
Under review as submission to TMLR

Prediction interval for neural network models using weighted
asymmetric loss functions.

Anonymous authors
Paper under double-blind review

Abstract

We propose a simple and efficient approach to generate prediction intervals (PIs) for approx-
imated and forecasted trends. Our method leverages a weighted asymmetric loss function
to estimate the lower and upper bounds of the PIs, with the weights determined by the
interval width. We provide a concise mathematical proof of the method, show how it can
be extended to derive PIs for parametrised functions and argue why the method works for
predicting PIs of dependent variables. The presented tests of the method on a real-world
forecasting task using a neural network-based model show that it can produce reliable PIs
in complex machine learning scenarios.

1 Introduction

Neural network models are increasingly often used in prediction tasks, for example in weather Liu et al.
(2021), water level Zhang et al. (2015), price Duan et al. (2022), electricity grid load Rana et al. (2013),
ecology Miok (2018), demographics Werpachowska (2018) or sales forecasting. However, their often cited
weakness is that—in their vanilla form—they provide only point predictions. Meanwhile, many of their users
are interested also in prediction intervals (PIs), that is, ranges [l, u] containing forecasted values with a given
probability (e.g. 95%).

Several approaches have been proposed to facilitate the estimation of PIs (see Beven & Binley (1992);
MacKay (1992); Nix & Weigend (1994); Chryssolouris et al. (1996); Heskes (1996); Hwang & Ding (1997);
Zapranis & Livanis (2005); Khosravi et al. (2010); Rana et al. (2013); Zhang et al. (2015); Miok (2018); Liu
et al. (2021) and references therein):

1. the delta method, which assumes that prediction errors are homogeneous and normally dis-
tributed Chryssolouris et al. (1996); Hwang & Ding (1997);

2. Bayesian inference MacKay (1992), which requires a detailed model of sources of uncertainty, and is
extremely expensive computationally for realistic forecasting scenarios Khosravi et al. (2010);

3. Generalized Likelihood Uncertainty Estimation (GLUE) Beven & Binley (1992), which requires
multiple runs of the model with parameters sampled from a distribution specified by the modeller;

4. bootstrap Heskes (1996), which generates multiple training datasets, leading to high computational
cost for large datasets Khosravi et al. (2010);

5. Mean-Variance Estimation (MVE) Nix & Weigend (1994), which is less computationally demanding
than the methods mentioned above but also assumes a normal distribution of errors and gives poor
results Khosravi et al. (2010);

6. Lower Upper Bound Estimation (LUBE), which trains the neural network model to directly generate
estimations of the lower and upper bounds of the prediction interval using a specially designed
training procedure with tunable parameters Khosravi et al. (2010); Rana et al. (2013); Zhang et al.
(2015); Liu et al. (2021).

1

Under review as submission to TMLR

The existing methods are either overly restrictive (the delta method, MVE) or too computationally expensive.
We propose a method which is closest in spirit to LUBE (we train a model to predict either a lower or an
upper bound for the PI) but simpler and less computationally expensive, because it does not require any
parameter tuning.

2 Problem statement

We consider a prediction problem x 7→ y, where x ∈ X are features (e.g. x ∈ Rd) and y ∈ R is the predicted
variable. We assume that observed data D := {(x, y)}N ⊂ X ×R are statistically independent N -realisations
of a pair of random variables (X, Y) with an unknown joint distribution P. We also consider a model
gθ which, given x ∈ X , produces a prediction gθ(x), where θ is are model parameters in parameter space
Θ = Rm. When forecasting, the prediction is also a function of an independent “time” variable t, which is
simply included in X .

The standard model training procedure aims to find such θ that, given x ∈ X , gθ(·) is an good point estimate
of Y |X, e.g. gθ(x) ≈ E[Y |X = x]. This is achieved by minimising a loss function—by abuse of notation—of
the form l(y, y′) = l(y − y′) with a minimum at y = y′ and increasing sufficiently fast for |y − y′| → ∞,
where y is the observed target value and y′ is the model prediction. More precisely, we minimise the sample
average of the loss function l over the parameters θ:

θ̂ = arg min
θ

N∑
i=1

l (yi, gθ(xi)) .

The above procedure can be given a simple probabilistic interpretation by assuming that the target value y is
a realisation of a random variable Y with the distribution µ+Z, where µ is an unknown “true value” and Z is
an i.i.d. error term with a probability density function ρ(z) ∼ exp(−l(z)). Two well-known functions, Mean
Squared Error (MSE) and Mean Absolute Error (MAE), correspond to assuming a Gaussian or Laplace
distribution for Z, respectively. The value which minimises the loss function l corresponds then to the
maximum log-likelihood estimation of the unknown parameter µ, since ln P (y|µ) ∼ −l(y − µ).

In this paper we focus on the MAE, in which case the average loss function l (i.e. negative log-likelihood of
data D)

l(y, y′) = |y − y′|

Given an i.i.d. sample {yi}N
i=1, we thus try to minimise

1
N

N∑
i=1

|yi − y′|

which for N → ∞ equals E[|Y − y′|]. The optimal value of y′, i.e. the value which minimises the loss, noted
as ŷ, equals

ŷ = arg min
y′∈R

E[|Y − y′|] for Y = µ + L ,

where L has Laplace distribution with density ρL(z) = e−|z|/2. The minimum fulfills the condition ∂E[|Y −
y′|]/∂y′ = 0. Since

E[|Y − y′|] = E[|µ + L − y′|]

= 1
2

∫ ∞

y′−µ

e−|z|(z + µ − y′)dz − 1
2

∫ y′−µ

−∞
e−|z|(z + µ − y′)dz ,

we have
∂E[|Y − y′|]

∂y′ = 1
2

∫ y′−µ

−∞
e−|z|dz − 1

2

∫ ∞

y′−µ

e−|z|dz ,

2

Under review as submission to TMLR

which is zero iff y′ −µ = 0, hence ŷ = µ. For a finite sample [yi]Ni=1, ŷ is the sample median, which approaches
µ as N → ∞.

In prediction, we work with an independent variable X and a dependent variable Y , under the assumption
that there exists some mapping g such that g(X) = Y + ϵ with some error ϵ. We aim to find a prediction
interval such that given an x, the predicted value y lies within this interval with probability p. Note that
this problem is equivalent to finding the αl-th and αu-th percentile of the distribution Y |X , such that
0 ≤ αl ≤ αu ≤ 1 and αu − αl = p. These percentiles then correspond to the lower or upper bound of the PI.
To this end, we are going to generalise the above result and train the model to predict a desired percentile
of the distribution Y |X.

3 Main result

We show semi-analytically that the prediction interval can be calculated in an efficient way by training the
model minimising a weighted, i.e. not symmetric around 0, MAE loss function:

l(y − y′) = 2
[
α(y − y′)+ + (1 − α)(y − y′)−]

,

for α ∈ (0, 1). The factor of 2 is introduced to rescale the defined loss to match the standard MAE definition.

The main mathematical result is derived from the insight presented in our Theorem 1 below. It relates the
choice of loss function to the resulting corresponding minimizer, for a specific class of loss functions.
Theorem 1. For some α ∈ (0, 1), let lα : R2 → R be a loss function, defined by

lα(y, ŷ) =
{

2 (1 − α)|y − ŷ| for y − ŷ < 0
2 α|y − ŷ| otherwise

(1)

Let Y be a random variable on probability space (Ω, F ,P) with distribution µY := Y #P. Then, the value ŷ
which minimises E [lα(Y, ŷ)] is the α-th percentile of Y .

Proof. The goal is to find ŷ, which minimises E [lα(Y, ŷ)]. For this ŷ, we have

0 = ∂

∂ŷ
E[lα(Y, ŷ)]

= ∂

∂ŷ

[∫ ŷ

−∞
−(1 − α)(y − ŷ) dµY (y) +

∫ ∞

ŷ

α(y − ŷ) dµY (y)
]

= (1 − α)
∫ ŷ

−∞
dµY (y) − α

∫ ∞

ŷ

dµY (y)

= (1 − α)FY (ŷ) − α(1 − FY (ŷ)) ,

(2)

where FY (ŷ) =
∫ ŷ

−∞ dµY (y) is the CDF of Y and we neglect the constant factor of 2. Hence, ŷ = F −1
Y (α).

Remark 1. While the derivation works for any distribution µ supported on the real axis, the interpretation
of MAE minimisation as maximum likelihood estimation of ŷ for α = 1/2 is valid only when Y has a Laplace
distribution. Note that our result does not require assuming an independent Laplace distribution for the error
term.
Remark 2. An analogous calculation shows that minimising

∑
i l(yi, ŷ) over ŷ leads to ŷ equal to the α-th

percentile of the sample {yi}.
Corollary 2. If ŷ is restricted to ŷ = g(θ) for some differentiable function g : Rd → R, the theorem still
holds assuming that ∂g(θ)/∂θ ̸= 0 for all θ.
Remark 3. Mind that ∂g(θ)/∂θ is a vector, as it is a gradient rather than a scalar derivative, and thus only
one of its components must be non-zero.

3

Under review as submission to TMLR

Proof. In the proof of Theorem 1, we replace y by g(θ) and differentiate with θ instead of ŷ. In the last two
lines, ∂θg(θ) appears in front of both integrals.

0 = ∂

∂θ
E[lα(Y, g(θ))]

= ∂g(θ)
∂θ

[
(1 − α)

∫ g(θ)

−∞
dµY (y) − α

∫ ∞

g(θ)
dµY (y)

]

= ∂g(θ)
∂θ

[(1 − α)FY (g(θ)) − α(1 − FY (g(θ)))] .

(3)

Calculating the Euclidean norm of this vector equation, we obtain

∥∂g(θ)
∂θ

∥ · |(1 − α)FY (g(θ) − α(1 − FY (g(θ))| = 0 (4)

Since ∂g(θ)/∂θ ̸= 0, we can divide both sides by its norm, yielding g(θ) = F −1
Y (α).

Remark 4. Since the only property of a minimum we have used when deriving Theorem 1 and Corollary 2
is that the first derivative is zero in the minimum, ŷ (or θ) could be also a local minimum, local maximum
or even a saddle point.

4 Connection to problem statement

The result of the previous section can be connected with the problem stated in Sec. 2 by considering the
dependence of the predicted variable Y on features X (which include also the time variable). Assume that
we have found such a model parameter set θ that the expected value of the loss function l is minimized for
every value of X,

∂E[l(Y, gθ(X))|X]
∂θ

= 0

for any X. Then, the results of Section 3 can be easily modified to show that gθ(X) = F −1
Y |X(α), by

replacing g(θ) with gθ(X), µY with µY |X (distribution of Y conditional on X) and FY with FY |X (CDF of
Y conditional on X), and the assumption ∂g(θ)/∂θ ̸= 0 for all θ with the assumption ∂gθ(X)/∂θ ̸= 0 for all
θ and X.

Standard model training, however, does not minimize E[l(Y, gθ(X))|X], but E[l(Y, gθ(X))] (as mentioned
above, averaging over all X in a large training set), which is the quantity considered by its proofs of
convergence Shalev-Shwartz & Ben-David (2014). The condition ∂

∂θE[l(Y, ŷ)] = 0 leads then to

0 = ∂

∂θ
E[l(Y, ŷ)]

=
∫

X

∂gθ(x)
∂θ

[
(1 − α)FY |X=x(gθ(x)) + α(1 − FY |X=x(gθ(x))

]
dµX(x),

(5)

where µX is the distribution of feature vectors X.

Consider now a model with a separate constant term, gθ(x) = G(ξ), where G(ξ) is strictly monotonic function
of ξ = θ0 + fθ(x). Most neural network prediction models are indeed of such a form. The component of
Eq. (5) for θ0 has the form

0 = ∂G

∂ξ

∫
X

[
(1 − α)FY |X=x(gθ(x)) + α(1 − FY |X=x(gθ(x))

]
dµX(x)

= ∂G

∂ξ

[
(1 − α)E[FY |X(gθ(X))] + α(1 − E[FY |X(gθ(X))])

]
.

(6)

Hence, we have E[FY |X(gθ(X))] = α since ∂G/∂ξ ̸= 0.

4

Under review as submission to TMLR

We would like to make a stronger statement, that is, FY |X(gθ(X)) = α (note that, given the above,
∂gθ(X)/∂θ ̸= 0 for all θ and X), but the integration over X precludes it. To support this conjecture
we indicate the following heuristic arguments:

1. Recall that stochastic gradient descent (SGD) uses mini-batches to compute the loss gradient. By
training long enough with small enough mini-batches sampled with replacement (to generate a greater
variance of mini-batches), we can hope to at least approximately ensure that E[l(Y, gθ(X)] is mini-
mized “point-wise” w.r.t. to X. This is supported by the fact that

E[l(Y, gθ(X))] =
∫

X
E[l(Y, gθ(X))|X = x]ρX(dx)

On top of that, section 3 in Zhou et al. (2019) and Theorem 1 in Turinici (2021) suggest that SGD
should still work for loss functions of the form (1) for reasonable network choices.

2. If the model gθ is flexible enough that it is capable of globally minimising E[l(Y, gθ(X))|X] for every
X (for example, it is produced by a very large deep neural network), then this global pointwise
minimum has to coincide with the global “average” minimum of E[l(Y, gθ(X)] and can be found by
training the model long enough. Formally, if there exists such a θ̂ that θ̂ = arg minθ E[l(Y, gθ(X))|X]
for all X, then also θ̂ = arg minθ E[l(Y, gθ(X)].

3. Recall that ∂gθ(X)/∂θ is a vector, not a scalar. Therefore, Eq. (5) is actually a set of conditions of
the form EX [Ai(X)B(X)] = 0, where Ai(X) = ∂gθ(X)/∂θi and B(X) = (1−α)FY |X(gθ(X))+α(1−
FY |X(gθ(X)). The larger the neural network, the more conditions we have on the pairs AiB, but
they can be all automatically satisfied if B(X) ≡ 0. Moreover, the value of B depends only on the
predictions gθ(X) produced by the model and the distribution of Y given X (which is dictated by the
data distribution D). On the other hand, the derivatives ∂gθ(X)/∂θi depend also on the internal
architecture of the neural network (for example, the type of activation function used, number of
layers, etc). If, what is likely, there exists multiple architectures equally capable of minimising the
expected loss, Eq. (5) must be true for all corresponding functions ∂gθ(X)/∂θi at the same time,
which also suggests B(X) = 0.

4. Consider now the limit of a very large, extremely expressive neural network, which achieves a
global minimum of E[l(Y, gθ(X)]. We can describe it using the following parameterisation: let
θ = [θi]Ni=1 and gθ(x) ≈

∑N
i=1 θikN (x − xi), where xi belongs to the support of the distribution of

X,
∫

kN (x − xi)ρX(dx) = 1, and kN (d) > 0 approaches the Dirac delta distribution in the limit
N → ∞. We have ∂gθ(x)/∂θi = kN (x − xi), and, for each i,

0 =
∫

X

∂gθ(x)
∂θi

[
(1 − α)FY |X=x(gθ(x)) + α(1 − FY |X=x(gθ(x))

]
ρX(dx)

≈
∫

kN (x − xi)
[
(1 − α)FY |X=x(gθ(x))

+α(1 − FY |X=x(gθ(x))
]

ρX(dx) .

In the limit of N → ∞, k(d) → δ(d) and the above integral becomes

0 = (1 − α)FY |X=xi
(gθ(xi)) + α(1 − FY |X=xi

(gθ(xi)) for all i.

At the same time, as N → ∞, the feature vectors xi have to progressively fill in the entire support
of the distribution of X, hence the above condition is asymptotically equivalent to

0 = (1 − α)FY |X=x(gθ(x)) + α(1 − FY |X=x(gθ(x)) for all x ∈ X ,

or simply FY |X(gθ(X)) = α.

5

Under review as submission to TMLR

5. As the opposite case to the above, consider a naive model gθ(X) = θ0 + θ1 · X describing a linear
process, Y = y0 + w · X + Z, where the error term Z ⊥ X is i.i.d. and y0, w are unknown constants.
From Eq. (6) we have E[FY |X(gθ(X))] = α. Writing Eq. (5) for θ1, we obtain

0 =
∫

x
[
(1 − α)FY |X=x(θ0 + θ1 · x) + α(1 − FY |X=x(θ0 + θ1 · x)

]
ρX(dx)

=
∫

x [(1 − α)FZ(θ0 − y0 + (θ1 − w) · x)

+α(1 − FZ(θ0 − y0 + (θ1 − w) · x)] ρX(dx)

It is easy to see that both conditions are satisfied by θ1 = w and θ0 = F −1
Z (α). Then, we have

FY |X(gθ(X)) = α for all X. Hence, our method works perfectly in the linear case with i.i.d. error
terms.

5 Experiments and results

In this section, we present the results of two case studies: the first is forecasting the daily demand for 15
different food products, and the second is forecasting revenue for 10 food stores that sell them. We utilize
historical data to back-test our forecasts with PIs.

The core forecasting model is an adaptation of N-BEATS architecture Oreshkin et al. (2019), whose initial
version was developed by Molander Molander (2021). For each study, we train the model simultaneously
on all training data in the spirit of global learning approach. The product demand dataset consists in time
series of daily product sales of varying length spanning up to 4 years, product name and category, weather
information, a custom calendar indicating special days and periods, time of selling out, as well as geographic
location and store type. The revenue dataset includes time-series of revenues for the stores, along with
information on store type, location, weather, and the custom calendar. The features are represented as
integers, one-hot-encoded vectors or (trainable or not) word embeddings. They have adjustable training
weights and can be excluded by the hyperparameter tuning. Custom sample boosting techniques support
better performance on the special calendar days. The model also attempts to detect anomalies in sale trends
resulting from Covid-related lockdowns.

During the training, mini-batches are drawn with replacement, following point 1 of Sec. 4. The Tensorflow
implementation of our model uses the Adam optimiser Kingma & Ba (2014) with early stopping and learning
rate decay (starting from 10−3). The algorithm converges in less than 70 epochs.

We optimise a multitask loss function, which is the sum of three distinct loss functions defined by Eq. 1,
l(α = 0.5)+l(α = 0.5−β/2)+l(α = 0.5+β/2), thus estimating the result and the PIs of a desired probability
level β at once. Training a single neural network to predict all three values simultaneously is not only more
computationally efficient, but also helps capture their dependencies, thereby avoiding stochastic artefacts
(such as crossing PIs, which we occasionally observed when estimating the three values in separate training
runs).

The model utilizes a 14-day window of recent data, weather forecasts, and upcoming events to predict the
next day’s sales or revenues. We limit the forecast horizon to 1 day, as per the theoretical assumptions.
Therefore, for the period from 2 April to 21 July, we generate 111 predictions per product, which we back-
test against the historical data to evaluate our model’s performance. In addition, we experiment with longer
forecast horizons of one or two weeks (which utilise additional extensions to the model to preserve theoretical
correctness and efficacy), demonstrating the stability of our method.

Figures 1 and 2 show the results of the two case studies: product demand and store revenue predictions
with PIs, respectively. The median demand was calculated together with the 70% PI using the multiloss
function described above; in addition, the 80% and 90% PIs are plotted. The interval width grows with
increasing probability level, as expected. (The largest widening of the prediction interval should occur just
before reaching 100%, assuming the errors follow either a Laplacian or Gaussian distribution.)

6

Under review as submission to TMLR

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7

50

100

150

200

250

300
case15-L1 19.937451131630407-L2 22.110233752961562 - 18.103448275862068%

prediction
historical data
90% PI
80% PI
70% PI

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7

20

40

60

80

100

case7-L1 16.00492572519759-L2 16.858398870815943 - 8.620689655172415%

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7

20

40

60

80

case12-L1 17.395098766547992-L2 18.600935500997988 - 12.931034482758621%

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7
0

10

20

30

40

case8-L1 13.063445643350516-L2 16.27608434993112 - 5.172413793103448%

Figure 1: Product sale forecasts with 70%, 80% and 90% PIs for four products calculated using multi-loss
function (median shown calculated with 70% PI.

While the widths of the prediction intervals generally remain consistent over time, there are some exceptions.
A typical example is the spike of upper PI on 1 May for the first product: an unusually high sale on the
previous week’s same weekday, combined with a periodic (weekly) sales behaviour, caused the model to
increase the uncertainty. As a result, the historic sales data points are indeed captured within the interval.

As the probability level increases, the width of the interval grows larger, based on our test results for 70%,
80% and 90% PIs. Assuming the errors follow either a Laplacian or Gaussian distribution, we expect the

7

Under review as submission to TMLR

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7

15000

20000

25000

30000

35000

40000

45000
case3-L1 8.303619086900067-L2 9.946856399120806 - 17.117117117117118%

prediction
historical data
90% PI
80% PI
70% PI

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7

20000

40000

60000

80000

100000

120000

case14-L1 9.25574677837937-L2 10.475611307204176 - 17.117117117117118%

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7

20000

40000

60000

80000

100000

case9-L1 10.483264806560614-L2 12.671341555266649 - 28.82882882882883%

2/4 9/4 16/4 23/4 30/4 7/5 14/5 21/5 28/5 4/6 11/6 18/6 25/6 2/7 9/7 16/7
0

10000

20000

30000

40000

50000

case12-L1 10.97761185714696-L2 14.20357785762334 - 23.423423423423422%

Figure 2: Revenue forecasts with 70%, 80% and 90% PIs for four stores using multi-loss function (median
shown calculated with 70% PI.

largest widening of the prediction interval to occur just before reaching 100%, with a theoretical widening
of the PI to infinity, as the probability approaches 100%.

The PI coverage probability for the three tested widths is shown in Table 1. The proportion of future realised
values that fall within the PIs was counted for all daily forecasts of 15 product demand and 10 store revenues.
Equal or slightly lower than the PI probability level, the results suggest that indeed our method accurately
finds lower and upper bounds on the probability distribution of forecasted quantity. We note the coverage is

8

Under review as submission to TMLR

virtually perfect when we train the model of the same size to predict different percentiles separately, instead
of using the multiloss function (which is more efficient for our purposes).

Table 1: The prediction interval coverage probability for tested PI widths of daily forecasts.

PI width PI coverage
0.9 0.89
0.8 0.8
0.75 0.74
0.7 0.67

We additionally experiment with longer forecast horizons required for the practical applications of our
model. Figure 3 shows examples of forecasts with 7-day and 14-day horizons, i.e. performed every 7 or 14
days, respectively. Quite surprisingly, the success-rate on our set of tested products remains high, namely
76% of historical points lie within the analysed 7-day 75% PI and 74% of historical points lie within the
14-day 75% PI. The starting and final days of the forecasts are marked by the grid, where they overlap. As
expected, at these points we can see that the PI widens towards the end of the predicted period and narrows
erratically as the new prediction period begins.

04-02 04-09 04-16 04-23 04-30 05-07 05-14 05-21 05-28 06-04 06-11

20

40

60

80

100 median forecast 7D
7D 75% PI

04-02 04-16 04-30 05-14 05-28 06-11
10

20

30

40

50
median forecast 14D
75% PI 14D

Figure 3: Sale forecasts with 7 and 14-day horizon trained by MAE with 70% PIs, performed every 7 or 14
days, respectively.

6 Final thoughts and future work

6.1 Final thoughts

The standard interpretation of regression models relies on maximum likelihood—their estimate is the best
they can give based on the available data. Without additional ad hoc (as reflected in Remark 1) assumptions
about the data distribution, it does not even define what statistics they actually estimate. Neither does it

9

Under review as submission to TMLR

endow us with an intuition about the quality of the estimate or the models’ predictive power. In fact, it can
be misleading, as increasing the likelihood does not necessarily mean increasing the model accuracy, vide
overfitting.

Statistical learning theory provides a more general answer to the question “what does a nonlinear regression
model predict?”. Minimising the expected loss over a sufficiently large i.i.d. training set, we obtain with high
probability a model producing, on previously unseen test data, predictions with the expected loss not much
larger than the minimal expected loss possible for given model architecture Shalev-Shwartz & Ben-David
(2014). The only condition is that the test data are drawn from the same distribution as the training set.

Yet, the actual task of statistical regression models is to provide the range of values that likely contains
the true outcome, given the trained parameters and the data. We presented a simple method for training
a neural network to predict lower or upper bounds of the PI based on a vector of features. It does it by
minimising a weighted version of the MAE loss, the only assumption being that the model is expressive
enough to obtain an (approximate) global minimum of the expected loss. We have shown through numerical
experiments that this mathematical result holds true in real-world settings, which suggests that our method
can be used to create PIs of neural networks in similar setups.

6.2 Future work

Although we have demonstrated that the proposed method works for linear models and expressive models,
it may be less effective in specific cases. Identifying these weaknesses can help improve our understanding
of the method’s potential applications.

The relationship between the optimal model parameters θ and hyperparameters is generally complex and
not straightforward. It is worthwhile to explore the relationship between the percentile α and the resulting
model parameters θ, particularly in terms of continuity and regularity.

Using different asymmetric loss functions may lead to other interesting minimizations. We conjecture that
a similar result exists for a weighted MSE minimisation, where the predicted value is related to the amount
of deviation from the prediction found by minimising MSE. This should be directly related to the chosen
weight α.

Finally, our method works well in practice even though its theoretical requirements are not guaranteed to
be satisfied by the standard model training algorithm (see Sec. 4). This surprising finding warrants further
investigation, which could lead to interesting insights into how neural networks learn during training.

7 Acknowledgements

We would like to thank Professor Erlend Aune for the suggestion to use a multitask loss, which helped us
improve the computational efficiency.

References
Keith Beven and Andrew Binley. The future of distributed models: model calibration and uncertainty

prediction. Hydrological processes, 6(3):279–298, 1992.

George Chryssolouris, Moshin Lee, and Alvin Ramsey. Confidence interval prediction for neural network
models. IEEE Transactions on neural networks, 7(1):229–232, 1996.

Guoao Duan, Mengyao Lin, Hui Wang, and Zhuofan Xu. Deep neural networks for stock price prediction. In
2022 14th International Conference on Computer Research and Development (ICCRD), pp. 65–68. IEEE,
2022.

Tom Heskes. Practical confidence and prediction intervals. Advances in neural information processing
systems, 9, 1996.

10

Under review as submission to TMLR

JT Gene Hwang and A Adam Ding. Prediction intervals for artificial neural networks. Journal of the
American Statistical Association, 92(438):748–757, 1997.

Abbas Khosravi, Saeid Nahavandi, Doug Creighton, and Amir F Atiya. Lower upper bound estimation
method for construction of neural network-based prediction intervals. IEEE transactions on neural net-
works, 22(3):337–346, 2010.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Fangjie Liu, Chaoshun Li, Yanhe Xu, Geng Tang, and Yuying Xie. A new lower and upper bound estimation
model using gradient descend training method for wind speed interval prediction. Wind Energy, 24(3):
290–304, 2021.

David JC MacKay. The evidence framework applied to classification networks. Neural computation, 4(5):
720–736, 1992.

Kristian Miok. Estimation of prediction intervals in neural network-based regression models. In 2018 20th
International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC), pp.
463–468. IEEE, 2018.

I.C. Molander. Time series demand forecasting—Reducing food waste with deep learning. Master’s thesis,
Imperial College London, Department of Computing, 2021.

David A Nix and Andreas S Weigend. Estimating the mean and variance of the target probability distribution.
In Proceedings of 1994 ieee international conference on neural networks (ICNN’94), volume 1, pp. 55–60.
IEEE, 1994.

Boris N Oreshkin, Dmitri Carpov, Nicolas Chapados, and Yoshua Bengio. N-beats: Neural basis expansion
analysis for interpretable time series forecasting. arXiv preprint arXiv:1905.10437, 2019.

Mashud Rana, Irena Koprinska, Abbas Khosravi, and Vassilios G Agelidis. Prediction intervals for electricity
load forecasting using neural networks. In The 2013 international joint conference on neural networks
(IJCNN), pp. 1–8. IEEE, 2013.

Shai Shalev-Shwartz and Shai Ben-David. Understanding machine learning: From theory to algorithms.
Cambridge university press, 2014.

Gabrel Turinici. The convergence of the stochastic gradient descent (sgd): a self-contained proof. arXiv
preprint arXiv:2103.14350, 2021.

Agnieszka Werpachowska. Forecasting the impact of state pension reforms in post-brexit england and wales
using microsimulation and deep learning. arXiv preprint arXiv:1802.09427, 2018.

Achilleas Zapranis and Efstratios Livanis. Prediction intervals for neural network models. In Proceedings of
the 9th WSEAS International Conference on Computers, pp. 76, 2005.

Hairong Zhang, Jianzhong Zhou, Lei Ye, Xiaofan Zeng, and Yufan Chen. Lower upper bound estimation
method considering symmetry for construction of prediction intervals in flood forecasting. Water Resources
Management, 29:5505–5519, 2015.

Yi Zhou, Junjie Yang, Huishuai Zhang, Yingbin Liang, and Vahid Tarokh. Sgd converges to global minimum
in deep learning via star-convex path. arXiv preprint arXiv:1901.00451, 2019.

11

	Introduction
	Problem statement
	Main result
	Connection to problem statement
	Experiments and results
	Final thoughts and future work
	Final thoughts
	Future work

	Acknowledgements

