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Abstract
As an important and challenging problem in com-
puter vision, PAnoramic Semantic Segmentation
(PASS) gives complete scene perception based on
an ultra-wide angle of view. Usually, prevalent
PASS methods with 2D panoramic image input
focus on solving image distortions but lack con-
sideration of the 3D properties of original 360◦

data. Therefore, their performance will drop a
lot when inputting panoramic images with the
3D disturbance. To be more robust to 3D dis-
turbance, we propose our Spherical Geometry-
Aware Transformer for PAnoramic Semantic Seg-
mentation (SGAT4PASS), considering 3D spher-
ical geometry knowledge. Specifically, a spher-
ical geometry-aware framework is proposed for
PASS. It includes three modules, i.e., spherical
geometry-aware image projection, spherical de-
formable patch embedding, and a panorama-aware
loss, which takes input images with 3D distur-
bance into account, adds a spherical geometry-
aware constraint on the existing deformable patch
embedding, and indicates the pixel density of orig-
inal 360◦ data, respectively. Experimental results
on Stanford2D3D Panoramic datasets show that
SGAT4PASS significantly improves performance
and robustness, with approximately a 2% increase
in mIoU, and when small 3D disturbances occur
in the data, the stability of our performance is
improved by an order of magnitude. Our code
and supplementary material are available at https:
//github.com/TencentARC/SGAT4PASS.

1 Introduction
There has been a growing trend of practical applications
based on 360◦ cameras in recent years, including holis-
tic sensing in autonomous vehicles [de La Garanderie et
al., 2018; Ma et al., 2021; Gao et al., 2022; Summaira

∗The first two authors contributed equally to this paper.
†Corresponding author.
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(c) 5◦ roll rotation image
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Figure 1: The results with 3D disturbance input. (a) is the original
image, and (b) / (c) is the images rotated 5◦ in pitch / roll axis.
Our baseline is Trans4PASS+. Compared with the minor change in
images, the huge variance / performance change in SGA validation
is shown in (d) / (e) and (f). “Mean” and “Variance” are defined in
detail in Section 4.1.

et al., 2021; Li et al., 2011; Chen et al., 2014; Jiang et
al., 2019b], immersive viewing in augmented reality and
virtual reality devices [Xu et al., 2018; Xu et al., 2021;
Ai et al., 2022], etc. Panoramic images with an ultra-wide
angle of view deliver complete scene perception in many real-
world scenarios, thus drawing increasing attention in the re-
search community in computer vision. Panoramic semantic
segmentation (PASS) is essential for omnidirectional scene
understanding, as it gives pixel-wise analysis for panoramic
images and offers a dense prediction technical route acquiring
360◦ perception of surrounding scenes [Yang et al., 2021a].

Most existing PASS approaches use equirectangular pro-
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jection (ERP) [Sun et al., 2021; Yang et al., 2021b] to con-
vert original 360◦ data to 2D panoramic images. However,
these methods often suffer from two main problems: large
image distortions and lack of Spherical Geometry-Aware
(SGA) robustness that resists 3D disturbance. These prob-
lems lead neural networks to only learn suboptimal solutions
for panoramic segmentation [Yang et al., 2019; Wang et al.,
2021a]. Although some recent works [Zhang et al., 2022a;
Zhang et al., 2022b] take serious distortions into account in
their models and become the current state-of-the-art (SOTA),
they still do not pay enough attention to the SGA properties
of the original 360◦ data, resulting in performance degra-
dation even with small projection disturbance. As shown
in Figure 1b and Figure 1c, applying 5◦ rotation on the
pitch or roll axis of original 360◦ data carries only mi-
nor changes in 2D panoramic images. However, as shown
in Figure 1e, Figure 1f, and Figure 1d, the performances of
Trans4PASS+ [Zhang et al., 2022b] (the blue lines) drop a
lot (about 4%), and the variance increases by almost 2 or-
ders of magnitude, because the axis rotations lead to different
spherical geometry relations between pixels in the projected
panoramic images, which the existing methods fail to adapt.
Besides disturbance, the ERP also introduces boundaries to
panoramic images that the original 360◦ data do not have.
Some adjacent pixels are disconnected and some objects are
separated, which is a severe issue, especially for semantic
segmentation. Furthermore, there also exists a difference in
pixel sampling density between the original 360◦ data and its
corresponding projection image, e.g., pixels are over sampled
in the antarctic and arctic areas of 2D panoramic images. All
these issues make panoramic semantic segmentation a chal-
lenging task, and the above characteristics should be well
studied to design a robust model that adapts to disturbance,
disconnection, uneven density, and other SGA properties.

Improving robustness and taking SGA properties into ac-
count, we propose a novel model, i.e., Spherical Geometry-
Aware Transformer for PAnoramic Semantic Segmentation
(SGAT4PASS), equipped with the SGA framework and SGA
validation. The proposed SGA framework includes SGA im-
age projection in the training process, Spherical Deformable
Patch Embedding (SDPE), and a panorama-aware loss. SGA
image projection provides images with 3D disturbance to im-
prove the 3D robustness of the model. SDPE improves the
patch embedding and makes it consider not only the image
distortions with deformable operation but also spherical ge-
ometry with SGA intra- and inter-offset constraints. The
panorama-aware loss deals with the difference in pixel den-
sity between the original 360◦ data and its corresponding 2D
panoramic images. Moreover, we propose a new validation
method, i.e., SGA validation, to evaluate the 3D robustness
of various models comprehensively, which considers differ-
ent 3D disturbances for input images, and measures the aver-
age performance and the variance for comparisons. Extensive
experimental results on popular Stanford2D3D panoramic
datasets [Armeni et al., 2017] demonstrate that our proposed
approach achieves about 2% and 6% improvements on tradi-
tional metrics and SGA metrics, respectively.

The contributions of this paper are summarized as follows:
• We propose SGAT4PASS, a robustness model for the

PASS task, which utilizes SGA image projection to deal
with the 3D disturbance issue caused by ERP.

• We introduce SDPE to combine spherical geometry with
deformable operation to better deal with panoramic im-
age distortion. And we also propose panorama-aware
loss to ease the oversampling problem.

• We evaluate SGAT4PASS on the popular benchmark
and perform extensive experiments with both traditional
metrics and proposed SGA metrics, which demonstrate
the effectiveness of each part of the framework.

2 Related Work
The two most related fields are panoramic semantic segmen-
tation and dynamic and deformable vision transformers.

2.1 Panoramic Semantic Segmentation
Semantic segmentation of panoramic images has many ap-
plications in real-world scenarios, such as autonomous driv-
ing [Ye et al., 2021], panoramic lenses safety and monitoring
applications [Poulin-Girard and Thibault, 2012], etc. With
the development of deep learning, many neural networks have
been developed for panoramic semantic segmentation. Deng
et al. [Deng et al., 2017] first proposed a semantic segmen-
tation framework for wide-angle (fish-eye) images and trans-
formed an existing pinhole urban scene segmentation dataset
into synthetic datasets. Yang et al. [Yang et al., 2019] de-
signed a semantic segmentation framework for panoramic an-
nular images using a panoramic annular camera with an entire
Field of View (FoV) for panoramic surrounding perception
based on a single camera. Furthermore, Yang et al. [Yang et
al., 2020] proposed DS-PASS to improve it with a more effi-
cient segmentation model with attention connections. PASS
solutions can be divided into two main fields: distortion-
aware strategies and 2D-geometry-aware ones.

For distortion-aware strategies, Tateno et al. [Tateno et
al., 2018] proposed using specially designed distortion-aware
convolutions in a fixed manner to address image distortions.
Furthermore, ACDNet [Zhuang et al., 2022] combined con-
volution kernels with different dilation rates adaptively and
used fusion-driven methods to take advantage of several pro-
jections. Jiang et al. [Jiang et al., 2019a] designed a spher-
ical convolution operation. Lee et al. [Lee et al., 2018]
used spherical polyhedrons to represent panoramic views
to minimize the difference in spatial resolution of the sur-
face of the sphere and proposed new convolution and group-
ing methods for the representation of spherical polyhedrons.
Hu et al. [Hu et al., 2022] designed and proposed a distor-
tion convolutional module based on the image principle to
solve the distortion problem caused by the distortion of the
panoramic image. Zhang et al. [Zhang et al., 2022a] [Zhang
et al., 2022b] designed their Trans4PASS and Trans4PASS+
that perceived spherical distortion and solved the distortion
problem of spherical images better through their Deformable
Patch Embedding (DPE) and Deformable Multi-Layer Per-
ception (DMLP) modules. Also, Trans4PASS+ is the cur-
rent SOTA panoramic semantic segmentation model and is
our baseline. For 2D geometry-aware strategies, horizontal
features are mainly used based on the ERP inherent property.



Figure 2: Overall review of SGAT4PASS. We borrow the network from Trans4PASS+, and add three main modules: Spherical geometry-
aware (SGA) image projection, SDPE, and panorama-aware loss. (Lower left) SGA image projection rotates the input panoramic images to
mimic 3D disturbance. (Lower middle) SDPE adds several SGA constraints on deformable patch embedding and let it consider both image
distortions and spherical geometry. (Lower right) Panorama-aware loss (PA loss) takes into account the pixel density of a sphere.

Sun et al. [Sun et al., 2021] proposed HoHoNet and Pintore
et al. [Pintore et al., 2021] proposed SliceNet to use the ex-
tracted feature maps in a 1D horizontal representation.

For our SGAT4PASS based on the distortion-aware SOTA
model, Trans4PASS+, we add SGA information from the
original 360◦ data instead of the 2D geometry prior to
panoramic images to improve not only its performance but
also its robustness when meeting 3D disturbance.

2.2 Dynamic and Deformable Vision Transformers
Regarding the field of vision transformers, some works have
developed architectures with dynamic properties. Chen et
al. [Chen et al., 2021] and Xia et al. [Xia et al., 2022] used
deformable designs in later stages of the encoder. Yue et
al. [Yue et al., 2021] used a progressive sampling strategy to
locate discriminatory regions. Deformable DETR [Zhu et al.,
2020] used deformable attention to deal with feature maps.
Some other works used adaptive optimization of the num-
ber of informative tokens to improve efficiency [Wang et al.,
2021b] [Rao et al., 2021] [Yin et al., 2022] [Xu et al., 2022].
Zhang et al. [Zhang et al., 2022a] [Zhang et al., 2022b] de-
signed their Trans4PASS and Trans4PASS+ based on DPE
and Deformable Multi-Layer Perception (DMLP) modules,
and we use Trans4PASS+ as our baseline.

3 Method
We present Spherical Geometry-Aware Transformer for
PAnoramic Semantic Segmentation (SGAT4PASS) in this
section. First, we introduce the background of panoramic
semantic segmentation in Section 3.1. Second, we describe
our main idea to apply different SGA properties in panoramic

semantic segmentation in Section 3.2. To improve the 3D
robustness of SGAT4PASS, we propose SGA Image Projec-
tion, Spherical Deformable Patch Embedding (SDPE), and
panorama-aware loss. Specifically, SGA Image Projection
adds rotated samples in training; SDPE adds SGA constraints
on the deformable patch embedding; and the panorama-aware
loss fuses sphere pixel density to training process.

3.1 Background
We first describe a general formulation of PASS and then in-
troduce the spherical geometry property that we focus mainly
on. Panoramic images are based on original 360◦ data formu-
lated in the spherical coordinate system (based on longitude
and latitude). To convert it to a rectangular image in a Carte-
sian coordinate system, ERP is a widely used projection in
this field: x = (θ− θ0)cosϕ1, y = (ϕ−ϕ1), where θ0 = 0 is
the central latitude and ϕ1 = 0 is the central longitude. The
ERP-processed rectangular images are used as the input sam-
ple in datasets and fed to the neural network, and the rectan-
gular semantic segmentation results are obtained to compare
with the ground truth and calculate the metrics. Although
traditional methods can treat PASS as the conventional 2D
semantic segmentation task and deal with panoramic images
easily, the spherical geometry property is partly ignored.

3.2 Spherical Geometry-Aware (SGA) Framework
We propose the SGA framework for PASS with SGA image
projection, SDPE, and panorama-aware loss. To deal with the
inevitable 3D disturbance during the acquisition of the input
image, our SGA image projection aims to encode the origi-
nal 360◦ data spherical geometry by generating input images
with different rotations. We design SDPE to model spatial



Method Avg mIoU F1 mIoU

StdConv [Tateno et al., 2018] - 32.6
CubeMap [Tateno et al., 2018] - 33.8
DistConv [Tateno et al., 2018] - 34.6
SWSCNN [Esteves et al., 2020] 43.4 -
Tangent (ResNet-101) [Eder et al., 2020] 45.6 -
FreDSNet [Berenguel-Baeta et al., 2022] - 46.1
PanoFormer [Shen et al., 2022] 48.9 -
HoHoNet (ResNet-101) [Sun et al., 2021] 52.0 53.9
Trans4PASS (Small) [Zhang et al., 2022a] 52.1 53.3
CBFC [Zheng et al., 2023] 52.2 -
Trans4PASS+ (Small) [Zhang et al., 2022b] 53.7 53.6
Ours (Small) 55.3 56.4

Table 1: Comparison with the SOTA methods on Stanford2D3D
Panoramic datasets. We follow recent works to compare the per-
formance of both official fold 1 and the average performance of all
three official folds. respectively. “Avg mIoU” / “F1 mIoU” means
the mIoU performance of three official folds on average / official
fold 1. A considerable improvement is gained.

dependencies on a sphere, making patch embedding consider
both spherical geometry and image distortions. Furthermore,
a panorama-aware loss is proposed to model the pixel density
of a sphere, making the loss weight distribution more simi-
lar to the original 360◦ data. With these three modules, the
spherical geometry is well employed in the PASS task.

Spherical Geometry-Aware (SGA) Image Projection
The original 360◦ data follow a spherical distribution and are
spherically symmetric. After rotating any angle along the yaw
/ pitch / roll axis, the transformed data are still equivalent to
the original data. Traditional strategies assume that the im-
ages are taken with the yaw / pitch / roll angle equal to zero
degrees, which is too ideal in real-world scenarios and ignores
the camera disturbance and random noise. When the rotation
angle is disturbed, traditional strategies usually have a large
degradation in the PASS task. SGA image projection fuses
this property between the inevitable equirectangular projec-
tion and regular image augmentation to make models robust
to 3D disturbance.

We use T to represent the forward process of ERP trans-
formation, which is the process of converting spherical co-
ordinates to plane coordinates, and use T−1 to represent the
inverse process of ERP that transforms the plane back onto
the sphere. Given an ERP-processed input panoramic image,
we first transform the image I originally in plane coordinates
to spherical coordinates through the inverse ERP process. Af-
ter that, we use the rotation matrix in the three-dimensional
(3D) space to perform a 3D rotation in the spherical coordi-
nate system. For a general rotation in a 3D space, the angles
of yaw, pitch, and roll are αuse, βuse, and γuse, respectively.
The corresponding rotation matrix is R(αuse, βuse, γuse). We
multiply R by the data in the spherical coordinate system to
obtain the rotated data in the spherical coordinate system.
Finally, we use the ERP forward process to convert the ro-
tated spherical coordinate system image into a panoramic im-
age, thus obtaining a certain rotated image of the real in-
put of the network. The corresponding point in input im-
age of a pixel in rotated image may not have integer coor-
dinates, and we select the nearest pixel as its corresponding
pixel to be generic to the ground truth transformation. Based

on these operations, we build our SGA image projection,
O3D(I, αuse, βuse, γuse) = T (R(αuse, βuse, γuse) · T−1(I)).
(See Section C “Details for SGA Image Projection” in the
supplementary material for details.) At the beginning of the
training process, we set the maximum rotation angle of the
yaw / pitch / roll axis at (αtrain, βtrain, γtrain).

SDPE: Spherical Deformable Patch Embedding
We first introduce DPE, and then fuse spherical geometry into
DPE by SGA constraints to earn SDPE.

Faced with image distortions in panoramic images, DPE,
considering different distortions in different regions of an in-
put panoramic image, is a popular solution [Zhang et al.,
2022a] [Zhang et al., 2022b]. In detail, given a 2D input
panoramic image, the standard patch embedding handles it
into flattened patches H×W , and the resolution of each patch
is (s, s). A learnable projection layer transforms each patch
into out-dimensional embeddings. For each patch, the offsets
∆DPE

(i,j) of the ith row jth column pixel are defined as:

∆DPE
(i,j) =

[
min(max(-kD ·H, g(f)(i,j)), kD ·H)
min(max(-kD ·W, g(f)(i,j)), kD ·W )

]
, (1)

where g(·) is the offset prediction function. Hyperparameter
kD puts an upper bound on the learnable offsets ∆DPE

(i,j) . For
implementation, the deformable convolution operation [Dai
et al., 2017] is popularly employed to realize DPE.

When fusing spherical geometry into DPE, human photo-
graphic and ERP priors are taken into consideration, in which
the plane formed by pitch and roll axes is always parallel to
the ground plane and the projection cylinder is perpendicu-
lar to the ground plane. As a result, we add SGA constraints
mainly on the yaw axis. In detail, we give intra-offset and
inter-offset constraints on ∆DPE

(i,j) . For convenience, we use
∆m,n

(i,j) to represent the ith row jth column pixel of the learn-
able offset for the mth row nth column patch.

Intra-offset constraint. Based on the phenomenon that the
original 360◦ data are symmetric on any longitude and the
projection cylinder in ERP is symmetric in any line perpen-
dicular to the base of the cylinder, the offset of any pixel in 2D
input panoramic image I should be symmetric on its perpen-
dicular. To be generic to the learnable offsets ∆m,n

(i,j) dealing
with the image distortions, we use a constraint Lintra:

Lintra =
∑

m,n

∑

i,j

Lintra
2 (∆m,n

(i,j),∆S
m,n
(i,j)), (2)

where ∆S
m,n
(i,j) is the single patch offset that is formed sym-

metrically along the yaw axis with ∆m,n
(i,j) as the template.

Lintra
2 (·, ·) represents the element-wise L2 loss.

Inter-offset constraint. Based on the phenomenon that the
projection cylinder in ERP can be slit and expanded from any
line perpendicular to the base of the cylinder, the offset of
any pixel in 2D input panoramic image I corresponding to
the same latitude of the original 360◦ data should be simi-
lar. To be generic to the learnable ∆DPE

(i,j) dealing with the
image distortions, we use a constraint, Linter, to model this



(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc

(0,0,0)
53.617 / 81.483

(0,5,0)
49.292 / 78.346

(5,0,0)
49.468 / 78.500

(5,5,0)
47.234 / 77.129

56.374 / 83.135 56.073 / 82.892 56.074 / 82.905 55.784 / 82.794

(0,0,90)
53.918 / 81.590

(0,5,90)
49.861 / 78.656

(5,0,90)
49.400 / 78.373

(5,5,90)
47.589 / 77.361

56.441 / 83.130 55.954 / 82.847 56.128 / 82.895 55.636 / 82.657

(0,0,180)
53.587 / 81.476

(0,5,180)
49.344 / 78.532

(5,0,180)
49.536 / 78.585

(5,5,180)
47.458 / 77.307

56.246 / 83.054 55.951 / 82.906 55.714 / 82.796 55.501 / 82.750

(0,0,270)
53.669 / 81.459

(0,5,270)
49.462 / 78.445

(5,0,270)
49.363 / 78.485

(5,5,270)
47.726 / 77.451

56.223 / 83.051 55.924 / 82.779 55.983 / 82.904 55.732 / 82.701

Table 2: Detail performance comparison with Tran4PASS+ on Stanford2D3D Panoramic datasets official fold 1 with SGA metrics. All 18
situations are shown, and the analysis is in table 3. “BL” means the baseline, i.e., Tran4PASS+. “PAcc” meas the pixel accuracy metric.

Statistics
Baseline Ours

mIoU PAcc mIoU PAcc

Mean 50.033 78.949 55.984 (+5.951) 82.887 (+3.938)

Variance 5.147 2.413 0.066 (-5.081) 0.020 (-2.393)

Range 6.684 4.461 0.940 (-5.744) 0.478 (-3.983)

Table 3: Overall performance comparison with Tran4PASS+ on
Stanford2D3D Panoramic datasets in table 2 setting. “PAcc” means
the pixel accuracy metric. SGAT4PASS earns considerable mean
performance and significant robustness improvement.

property. For a certain pixel, we use the average offset in the
whole horizontal line as its constraint:

Linter =
∑

m,n

∑

i,j

Linter
2 (∆m,n

(i,j),∆
m,AVG
(i,j) ), (3)

where ∆m,AVG
(i,j) is the average of each component in

{∆m,n
(i,j), n ∈ W}, and Linter

2 (·, ·) represents the L2 loss for
each component length of the two vectors. Then the total
SDPE loss is: LSDPE = Linter + Lintra.

Panorama-Aware Loss
Because the panoramic images are rectangular in shape, the
region of the antarctic and arctic areas in the original 360◦
data is over sampled than the one near the equator. How-
ever, due to human photographic priors, the semantics of
the antarctic (ground, floor, etc.) and arctic areas (sky, ceil-
ing, etc.) are relatively simple, as seen in the sample im-
ages of Figure 1 and Figure 2. When using traditional seg-
mentation loss for supervised training, we treat each pixel
equally, which leads to models paying relatively less atten-
tion to semantic rich regions near the equator. To deal with
this phenomenon, we design our panorama-aware loss. For
an ERP-processed panoramic image, the number of pixels in
each horizontal line is the same, but the corresponding reso-
lution density on the original sphere of each horizontal line is
very different. For this reason, we design a loss to reweight
the loss proportion of different horizontal lines depending on
its height. For a pixel (m,n)|m ∈ [1, HI ], n ∈ [1,WI ] (WI

SGAIP SDPE PA mIoU Pixel accuracy

53.617 81.483

✓ 54.637 82.303

✓ 54.554 81.508

✓ 54.833 81.733

✓ ✓ ✓ 56.374 83.135

Table 4: Effect of each SGAT4PASS module. We validate them
on Stanford2D3D Panoramic datasets official fold 1 with traditional
metrics. “SGAIP” / “SDPE” / “PA” means our SGA image projec-
tion / spherical deformable patch embedding / panorama-aware loss.
Using anyone, an average improvement of 1.058% mIoU / 0.365%
pixel accuracy is gained when using three gains 2.757% / 1.652%.

and HI are the width and height of the input image), we give
a weight w(m,n)

pan when calculating its per pixel loss:

w(m,n)
pan = cos(

|2m−HI |
HI

· π
2
). (4)

We use Wpan to represent the set that includes all w(m,n)
pan .

When faced with a panoramic semantic segmentation prob-
lem, we first estimate the usage scenario to determine β and
γ used in SGA image projection when α is often set as 360◦
in common condition. We set our total loss as:

Lall = (1 + λw ·Wpan)⊙ LSEG + λs · LSDPE , (5)

where LSEG is the common per pixel loss for semantic seg-
mentation, ⊙ is the element-wise matrix multiplication, λw

and λs are hyperparameters.

4 Experiments
In this section, we evaluate our SGAT4PASS against the pop-
ular benchmark, Stanford2D3D, for both traditional metrics
and our SGA validation.



(a) Original picture (b) Label (c) Baseline results (d) Our results

(e) Rotated original picture (f) Rotated label (g) Baseline rotated results (h) Our rotated results

Figure 3: Visualization comparison of SGAT4PASS and Trans4PASS+. The rotation of the pitch / roll / yaw axis is 5◦ / 5◦ / 180◦.
SGAT4PASS gains the better results of semantic class “door” and “sofa” (highlighted by red dotted line boxes).

Statistics
Baseline Ours

mIoU Pixel accuracy mIoU Pixel accuracy

(β, γ, α) = (1◦, 1◦, 360◦)

Mean 53.473 81.251 56.212 (+2.739) 83.021 (+1.770)

Variance 0.056 0.029 0.011 (-0.045) 0.003 (-0.026)

Range 0.856 0.591 0.394 (-0.462) 0.192 (-0.399)

(β, γ, α) = (0◦, 0◦, 360◦)

Mean 53.698 81.502 56.321 (+2.623) 83.093 (+1.591)

Variance 0.017 0.003 0.008 (-0.009) 0.002 (-0.001)

Range 0.331 0.131 0.218 (-0.113) 0.084 (-0.047)

Table 5: Overall performance comparison on Stanford2D3D
Panoramic datasets in different SGA metrics in two more favor-
able settings for Tran4PASS+. SGAT4PASS also earns considerable
mean performance and significant robustness improvement.

4.1 Datasets and Protocols
We validate SGAT4PASS on Stanford2D3D Panoramic
datasets [Armeni et al., 2017]. It has 1,413 panoramas, and
13 semantic classes are labeled, and has 3 official folds, fold
1 / 2 / 3. We follow the report style of previous work [Zhang
et al., 2022a] [Zhang et al., 2022b].

Our experiments are conducted with a server with four
A100 GPUs. We use Trans4PASS+ [Zhang et al., 2022b]
as our baseline and set an initial learning rate of 8e-5, which
is scheduled by the poly strategy with 0.9 power over 150
epochs. The optimizer is AdamW [Kingma and Ba, 2015]
with epsilon 1e-8, weight decay 1e-4, and batch size is 4 on
each GPU. Other settings and hyperparameters are set the
same as Trans4PASS+ [Zhang et al., 2022b]. For each in-
put panoramic image I in an iteration, there is a 50% chance
of using it directly and the other 50% chance of using it after
SGA image projection, O3D(I, αuse, βuse, γuse), where αuse

/ βuse / γuse uniformly sampled from 0 to αtrain / βtrain /
γtrain. We set (βtrain, γtrain, αtrain) = (10◦, 10◦, 360◦). λw

and λs are set as 0.3 and 0.3, respectively.
Spherical Geometry-Aware (SGA) Validation. Most
PASS datasets use a unified ERP way to process original 360◦
data, PASS models have the potential to overfit the ERP way,

cannot handle 3D disturbance well and have little 3D robust-
ness. To validate the robustness of the PASS models, we pro-
pose a novel SGA validation. nα, nβ , and nγ are the number
of different angles for the yaw / pitch / roll axis, respectively,
and nα ·nβ ·nγ different-angle panoramic images for a certain
original 360◦ data is earned. Panoramic semantic segmenta-
tion models are validated in all nα ·nβ ·nγ settings, and their
statistics are reported as SGA metrics. In our SGA validation,
“Mean” means the average of all nα ·nβ ·nγ traditional results
(e.g., mIoU, per pixel accuracy, etc.). “Variance” means the
variance of all nα ·nβ ·nγ results. “Range” means the gap be-
tween the maximum and minimum results of all nα · nβ · nγ

results. Compared to traditional validation, SGA validation
avoids models gain performance by fitting the ERP way of
datasets and reflects objective 3D robustness. In detail, we
assume that the 3D rotation disturbance is at most 5◦ / 5◦ /
360◦ of pitch (β) / roll (γ) / yaw (α) angle. We set nα = 4
(0◦, 90◦, 180◦, 270◦), nβ = 2 (0◦, 5◦), and nγ = 2 (0◦, 5◦).
We use the mean of them as the final performance and ob-
serve the performance difference among them to indicate the
3D robustness of models.

4.2 Performance Comparison
In this part, we first compare several recent SOTA methods
with traditional metrics, and then compare the latest SOTA
Trans4PASS+ in detail with SGA metrics.

Traditional Metrics. Comparison results on Stan-
ford2D3D Panoramic datasets with SOTA methods in
traditional metrics are shown in Table 1. Following recent
work, we report the performance of both official fold 1 and
the average performance of all three official folds. From
the results, SGAT4PASS outperforms current SOTA models
by 2.8% / 1.6% mIoU, respectively, which means that
our SGAT4PASS has a considerable performance margin
compared to current models with traditional metrics.

SGA Metrics. Comparison results on Stanford2D3D
Panoramic datasets with our SGA validation metrics are
shown in Table 3, and Table 2 is the detailed performance
of each situation. For mean mIoU / pixel accuracy, an im-
provement of nearly 6% / 4% is achieved, respectively. Fur-



Network Test Method mIoU beam board bookcase ceiling chair clutter column door floor sofa table wall window

Trans4Pass+
Traditional

53.62 0.39 74.4 65.32 84.21 62.86 36.44 15.96 32.79 93.09 44.10 63.67 75.02 46.90

Ours 56.37 0.73 74.05 65.91 84.20 64.53 41.24 19.62 52.67 93.08 56.92 58.86 76.43 44.62

Trans4Pass+
SGA

50.03 0.26 73.78 62.21 83.82 61.87 32.11 10.93 20.26 92.96 38.33 61.78 74.35 37.73

Ours 55.98 0.78 73.94 65.56 84.08 64.39 40.96 18.31 51.64 92.98 56.53 58.14 76.06 44.42

Table 6: Per-class mIoU results on Stanford2D3D Panoramic datasets according to the fold 1 data setting with traditional mIoU and per-pixel
accuracy metrics. No mark for the results that the gap between Trans4Pass+ and Ours less than 5% (performance at the same level). Our
results will be red when Ours outperforms more than 5%. If Ours outperforms more than 10%, our results will be bold and red. There is no
semantic class that Trans4Pass+ outperforms Ours 5% or more.

thermore, our variance is about 1
100 and our fluctuation range

is about 1
10 . These results show that our SGAT4PASS have

much better robustness than Trans4PASS+.

4.3 Ablation Study
Effect of Three Modules in Training Process. The ef-
fectiveness of SGA image projection, SDPE, and panorama-
aware loss are studied on Stanford2D3D Panoramic datasets
official fold 1 with traditional metrics as shown in Table 4. (a)
SGA image projection: Using it alone improves the baseline
mIoU / per pixel accuracy by 1.020% / 0.820%. (b) SDPE:
Using SDPE alone outperforms the baseline by 0.937% and
0.025% in mIoU and per pixel accuracy. (b) Panorama-aware
loss: Using it alone improves the baseline by 1.216% and
0.250% in mIoU and per pixel accuracy.

Effect of SGA Validation. We demonstrate the effect of
SGA validation, which means a stronger generalizability to
resist 3D rotational perturbation. We carried out experi-
ments with two smaller disturbance settings on the pitch and
roll axes ((β, γ, α) = (1◦, 1◦, 360◦) / (0◦, 0◦, 360◦)), which
are more favorable settings for Trans4PASS+ [Zhang et al.,
2022b], because it is designed for the standard panoramic
view image ((βuse, γuse, αuse) = (0◦, 0◦, 0◦)). The overall
statistical results are shown in Table 5. For the (β, γ, α) =
(1◦, 1◦, 360◦) setting, an improvement of approximately 2.7
% / 1.7 % is obtained for the mean mIoU / pixel accuracy.
Our variance is approximately 1

5 / 1
10 and our fluctuation

range is approximately 1
2 / 1

3 in mIoU / pixel precision. In
(β, γ, α) = (0◦, 0◦, 360◦) setting, mean mIoU / pixel ac-
curacy gains approximately 2.6% / 1.6% improvement, vari-
ances / fluctuation is approximately 1

2 / 2
3 for SGAT4PASS.

SGAT4PASS has better robustness even with little 3D per-
turbations. The detailed performance of these two settings
and the performance of several random rotation settings are
shown in Section A “Detailed Performance of SGA Valida-
tion” in the supplementary material.

4.4 Discussion and Visualizations
Performance of All Semantic Classes and Visualizations.
We show the detailed performance of all 13 semantic classes
on the Stanford2D3D Panoramic datasets with both tradi-
tional and SGA metrics in Table 6, respectively. We focus
mainly on the classes with significant performance gaps and
mark the gap larger than 5% / 10% as red numbers / bold red
numbers, respectively. There is no semantic class for which
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Figure 4: Influence of λs and λw in SGAT4PASS. The results are
carried out on Stanford2D3D Panoramic datasets official fold 1.

the baseline is significantly better. From the results, we can
learn that the “sofa” and “door” classes improve more. An
image with “door” and “sofa” is visualized in Figure 3. Ro-
tation of the pitch / roll / yaw axis is 5◦ / 5◦ / 180◦. The
baseline prediction gap between the original and rotated in-
put is large, which means less robustness. It predicts the door
near the right boundary in Figure 3c overall right, but it is
totally wrong with rotation in Figure 3g when SGAT4PASS
predicts both correct. The baseline predictions for the sofa
change a lot with rotation when SGAT4PASS is stable. More
visualizations are shown in Section B “More Visualizations”
in the supplementary material.
Different Hyper-Parameters. λw and λs are hyperparam-
eters in our SGAT4PASS. λs / λw determines the proportion
of our constraint of spherical geometry in SDPE / panorama-
aware loss. We apply them on the baseline, respectively. Tra-
ditional mIoU results are shown in Figure 4a and Figure 4b,
and we choose 0.3 / 0.3 as the final λw / λs.

5 Conclusion
We have studied an underexplored but important field in
panoramic semantic segmentation, i.e., the robustness of
dealing with 3D disturbance panoramic input images. We
have shown that using our SGA framework is key to im-
proving the semantic segmentation quality of 3D disturbance
inputs. It applies spherical geometry prior to panoramic se-
mantic segmentation and gains considerable improvement. In
detail, the SGA framework includes SGA image projection,
SDPE, and panorama-aware loss. We also validated the ef-
fectiveness of our SGAT4PASS on popular datasets with the
traditional metrics and the proposed SGA metrics, and stud-
ied its properties both empirically and theoretically.



Acknowledgements
This work is supported in part by National Key Re-
search and Development Program of China under Grant
2020AAA0107400, National Natural Science Foundation of
China under Grant U20A20222, National Science Foundation
for Distinguished Young Scholars under Grant 62225605,
Research Fund of ARC Lab, Tencent PCG, The Ng Teng
Fong Charitable Foundation in the form of ZJU-SUTD IDEA
Grant, 188170-11102 as well as CCF-Zhipu AI Large Model
Fund (CCF-Zhipu202302).

Contribution statement
Xuewei Li and Tao Wu contributed equally to this work.

References
[Ai et al., 2022] Hao Ai, Zidong Cao, Jinjing Zhu, Haotian

Bai, Yucheng Chen, and Ling Wang. Deep learning for
omnidirectional vision: A survey and new perspectives.
arXiv preprint arXiv:2205.10468, 2022.

[Armeni et al., 2017] Iro Armeni, Sasha Sax, Amir R Zamir,
and Silvio Savarese. Joint 2d-3d-semantic data for indoor
scene understanding. arXiv preprint arXiv:1702.01105,
2017.

[Berenguel-Baeta et al., 2022] Bruno Berenguel-Baeta, Je-
sus Bermudez-Cameo, and Jose J Guerrero. Fred-
snet: Joint monocular depth and semantic segmenta-
tion with fast fourier convolutions. arXiv preprint
arXiv:2210.01595, 2022.

[Chen et al., 2014] Yanzhi Chen, Xi Li, Anthony Dick, and
Rhys Hill. Ranking consistency for image matching and
object retrieval. Pattern Recognition, 47(3):1349–1360,
2014.

[Chen et al., 2021] Zhiyang Chen, Yousong Zhu, Chaoyang
Zhao, Guosheng Hu, Wei Zeng, Jinqiao Wang, and Ming
Tang. Dpt: Deformable patch-based transformer for visual
recognition. In Proc. ACM MM, 2021.

[Dai et al., 2017] Jifeng Dai, Haozhi Qi, Yuwen Xiong,
Yi Li, Guodong Zhang, Han Hu, and Yichen Wei. De-
formable convolutional networks. In Proc. ICCV, pages
764–773, 2017.

[de La Garanderie et al., 2018] Greire Payen de La Garan-
derie, Amir Atapour Abarghouei, and Toby P Breckon.
Eliminating the blind spot: Adapting 3d object detection
and monocular depth estimation to 360 panoramic im-
agery. In Proc. ECCV, pages 789–807, 2018.

[Deng et al., 2017] Liuyuan Deng, Ming Yang, Yeqiang
Qian, Chunxiang Wang, and Bing Wang. Cnn based se-
mantic segmentation for urban traffic scenes using fisheye
camera. In Proc. IEEE Intell. Vehicles Symp., pages 231–
236. IEEE, 2017.

[Eder et al., 2020] Marc Eder, Mykhailo Shvets, John Lim,
and Jan-Michael Frahm. Tangent images for mitigating
spherical distortion. In Proc. CVPR, 2020.

[Esteves et al., 2020] Carlos Esteves, Ameesh Makadia, and
Kostas Daniilidis. Spin-weighted spherical cnns. Proc.
NeurIPS, 33:8614–8625, 2020.

[Gao et al., 2022] Shaohua Gao, Kailun Yang, Hao Shi, Kai-
wei Wang, and Jian Bai. Review on panoramic imaging
and its applications in scene understanding. arXiv preprint
arXiv:2205.05570, 2022.

[Hu et al., 2022] Xing Hu, Yi An, Cheng Shao, and Hu-
osheng Hu. Distortion convolution module for semantic
segmentation of panoramic images based on the image-
forming principle. IEEE Trans. Instrum. Meas., 71:1–12,
2022.

[Jiang et al., 2019a] Chiyu Jiang, Jingwei Huang, Karthik
Kashinath, Philip Marcus, Matthias Niessner, et al.
Spherical cnns on unstructured grids. arXiv preprint
arXiv:1901.02039, 2019.

[Jiang et al., 2019b] Xiaoheng Jiang, Li Zhang, Pei Lv, Yibo
Guo, Ruijie Zhu, Yafei Li, Yanwei Pang, Xi Li, Bing Zhou,
and Mingliang Xu. Learning multi-level density maps for
crowd counting. IEEE transactions on neural networks
and learning systems, 31(8):2705–2715, 2019.

[Kingma and Ba, 2015] Diederik P Kingma and Jimmy Ba.
Adam: A method for stochastic optimization. In Proc.
ICLR, 2015.

[Lee et al., 2018] Yeonkun Lee, Jaeseok Jeong, Jongseob
Yun, Wonjune Cho, and Kuk-Jin Yoon. Spherephd: Ap-
plying cnns on a spherical polyhedron representation of
360 degree images. arXiv preprint arXiv:1811.08196,
2018.

[Li et al., 2011] Xi Li, Anthony Dick, Hanzi Wang, Chunhua
Shen, and Anton van den Hengel. Graph mode-based con-
textual kernels for robust svm tracking. In 2011 interna-
tional conference on computer vision, pages 1156–1163.
IEEE, 2011.

[Ma et al., 2021] Chaoxiang Ma, Jiaming Zhang, Kailun
Yang, Alina Roitberg, and Rainer Stiefelhagen. Densep-
ass: Dense panoramic semantic segmentation via unsuper-
vised domain adaptation with attention-augmented context
exchange. In Proc. ITSC, pages 2766–2772. IEEE, 2021.

[Pintore et al., 2021] Giovanni Pintore, Marco Agus, Eva
Almansa, Jens Schneider, and Enrico Gobbetti. Slicenet:
deep dense depth estimation from a single indoor
panorama using a slice-based representation. In Proc.
CVPR, pages 11536–11545, 2021.

[Poulin-Girard and Thibault, 2012] Anne-Sophie Poulin-
Girard and Simon Thibault. Optical testing of panoramic
lenses. Opt. Eng., 51(5):053603, 2012.

[Rao et al., 2021] Yongming Rao, Wenliang Zhao, Benlin
Liu, Jiwen Lu, Jie Zhou, and Cho-Jui Hsieh. Dynamicvit:
Efficient vision transformers with dynamic token sparsifi-
cation. Proc. NeurIPS, 34:13937–13949, 2021.

[Shen et al., 2022] Zhijie Shen, Chunyu Lin, Kang Liao,
Lang Nie, Zishuo Zheng, and Yao Zhao. Panoformer:
Panorama transformer for indoor 360◦ depth estimation.
In Proc. ECCV, pages 195–211. Springer, 2022.



[Summaira et al., 2021] Jabeen Summaira, Xi Li,
Amin Muhammad Shoib, Songyuan Li, and Jabbar
Abdul. Recent advances and trends in multimodal deep
learning: A review. arXiv preprint arXiv:2105.11087,
2021.

[Sun et al., 2021] Cheng Sun, Min Sun, and Hwann-Tzong
Chen. Hohonet: 360 indoor holistic understanding with
latent horizontal features. In Proc. CVPR, pages 2573–
2582, 2021.

[Tateno et al., 2018] Keisuke Tateno, Nassir Navab, and
Federico Tombari. Distortion-aware convolutional filters
for dense prediction in panoramic images. In Proc. ECCV,
pages 707–722, 2018.

[Wang et al., 2021a] Wenhai Wang, Enze Xie, Xiang Li,
Deng-Ping Fan, Kaitao Song, Ding Liang, Tong Lu, Ping
Luo, and Ling Shao. Pyramid vision transformer: A ver-
satile backbone for dense prediction without convolutions.
In Proc. ICCV, pages 568–578, 2021.

[Wang et al., 2021b] Yulin Wang, Rui Huang, Shiji Song,
Zeyi Huang, and Gao Huang. Not all images are worth
16x16 words: Dynamic transformers for efficient image
recognition. Proc. NeurIPS, 34:11960–11973, 2021.

[Xia et al., 2022] Zhuofan Xia, Xuran Pan, Shiji Song, Li Er-
ran Li, and Gao Huang. Vision transformer with de-
formable attention. In Proc. CVPR, pages 4794–4803,
2022.

[Xu et al., 2018] Mai Xu, Yuhang Song, Jianyi Wang,
MingLang Qiao, Liangyu Huo, and Zulin Wang. Predict-
ing head movement in panoramic video: A deep reinforce-
ment learning approach. IEEE Trans. Pattern Anal. Mach.
Intell., 41(11):2693–2708, 2018.

[Xu et al., 2021] Yanyu Xu, Ziheng Zhang, and Shenghua
Gao. Spherical dnns and their applications in 360 images
and videos. IEEE Trans. Pattern Anal. Mach. Intell., 2021.

[Xu et al., 2022] Yifan Xu, Zhijie Zhang, Mengdan Zhang,
Kekai Sheng, Ke Li, Weiming Dong, Liqing Zhang,
Changsheng Xu, and Xing Sun. Evo-vit: Slow-fast token
evolution for dynamic vision transformer. In Proc. AAAI,
volume 36, pages 2964–2972, 2022.

[Yang et al., 2019] Kailun Yang, Xinxin Hu, Luis M
Bergasa, Eduardo Romera, and Kaiwei Wang. Pass:
Panoramic annular semantic segmentation. IEEE Trans.
Intell. Trans. Syst., 21(10):4171–4185, 2019.

[Yang et al., 2020] Kailun Yang, Xinxin Hu, Hao Chen,
Kaite Xiang, Kaiwei Wang, and Rainer Stiefelhagen. Ds-
pass: Detail-sensitive panoramic annular semantic seg-
mentation through swaftnet for surrounding sensing. In
Proc. IEEE Intell. Vehicles Symp., pages 457–464. IEEE,
2020.

[Yang et al., 2021a] Kailun Yang, Xinxin Hu, and Rainer
Stiefelhagen. Is context-aware cnn ready for the surround-
ings? panoramic semantic segmentation in the wild. IEEE
Trans. Image Process., 30:1866–1881, 2021.

[Yang et al., 2021b] Kailun Yang, Jiaming Zhang, Simon
Reiß, Xinxin Hu, and Rainer Stiefelhagen. Capturing

omni-range context for omnidirectional segmentation. In
Proc. CVPR, pages 1376–1386, 2021.

[Ye et al., 2021] Zhiyuan Ye, Hai-Bo Wang, Jun Xiong, and
Kaige Wang. Ghost panorama using a convex mirror. Opt.
Lett., 46(21):5389–5392, 2021.

[Yin et al., 2022] Hongxu Yin, Arash Vahdat, Jose M Al-
varez, Arun Mallya, Jan Kautz, and Pavlo Molchanov. A-
vit: Adaptive tokens for efficient vision transformer. In
Proc. CVPR, pages 10809–10818, 2022.

[Yue et al., 2021] Xiaoyu Yue, Shuyang Sun, Zhanghui
Kuang, Meng Wei, Philip HS Torr, Wayne Zhang, and
Dahua Lin. Vision transformer with progressive sampling.
In Proc. ICCV, pages 387–396, 2021.

[Zhang et al., 2022a] Jiaming Zhang, Kailun Yang, Chaoxi-
ang Ma, Simon Reiß, Kunyu Peng, and Rainer Stiefelha-
gen. Bending reality: Distortion-aware transformers for
adapting to panoramic semantic segmentation. In Proc.
CVPR, pages 16917–16927, 2022.

[Zhang et al., 2022b] Jiaming Zhang, Kailun Yang, Hao Shi,
Simon Reiß, Kunyu Peng, Chaoxiang Ma, Haodong Fu,
Kaiwei Wang, and Rainer Stiefelhagen. Behind every do-
main there is a shift: Adapting distortion-aware vision
transformers for panoramic semantic segmentation. arXiv
preprint arXiv:2207.11860, 2022.

[Zheng et al., 2023] Zishuo Zheng, Chunyu Lin, Lang Nie,
Kang Liao, Zhijie Shen, and Yao Zhao. Complementary
bi-directional feature compression for indoor 360deg se-
mantic segmentation with self-distillation. In Proc. WACV,
pages 4501–4510, 2023.

[Zhu et al., 2020] Xizhou Zhu, Weijie Su, Lewei Lu, Bin
Li, Xiaogang Wang, and Jifeng Dai. Deformable detr:
Deformable transformers for end-to-end object detection.
arXiv preprint arXiv:2010.04159, 2020.

[Zhuang et al., 2022] Chuanqing Zhuang, Zhengda Lu,
Yiqun Wang, Jun Xiao, and Ying Wang. Acdnet:
Adaptively combined dilated convolution for monocular
panorama depth estimation. In Proc. AAAI, volume 36,
pages 3653–3661, 2022.



1

Supplementary Material:
“SGAT4PASS: Spherical Geometry-Aware Transformer for

PAnoramic Semantic Segmentation”

A. DETAILED PERFORMANCE OF SGA VALIDATION

In this section, we carry additional experiments to show the detailed performance of different SGA validation settings.
First, we show five other different settings, (β, γ, α) = (1◦, 1◦, 360◦) (shown in Table S-3) / (3◦, 3◦, 360◦) (shown in Table S-

4) / (5◦, 5◦, 360◦) (shown in Table 2 of the manuscript) / (10◦, 10◦, 360◦) (shown in Table S-5) / (0◦, 0◦, 360◦) (shown in the
first two columns of any table mentioned above). The overall statistical results for all five settings are shown in Table S-1.
We find that our performance significantly outperforms the baseline even when the test data are only slightly 3D disturbance
(rotational perturbation). Using mIoU as an example, when (β, γ, α) = (0◦, 0◦, 360◦), our mIoU is approximately 2.6% higher
than the baseline and the variance of mIoU is only 1

2 of the baseline. When the 3D rotation disturbance is expanded to a
large extent ((β, γ, α) = (5◦, 5◦, 360◦)), we find that the mIoU of the baseline has decreased greatly, compared to 53.698%
((β, γ, α) = (0◦, 0◦, 360◦) ), the mIoU of the baseline has decreased to 50.033%, a decrease of approximately 3.7%. However,
our performance loss is relatively small, only a drop of approximately 0.3%, and the mIoU variance is also much better than
the baseline, about 1

100 . When the 3D rotation disturbance is expanded to a larger extent ((β, γ, α) = (10◦, 10◦, 360◦)), we
find that the mIoU of the baseline has declined greatly, compared to 53.698% ((β, γ, α) = (0◦, 0◦, 360◦) ), the mIoU of the
baseline has decreased to 47.317%, a decrease of approximately 6.4%. However, our performance loss is relatively small, only
a drop of approximately 0. 9%, and the variance of mIoU is also much better than the baseline, about 1

40 . With the growth of
3D disturbances in β and γ, the stability of Tran4PASS+ drops extremely fast when SGAT4PASS maintains a relatively stable
performance.

Second, experiments are conducted with random rotated angles. We apply random rotation (β / γ / α random sampled from
0◦ / 0◦ / 0◦ to βr/γr/αr, respectively) for each test image. We choose several different settings for (βr, γr, αr), run each
setting 20 times, measure the mIoU for each result obtained, average the 20 experimental results for each setting as the final
result of this setting performance, and report the mean mIoU of 20 repetitions. As shown in Table S-2, we set the maximum
βr and γr at 10◦ because (βtrain, γtrain, αtrain) = (10◦, 10◦, 360◦). SGAT4PASS exhibits increased robustness and achieves
performance when exposed to a wider range of diverse and random perturbations.

(β,γ,α) (◦)

Mean Variance Range

mIoU Pixel Accuracy mIoU Pixel Accuracy mIoU Pixel Accuracy

BL Ours BL Ours BL Ours BL Ours BL Ours BL Ours

(0,0,360)
53.698 56.321 81.502 83.093 0.017 0.008 0.003 0.002 0.331 0.218 0.131 0.084

+2.623 +1.591 -0.009 -0.001 -0.113 -0.047

(1,1,360)
53.473 56.212 81.251 83.021 0.056 0.011 0.029 0.003 0.856 0.394 0.591 0.192

+2.739 +1.770 -0.045 -0.026 -0.462 -0.399

(3,3,360)
51.862 56.097 80.096 82.972 1.472 0.026 0.818 0.007 3.787 0.603 2.726 0.275

+4.235 +2.876 -1.446 -0.811 -3.184 -2.451

(5,5,360)
50.033 55.984 78.949 82.887 5.147 0.066 2.413 0.020 6.684 0.940 4.461 0.478

+5.951 +3.938 -5.081 -2.393 -5.744 -3.983

(10,10,360)
47.317 55.445 77.302 82.531 14.338 0.378 6.140 0.151 10.535 1.884 6.787 1.170

+8.128 +5.229 -13.960 -5.989 -8.651 -5.617

TABLE S-1: Overall performance comparison on Stanford2D3D Panoramic datasets in different SGA metrics in five different
settings with Tran4PASS+, i.e., the baseline (BL) method. SGAT4PASS earns considerable mean performance and significant
robustness improvement in each setting.
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(βr, γr, αr) Baseline Ours Gap

(1◦, 1◦, 360◦) 53.494 56.234 +2.740

(3◦, 3◦, 360◦) 52.330 56.138 +3.808

(5◦, 5◦, 360◦) 50.697 56.034 +5.337

(10◦, 10◦, 360◦) 47.506 55.611 +8.105

TABLE S-2: Results with more diverse and random perturbations. The rotation (β / γ / α) is randomly sampled from (0◦ / 0◦

/ 0◦) to (βr/γr/αr). Reported values is the mean mIoU of 20 repetitions.

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc

(0,0,0)
53.617 / 81.483

(0,1,0)
53.253 / 81.173

(1,0,0)
53.436 / 81.231

(1,1,0)
53.065 / 80.999

56.374 / 83.135 56.141 / 83.003 56.286 / 83.043 56.205 / 83.020

(0,0,90)
53.918 / 81.590

(0,1,90)
53.871 / 81.327

(1,0,90)
53.506 / 81.267

(1,1,90)
53.398 / 81.132

56.441 / 83.130 56.294 / 83.038 56.246 / 83.002 56.268 / 83.021

(0,0,180)
53.587 / 81.476

(0,1,180)
53.446 / 81.232

(1,0,180)
53.559 / 81.218

(1,1,180)
53.243 / 81.032

56.246 / 83.054 56.119 / 82.986 56.111 / 82.976 56.047 / 83.002

(0,0,270)
53.669 / 81.459

(0,1,270)
53.382 / 81.207

(1,0,270)
53.557 / 81.194

(1,1,270)
53.062 / 81.000

56.223 / 83.051 56.098 / 82.943 56.153 / 82.969 56.141 / 82.961

TABLE S-3: Detail performance comparison with Tran4PASS+ on Stanford2D3D Panoramic datasets official fold 1 with SGA
metrics in (β, γ, α) = (1◦, 1◦, 360◦) setting. This table shows the detailed performance of all 18 situations, and the analysis is
in Table S-1. “BL” means the baseline, Tran4PASS+. “PAcc” means the pixel accuracy metric.

B. MORE VISUALIZATIONS

We show more visualizations of different samples to show the stability improvement of SGAT4PASS. As shown in Figure S-
1, the separated door in the original image becomes complete in the corresponding rotated image. SGAT4PASS always predict
the door in general right when the baseline fails in the corresponding rotated image. As shown in Figure S-2, the bookcase in
the original image is separated in the corresponding rotated image. SGAT4PASS always predict the bookcase right in general as
well as the door near it when the baseline is missed in the corresponding rotated image. As shown in Figure S-3 / Figure S-4,
the location of the sofa / window is different in the original image and in the corresponding rotated image, and SGAT4PASS
has a more stable performance.

C. DETAILS FOR SGA IMAGE PROJECTION

In this section, we describe T (·) and R(·, ·, ·) in our SGA image projection in detail.
Given an ERP-processed input panoramic image I with width = w and height = h, consider a point Apan in I with coordinates

(i, j). Apan corresponds to the point A in the sphere with latitude Alat = π · i/h and longitude Alon = 2π · j/w. Based on
Alat and Alon, the corresponding 3D vector vA is obtained. For each point of I , we obtain its vA, and VI is the set of all vA.
We summarize this process as I = T (VI) and VI = T−1(I).

For a general rotation in three-dimensional space, the yaw, pitch, and roll angles are αuse, βuse, and γuse, respectively. The
corresponding rotation matrix R can be obtained from these three using matrix multiplication. For example, the product:

R(αuse, βuse, γuse) = Rz(αuse) ·Ry(βuse) ·Rx(γuse), (S-1)

where Rz(αuse), Ry(βuse), Rx(γuse) are single-axis 3D rotations and are calculated, respectively, as:

Rz(αuse) = [[cosαuse,− sinαuse, 0], [sinαuse, cosαuse, 0], [0, 0, 1]]

Ry(βuse) = [[cosβuse, 0, sinβuse], [0, 1, 0], [− sinβuse, 0, cosβuse]]

Rx(γuse) = [[1, 0, 0], [0, cos γuse,− sin γuse], [0, sin γuse, cos γuse]]

(S-2)

Based on these operations, we build up our SGA iamge projection, O3D(I, αuse, βuse, γuse).
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(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc

(0,0,0)
53.617/81.483

(0,3,0)
51.632/79.878

(3,0,0)
51.59/79.966

(3,3,0)
50.172/78.864

56.374/83.135 56.105/82.98 56.11/82.994 56.021/82.952

(0,0,90)
53.918/81.59

(0,3,90)
52.126/80.178

(3,0,90)
51.804/79.946

(3,3,90)
50.577/79.084

56.441/83.13 56.089/82.955 56.173/82.982 56.014/82.915

(0,0,180)
53.587/81.476

(0,3,180)
51.543/79.817

(3,0,180)
51.777/80.09

(3,3,180)
50.424/79.002

56.246/83.054 56.05/82.965 55.861/82.88 55.838/82.86

(0,0,270)
53.669/81.459

(0,3,270)
51.622/79.914

(3,0,270)
51.598/79.757

(3,3,270)
50.131/79.039

56.223/83.051 55.972/82.876 56.088/82.938 55.946/82.877

TABLE S-4: Detail performance comparison with Tran4PASS+ on Stanford2D3D Panoramic datasets official fold 1 with SGA
metrics in (β, γ, α) = (3◦, 3◦, 360◦) setting. This table shows the detailed performance of all 18 situations, and the analysis is
in Table S-1. “BL” means the baseline, Tran4PASS+. “PAcc” means the pixel accuracy metric.

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

(β,γ,α) (◦)
BL mIoU / PAcc

Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc Our mIoU / PAcc

(0,0,0)
53.617/81.483

(0,10,0)
45.823/76.249

(10,0,0)
45.408/76.165

(10,10,0)
43.383/74.803

56.374/83.135 55.317/82.461 55.507/82.572 54.557/81.99

(0,0,90)
53.918/81.59

(0,10,90)
46.105/76.338

(10,0,90)
45.868/76.293

(10,10,90)
44.017/75.222

56.441/83.13 55.286/82.502 55.555/82.525 54.57/81.965

(0,0,180)
53.587/81.476

(0,10,180)
46.234/76.513

(10,0,180)
45.847/76.309

(10,10,180)
44.054/75.105

56.246/83.054 55.571/82.588 55.175/82.468 54.595/82.03

(0,0,270)
53.669/81.459

(0,10,270)
45.462/76.125

(10,0,270)
46.242/76.456

(10,10,270)
43.84/75.251

56.223/83.051 55.451/82.448 55.525/82.554 54.724/82.02

TABLE S-5: Detail performance comparison with Tran4PASS+ on Stanford2D3D Panoramic datasets official fold 1 with SGA
metrics in (β, γ, α) = (10◦, 10◦, 360◦) setting. This table shows the detailed performance of all 18 situations, and the analysis
is in Table S-1. “BL” means the baseline, Tran4PASS+. “PAcc” means the pixel accuracy metric.

(a) Original picture (b) Label (c) Baseline results (d) Our results

(e) Rotated original picture (f) Rotated label (g) Baseline rotated results (h) Our rotated results

Fig. S-1: Visualization comparison of SGAT4PASS and Trans4PASS+. The rotation of the pitch / roll / yaw axis is 5◦ / 5◦ /
180◦. SGAT4PASS gains the better results of semantic class “door” .
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(a) Original picture (b) Label (c) Baseline results (d) Our results

(e) Rotated original picture (f) Rotated label (g) Baseline rotated results (h) Our rotated results

Fig. S-2: Visualization comparison of SGAT4PASS and Trans4PASS+. The rotation of the pitch / roll / yaw axis is 5◦ / 5◦ /
180◦. SGAT4PASS gains the best results of semantic classes “door” and “bookcase”.

(a) Original picture (b) Label (c) Baseline results (d) Our results

(e) Rotated original picture (f) Rotated label (g) Baseline rotated results (h) Our rotated results

Fig. S-3: Visualization comparison of SGAT4PASS and Trans4PASS+. The rotation of the pitch / roll / yaw axis is 5◦ / 5◦ /
180◦. SGAT4PASS gains the better results of semantic class “sofa” .

(a) Original picture (b) Label (c) Baseline results (d) Our results

(e) Rotated original picture (f) Rotated label (g) Baseline rotated results (h) Our rotated results

Fig. S-4: Visualization comparison of SGAT4PASS and Trans4PASS+. The rotation of the pitch / roll / yaw axis is 5◦ / 5◦ /
180◦. SGAT4PASS gains the better results of the semantic class “windows” .


