t). The problem
of estimating η(x; t) is known as class probability estima-
tion (CPE) and can be solved by empirical risk minimiza-
tion (ERM) with cross entropy loss using the synthetically-
generated training data for (X(t), Y ) at each time-step t.

2.4. Positive-unlabeled class probability estimation

As mentioned above, given jointly distributed (X, Y ), CPE
is the problem of estimating η(x) := P(Y = +1|X = x)
from labeled training data. In classifier-guided diffusion,
this problem is solved at each t, but here we suppress the
dependence on t. The problem of positive-unlabeled (PU)
CPE is to estimate η(x) from positive and unlabeled data.

Following Ivanov (2020), PU-CPE can be solved as follows.
Let fp(x) and fn(x) denote the class-conditional densities
P(x|Y = +1) and P(x|Y = −1). Then the marginal
density of X is

fu(x) := πfp(x) + (1− π)fn(x) , (3)

where π = P(Y = +1) is the prior probability of the
positive class. Furthermore, by Bayes rule,

η(x) = Pr(Y = 1|X = x) = π
fp(x)

fu(x)
. (4)

Ivanov (2020)’s insight is that

η(x) = π
g(x)

1− g(x)
, (5)

where

g(x) :=
fp(x)

fp(x) + fu(x)
. (6)

Furthermore, g(x), referred to as the balanced positive-
unlabeled (BPU) posterior1 can be learned by balanced
ERM (Appendix A). π can be estimated under distributional
assumptions (Elkan & Noto, 2008; Blanchard et al., 2010).

3. PU guidance for joint diffusion sampling
In this section, we show how to reduce JDS to PU-guided
sampling, while also introducing a general technique for PU
classifier guidance that avoids estimation of π.

3.1. The fundamental invariance of PU guidance

Classifier-guided diffusion requires estimation of fp(x; t)
for each of the discrete values of t in the diffusion model.
By combining (4) and (5), and re-introducing t, observe that

fp(x; t)

fu(x; t)
=

g(x; t)

1− g(x; t)
, (7)

1Elkan & Noto (2008); Bekker & Davis (2020) call this the
“nontraditional classifier”
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Figure 1. An illustration of how the JDS problem can be refor-
mulated as a BPU posterior estimation problem, with a sample
from fp(·; 0) and with fu(x; 0) := f1(x1; 0)f(x2; 0). The bars
represent the prior probabilities (e.g., π). Blue indicates known
quantities, and gray indicates unknown quantities.

and therefore

∇x log fp(x; t) = ∇x log

[
fu(x; t)

g(x; t)

1− g(x; t)

]
. (8)

Thus, the guidance term does not require estimation of π,
unlike existing PU methods (Na et al., 2024). We call this
approach prior-free PU guidance. Additional advantages of
this approach are discussed in Section 6.

PU-guidance may be applied to JDS as follows. Recall the
notation from Section 1.1, and consider the PU learning
problem where

fu(x; t) := f1(x1; t)f2(x2; t) fp(x; t) := f(x; t), (9)

so that

f1(x1; t)f2(x2; t) = πf(x; t) + (1− π)fn(x; t) . (10)

This means that the product distribution f1(x1)f2(x2) is
a mixture of the joint distribution f(x) (which we care
about) and some other density fn(x) (which we don’t) for
a suitable prior probability π. We provide necessary and
sufficient conditions for the existence of such π and fn in
Appendix B, and an illustration in Figure 1.

This perspective directly enables PU diffusion guidance in
the context of JDS. Let {X1(t)}Tt=1 and {X2(t)}Tt=1 be
the forward processes for the two given diffusion models,
and set X(t) = [X1(t)

⊤ X2(t)
⊤]⊤. Further let s1, s2 be

the scores associated with the probability densities f1, f2.
Plugging this into (8), we get an additive correction of inde-
pendent diffusion processes:

∇x log f(x|y; t) =

[
s1(x1; t)

s2(x2; t)

]

+∇x log
g(x; t)

1− g(x; t)
.

(11)

Note the similarities between (2) and (11). The first term in
(11) may be interpreted as the score of a product distribution,

which corresponds to the unconditional diffusion process
in (2). The second term in (11) is the score of the posterior
from (2), expressed using g. Furthermore, this additive
update is reminiscent of a log-copula, which transforms a
product distribution to a joint distribution (see Section 2.1).
Available diffusion models provide for the first term, and
the second term can be learned via PU CPE, using the small
joint dataset as the positive data, and paired, independent
examples from f1 and f2 (or the corresponding diffusion
models) as the unlabeled data.

4. Experiments and results
We demonstrate experimentally the application of prior-
free (PF) PU guidance JDS. Specifically, we show that the
sample quality of PF guidance is equivalent to that of fully-
supervised guidance for uni- and multi-modal data. Further
details and results are in Appendices C to I.

4.1. Dataset creation

Each experiment considers two data types (modalities)
which are in some cases the same. To generate the “jointly
distributed” data, we start with existing datasets for each
modality, and apply certain criteria to select which pairs of
data points (one from each modality) are draws from the
joint distribution fp. This strategy inherently also gives us
pairs from fn, namely, the pairs that do not meet the criteria.

4.2. Sampling approaches and diffusion models

We compare our prior-free PU guidance against fully-
supervised positive-negative (PN) classifier guidance. Using
PN and PU data, the PN model is trained by ERM with cross
entropy loss, and the BPU posterior is estimated using bal-
anced ERM with cross entropy. We use Denoising Diffusion
Probabilistic Models (DDPM) (Ho et al., 2020) for images
and Boolean values, and Geometric Latent Diffusion Mod-
els (Geo-LDM) (Xu et al., 2023) for molecules. Further
training details are available in Appendix C.

4.3. Datasets and evaluation metrics

We systematically introduce the generation tasks and metrics
that we use to compare PN and PF PU guidance.

4.3.1. UNI-MODAL: HANDWRITTEN DIGITS

Given a diffusion model for handwritten digits and a small
set of same-parity pairs of digits, the goal is to generate
more same-parity pairs of digits. Specifically, same-parity
digits comprise the positive distribution, different-parity dig-
its comprise the negative distribution, and random pairs of
digits comprise the unlabeled distribution. We first train a
diffusion model to generate a single image from the MNIST
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Figure 2. Jointly sampled images. a) and b) contain the MMD
and accuracy for same-parity numbers. c) Random sample using
PF PU guidance. d) and e) contain the MMD and accuracy for
pairs of differently-gendered faces. f) Random sample using PF
PU guidance. The vertical dotted line indicates the performance
of an unconditional diffusion model, and the black bars and gray
region indicate the bootstrapped standard deviation.

dataset (LeCun et al., 1998), and train g using 60,0002 un-
labeled and 10,000 positive image pairs, which results in a
0.0012% label rate for positive samples.

We compute the accuracy as the fraction of ∼10,000 gen-
erated image pairs that are same-parity digits. We also
evaluate the maximum mean discrepancy (MMD) (Gretton
et al., 2012) between ∼5,000 same-parity pairs of MNIST
test digits and a generated sample, which is computed using
the concatenation of flattened images.

In Figures 2a to 2c, we find that prior-free PU guidance is
not quite as good as PN guidance, particularly with respect
to the MMD. This may be because the positive class has
many modes (25) relative to the sample size (10,000).

4.3.2. UNI-MODAL: HUMAN FACES

Given a diffusion model for human faces and a small set
of different-gender pairs of faces, the goal is to generate
more different-gender pairs of faces. Specifically, different-
gender pairs comprise the positive distribution, same-gender
pairs comprise the negative distribution, and random pairs
of faces comprise the unlabeled distribution. We use a
pre-trained diffusion model (Ho et al., 2020) to generate a
single face from the CelebA-HQ (256) dataset (Karras et al.,
2018), and then train g using 24,1832 unlabeled and 1,000
positive image pairs, which results in a 0.0012% label rate
for positive samples.

We compute the accuracy as the fraction of ∼1,000 gener-
ated image pairs that are different-gender faces. We also
evaluate the MMD between ∼3,000 differently-gendered
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Figure 3. Jointly sampled molecules. a) and b) contain the
ChemNet-MMD and accuracy for pairs of similar-dipole-moment
molecules. c) Random sample of molecule pairs from PF PU guid-
ance. “PN (-1)” indicates guidance towards the negative class. The
horizontal dotted line indicates the performance of an uncondi-
tional diffusion model, and the black bars and gray region indicate
the bootstrapped standard deviation. “Guidance strength” is a
scalar that is used to up-weight the contribution of the guidance
∇ log η(x; t).

pairs of CelebA-HQ validation faces and the generated sam-
ple, which is computed using the concatenation of CLIP
features from each face (Jayasumana et al., 2024).

In Figures 2d to 2f, we find that PF PU guidance is compa-
rable to PN guidance, and even achieves higher accuracy.

4.3.3. UNI-MODAL: SMALL MOLECULES

Given a diffusion model for generating small molecules and
a small set of molecule pairs that both have a dipole moment
above or below 2, the goal is to generate more pairs of small
molecules with similar dipole moments. We say that such
molecules have “same-parity dipole moments.” Specifically,
molecule pairs with same-parity dipole moments comprise
the positive distribution, molecule pairs with different-parity
dipole moments comprise the negative distribution, and ran-
dom pairs of molecules comprise the unlabeled distribution.
We use a pre-trained diffusion model (Hoogeboom et al.,
2022) to generate a single small molecule from the QM9
dataset (Ramakrishnan et al., 2014), and then train g using
100,0002 unlabeled and 100,000 positive molecule pairs,
which results in a 0.0026% label rate for positive samples.

We compute the accuracy as the fraction of ∼10,000 gener-
ated molecule pairs that have same-parity dipole moments.
We also evaluate the MMD between 10,000 pairs of same-
parity dipole moment QM9 validation pairs and a gener-
ated sample, which is computed using the concatenation of
ChemNet features from each molecule (Preuer et al., 2018).

Figures 3a to 3b shows that prior-free PU guidance generally
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Figure 4. Jointly sampled digits and Boolean. a) and b) contain the
MMD and accuracy for pairs of digits and Booleans. The vertical
dotted line indicates the performance of an unconditional diffusion
model, and the black bars and gray region indicate the bootstrapped
standard deviation. c) Random sample of digit-Boolean pairs from
PF PU guidance. The unit range [0, 1] (a relaxation of {0, 1}) and
value are visualized using the color bar and black triangle.

performs as well as PN guidance, particularly for accuracy.

4.3.4. MULTI-MODAL: DIGITS AND BOOLEAN VALUES

Given a diffusion model for generating MNIST digits, a
diffusion model for generating Boolean values (which es-
sentially simulates a Bernoulli trial), and a small set of
multi-modal digit-Boolean pairs, the goal is to generate
more pairs of such multi-modal data. Specifically, the joint
data contains samples where even (resp. odd) numbers are
paired with the true (resp. false) Boolean, the not-joint
has the opposite Booleans, and the unlabeled distribution is
random combinations. We train a 1-dimensional diffusion
model to generate Boolean values, and then train g using
59,000×2 unlabeled and 1,000 positive digit-Boolean pairs,
which results in a 1.6% label rate for positive samples.

Unlike other plots, Figure 4a shows the marginal distribu-
tion of images. Here, we note that an unconditional model
achieves a significantly lower MMD than either PN and
PF PU guidance, meaning that classifier guidance distorts
the marginal distribution when sampling from the joint dis-
tribution. However, the amount that the guidance distorts
the marginal distribution is comparable between PN and PF
PU guidance. Furthermore, both methods similarly lead to
significantly improved accuracy in Figure 4.

5. Limitations and future work
One major limitation of classifier guidance is its test-time
compute cost, which is due to backpropagation through the
classifier. Future work may seek to mitigate this.

We draw our conclusions from semi-synthetic datasets. Al-
though we believe that our tests are sufficient to demonstrate
the effectiveness of our method, future work should inves-
tigate real-world compositional datasets. It is also an open
question whether our PF PU guidance can be applied to
other score- or flow-based models (e.g. Liu et al. (2023b)).

This study lays the foundation for future applications to
multi-modal data in the life sciences, particularly when joint
data is scarce. Future work may apply JDS to multi-modal
datasets in nanochemistry, molecular cell biology, materials
design, multi-omics, and medical imaging (Takeda et al.,
2023; Kim & Park, 2024; Luo et al., 2025).

6. Related works
PU Learning Most of the PU learning literature either
assumes knowledge of π (du Plessis et al., 2014; 2015;
Kiryo et al., 2017; Na et al., 2024; Takahashi et al., 2025),
or estimates π under distributional assumptions, such as
disjoint supports of fp and fn (Elkan & Noto, 2008; Lee
& Liu, 2003; Elkan & Noto, 2008; Ivanov, 2020) or irre-
ducibility (Blanchard et al., 2010), which may not hold for
life-sciences data. For example, the supports of fp and fn
are likely to overlap in biological datasets. Recent works
make weaker assumptions (Zhu et al., 2023; Garg et al.,
2021), but estimation of π still incurs estimation error that
our approach avoids.

PU diffusion models Takahashi et al. (2025) train a diffu-
sion model on PU data and Na et al. (2024)’s method could
be used for PU data under the label-noise perspective. Both
approaches assume that the prior probability π is known.

Compositional diffusion Composing pre-trained diffu-
sion models achieves significant out-of-distribution general-
ization (Liu et al., 2021; Du et al., 2023; Liu et al., 2023a;
Geng et al., 2024a;b; Wu et al., 2024; Skreta et al., 2025).
However, these approaches assume a known compositional
structure, or that an expressive latent variable (e.g., text) is
available. Yang et al. (2024) use a small diffusion model to
adjust a large one, but they do not consider JDS.

Multi-modal generative models Some multi-modal dif-
fusion models learn a unified model for all combinations
of modalities (Chen et al., 2023; Ruan et al., 2023; Luo
et al., 2025), which is expensive to retrain when adding
new modalities. Other works learn a joint embedding for
all modalities (Takeda et al., 2023; Tang et al., 2023; Zhan
et al., 2024; Wang et al., 2024b). If the joint embedding is
sufficiently general, new modalities may be added without
retraining, but this may not hold in practice (Liu et al., 2024)
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A. Balanced empirical risk
Here, we provide a definition of the balanced empirical risk from Section 2.4.

1

m

m∑
i=1

ℓCE(g(x
i
p; t),+1) +

1

k

k∑
i=1

ℓCE(g(x
i
u; t),−1) , (12)

where ℓCE is the cross-entropy/logistic loss. Intuitively, this is just the empirical risk where each class (positive and
unlabeled) is weighted as if the class priors were equal.

B. An alternate framing of PU learning
Our approach to joint diffusion sampling features an application of PU learning in which fu(x; t) := f1(x1; t)f2(x2; t),
and fp(x; t) := f(x; t), where f(x; 0) is the joint distribution to be sampled from (Section 1.1). The following theorem
characterizes when the mixture in (10) is well-posed, where U,P , and Q are measures corresponding to the densities fu, fp,
and fn.

Theorem B.1. Let (X,F) be a measurable space, let U be a probability measure on (X,F) and let P be a probability
measure on (X,F). Then there exists some π ∈ (0, 1) and a probability measure Q on (X,F) such that

U = πP + (1− π)Q

if and only if:

1. P ≪ U (i.e., P is absolutely continuous with respect to U ),

2. The Radon–Nikodym derivative f = dP
dU is essentially bounded, i.e., if L := ∥f∥∞, then one can choose π such that

π ≤ 1
L .

Proof. (Necessity). Assume that there exist π ∈ (0, 1) and a probability measure Q such that U = πP + (1− π)Q. For
any measurable set A ∈ F , we have

U(A) = πP (A) + (1− π)Q(A) ≥ πP (A).

Thus,

P (A) ≤ 1

π
U(A) for all A ∈ F .

So U(A) = 0 =⇒ P (A) = 0, i.e.,, P ≪ U . By the Radon–Nikodym theorem, there exists a U -measurable function
f = dP

dU such that

P (A) =

∫
A

f dU for all A ∈ F .

Now, suppose by way of contradiction that there exists a measurable set E with U(E) > 0 on which

f(x) >
1

π
for all x ∈ E.

Then,

P (E) =

∫
E

f dU >
1

π
U(E),

which contradicts the earlier inequality P (E) ≤ 1
πU(E). Therefore, it must be that

f(x) ≤ 1

π
for U -almost every x ∈ X.

10
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Defining L := ∥f∥∞, we deduce that

π ≤ 1

L
.

(Sufficiency). Conversely, assume that P ≪ U and that the Radon–Nikodym derivative f = dP
dU is essentially bounded with

L = ∥f∥∞ < ∞. Choose any π ∈ (0, 1) satisfying

π ≤ 1

L
.

Then, for U -almost every x ∈ X ,

f(x) ≤ L ≤ 1

π
,

so that
1− πf(x) ≥ 0 for U -almost every x.

Define Q on F by

Q(A) :=
1

1− π

(
U(A)− πP (A)

)
for all A ∈ F .

Since 1− πf(x) ≥ 0 U -a.e., it follows that for every A ∈ F ,

U(A)− πP (A) ≥ 0,

so Q(A) ≥ 0. Moreover,

Q(X) =
1

1− π

(
U(X)− πP (X)

)
=

1

1− π

(
1− π

)
= 1,

so that Q is a probability measure.

By Theorem B.1, there exists π and fn(·; t) such that

fu(x; t) := f1(x1; t)f2(x2; t) = πfp(x; t) + (1− π)fn(x; t) , (13)

so that Equation (10) is justified.

C. Experimental details
Here we discuss additional experimental details that did not fit in the main text.

C.1. Diffusion model architecture

We use two types of diffusion models, Denoising Diffusion Probabilistic Models (DDPM) (Ho et al., 2020) and Geometric
Latent Diffusion Models (Geo-LDM) (Xu et al., 2023).

DDPMs define a diffusion process over the space of random images. We train our own DDPM for sampling MNIST digits,
and use two pre-trained DDPMs for the CelebA-HQ dataset, one trained using exponential moving average (EMA) and one
without (Ho et al., 2020). As in Takahashi et al. (2025), we use 50 Denoising Diffusion Implicit Model (DDIM) steps (Song
et al., 2021a), with noise, for image sampling.

We treat Booleans as two points ({−1, 1}) in the real numbers and perform diffusion on the reals using DDPMs as we do for
images.

Geo-LDM defines a diffusion process over an E(3)-equivariant latent molecule structure with a atoms. Let M ∈ R(3+d+c)×a

be a random vector that represents each of a atoms using its (x, y, z) position, a d-dimensional one-hot-vector indicating
the chemical element, and a c-dimensional electronic charge. GeoLDM uses an E(3)-equivariant autoencoder ED(EE(·)) :
R(3+d+c)×a → R(3+2)×a → R(3+d+c)×a to convert the mixed random variable M to a continuous random variable EE(M).
E(3)-equivariant diffusion is implemented using an E(3)-equivariant score network (Hoogeboom et al., 2022), and we use
the pre-trained models without modifications (Xu et al., 2023).

11
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C.2. Classifier guidance

Now, we discuss the classifier model architectures used for each image dataset. For MNIST, we train a small convolutional
network, and for CelebA-HQ we add a two-layer head to the DinoV2 feature extractor (small, with registers) (Oquab et al.,
2024; Darcet et al., 2024). For pairs of images we implement a Siamese neural network with a two-layer Deep Sets (Zaheer
et al., 2017) model with mean aggregation to combine the extracted features. For CelebaA-HQ, we extracted all the features
prior to training to increase efficiency. SiLU was used for all activation functions to ensure non-constant activations during
guidance. We trained the BPU posterior model using a high learning rate and weight decay to prevent overfitting, with
1–10 epochs for the MNIST dataset and 1–100 epochs for the CelebA-HQ dataset depending on whether individual or
pairs of images were being classified. The PN classifier was trained using the cross-entropy loss until convergence using
a learning rate of 0.001. Optimization was implemented using PyTorch Lightning (Falcon et al., 2019) with the Adam
optimizer (Kingma & Ba, 2015), and hyperparameters were manually optimized to minimize the validation loss.

The noiseless data estimate did not work with GeoLDM, so we instead fine-tuned a pretrained model. We modify the
E(3)-equivariant networks from Satorras et al. (2021) to operate on the latent space of EE , and pre-train a noise-aware model.
We train this model to predict all 12 QM9 properties and the counts of 5 atomic elements (C, H, O, N, F) using multi-output
regression with the squared error and Poisson regression. We use all but the last layer to extract features for each molecule
and pass the concatenated outputs to a two-layer multi-layer perceptron (MLP) with SiLU activation functions. We fine-tune
the entire model for PU and PN classification on noisy data to learn g̃(·; t). Our PU learning used a mixed learning rate of
0.001 and 0.0001 for the MLP and extractor to prevent overfitting

For MNIST-Boolean pairs, we train a noise-aware classifier using the pretrained diffusion models as feature extractors.
Specifically, we use the downsampling feature extractor from the score U-Net and we treat all but the last layer of the
1-dimensional diffusion model as a feature extractor. During model inference, we concatenate the extracted features and
pass them to a two-layer MLP with dropout. We freeze the weights on the feature extractors, and train the two-layer MLP
for 10 epochs. During inference, we use the rescaled guidance of “power-law CFG” from Pavasovic et al. (2025) but with
our classifier score. The PN and PU classifiers were trained using the same hyperparameters.

All classifier guidance models were trained on an NVIDIA RTX 3080, with training times ranging from 1–60 minutes long.
For comparison, each PUDM trained for approximately six hours on an NVIDIA A40 GPU. Inference was performed on
both GPUs.

C.3. Training the BPU posterior estimate

Our BPU posterior ĝ was trained using the objective in (12), implement by bootstrap resampling the positive data for each
mini-batch of the unlabeled data. Hyperparameters were manually tuned to minimize the balanced positive-unlabeled
cross-entropy and zero-one loss of the PU classifier. When training a PU classifier, we randomly select n positive data points
(e.g., images) from the training dataset and treat all remaining data points as unlabeled.

C.4. Evaluation

For each pair of images or molecules, we extract the features for each member independently, then concatenate them to
form a feature for the pair. Because our tasks are permutation invariant, we augment the extracted pairs of features with
both permutations before computing the MMD. We extract the image features as above, and we compute the ChemNet
embeddings for our generated molecules (Mayr et al., 2018).

Because it is not clear how to compute the MMD for multi-modal data, we only compute the MMD of the handwritten digits.
The prior probability of the Boolean is even being true is 0.5, and our unconditional binary diffusion model produces a
prior probability of 0.48. In comparison, PN classifier guidance results in a prior probability of 0.46, while PF PU guidance
results in a prior probability of 0.48, which preserves the prior probability from the marginal model.

D. Evaluating prior-free PU guidance for individual diffusion models
Previously, we have compared prior-free (PF) PU guidance against a fully-supervised positive-negative (PN) classifier for
solving the joined diffusion sampling (JDS) problem. Here, we compare PF and PN guidance against a PU supervised
diffusion model (Takahashi et al., 2025) in the single-foundation model setting. This approach either fine-tunes existing
diffusion models or trains a model from scratch, and it is not straightforward to use it to solve the JDS problem.
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D.1. PUDM implementation

The positive-unlabeled supervised diffusion model (Takahashi et al., 2025) attempts to minimize reconstruction error for the
positive class and maximize the reconstruction error for the negative class using a variant of the nnPU loss (Kiryo et al.,
2017) and an estimate for π.

The original positive-unlabeled diffusion model (PUDM) was designed to sample from negative classes and not sample from
positive classes. We addressed this by just flipping the sign of the class labels that we passed to the existing implementation.
For clarity, we reword the PUDM approach here.

Instead of directly minimizing the ℓ2 norm of the reconstruction error, PUDM also tries to maximize the norm of the
reconstruction error for the positive class. Define X(t)|x as shorthand for X(t)|X(0) = x, and let N and M denote the
number of positive and unlabeled samples, respectively. In the positive-negative setting, we can use a supervised diffusion
model to perform the optimization

ŝ = argmin
ζ

1

N

N∑
n=1

EX(t)|xn

[
∥ζ(X(t); t)−∇X(t) log f(X(t)|xn; t)∥22

]︸ ︷︷ ︸
ℓ(xn, ζ; +1)

(14)

+
1

M

M∑
m=1

EX(t)|xm

{
log(1− exp

[
∥ζ(X(t); t)−∇X(t) log f(X(t)|xm; t)∥22

]}︸ ︷︷ ︸
ℓ(xm, ζ;−1)

, (15)

which can be interpreted as empirical risk minimization with the loss ℓ. This approach learns to sample according to the
positive density fp and not the negative density fn.

To perform PU diffusion, (Takahashi et al., 2025) suggest minimizing the non-negative risk estimator from Kiryo et al.
(2017), which can be written as

Lp(s; y) :=
1

N

N∑
n=1

ℓ(xn, s; y) (16)

Lu(s; y) :=
1

M

M∑
m=1

ℓ(xm, s; y) (17)

LnnPU(s) := πLp(s; +1) + max {0,Lu(s;−1)− πLp(s;−1)} . (18)

This approach removes the fraction of the risk that is contributed by the unlabeled positive data, while preventing the risk
from becoming negative. Note that this approach requires π to be known a priori, and (Takahashi et al., 2025) state that
“analyzing the optimal value of [π] in the proposed method is our important future work.”

The original PUDM implementation (Takahashi et al., 2025) did not use noise in their DDIM (Song et al., 2021a) sampling
procedure. However, we find that PUDM performs better when non-deterministic sampling is performed, so we use this
version to ensure rigorous comparison.

In our PU guidance experiments, the true π ≈ 0.5, but we evaluate PUDM models trained with several different values of π.

D.2. Results

We find that PUDM, PN, and PF PU guidance achieve similar performance for MNIST data (Appendix Figure 5 a)–b),
but that PUDM outperforms both classifier guidance approaches for CelebA-HQ (Appendix Figure 6 a)–b). However, we
find that this performance gap can be significantly decreased by instead using a DDPM model trained using exponential
moving average (EMA). We believe that this performance gap is, in part, due to a poor estimate of the noiseless data (see
Appendix C.2).
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Figure 5. Single and paired samples for MNIST. a) MMD for even numbers, “PF” means “prior-free.” b) The fraction of generated
images that are even numbers. c) Random samples using PU guidance. d) MMD for pairs of even or odd numbers. e) The fraction of pairs
that are both even or odd. f) Random samples using PU guidance. The vertical dotted line indicates the performance of an unconditional
diffusion model, and the black bars and gray region indicate the bootstrapped standard deviation.
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Figure 6. Single and paired samples for CelebA-HQ. a) CLIP-MMD for male faces, “PF” means “prior-free.” The subscript indicates the
number of recurrence steps. b) The fraction of generated images that are male faces. c) Random samples using prior-free PU guidance.
e) CLIP-MMD for different-gendered faces. f) The fraction of generated faces that are different-gendered. g) Random samples using
prior-free PU guidance. The vertical dotted line indicates the performance of an unconditional diffusion model, and the black bars and
gray region indicate the bootstrapped standard deviation.

E. Recurrence steps
Previous work shows that repeating diffusion steps, called ‘recurrence steps,” leads to better diffusion guidance (Bansal
et al., 2023; Chung et al., 2023; Lugmayr et al., 2022; Wang et al., 2023). The figures in the main text use 5 recurrence steps
for CelebA-HQ and QM9, but here we demonstrate the results of using both 1 and 5 recurrence steps.

We find that the number of recurrence steps significantly improves the performance of the non-EMA diffusion model on
CelebA-HQ (Appendix Figure 6), but the improvement is less pronounced for the EMA diffusion model.
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Figure 7. Molecule pairs for QM9. a),b) ChemNet-MMD for pairs of similar-dipole-moment molecules. c),d) Fraction of molecules that
are predicted to belong to the joint distribution. “PN (-1)” indicates guidance towards the negative class. Guidance towards the positive
class is blue, and guidance towards the negative class is red. The horizontal dotted line indicates the performance of an unconditional
diffusion model, and the black bars and gray region indicate the bootstrapped standard deviation.

As expected, molecular stability and validity are higher under 5 recurrence steps than 1 (Appendix H). We note that the
unconditional fraction of similar-dipole-molecules shifts when the number of recurrence steps is increased. To demonstrate
that our PN/PU guidance was not simply reversing the benefit of our recurrence steps, we also demonstrate PN guidance
towards the negative class using 1− η̂(x(t); t), which has similar molecular metrics (Appendix H) while receiving a worse
ChemNet-MMD and accuracy. Because (5) may lead to probabilities greater than 1 and π is assumed to be unknown, we do
not perform such negative guidance with PU learning.

F. Runtime comparisons
In Table 1, we provide extensive runtime comparisons of each method that we benchmarked. Because GeoLDM does not
provide the model training time, we use the estimate from Hoogeboom et al. (2022) which uses a similar diffusion process
on the same dataset.
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Table 1. Runtime comparisons of each model. All image models use 50 inference steps with one recurrence step. “CelebA” is the CelebA-
HQ (256) dataset, “PN” indicates positive-negative guidance, “PF” indicates prior-free positive-unlabeled guidance, and “Extractor”
indicates the pretrained feature extractor for the QM9 dataset. The “Featurize” column indicates the amount of time used to pre-process
datasets that utilize pre-trained feature extractors or autoencoders. Starred values are provided by other papers.

Method Dataset Featurize Training Inference Batch size Hardware

DDPM MNIST - 003:31:03 00:04 128 A40
DDPM CelebA - 063:00:00∗ 00:04 2 TPU v3-8
DDPM {0, 1} - 000:00:19 00:00 1,000 RTX 3080
GeoLDM QM9 - 305:00:00∗ 01:22 64 GTX 1080 Ti
PUDM MNIST even - 005:52:26 00:04 128 A40
PUDM (FT) CelebA - 006:34:08 00:04 2 A40
PN MNIST even - 000:01:49 00:11 128 RTX 3080
PF MNIST even - 000:00:18 00:11 128 RTX 3080
PN CelebA male 00:27 000:00:13 00:11 2 RTX 3080
PF CelebA male 00:27 000:00:01 00:11 2 RTX 3080
PN MNIST SP - 000:01:48 00:11 64 RTX 3080
PF MNIST SP - 000:02:42 00:11 64 RTX 3080
PN CelebA DG 00:27 000:01:07 00:11 1 RTX 3080
PF CelebA DG 00:27 000:00:06 00:11 1 RTX 3080
PN CelebA SG 00:27 000:00:20 00:11 1 RTX 3080
PF CelebA SG 00:27 000:00:02 00:11 1 RTX 3080
Extractor QM9 00:36 009:23:48 - - A40
PN QM9 dipole 00:36 000:57:19 02:09 64 RTX 3080
PF QM9 dipole 00:36 001:12:40 02:09 64 RTX 3080
PN MNIST + {0, 1} - 000:02:57 00:09 32 RTX 3080
PF MNIST + {0, 1} - 000:02:57 00:09 32 RTX 3080

G. Samples from each model
Here, we provide unfiltered samples from each method to provide a qualitative comparison.
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Figure 8. MNIST even: Non-cherry-picked samples from each generation method. Each row contains pairs of samples, and each column
holds samples from a given method. For MNIST even, the pairs are independent of each other, but are included to facilitate comparison
with the pairwise generation process. “Uncond” means “unconditional generation.”
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Figure 9. CelebA-HQ (256) male (1 recurrence step): Non-cherry-picked samples from each generation method using 1 recurrence
step. Each row contains pairs of samples, and each column holds samples from a given method. For CelebA-HQ (256) male, the pairs are
independent of each other, but are included to facilitate comparison with the pairwise generation process. “Uncond” means “unconditional
generation.”
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Figure 10. CelebA-HQ (256) male (5 recurrence steps): Non-cherry-picked samples from each generation method using 5 recurrence
steps. Each row contains pairs of samples, and each column holds samples from a given method. For CelebA-HQ (256) male, the pairs are
independent of each other, but are included to facilitate comparison with the pairwise generation process. “Uncond” means “unconditional
generation.”
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Figure 11. MNIST same-parity: Non-cherry-picked samples from each generation method. Each row contains pairs of samples, and
each column holds samples from a given method. “Uncond” means “unconditional generation.”
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Figure 12. CelebA-HQ (256) same gender (1 recurrence step): Non-cherry-picked samples from each generation method using
1 recurrence step. Each row contains pairs of samples, and each column holds samples from a given method. “Uncond” means
“unconditional generation.”
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Figure 13. CelebA-HQ (256) same gender (5 recurrence steps): Non-cherry-picked samples from each generation method using
5 recurrence steps. Each row contains pairs of samples, and each column holds samples from a given method. “Uncond” means
“unconditional generation.”
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Figure 14. CelebA-HQ (256) different gender (1 recurrence step): Non-cherry-picked samples from each generation method using
1 recurrence step. Each row contains pairs of samples, and each column holds samples from a given method. “Uncond” means
“unconditional generation.”
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Figure 15. CelebA-HQ (256) different gender (5 recurrence steps): Non-cherry-picked samples from each generation method using
5 recurrence steps. Each row contains pairs of samples, and each column holds samples from a given method. “Uncond” means
“unconditional generation.”
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G.1. QM9 pair

s = 0.0 s = 1.0 s = 5.0 s = 10.0

Figure 16. Non-cherry-picked samples from different guidance strengths (s) using 1 recurrence step. Each row contains pairs of samples,
and each column holds samples from a given method. s = 0 indicates unconditional generation (i.e.,, no guidance).
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s = 0.0 s = 1.0 s = 5.0 s = 10.0

Figure 17. Non-cherry-picked samples from different guidance strengths (s) using 5 recurrence steps. Each row contains pairs of samples,
and each column holds samples from a given method. s = 0 indicates unconditional generation (i.e.,, no guidance).
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Uncond. PF PUPN

Figure 18. Digits and Booleans (5 recurrence steps: Non-cherry-picked samples from each generation method using 5 recurrence steps.
The unit range [0, 1] (a relaxation of a Boolean value) and value are visualized using the color bar and black triangle.
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H. QM9 metrics
Here we provide common molecular metrics computed on 10,000 samples from our generated QM9 molecules. See the
Appendix, “Limitations of RDKit-based metrics” for an analysis of these RDKit metrics.

s = 1.0 s = 5.0 s = 10.0
Guidance Strength

0.80

0.85

0.90

0.95

1.00

Fr
ac

. M
ol

s. 
St

ab
le

a) PN PF PN (-1) s = 0

s = 1.0 s = 5.0 s = 10.0
Guidance Strength

b)

Figure 19. Molecular stability on the QM9 dataset. a) uses 1 recurrence step and b) uses 5 recurrence steps. “PN” is positive-negative
classifier guidance, “PF” is prior-free PU guidance, “PN (1)” is PN guidance towards the negative class, and s = 0 indicates the result
when using no guidance.
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Figure 20. Atom/bond stability on the QM9 dataset. a) uses 1 recurrence step and b) uses 5 recurrence steps. “PN” is positive-negative
classifier guidance, “PF” is prior-free PU guidance, “PN (1)” is PN guidance towards the negative class, and s = 0 indicates the result
when using no guidance.
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Figure 21. Validity of generated molecules. a) uses 1 recurrence step and b) uses 5 recurrence steps. “PN” is positive-negative classifier
guidance, “PF” is prior-free PU guidance, “PN (1)” is PN guidance towards the negative class, and s = 0 indicates the result when using
no guidance.
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Figure 22. Uniqueness of generated molecules. a) uses 1 recurrence step and b) uses 5 recurrence steps. “PN” is positive-negative
classifier guidance, “PF” is prior-free PU guidance, “PN (-1)” is PN guidance towards the negative class, and s = 0 indicates the result
when using no guidance.
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Figure 23. Novelty of generated molecules. a) uses 1 recurrence step and b) uses 5 recurrence steps. “PN” is positive-negative classifier
guidance, “PF” is prior-free PU guidance, “PN (-1)” is PN guidance towards the negative class, and s = 0 indicates the result when using
no guidance.
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Multi-Modal Diffusion Sampling

I. CelebA-HQ (256) mode collapse
We find that both PN and PU models may suffer from mode collapse, as evidenced by the model’s tendency to generate all
women. See Appendix G for more examples.
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Figure 24. CelebA-HQ (256): a) CLIP-MMD for different-gendered faces (σ = 100). b) The fraction of generated faces that are
same-gendered. c) Random samples using PU guidance with EMA and 5 recurrence steps. All error bars are the standard deviation over
10,000 bootstrapped estimates.
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