
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FAST ROPE ATTENTION: COMBINING THE POLYNO-
MIAL METHOD AND FAST FOURIER TRANSFORM

Anonymous authors
Paper under double-blind review

ABSTRACT

The transformer architecture has been widely applied to many machine learning
tasks. A main bottleneck in the time to perform transformer computations is a
task called attention computation. [Alman and Song, NeurIPS 2023] have shown
that in the bounded entry regime, there is an almost linear time algorithm to ap-
proximate the attention computation. They also proved that the bounded entry
assumption is necessary for a fast algorithm assuming the popular Strong Expo-
nential Time Hypothesis.
A new version of transformer which uses position embeddings has recently been
very successful. At a high level, position embedding enables the model to cap-
ture the correlations between tokens while taking into account their position in
the sequence. Perhaps the most popular and effective version is Rotary Position
Embedding (RoPE), which was proposed by [Su, Lu, Pan, Murtadha, Wen, and
Liu, Neurocomputing 2024].
A main downside of RoPE is that it complicates the attention computation prob-
lem, so that previous techniques for designing almost linear time algorithms no
longer seem to work. In this paper, we show how to overcome this issue, and
give a new algorithm to compute the RoPE attention in almost linear time in the
bounded entry regime. (Again, known lower bounds imply that bounded entries
are necessary.) Our new algorithm combines two techniques in a novel way: the
polynomial method, which was used in prior fast attention algorithms, and the
Fast Fourier Transform.

1 INTRODUCTION

Large language models (LLMs) are among the most impactful tools in modern machine learning.
LLMs such as Transformer (Vaswani et al., 2017), BERT (Devlin et al., 2018), GPT-3 (Brown et al.,
2020), PaLM (Chowdhery et al., 2022), OPT (Zhang et al., 2022a), GPT-4 (Achiam et al., 2023),
Gemini (Team et al., 2023), Gemini 1.5 (Reid et al., 2024), Claude3 (Anthropic, 2024), GPT-4o
(OpenAI, 2024a), o1 (OpenAI, 2024b), can process natural language more effectively than smaller
models or traditional algorithms. This means that they can understand and generate more complex
and nuanced language, which can be useful for a variety of tasks such as language translation,
question answering, and sentiment analysis. LLMs can also be adapted to multiple purposes without
needing to be retained from scratch.

Attention Computation. LLMs currently require massive time and computing resources to perform
at scale. The major bottleneck to speeding up LLM operations is the time to perform a certain
operation called an attention matrix computation (Vaswani et al., 2017; Radford et al., 2018; Devlin
et al., 2018; Radford et al., 2019; Brown et al., 2020; Wang et al., 2020; Kitaev et al., 2020). These
computations ask us to multiply the attention matrix A with another value token matrix V ∈ Rn×d.
More precisely, given three matrices Q,K, V ∈ Rn×d (the query, key, and value token matrices), the
goal is to output (an approximation of) the n× d matrix Att(Q,K, V ) defined by Att(Q,K, V ) :=
D−1AV where the attention matrix A ∈ Rn×n and diagonal matrix D ∈ Rn×n are defined as
A := exp(QK⊤/d) (with exp applied entry-wise), and D := diag(A1n). Here, n is the input
sequence length, and d is the embedding dimension of the model, and one typically considers d ≪ n
like d = Θ(log n) in the time-intensive case of modeling long sequences.
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The straightforward algorithm for this problem runs in roughly quadratic time. Moreover, there are
known complexity-theoretic lower bounds (Keles et al., 2023; Alman & Song, 2023) proving that
the problem cannot be solved in truly subquadratic time in the case when the input matrices Q,K, V
have large entries, assuming a popular conjecture from fine-grained complexity theory called the
Strong Exponential Time Hypothesis (SETH (Impagliazzo & Paturi, 2001)) which we discuss more
shortly.

In order to circumvent this lower bound, and inspired by the fact that the entries of the input ma-
trices are typically bounded in realistic inputs (Zafrir et al., 2019; Katharopoulos et al., 2020b),
a recent faster, almost linear-time algorithm (Alman & Song, 2023) was given, assuming that
∥Q∥∞, ∥K∥∞, ∥V ∥∞ are all bounded. Here the ℓ∞-norm is given by ∥Q∥∞ := maxi,j |Qi,j |.
Rather than explicitly compute all the entries of the attention matrix A, (Alman & Song, 2023) only
implicitly uses it, by using an algorithmic tool called the polynomial method.

More precisely, they present two results, showing that when d = O(log n), and B is the bound
∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B, there is a sharp transition in the difficulty of attention computation
at B = Θ(

√
log n). Here, ∥Q∥∞ := maxi,j |Qi,j |. First, if B = o(

√
log n), then there is an

n1+o(1) time algorithm to approximate Att(Q,K, V ) up to 1/poly(n) additive error. Second,
if B = Θ(

√
log n), then assuming SETH, it is impossible to approximate Att(Q,K, V ) up to

1/poly(n) additive error in truly subquadratic time n2−Ω(1). In other words, if B = o(
√
log n),

then the polynomial method gives an almost linear-time algorithm, and if B is any bigger, then it is
impossible to design an algorithm that substantially improves on the trivial quadratic time algorithm,
no matter what algorithmic techniques one uses.

Bounded entries in practice. The theoretical results of (Alman & Song, 2023) offer an explana-
tion for a phenomenon commonly observed in practice: attention computation becomes significantly
more efficient when the input matrices have bounded entries. Indeed, a long line of work on LLM
implementations has achieved speedups by combining bounds on weights with algorithmic tech-
niques like quantization and low-degree polynomial approximation. For some examples, see (Zafrir
et al., 2019; Katharopoulos et al., 2020b; Frantar et al., 2022; Perez et al., 2023; Dettmers et al.,
2023; Egashira et al., 2024; Liu et al., 2024b; Xu et al., 2024b; Lin et al., 2025; Chen et al., 2025b;
Liu et al., 2025; Ouyang et al., 2025; Deng et al., 2025; Hu et al., 2025c; Fu et al., 2025; Hu et al.,
2025b; Park et al., 2025; Zeng et al., 2025; Yu et al., 2025; Wei et al., 2025).

RoPE: Rotary Position Embedding. This work mainly explores the efficient computation of an
emerging type of attention, namely RoPE attention, which enables improved attention expressive-
ness while resulting in a more difficult computational problem. This property makes the efficient
computation of RoPE attention more challenging, since a wide range of previous works (e.g., the
algorithm in (Alman & Song, 2023)) cannot be applied in this new setting. Various industrial LLMs
have adopted RoPE attention as their model components, making RoPE a standard approach in at-
tention computation. Examples include Meta’s open-source Llama family models (Touvron et al.,
2023a;b; AI, 2024), Anthropic’s private commercial model Claude 3 (Anthropic, 2024), and Apple’s
LLM architecture (McKinzie et al., 2024; Gunter et al., 2024) 1.

The inherent intuition of RoPE is to enhance the attention expressivity via rotating the queries and
keys. Specifically, the rotation depends on the sequence positions, thereby ensuring that the inner
product of vectors with position encoding can express the actual relative positions. Instantiation of
RoPE attention is based on the Rj−i matrices, which we will define below. These matrices perform
position-aware rotations to the embeddings, which makes token pairs with smaller relative distances
have larger correlations.

We now briefly describe the mathematical definition of the RoPE method. We will make use of 2×2
rotation matrices, which for an angle of rotation θ, can be written as

R(θ) :=

[
cos θ − sin θ
sin θ cos θ

]
.

As above, we denote the length of input sequences by n, and represent the dimension of embedding
vectors by d. We assume here that d is even.

1The use of RoPE attention can be found in the technical reports of these LLMs. See page 3 of (Touvron
et al., 2023a), page 5 of (Touvron et al., 2023b), page 7 of (Llama Team, 2024), and page 3 of (Gunter et al.,
2024).
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For i, j ∈ [n], we now define the overall relative rotation matrix for tokens at positions j and i,
which we denote by Rj−i ∈ Rd×d. As indicated by the notation, it depends only on the difference
j − i. Rj−i is defined as a diagonal block matrix with d/2 blocks of size 2× 2 along the diagonal,
given by

Rj−i =


R((j − i)θ1) 0 · · · 0

0 R((j − i)θ2) · · · 0
...

...
. . .

...
0 0 · · · R((j − i)θd/2)

 .

The angle frequencies are given by θk = α−2(k−1)/d for k ∈ [d/2]. Here one thinks of the angle α
as a fixed constant for all i and j; in the original RoPE it is 104 (see details in Equation (15) in page
5 of (Su et al., 2024)).

These Rj−i matrices are incorporated into attention as follows. Let WQ,WK ,WV ∈ Rd×d denote
the model parameters. Let X ∈ Rn×d denote the latent representation of a sentence with length n.
Then, for i, j ∈ [n], a new attention matrix can be defined as

Ai,j := exp(Xi,∗︸︷︷︸
1×d

WQ︸︷︷︸
d×d

Rj−i︸ ︷︷ ︸
d×d

W⊤
K︸︷︷︸

d×d

X⊤
j,∗︸︷︷︸

d×1

). (1)

As in the usual attention mechanism, the final goal is to output an n × d size matrix D−1AXWV

where D := diag(A1n) ∈ Rn×n.

Formulation of RoPE Attention. In this paper, we give a new algorithm for RoPE attention. We
now formally define the problem we will solve. Notably, our algorithm actually solves the following
generalization of RoPE attention, which captures RoPE (as we described it above) as well as many
natural variants on RoPE that future work may want to consider. We emphasize that changing the
many parameters which go into the RoPE definition would still be captured by our generalization
below.

Definition 1.1 (A General Approximate RoPE Attention Computation, ARAttC). Let ϵ > 0 denote
an accuracy parameter, and B > 0 denote a magnitude parameter. We define S as S ⊆ [d] × [d]
and |S| = O(d). Given a set of matrices W−(n−1), · · ·W−1,W0,W1, · · ·Wn−1 ∈ Rd×d where
supp(Wi) ⊂ S for all i ∈ {−(n−1), · · · ,−1, 0, 1, · · · , n−1}. Given Q ∈ Rn×d, K ∈ Rn×d, and
V ∈ Rn×d with the guarantee that ∥Q∥∞, ∥K∥∞, ∥V ∥∞ ≤ B and ∥W∥∞ ≤ 1. We define matrix
A ∈ Rn×n as, for i, j ∈ [n],

Ai,j := exp(Qi,∗︸︷︷︸
1×d

Wi−j︸ ︷︷ ︸
d×d

K⊤
j,∗/

√
d︸ ︷︷ ︸

d×1

),∀i ∈ [n], j ∈ [n]

We let D := diag(A1n) and ARAttC := D−1AV . The goal of General Approximate RoPE Atten-
tion Computation is to output a matrix T ∈ Rn×d such that ∥T − ARAttC∥∞ ≤ ϵ.

Remark 1.2. RoPE attention as defined above (Eq. (1)) corresponds to this problem where we
restrict each of the matrices Wi ∈ Rd×d for all i ∈ {−(n − 1), , · · · ,−1, 0, 1, · · · , n − 1} in
Definition 1.1 to be diagonal block matrices, where each matrix has d/2 blocks and each block has
size 2× 2. Note that the 1/d factor inside exp in the definition of A is a normalization factor.

Our Results.

Our main result is a new algorithm which computes General Approximate RoPE Attention Compu-
tation in almost linear time:

Theorem 1.3 (main result, upper bound). Suppose ϵ = 1/ poly(n), B = o(
√
log n), and d =

O(log n). There is an n1+o(1) time algorithm to approximate ARAttC up to ϵ additive error.

In other words, although RoPE attention is more complicated than the usual attention, we are able
to achieve the same running time for this more expressive version. This is, to our knowledge, the
first fast algorithm for RoPE attention with provable guarantees. As we will discuss more shortly,
there is a substantial barrier to using prior algorithmic techniques for attention in the setting of RoPE
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attention, and we overcome this barrier using a novel approach combining the polynomial method
with Fast Fourier transforms.

Furthermore, we prove that the bound of B = o(
√
log n) used by our algorithm is necessary, since

when B is any bigger, it is impossible to design a truly subquadratic time algorithm:

Theorem 1.4 (main result, lower bound). Assuming SETH, for every q > 0, there are constants
C,Ca, Cb > 0 such that: there is no O(n2−q) time algorithm for the problem ARAttC(n, d =
C log n,B = Cb

√
log n, ϵ = n−Ca).

To emphasize, our Theorem 1.4 doesn’t just prove that our algorithmic approach cannot give a
nontrivial algorithm when B = Ω(

√
log n), but more generally that it is impossible to design a

nontrivial algorithm, no matter what algorithmic techniques one uses.

Our Theorem 1.4 closely matches the parameters of prior lower bounds on the usual attention prob-
lem (and it is not too difficult to prove given these prior lower bounds). Because of the increased
complexity of RoPE attention, it previously seemed conceivable that one could prove a stronger
lower bound for ARAttC; perhaps surprisingly, our Theorem 1.3 shows that it is actually tight. Since
the proof of Theorem 1.4 is so similar to prior work, we provide it in Section B.2 in the Appendix.

Technique Overview: Limitation of Prior Techniques

Prior fast algorithms with provable guarantees for attention are critically based on an algorithmic
technique called the polynomial method (Alman & Song, 2023; 2024a;b). This is a technique for
finding low-rank approximations of certain structured matrices. More precisely, suppose M ∈ Rn×n

is a low-rank matrix, and f : R → R is any function. Let f(M) denote the matrix where f is
applied entry-wise to M . In general, although M is low-rank, the matrix f(M) may be a full-rank
matrix. However, the polynomial method says that if f can be approximated well by a low-degree
polynomial, then f(M) can be approximated well by a low-rank matrix. Since the usual attention
matrix is defined by applying exp entry-wise to a low-rank matrix, prior algorithms approximate
exp with a polynomial, then uses the polynomial method to approximate the attention matrix with a
low-rank matrix which can be used to quickly perform the necessary linear-algebraic operations.

Although this approach has been successful in prior work on designing faster algorithms for many
problems related to attention, it fundamentally cannot apply to RoPE attention. The key issue is that
in RoPE attention, the underlying matrix which exp is applied to no longer needs to have low rank.
Indeed, let A denote the RoPE attention matrix (defined in Equation (1) above) and let M denote
A before it was entry-wise exponentiated. Even in the simplest case d = 1, one can see that by
picking the Rj−i entries appropriately (and the entries of all other matrices in Equation (1) to equal
1), one can choose M to be any Toeplitz matrix (i.e., matrix whose (i, j) entry depends only on
the difference j − i). The polynomial method then cannot be used to argue that A is approximately
low-rank, since M itself is not low-rank.

Technique Overview: Combining the Polynomial Method and Fast Fourier Transform

Although Toeplitz matrices are typically not low-rank matrices, there is a vast literature on algo-
rithms for manipulating them using the Fast Fourier transform. (The reader may be more familiar
with this fact for circulant matrices; this same algorithm can be applied by first embedding the
Toeplitz matrix into a circulant matrix with twice the side-length.) Notably, it is not hard to notice
that applying any function entry-wise to a Toeplitz matrix results in another Toeplitz matrix, so if M
were indeed a Toeplitz matrix as described in the previous paragraph, one could use the Fast Fourier
transform to perform operations with the resulting matrix A.

However, even in the case of d = 1, the matrix M can actually be a more general type of matrix
which we call a rescaled Toeplitz matrix (because of the X matrices in Equation (1)). This is a matrix
of the form D1CD2 for diagonal matrices D1, D2 and Toeplitz matrix C. Unfortunately, applying a
function entry-wise to a rescaled Toeplitz matrix need not result in another rescaled Toeplitz matrix.

Our main algorithmic idea is a new version of the polynomial method: we prove that if M is a
rescaled Toeplitz matrix, or even a sum of a small number of rescaled Toeplitz matrices, and one
applies a function f entry-wise to M such that f has a low-degree polynomial approximation, then
the resulting matrix can be approximated by a sum of a relatively small number of rescaled Toeplitz
matrices. In our case, we use this to write the RoPE attention matrix as a sum of rescaled Toeplitz
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matrices, each of which is then manipulated using the Fast Fourier transform to yield our final
algorithm.

We believe our new approach, of applying polynomial approximations entry-wise to structured ma-
trices other than low-rank matrices, may be broadly applied in other settings as well. Although
the polynomial method has been applied in many algorithmic contexts, to our knowledge, it was
always previously used to find a low-rank approximation of the underlying matrix, and not another
structured decomposition like this.

Algorithmic techniques in practice. We emphasize that our two core techniques, the polynomial
method and Fast Fourier transform, are both prevalent in practice. The polynomial method is par-
ticularly used in numerous practical algorithms for attention (Banerjee et al., 2020; Keles et al.,
2023; Zhang et al., 2024b). For example, see detailed discussions in (Zhang et al., 2024b). Our new
algorithm improves on these approaches in part by using theoretically optimal polynomials for ex-
ponentials, and combining them with the Fast Fourier transform, to give provable guarantees about
their correctness and near linear running time. To our knowledge, the Fast Fourier transform has not
been used in this way in prior attention algorithms.

Roadmap. In Section 2, we present our related work. In Section 3, we define certain basic notations
for linear algebra. In Section 4, we commence by solving the linear case. Finally, we provide a
conclusion in Section 5.

2 RELATED WORK

Polynomial Method for Attention. (Alman & Song, 2023; 2024b) utilize polynomial kernel ap-
proximation techniques proposed by (Aggarwal & Alman, 2022) to speed up both training and
inference of a single attention layer, achieving almost linear time complexity. This method is further
applied to multi-layer transformer (Liang et al., 2024c), tensor attention (Alman & Song, 2024a;
Liang et al., 2024e), LoRA (Hu et al., 2024b), Hopfield model (Hu et al., 2023; 2024a; Wu et al.,
2024; Xu et al., 2024a), differentially private cross attention (Liang et al., 2024d), and Diffusion
Transformer (Hu et al., 2024d; Shen et al., 2025a), adapters (Hu et al., 2022; Zhang et al., 2023a;
Gao et al., 2023a; Shi et al., 2023a), calibration approaches (Zhao et al., 2021; Zhou et al., 2023),
multitask fine-tuning strategies (Gao et al., 2021a; Xu et al., 2023b; Von Oswald et al., 2023; Xu
et al., 2024c), prompt tuning techniques (Gao et al., 2021b; Lester et al., 2021), scratchpad ap-
proaches (Nye et al., 2021), instruction tuning methodologies (Li & Liang, 2021; Chung et al.,
2022; Mishra et al., 2022), symbol tuning (Wei et al., 2023), black-box tuning (Sun et al., 2022),
reinforcement learning from the human feedback (RLHF) (Ouyang et al., 2022), chain-of-thought
reasoning (Wei et al., 2022; Khattab et al., 2022; Yao et al., 2023; Zheng et al., 2024) and various
other strategies. We will also use the polynomials of (Aggarwal & Alman, 2022) here.

Fast Fourier transform. The Fast Fourier transform algorithm (Cooley & Tukey, 1965) can mul-
tiply the n by n Discrete Fourier transform matrix times an input vector in O(n log n) time. This
algorithm is impactful in many areas, including image processing, audio processing, telecommuni-
cations, seismology, and polynomial multiplication. Due to its fundamental importance, a significant
body of modern research has been dedicated to further accelerating the Fast Fourier transform. See
Appendix E for an overview of some of the vast literature.

In particular, recent work (Fein-Ashley et al., 2025) has used the FFT for computing attention faster,
showing that it can perform well compared to the hardware-accelerated matrix multiplication that is
typically used.

Other Algorithms for Computing Attention. Due to its quadratic time complexity with respect to
context length (Vaswani et al., 2017), the attention mechanism has faced criticism. To address this
issue, various approaches have been employed to reduce computational overhead and improve scala-
bility, including sparse attention (Child et al., 2019; Beltagy et al., 2020; Zaheer et al., 2020; Hubara
et al., 2021; Kurtic et al., 2023; Frantar & Alistarh, 2023; Shi et al., 2023a; Deng et al., 2023a; Li
et al., 2024c; Han et al., 2024a; Liang et al., 2024a), low-rank approximations (Razenshteyn et al.,
2016; Li et al., 2016; Hu et al., 2022; Zeng & Lee, 2024; Hu et al., 2024b), and kernel-based meth-
ods (Charikar et al., 2020; Liu & Zenke, 2020; Deng et al., 2023b; Zandieh et al., 2023; Liang et al.,
2024b).
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Additionally, linear attention has emerged as a significant fast alternative to softmax attention,
prompting substantial research in this area (Tsai et al., 2019; Katharopoulos et al., 2020a; Schlag
et al., 2021; Zhang et al., 2023b; Sun et al., 2023; Ahn et al., 2024; Shi et al., 2023b; Zhang et al.,
2024b; Deng et al., 2023c; Li et al., 2024a). Moreover, other related works examine various aspects
of attention computation, including I/O complexity (Dao et al., 2022; Dao, 2023; Li et al., 2024d),
circuit complexity (Chen et al., 2024c;a; Li et al., 2025a), differential privacy (Gao et al., 2024a;
Liang et al., 2024d), weights pruning (Frantar & Alistarh, 2023; Sun et al., 2024; Shen et al., 2025c;
Liang et al., 2025), half-space reporting (Jiang et al., 2021; Chen et al., 2024b), graph neural net-
work (Qin et al., 2023; Chang et al., 2024), regression problems (Gao et al., 2023b), and quantum
algorithms (Gao et al., 2023c; Zhao et al., 2024). A recent work (Alman & Song, 2025) has investi-
gated the significance of selecting large weights in approximating attention computation to enhance
expressiveness.

Accelerated Computation in Machine Learning. Due to the increasing scale of training data in
various applications of machine learning, including but not limited to human language (Devlin et al.,
2019), images (Awais et al., 2025), audio (Schneider et al., 2019), and social networks (Catanese
et al., 2011), accelerated computation of modern ML models has been a central concern of today’s
AI community (Venkataramani et al., 2015; Bender et al., 2021; McDonald et al., 2022). Regression
models have long been a simple yet effective solution to many ML problems, such as optimiza-
tion (Bubeck, 2015), neural network training (Brand et al., 2021; Song et al., 2024b), and signal
processing (Rabiner et al., 1978; Subrahmanya & Shin, 2009). A wide range of techniques has been
applied to accelerate regression computation, such as pre-conditioning (Yang et al., 2018; Kelner
et al., 2022; Song et al., 2024a) and sketching (Song & Yu, 2021; Reddy et al., 2022; Song et al.,
2023c).

Diffusion models have recently become a fundamental game changer in content generation, produc-
ing realistic and aesthetically desirable images (Ho et al., 2020; Song et al., 2021b;a) and videos (Ho
et al., 2022; Blattmann et al., 2023) that meet high standards. These successful stories also extend
to many non-visual applications, such as text generation (Lin et al., 2023; Sahoo et al., 2024), drug
discovery (Xu et al., 2023a; Wen et al., 2024), recommender systems (Wang et al., 2023; Yang et al.,
2023), and time series forecasting (Tashiro et al., 2021; Rasul et al., 2021). A recent work (Liu et al.,
2024a) has explored the intersection of diffusion models and socially aware recommender systems,
aiming to mitigate the social heterophily effect through diffusion-based social information enhance-
ment. Recent works have revealed that some specific types of diffusion modes can be approximated
in almost linear time with provably efficient criteria (Hu et al., 2024d;c; 2025a; Gong et al., 2025).
To accelerate the inference and training of diffusion models, enabling real-time content generation
for users and fast model updates for model owners, recent progress includes shortcut models (Dao
et al., 2024; Frans et al., 2024; Chen et al., 2025a), pre-conditioning (Garber & Tirer, 2024; Ma
et al., 2025), lazy learning (Nitzan et al., 2024; Shen et al., 2025b), and weight pruning (Ma et al.,
2024; Castells et al., 2024). Graph neural networks (GNNs) are essential tools for modeling rela-
tional data (Kipf & Welling, 2016; Wu et al., 2019; Demirel et al., 2022), powering a wide range of
applications, including traffic forecasting (Diao et al., 2019; Shao et al., 2022; Han et al., 2024b),
fake news detection (Xu et al., 2022; Chang et al., 2024), social network analysis (Fan et al., 2019;
Zhang et al., 2022b), human action recognition (Peng et al., 2020; Li et al., 2021; Fu et al., 2021),
and e-commerce (Ying et al., 2018; He et al., 2020). Recent advances in acceleration include model
quantization (Tailor et al., 2021; Liu et al., 2023), lazy learning (Narayanan et al., 2022; Xue et al.,
2024), and sketching (Ding et al., 2022; Chamberlain et al., 2023). A recent study (Zhang et al.,
2024a) accelerated GNNs using both lazy propagation and variance-reduced random sampling of
finite sums, resulting in a linear-time GNN with broad applications in e-commerce.

3 PRELIMINARIES

In Section 3.1, we define several notations. We discuss some backgrounds for fast circulant trans-
form. In Section 3.2, we provide a tool from previous work about how to control error by using
low-degree polynomial to approximate exponential function. In Section 3.3, we discuss some back-
grounds about fast circulant transform. In Section 3.4, we formalize the toeplitz matrix and introduce
the tools we will use. In Section 3.5, we define rescaled circulant matrix and provide some basic
tools for it.
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3.1 NOTATION

For nonnegative integer n, we use [n] to denote set {1, 2, · · · , n}. We say O(n log n) is nearly-linear
time. We say O(n1+o(1)) is almost linear time (We prove folklore fact for explaining the connection
between nearly-linear and almost-linear). For a vector a, we represent the diagonal matrix where
the (i, i)-th entry is ai with diag(a). We use supp to denote the support of a matrix, i.e., the set of
entries where the matrix is nonzero. For a matrix A, we use A⊤ to denote transpose of A. Given two
vectors a, b of the same length, we use a ◦ b to denote their entry-wise product, i.e., the vector where
the i-th entry is aibi. Given two matrices A,B of the same dimensions, we similarly use A ◦ B to
denote their entry-wise Hadamard product, i.e., the matrix where the (i, j)-th entry is Ai,jBi,j . For
a non-negative integer t and a matrix A, we use A◦t := A ◦A ◦ · · · ◦A︸ ︷︷ ︸

t terms

, i.e., (A◦t)i,j = At
i,j .

3.2 POLYNOMIAL APPROXIMATION OF EXPONENTIAL

To control the error dependence of our proposed approximate algorithm, we present a standard
technical lemma used in many previous works (Alman & Song, 2023; 2024a;b).
Lemma 3.1 ((Aggarwal & Alman, 2022)). Let ϵ ∈ (0, 0.1) and B > 1. There is a polynomial

P : R → R of degree g := Θ
(
max

{
log(1/ϵ)

log(log(1/ϵ)/B) , B
})

such that for all x ∈ [0, B], we have

|P (x)− exp(x)| < ϵ.

Furthermore, P can be computed efficiently: its coefficients are rational numbers with poly(g)-bit
integer numerators and denominators which can be computed in poly(g) time.

3.3 FAST CIRCULANT TRANSFORM

Circulant matrices have been widely used in applied mathematics (Meckes, 2009; Adamczak, 2010),
compressive sensing (Rauhut et al., 2012; Krahmer et al., 2014; Nelson et al., 2014) and regression
literature (Song et al., 2023b). Here we provide the formal definition.
Definition 3.2 (Circulant matrix). Let a ∈ Rn denote a length-n vector. We define Circ : Rn →
Rn×n as,

Circ(a) :=


a1 an an−1 · · · a2
a2 a1 an · · · a3
a3 a2 a1 · · · a4
...

...
...

. . .
...

an an−1 an−2 · · · a1

 .

Fact 3.3 ((Gray et al., 2006)). Let a ∈ Rn represent a length-n vector. We define Circ as Defini-
tion 3.2. Let F ∈ Cn×n be the discrete Fourier transform matrix. By leveraging the property of
discrete Fourier transform, we have

Circ(a) = F−1diag(Fa)F.

Thus, we can multiply Circ(a) with an input vector of length n in O(n log n) time using the Fast
Fourier transform algorithm.

3.4 TOEPLITZ MATRIX

The Toeplitz matrix is similar to a circulant matrix, but is defined through a vector in R2n−1. Both
matrices exhibit identical time complexity when performing a matrix-vector product.
Definition 3.4 (Toeplitz matrix). Let a := (a−(n−1), · · · , a−1, a0, a1, · · · , an−1) ∈ R2n−1 denote
a length-(2n− 1) vector. We define Toep : R2n−1 → Rn×n as

Toep(a) :=


a0 a−1 a−2 · · · a−(n−1)

a1 a0 a−1 · · · a−(n−2)

a2 a1 a0 · · · a−(n−3)

...
...

...
. . .

...
a(n−1) a(n−2) a(n−3) · · · a0

 .

In other words, Toep(a)i,j := ai−j .
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Fact 3.5 (Fact B.7 in (Liang et al., 2024a)). We define Toep as Definition 3.4, and define Circ as
Definition 3.2. Given a length-(2n−1) vector a ∈ R2n−1 (for convenience, we use ai ∈ R to denote
the entry of vector where i ∈ {−(n − 1),−(n − 2), · · · , 0, · · · , (n − 2), (n − 1)}). Let a′ ∈ R2n,
such that a′ = [a0, a1, . . . , an−1, 0, a−(n−1), . . . , a−1]

⊤. For any x ∈ Rn, we have

Circ(a′)

[
x
0n

]
=

[
Toep(a) Resi(a)
Resi(a) Toep(a)

]
·
[
x
0n

]
=

[
Toep(a)x
Resi(a)x

]
,

where the residual matrix is defined as

Resi(a) :=



0 an−1 an−2 · · · a2 a1
a−(n−1) 0 an−1 · · · a3 a2
a−(n−2) a−(n−1) 0 · · · a4 a3

...
...

...
. . .

...
...

a−2 a−3 a−4 · · · 0 an−1

a−1 a−2 a−3 · · · a−(n−1) 0

 .

Remark 3.6. Facts 3.3 and 3.5 imply that the matrix-vector product of a Toeplitz matrix can be
computed in O(n log n) time.

3.5 RESCALED TOEPLITZ MATRIX

Our algorithm will critically involve manipulating a certain kind of structured matrix we call a
rescaled Toeplitz matrix. In this section we define these matrices and prove basic properties which
we will use.
Definition 3.7 (Rescaled Toeplitz Matrix). We say a square matrix M ∈ Rn×n is rescaled Toeplitz
if there are diagonal matrices D1, D2 ∈ Rn×n and a Toeplitz matrix C ∈ Rn×n such that M =
D1CD2.
Fact 3.8. If M ∈ Rn×n is a rescaled Toeplitz matrix (see Definition 3.7), then given as input a
vector v ∈ R, one can compute the matrix-vector product Mv in O(n log n) time.

Proof. Suppose M = D1CD2, we first compute D2v straightforwardly in O(n) time. Then we
compute C · (D2v) in O(n log n) time. Finally, we compute D1 · (CD2v) in O(n) time.

Lemma 3.9. If A and B are rescaled Toeplitz matrices, then A◦B is also a rescaled Toeplitz matrix.

Proof. Suppose A = diag(a1)A2 diag(a3) where A2 is a Toeplitz matrix, and B =
diag(b1)B2 diag(b3) where B2 is a Toeplitz matrix. We can show

A ◦B = (diag(a1)A2 diag(a3)) ◦ (diag(b1)B2 diag(b3))

= diag(a1) diag(b1)((A2 diag(a3)) ◦ (B2 diag(b3)))

= diag(a1) diag(b1)(A2 ◦B2) diag(a3) diag(b3).

Therefore, we know A ◦B is also a rescaled Toeplitz matrix.

Lemma 3.10. If A1, · · · , At are rescaled Toeplitz matrices, then for any vector v, we have (A1 ◦
A2 ◦ · · · ◦At)v can be computed in O(tn log n) time.

Proof. The proof directly follows from applying Lemma 3.9 and Fact 3.8, t times.

4 HOW TO COMPUTE THE LINEAR ATTENTION UNDER ROPE

Before starting to work on RoPE softmax attention, here we consider the simpler problem of com-
puting RoPE linear attention. This linear attention does not have entry-wise exp.
Definition 4.1 (Linear Attention). Let S ⊆ [d] × [d] denote a support and |S| = O(d). Given
W−(n−1), · · ·W−1,W0,W1, · · ·Wn−1 ∈ Rd×d and for all i ∈ {−(n−1), · · · ,−1, 0, 1, · · · , n−1}.
Given Q ∈ Rn×d and K ∈ Rn×d, V ∈ Rn×d. We define matrix A ∈ Rn×n such as follows

Ai,j := (Qi,∗︸︷︷︸
1×d

Wi−j︸ ︷︷ ︸
d×d

K⊤
j,∗︸︷︷︸

d×1

),∀i ∈ [n], j ∈ [n]
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We define D := diag(A1n). The attention computation is going to output an n×d matrix D−1AV .

For this linear version, we now show how to reduce it to O(|S|) Fast Fourier transforms (FFTs),
each of which can be performed in O(n log n) time. Intuitively, our algorithm is going to write
A ∈ Rn×n in the form A =

∑
(l1,l2)∈S Bl1,l2 where each Bl1,l2 ∈ Rn×n is a rescaled Toeplitz

matrix.

Recall the support S:

Definition 4.2. Given a collection of weight matrices W−(n−1), · · ·W−1,W0,W1, · · ·Wn−1, we
use S to denote their support such that ∀i ∈ {−(n− 1), · · · , n− 1}, supp(Wi) = S.

Definition 4.3 (one-sparse matrix). For each pair (ℓ1, ℓ2) ∈ S, and i, j ∈ [n], define the matrix
W ℓ1,ℓ2

i−j ∈ Rd×d to be all 0s except that entry (ℓ1, ℓ2) is equal to (Wi−j)ℓ1,ℓ2 .

Claim 4.4. Let one sparse matrix W ℓ1,ℓ2
i−j ∈ Rd×d be defined as Definition 4.3. Then,

Wi−j =
∑

(ℓ1,ℓ2)∈S

W ℓ1,ℓ2
i−j .

Proof. We can show that

Wi−j =
∑

(ℓ1,ℓ2)∈S

eℓ1︸︷︷︸
d×1

(Wi−j)ℓ1,ℓ2︸ ︷︷ ︸
scalar

e⊤ℓ2︸︷︷︸
1×d

=
∑

(ℓ1,ℓ2)∈S

W ℓ1,ℓ2
i−j

where the second step follows from Definition 4.3.

Definition 4.5. For each pair (ℓ1, ℓ2) ∈ S, we define matrix Aℓ1,ℓ2 ∈ Rn×n as follows:

Aℓ1,ℓ2
i,j := Qi,∗︸︷︷︸

1×d

W ℓ1,ℓ2
i−j︸ ︷︷ ︸
d×d

K⊤
j,∗︸︷︷︸

d×1

,∀i ∈ [n], j ∈ [n].

We provide a claim and delay the proofs into Appendix (see Section C).

Claim 4.6. Let Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. Then, we can show A =∑
(ℓ1,ℓ2)∈S Aℓ1,ℓ2 .

Definition 4.7. Let S be defined as in Definition 4.2. For each (ℓ1, ℓ2) ∈ S, we define matrix
Cℓ1,ℓ2 ∈ Rn×n as Cℓ1,ℓ2

i,j := (Wi−j)ℓ1,ℓ2 . This matrix is Toeplitz since Cℓ1,ℓ2
i,j depends only on i− j.

We provide a claim and delay the proofs into Appendix (see Section C).

Claim 4.8. Let Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. We can show

Aℓ1,ℓ2 = diag(Q∗,ℓ1)C
ℓ1,ℓ2 diag(K∗,ℓ2).

Claim 4.9 (Running Time). Let matrix Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. For any vector
x ∈ Rn, we can compute Aℓ1,ℓ2x in O(n log n) time using FFT.

Proof. Using Claim 4.8, we can show that Aℓ1,ℓ2 is a rescaled Toeplitz matrix. Thus, for any vector
v, we can compute Aℓ1,ℓ2v in O(n log n) time.

5 CONCLUSION

In this work, we provide an almost linear time algorithm for RoPE attention. RoPE attention is used
as a more expressive variant on attention in many applications, but the usual polynomial method
approach inherently cannot work for calculating it quickly. We introduced a new way to combine
the polynomial method with our “rescaled Toeplitz matrices” and the Fast Fourier transform in order
to solve this problem more efficiently. As future work introduces more variants on attention, it will
be exciting to explore whether these and other linear algebraic tools can still be used to perform fast
computations.
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Appendix
Roadmap. In Section A, we introduce some theoretical foundations and other basic preliminaries.
In Section B, we introduce some background and present our hardness result. In Section C, we
provide missing proofs for linear case. In Section D, we explain how to handle the exp units and
present the proofs of our main result. In Section E, we provide more related work. In Section F, we
discuss the limitations of the paper. In Section G, we present the impact statement. In Section H, we
discuss LLM usage.

A PRELIMINARIES

In this Section, we introduce concepts about nearly-linear time and almost-linear time.2

Definition A.1. We say O(npoly(log n)) is nearly-linear time, and O(n1+o(1)) is almost-linear
time.

Then we introduce the relationship between O(n log n) and O(n1+o(1)).

Fact A.2. We can show that O(n poly(log n)) ≤ O(n1+o(1)).

Proof. First, observe that poly(log n) = nO(log(logn))/ logn. Since log(log n)/ log n → 0 as n →
∞, we have that log(log n)/ log n = o(1).

Therefore:

n poly(log n) = n · nO(log(logn))/ logn

= n1+O(log(logn))/ logn

= n1+o(1)

This directly shows that O(npoly(log n)) ≤ O(n1+o(1)).

B BACKGROUND ON HARDNESS AND COMPLEXITY

In Section B.1, we introduce some background and the low bound existence. In Section B.2, we
present our hardness result.

B.1 LOW BOUND EXISTENCE

In computational complexity theory, algorithmic hardness refers to the inherent difficulty of solv-
ing computational problems, measured by the resources (such as time and space) required for their
resolution. As established in Garey and Johnson’s foundational work ”Computers and Intractabil-
ity” (Garey & Johnson, 1990), understanding this hardness helps researchers and practitioners de-
termine whether efficient solutions exist for given problems. Particularly significant in this context,
lower bounds serve as a critical theoretical tool for establishing the minimum resources required
to solve specific computational problems. This naturally leads us to examine how lower bounds
play a fundamental role in computational complexity theory, establishing fundamental limits on
the resources required to solve computational problems. As discussed in ”Introduction to the The-
ory of Computation” (Sipser, 2006) (Chapter 9) and ”Computational Complexity: A Modern Ap-
proach” (Arora & Barak, 2009) (Chapter 3), proving lower bounds helps us understand the inherent
difficulty of problems and provides insights into computational hierarchies.
Fact B.1 (Lower Bound Existence, (Sipser, 2006; Moore & Mertens, 2011)). If the following holds:

• A is the set of all possible algorithms

• Resources(A) denotes the resource usage of algorithm A

2We include this discussion into the paper due to the request from ICLR 2025 reviewer https://
openreview.net/forum?id=AozPzKE0oc.
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• Succeeds(A,P ) indicates that algorithm A correctly solves problem P

• LBC represents the lower bound for class C

• f(n) is a function of the input size n

For proving computational complexity lower bounds, we can establish the following:
Let C be a class of computational problems. To prove that all algorithms solving problems in C
require at least f(n) resources (time or space), it is sufficient to demonstrate that there exists a
single problem instance P ∈ C for which no algorithm using less than f(n) resources can correctly
solve P .

Formally:

∀C∃P ∈ C : [∀A ∈ A,Resources(A) < f(n) =⇒ ¬Succeeds(A,P )] =⇒ LBC ≥ f(n)

B.2 HARDNESS

In this section, we show The Strong Exponential Time Hypothesis. Over 20 years ago, Impagli-
azzo and Paturi (Impagliazzo & Paturi, 2001) introduced The Strong Exponential Time Hypothesis
(SETH). It is a stronger version of the P ̸= NP conjecture, which asserts that our current best SAT
algorithms are roughly optimal:
Hypothesis B.2 (Strong Exponential Time Hypothesis (SETH)). For every ϵ > 0 there is a positive
integer k ≥ 3 such that k-SAT on formulas with n variables cannot be solved in O(2(1−ϵ)n) time,
even by a randomized algorithm.

SETH is a popular conjecture which has been used to prove fine-grained lower bounds for a wide
variety algorithmic problems, as discussed in depth in the survey (Williams, 2018).
Theorem B.3 (Restatement of Theorem 1.4). Assuming SETH, for every q > 0, there are constants
C,Ca, Cb > 0 such that: there is no O(n2−q) time algorithm for the problem ARAttC(n, d =
C log n,B = Cb

√
log n, ϵ = n−Ca).

Proof. We will pick all of the W−(n−1), · · · ,W(n−1) ∈ Rd×d to be an identity Id matrix. Thus the
RoPE attention becomes classical attention. Thus using (Alman & Song, 2023), our lower bound
result follows.

C MISSING PROOFS FOR LINEAR CASE

Claim C.1 (Restatement of Claim 4.6). Let Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. Then, we
can show

A =
∑

(ℓ1,ℓ2)∈S

Aℓ1,ℓ2 .

Proof. For each i ∈ [n], j ∈ [n], we compute each (i, j)-th entry of matrix A ∈ Rn×n as

Ai,j = Qi,∗Wi−jK
⊤
j,∗

= Qi,∗
∑

(ℓ1,ℓ2)∈S

W ℓ1,ℓ2
i−j K⊤

j,∗

=
∑

(ℓ1,ℓ2)∈S

Qi,∗W
ℓ1,ℓ2
i−j K⊤

j,∗

=
∑

(ℓ1,ℓ2)∈S

Aℓ1,ℓ2
i,j

where the second step follows from Claim 4.4, the third step follows from rearranging the summa-
tion, and the last step follows from the definition of Aℓ1,ℓ2

i,j .

Thus, we complete the proof.
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Claim C.2 (Restatement of Claim 4.8). Let Aℓ1,ℓ2 ∈ Rn×n be defined as Definition 4.5. We can
show

Aℓ1,ℓ2 = diag(Q∗,ℓ1)C
ℓ1,ℓ2 diag(K∗,ℓ2).

Proof. We can rewrite Aℓ1,ℓ2
i,j as follows

Aℓ1,ℓ2
i,j = Qi,∗W

ℓ1,ℓ2
f(i−j)K

⊤
j,∗

= Qi,∗eℓ1(Wf(i−j))ℓ1,ℓ2e
⊤
ℓ2K

⊤
j,∗

= Qi,ℓ1(Wf(i−j))ℓ1,ℓ2Kj,ℓ2

We define Cℓ1,ℓ2
i,j = (Wf(i−j))ℓ1,ℓ2 , then the above equation becomes

Aℓ1,ℓ2
i,j = Qi,ℓ1C

ℓ1,ℓ2
i,j Kj,ℓ2

Thus we can have
Aℓ1,ℓ2 = diag(Q∗,ℓ1)C

ℓ1,ℓ2 diag(K∗,ℓ2)

Therefore, we complete the proof.

D HOW TO HANDLE THE EXP TERMS

We now give our full algorithm for general RoPE attention. In Section D.1, we study matrices
which are the entry-wise products of a number of rescaled Toeplitz matrix, and how to use that
decomposition to quickly multiply such matrices with a vector. In Section D.2, we show how to
decompose the RoPE attention matrix into summation of a number of such structured matrices using
the polynomial method. In Section D.3, we show how to put everything together to get our main
result.

D.1 THE RUNNING TIME OF HAMADARD PRODUCT OF RESCALED TOEPLITZ MATRIX
MULTIPLYING A VECTOR

Lemma D.1. Let m : [d]× [d] → N be any function3. Define the matrix A(m) ∈ Rn×n by

A
(m)
i,j :=

∏
(ℓ1,ℓ2)∈S

(Aℓ1,ℓ2
i,j )m(ℓ1,ℓ2),∀i ∈ [n], j ∈ [n].

Then A(m) is also of the form of a rescaled Toeplitz matrix (see Definition 3.7). Furthermore, for
any vector v ∈ Rn, A(m)v can be computed in O((

∑
(ℓ1,ℓ2)∈S m(ℓ1, ℓ2)) · n log n) time.4

Proof. We define set S to be
{(ℓ1,1, ℓ2,1), (ℓ1,2, ℓ2,2), · · · , (ℓ1,|S|, ℓ2,|S|)} ⊂ [d]× [d]

We define ti ∈ N for each i ∈ [|S|] as follows
ti := m(ℓ1,i, ℓ2,i).

From the definition of A(m)
i,j ∈ R, we know that A(m) ∈ Rn×n can be written as the entry-wise

product of a collection of matrices (where each matrix is a rescaled Toeplitz matrix), i.e.,

A(m) = (Aℓ1,1,ℓ2,1)◦t1 ◦ · · · ◦ (Aℓ1,|S|,ℓ2,|S|)◦t|S|

Using Lemma 3.9, we know the entry-wise product between any two rescaled Toeplitz matrix is still
a rescaled Toeplitz matrix. Thus, applying Lemma 3.9 to the above equations for

∑|S|
i=1 ti times, we

can show that A(m) is still a rescaled Toeplitz matrix.

Using Lemma 3.10, we know that for any vector v, A(m)v can be computed in O((
∑|S|

i=1 ti)·n log n)
time.

3Here intuitively, m represents the exponents of variables in a monomial of a polynomial.
4Later, we will show that

∑
(ℓ1,ℓ2)∈S m(ℓ1, ℓ2) = no(1) for the function m we used in this paper.
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D.2 EXPANDING POLYNOMIALS INTO SUMMATION OF SEVERAL RESCALED TOEPLITZ
MATRICES

Lemma D.2. Let M1, . . . ,Mk ∈ Rn×n be rescaled Toeplitz matrices. Let p : R → R be a
polynomial of degree d̃. Let m ∈ M be the set of functions m : [k] → N such that

∑k
ℓ=1 m(ℓ) ≤ d̃.

Consider the matrix M ∈ Rn×n defined by Mi,j := p(
∑k

ℓ=1 M
ℓ
i,j). Then M ∈ Rn×n can be

written as the following sum of rescaled Toeplitz matrices:

M =
∑

m∈M
αm ·N (m)

Here N (m) ∈ Rn×n is defined as N
(m)
i,j = (M ℓ

i,j)
m(ℓ) for all i ∈ [n], j ∈ [n] and αm ∈ R is

coefficient. Furthermore, the number of rescaled Toeplitz matrices is |M| = O(
(
d̃+k
k

)
).

Proof. Recall M is the set of functions m : [k] → N such that
∑k

ℓ=1 m(ℓ) ≤ d̃. Then, for each
m ∈ M there is a coefficient αm ∈ R such that we can rewrite polynomial p as follows:

p(z1 + · · ·+ zk) =
∑

m∈M
αm ·

k∏
ℓ=1

z
m(ℓ)
ℓ . (2)

Thus,

Mi,j = p(

k∑
ℓ=1

M ℓ
i,j)

=
∑

m∈M
αm ·

k∏
ℓ=1

(M ℓ
i,j)

m(ℓ)

=
∑

m∈M
αm ·N (m)

where the first step follows from definition of M , the second step follows from Eq. (2), and the last
step follows from definition of N (m). Thus, we can see M =

∑
m∈M αm ·N (m).

D.3 MAIN RESULT

Finally, we are ready to put all our techniques together.
Theorem D.3 (Restatement of Theorem 1.3). Suppose d = O(log n) and B = o(

√
log n). There is

an n1+o(1) time algorithm to approximate ARAttC up to ϵ = 1/ poly(n) additive error.

Proof. We use the polynomial of Lemma 3.1 in Lemma D.2 with choice of k = |S| = O(d) =

O(log n) and d̃ = o(log n) is the degree of the polynomial from Lemma 3.1 for error 1/ poly(n).
We can thus upper bound

|M| = O(

(
k + d̃

d̃

)
) = no(1).

The total running time consists of three parts: first, approximating A1n which gives an approxima-
tion to diagonal matrix D; second, approximating Av for d different columns vectors v, this will
approximate AV ; third, combining approximation of D−1 with approximation of AV , to obtain
an approximation of D−1AV . Combining Lemma D.1 and D.2. The dominating running time for
above three parts is

|M| ·
∑

(ℓ1,ℓ2)∈S

m(ℓ1, ℓ2) · n log n = O(n1+o(1))

Due to the choice of |M| = no(1), |S| = O(d), d = O(log n).

The error analysis remains identical to prior attention algorithms using the polynomial method (Al-
man & Song, 2023), thus we omit the details here.
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E MORE RELATED WORK

Fast Fourier transform. The Fast Fourier transform algorithm (Cooley & Tukey, 1965) can mul-
tiply the n by n Discrete Fourier transform matrix times an input vector in O(n log n) time. This
algorithm is impactful in many areas, including image processing, audio processing, telecommuni-
cations, seismology, and polynomial multiplication. Due to its fundamental importance, a significant
body of modern research has been dedicated to further accelerating the Fast Fourier transform. These
efforts include decreasing the number of required arithmetic operations (Sergeev, 2017; Alman &
Rao, 2023), reducing the sample complexity in the sparse setting (Candes & Tao, 2006; Rudelson &
Vershynin, 2008; Blumensath & Davies, 2010; Needell & Vershynin, 2010; Bourgain, 2014; Haviv
& Regev, 2017; Nakos et al., 2019), and improving the running time in the sparse setting (Gilbert
et al., 2012; Hassanieh et al., 2012a;b; Indyk & Kapralov, 2014; Indyk et al., 2014; Price & Song,
2015; Moitra, 2015; Kapralov, 2016; 2017; Chen & Price, 2019b;a; Kapralov et al., 2019; Jin et al.,
2023; Song et al., 2023a; Li et al., 2025b). Some recent studies (Yu et al., 2023; Ahmad et al.,
2023; Gao et al., 2024b; Li et al., 2024b) have explored leveraging machine learning techniques to
optimize FFT performance in practical scenarios. Other works have investigated hardware-specific
optimizations to further enhance computational efficiency, particularly in large-scale applications.

F LIMITATIONS

This work presents an almost linear-time algorithm for RoPE attention, supported by theoretical
analysis. However, we do not include any empirical evaluations to validate the practical performance
of the proposed method.

G IMPACT STATEMENT

This work introduces the first almost linear-time algorithm for RoPE attention, providing a novel
solution and new insights into the computational bottlenecks of RoPE-based attention mechanisms.
It has the potential to accelerate future large language model (LLM) training and evaluation. As this
is a purely theoretical contribution, we do not foresee any negative social impacts.

H LLM USAGE DISCLOSURE

LLMs were used only to polish language, such as grammar and wording. These models did not
contribute to idea creation or writing, and the authors take full responsibility for this paper’s content.
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