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Abstract

Online learning in a decentralized two-sided
matching markets, where the demand-side (play-
ers) compete to match with the supply-side (arms),
has received substantial interest because it ab-
stracts out the complex interactions in matching
platforms (e.g. UpWork, TaskRabbit). However,
past works (Liu et al., 2020; 2021; Sankarara-
man et al., 2021; Basu et al., 2021; Kong & Li)
assume that the supply-side arms know their pref-
erence ranking of demand-side players (one-sided
learning), and the players aim to learn the pref-
erence over arms through successive interactions.
Moreover, several structural (and often imprac-
tical) assumptions on the problem are usually
made for theoretical tractability. For example
(Liu et al., 2020; 2021; Kong & Li) assume that
when a player and an arm is matched, the infor-
mation of the matched pair becomes a common
knowledge to all the players whereas (Sankarara-
man et al., 2021; Basu et al., 2021; Ghosh et al.,
2022) assume a serial dictatorship (or its variant)
model where the preference rankings of the play-
ers are uniform across all arms. In this paper,
we study the first fully decentralized two sided
learning, where we do not assume that the prefer-
ence ranking over players are known to the arms
apriori. Furthermore, we do not have any struc-
tural assumptions on the problem. We propose a
multi-phase explore-then-commit type algorithm
namely Epoch-based CA-ETC (collision avoid-
ance explore then commit) (CA-ETC in short)
for this problem that does not require any com-
munication across agents (players and arms) and
hence fully decentralized. We show that the for
the initial epoch length of T0 and subsequent
epoch-lengths of 2l/γT0 (for the l−th epoch with
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γ ∈ (0, 1) as an input parameter to the algorithm),
CA-ETC yields a player optimal expected regret

of O[T0

(
K log T

T0(∆(i))2

)1/γ

+ T0(T/T0)
γ ] for the i-

th player, where T is the learning horizon, K is
the number of arms and ∆(i) is an appropriately
defined problem gap. Furthermore, we propose
several other baselines for two-sided learning for
matching markets.

1. Introduction
Online matching markets (e.g. Mechanical Turk, Upwork,
Uber, Labour markets, Restaurant) are economic platforms
that connect demand side, (e.g. businesses in Mechanical
Turk or Upwork, customers wanting Uber ride or restaurant
reservations), to the supply side (e.g. freelancers in Up-
work, or crowdworkers in Mechanical Turk, drivers in Uber,
restaurant availability). In these platforms, the demand side
(also known as the agent or player side) makes repeated
decisions to obtain (match) the resources in the supply side
(also known as arms side) according to their preference. The
supply side is usually resource constrained, and hence it is
possible that more than one players compete for a partic-
ular resource. Given multiple offers, the supply side arm
chooses the agent of its choice. This agent is given the non-
zero random reward, while all other players participated in
the collision gets a deterministic zero reward. Hence, in this
framework, the players need to simultaneously compete as
well as estimate the uncertainty in the quality of resource.
Economic markets have been studied empirically in (Johari
et al., 2021; Das & Kamenica, 2005). Usually the interac-
tion between the supply and demand side is modelled as
a bipartite graph, with players and resources in both sides
have a preference (or ranking) over the other side, which is
unknown apriori. Each players’ task is to learn this prefer-
ence through successive but minimal interaction between
the sides and thereafter obtain an optimal stable matching
between the demand and the supply side.

Multi-Armed Bandits (MAB) is a popular framework that
balances exploration and exploitation and while navigating
amongst uncertainty in the system (Lattimore & Szepesvári,
2020). Classical algorithms like Upper Confidence Bound
(Auer et al., 2002), Explore-Then-Commit (ETC) (Latti-
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more & Szepesvári, 2020) are well-known MAB algorithms
that yield sub-linear regret. Learning in matching markets
has received considerable interest in the recent past, espe-
cially from the lens of a multi-agent MAB framework (Liu
et al., 2021; Sankararaman et al., 2021; Kong & Li; Basu
et al., 2021). In this formulation, the demand side corre-
sponds to multiple players and the supply side resources
correspond to multiple arms. The additional complexity
here is the presence of competition among players. The ob-
jective of this problem is to learn the preference ranking for
both the players and arms simultaneously through succes-
sive interactions. Once the preferences are learnt, matching
algorithm like Gale Shapley (Gale & Shapley, 1962; Roth &
Sotomayor, 1990) may be used to obtain the optimal stable
matching.

Although the MAB framework in markets and bandits have
been popular in the recent past, starting with a centralized
matching markets (i.e., there exists a centralized authority
who helps in the matching process) (Liu et al., 2020; Ja-
gadeesan et al., 2021) to a more recent decentralized frame-
work (Lattimore & Szepesvári, 2020; Sankararaman et al.,
2021; Basu et al., 2021; Kong & Li; Maheshwari et al.,
2022), all the previous works have several strong (and of-
ten impractical) assumptions on the market for theoretical
tractability. We now discuss them in detail.

One-sided learning: One of the main assumptions made
in all the previous works (Liu et al., 2020; 2021; Sankarara-
man et al., 2021; Basu et al., 2021; Maheshwari et al., 2022;
Ghosh et al., 2022), including the state-of-the-art (Kong
& Li) is that of one-sided learning. It is assumed that the
arms know their preferences over players apriori before the
start of the learning, and hence the crux of the problem
is to learn the preferences for the players only. So, the
problem of two sided learning reduces to one sided learn-
ing. Here, algorithms based on Upper-Confidence-Bound
(Sankararaman et al., 2021; Liu et al., 2021) as well as
Explore-Then-Commit (Kong & Li; Basu et al., 2021) are
both analyzed and sublinear regret guarantees are obtained.
With the knowledge of the arms’ ranking apriori, the system
can correctly resolve the conflicts every time a collision
occurs, which is used crucially in the analysis of such algo-
rithms.

Additional structural market assumptions: Apart from
the one-sided learning assumption, several additional struc-
tural assumptions on markets are usually being made to
obtain sub-linear regret. In (Liu et al., 2021; Kong & Li;
Ghosh et al., 2022), it is assumed that when an agent suc-
cessfully receives a reward (or in other words, an agent and
an arm are successfully matched), the matched pair becomes
a common knowledge to all the players. This assumption
is used as a form of communication across players to cal-
culate the regret of the players in the system. Moreover,

(Sankararaman et al., 2021; Ghosh et al., 2022) assumed
a serial dictatorship model where the preference ranking
the players are assumed to be same for all the arms. In
(Liu et al., 2021), the same assumption is termed as global
ranking. In (Maheshwari et al., 2022), this assumption is
weakened and termed as α-reducible condition. Moreover,
in (Basu et al., 2021), the authors propose a uniqueness
consistency assumption on the market, implying that the
leaving participants do not alter the original stable matching
of the problem.

1.1. Summary of Contributions

We study a completely decentralized learning algorithm,
namely Epoch based CA-ETC (collision avoidance explore
then commit, CA-ETC in short) which works for a 2-sided
market and with no restrictive assumptions. We now explain
our contributions in detail.

Fully decentralized 2 sided learning algorithm: Our main
contribution is to propose (the first) provable 2 sided learn-
ing algorithm for matching markets. To be concrete, we do
not assume that the preference of the players are known to
the arms apriori. Our proposed scheme, CA-ETC is based
on Explore Then Commit (ETC) algorithm, similar to (Kong
& Li). However, CA-ETC is able to learn the preferences
for both the agent and the arm side simultaneously through
obtained samples in the exploration phase. To this end, we
propose a two-sided reward model, i.e., when a player is
matched with an arm, the player as well as the arm receives a
(random) reward, which is used to estimate the preferences.
Note that in real world applications, like 2 sided labor mar-
kets (Upwork, Uber, Restaurant), crowd-sourcing platforms
(Mechanical Turk), scheduling jobs to servers (AWS, Azure)
(Dickerson et al., 2019; Even et al., 2009), the preference
of players side are apriori unknown and a 2 sided learning
algorithm is necessary. Moreover, when an agent and an
arm interacts, two sided reward is usually generated (e.g., in
Mechanical Turk, Uber, Yelp the customers as well as the
resource (arm) are both rated simultaneously). Note that,
without generating rewards (or related information) from
both sides (agent as well as arms side), it is not possible for
any 2-sided learning algorithm to simultaneously learn both
the preferences.

Our algorithm, CA-ETC is a completely communication
free algorithm, i.e., the players do not communicate during
the entire learning duration and fully decentralized. More-
over, CA-ETC is completely collision free.

CA-ETC is a multi-epoch algorithm. At the beginning of
each epoch, it spends a fixed amount of time in exploration,
and uses the collected samples upto that instant (including
exploration rounds of all previous epochs as well) to build
the Lower Confidence Bound (LCB) and Upper Confidence
Bound (UCB) index for both players and arms simultane-
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ously. Using these, CA-ETC estimates the preference order-
ing (rank) for both the players as well as for the arms side.
The rest of the epoch is spent on exploitation, where Gale
Shapley (Gale & Shapley, 1962) algorithm is played with
the learned preference so far. The idea behind the design
of CA-ETC is that in the first few epochs, the total amount
of exploration might not be sufficient to properly learn the
preference ordering and hence Gale Shapley might output
an incorrect stable matching leading to a higher regret (to
be defined formally shortly). However, after a finitely many
epochs, the total exploration period becomes sufficient in
order to estimate the preference ranking and so the exploit
stage (Gale Shapley) incurs zero regret with high probabil-
ity.

We would like to point out that very recently, (Jagadeesan
et al., 2021) proposes an algorithm for 2-sided learning.
However, the algorithms in (Jagadeesan et al., 2021) are
centralized. Moreover, the problem framework allows utility
transfer (monetary transfers), with convergence to a weaker
notion of stability.

No structural assumptions on markets: We emphasize
that CA-ETC does not require any additional assumption on
the economic market, like serial dictatorship, global knowl-
edge of matching player arm pair, unique consistency etc.
This makes CA-ETC more practical. In applications like la-
bor markets (Upwork, Taskrabbit) (Massoulié & Xu, 2016),
crowd-sourcing platforms (Mechanical Turk), scheduling
jobs to servers in an online marketplace (AWS, Azure)
(Dickerson et al., 2019; Even et al., 2009), question answer-
ing platform (Quora, Stack Overflow) (Shah et al., 2020) the
structural assumptions mentioned above are naturally not
satisfied. So, there is a gap between theory and practice, and
our proposed algorithm, CA-ETC aims to close this gap.
Summary: To summarize, previous papers on matching
markets, through theoretically tractable and obtains near-
optimal regret, the strong market assumptions and the 1
sided learning makes it practically un-usable. On the other
hand, CA-ETC is a practical algorithm for 2 sided learn-
ing, with no assumptions. As a result, the regret bounds
of CA-ETC is weaker compared to the existing works.
CA-ETC needs to estimate the ranking for both arms and
players side, and thus the amount of exploration needed
turns out to be large, leading to high regret. The additional
regret can be thought of the price of 2 sided learning without
assumptions. Of course, we problem of obtaining the regret
lower bound in 2 sided learning is still open. Table 1 gives
a comprehensive summary and comparison of our results
with the existing works.

2. Problem Setting
We now explain the problem formulation. Consider a market
with N players and K arms with N ≤ K. Denote N =

{p1, p2, . . . , pN} as the set of players (or agents) and K =
{a1, a2, . . . , aK} as the set of arms. In general, not all
players and arms will participate in the market, but we
consider that the participating agents include all the players
and arms. At time step t, each player pi attempts to pull
an arm Ai(t) ∈ K. When multiple players pull the same
arm, only one player will successfully pull the arm, based
on arm’s preferences which are also learned over time.

Two sided reward: Since our goal is to learn the pref-
erences of the players and arms simultaneously, we pro-
pose a two-sided reward model in the following way. If
player pi successfully pulls an arm Ai(t) = aj then pi re-
ceives a stochastic reward X

(i)
j (t) ∼ SubGaussian(µ(i)

j ),

and arm aj receives a stochastic reward Y
(j)
i (t) ∼

SubGaussian(η(j)i ). We remark that for two sided learn-
ing, reward information for both the player and the arm
side are necessary, and hence we propose this two sided
reward model. If µ(i)

j > µ
(i)
j′ , we say that player pi truly

prefers arm aj over aj′ . Similarly, if η(j)i > η
(j)
i′ , we say

that arm aj truly prefers player pi over pi′ . We denote
A−1

j (t) := {pi : Ai(t) = aj} as the set of players propos-
ing arm aj , Āi(t) as the successfully matched arm of player
pi, Ā−1

j (t) as the successfully matched player of arm aj i.e.

Ā−1
j (t) ∈ argmaxpi∈A−1

j (t)η
(j)
i . Then Āi(t) = Ai(t) when

pi is successfully accepted by arm Ai(t) else if rejected
Āi(t) = ∅. When two or more players propose an arm aj
then only the most preferred player Ā−1

j (t) among A−1
j (t)

gets an reward X
(Ā−1

j (t))

j (t) and other get a zero reward.
Also denote M(t) := {(i, Āi(t) : i ∈ [N ]} as the final
matching at round t. We also assume that all the participat-
ing agents have strict preference ranking i.e. µ

(i)
j ̸= µ

(i)
j′

and η
(j)
i ̸= η

(j)
i′ for all arms aj ̸= aj′ and players pi ̸= pi′ .

2.1. Stable matching

We now define the stable matching (Gale & Shapley, 1962),
which is closely related to the Nash equilibrium of the cor-
responding game. We say a market matching is stable if no
pair of players and arms would prefer to be matched with
each other over their respective matches. Formally, M(t)
is stable if there exists no player-arm pair (pi, aj) such that
µ
(i)
j > µ

(i)

Āi(t)
and η

(j)
i > η

(j)

Ā−1
j (t)

, where we simply define

µ
(i)
∅ = −∞ and η

(j)
∅ = −∞ for each i ∈ [N ], j ∈ [K].

Let M := {m : m is a stable matching} be the set of all
stable matching and define player-optimal stable matching
m̄p = {(i, m̄i) : i ∈ [N ]} ∈ M as the players’ most
preferred match i.e. µ

(i)
m̄i

≥ µ
(i)
mi for any m ∈ M and

for all i ∈ [N ]. One can similarly define arm-optimal
stable matching m̄a = {(m̄j , j) : j ∈ [K]} ∈ M as
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2-sided Assumption Regret Type Regret
(Liu et al., 2020) No Centralized Player-pessimal O(NK3 log T/∆2)

(Liu et al., 2021) No (player, arm) broadcast Player-pessimal O
(
N5K2 log2 T

ϵN4∆2

)
(Sankararaman et al., 2021) No Serial Dictatorship Player-optimal O

(
NK log T/∆2

)
(Basu et al., 2021) No Uniqueness consistency Player-optimal O

(
NK log T/∆2

)
(Maheshwari et al., 2022) No α-reducible Player-optimal O

(
CNK log T/∆2

)
(Kong & Li) No (player, arm) broadcast Player-optimal O

(
K log T/∆2

)
This paper Yes No assumptions Player-optimal O

[
T0

(
K log T

T0∆2

)1/γ

+ T0(T/T0)
γ

]

Table 1. Table comparing the regret bound of CA-ETC with existing works. Here, N is the number of players, K is the number of arms,
T is the learning horizon, ∆ is the minimum gap (to be defined later). Also, ϵ (in (Liu et al., 2021)) and C (in (Maheshwari et al., 2022)
are problem dependent hyper-parameters. For our algorithm, CA-ETC, T0 is the initial epoch length and γ ∈ (0, 1) is an input parameter
related to the subsequent epoch lengths.

the arms’ most preferred one match i.e. η
(j)
m̄j

≥ η
(j)
mj for

any m ∈ M and for all j ∈ [K]. Previous works (Kong
& Li) has also defined the notion of player-pessimal sta-
ble matching defined as the players’ least preferred match
mp = {(i,mi) : i ∈ [N ]} ∈ M i.e. µ

(i)
mi

≤ µ
(i)
mi for any

m ∈ M and for all i ∈ [N ]. Similarly we define arm-
pessimal stable matching ma = {(mj , j) : j ∈ [K]} ∈ M

as the arms’ least preferred match i.e. η(j)mj
≤ η

(j)
mj for any

m ∈ M and for all j ∈ [K].

2.2. Regret Definition

Based on the above definitions one can define player-optimal
(arm-optimal) regret for each player i ∈ [N ] (arm j ∈ [K])
over T rounds as

RP i(t) =

T∑
t=1

µ
(i)
m̄i

− E

[
T∑

t=1

X
(i)
j (t)

]
,

RAj(t) =

T∑
t=1

η
(j)
m̄j

− E

[
T∑

t=1

Y
(j)
i (t)

]
.

Similarly, we define the player-pessimal and arm-pessimal
regret as follows

RP i(t) =

T∑
t=1

µ(i)
mi

− E

[
T∑

t=1

X
(i)
j (t)

]
,

RAj(t) =

T∑
t=1

η(j)mj
− E

[
T∑

t=1

Y
(j)
i (t)

]
.

Note that, player-pessimal (arm-pessimal) regret is upper
bounded by player-optimal (arm-optimal) regret, and hence
any upper bound on player-optimal regret automatically
serves as an upper bound on player pessimal regret. When
there are more than one stable matching i.e. |M | > 1, the
difference between player-pessimal and player-optimal re-
gret can be O(T ) due to a constant difference between µ

(i)
mi

Algorithm 1 Index Estimation (view of player pi)
Input :arbitrary preference ranking of players for arm a1

1 for round t=1,2,. . . , N do
2 Ai(t) = a1

3 if Āi(t) = Ai(t) = a1 then
4 Index = t;
5 end
6 end

and µ
(i)
m̄i

, similarly for arms. Throughout we give guarantees
for player-optimal regret, but the same hold for arm-optimal
regret.

3. Algorithms for 2 sided matching markets
We present the learning algorithms in this section. We
start with a simple setup, where the user has knowledge
of the problem gap. We then make an attempt to remove
this by introducing a blackboard. Finally we present out
main algorithm, CA-ETC. We define the gap of player
pi as ∆(i) = minj ̸=j′ |µ(i)

j′ − µ
(i)
j | and gap of arm aj as

∆′(j) = mini ̸=i′ |η(j)i′ − η
(j)
i |. The universal gap is de-

fined as the minimum of all the player and arm gap i.e.
∆ = mini∈[N ],j∈[K]{∆(i),∆′(j)}.

3.1. Warm up: Learning with Known Gap, ∆

We present following algorithm 2 for learning the prefer-
ences of players in full information setting where all the
participating agents have the knowledge of universal gap ∆,
horizon T and arms K.

Index estimation: Here, the first step is to obtain a distinct
index for each player, which from Algorithm (1) will be the
player’s preference rank for arm a1. In the first round, all
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Algorithm 2 Expore-then-Gale-Shapley (view of player pi)
with Known Gap ∆

Input :Exploration rounds texp =

⌈
32K log T

∆2

⌉
7 Perform Index estimation (Algorithm 1)

// Learning Preferences
8 for t = 1, . . . , texp do
9 Ai(t) = a(Index+t−1)%K+1 // Round-robin

exploration

10 Observe X(i)
Ai(t)

(t) and update µ̂(i)
Ai(t)

, T
(i)
Ai(t)

if Āi(t) =

Ai(t)
11 end
12 Compute UCB(i)

k (texp) and LCB(i)
k (texp) for each k ∈ [K]

if ∃σ such that LCB(i)
σk

> UCB(i)
σk+1

for any k ∈ [K − 1]

then
13 Preferences = σ // this happens with high

probability
14 else
15 Preferences = arbitrary but fixed
16 end
// Perform Gale-Shapley

17 Propose using σ till acceptance
Initialize s = 1
for t = texp + 1, . . . , T do

18 Ai(t) = a
σ
(i)
s

s = s+ 1 if Āi(t) == ∅
19 end

players propose arm a1 and in the next round all players
except the accepted player propose arm a1 and so on. In the
beginning arm a1 will have arbitrary but distinct preference
ranking over players, hence leading to a distinct index for
each player.

After index estimation, each player performs a round-robin
exploration for texp number of rounds by pulling an dis-
tinct arm based on the distinct indices obtained from (1) at
each round. This ensures that at each round every player is
matched with the proposing arm. From the view of player pi,
after observing the reward from the matched arm Ai(t), it
updates an estimate of mean reward µ̂

(i)
Ai(t)

and the observed

time T
(i)
Ai(t)

which is defined as the number of times player

pi is matched with arm Ai(t) initialized as T (i)
Ai(0)

= 0. At
time t this is updated using

µ̂
(i)
Ai(t)

=
µ̂
(i)
Ai(t)

T
(i)
Ai(t)

+X
(i)
Ai(t)

T
(i)
Ai(t)

+ 1
, T

(i)
Ai(t)

= T
(i)
Ai(t)

+ 1

After texp exploration rounds player pi updates the UCB and

LCB estimates of µ(i)
k for each arm ak as

UCB(i)
k (t) = µ

(i)
k +

√
2 log t

T
(i)
k

and LCB(i)
k (t) = µ

(i)
k −

√
2 log t

T
(i)
k

where UCB(i)
k (t) and LCB(i)

k (t) are initialized as ∞ and
−∞ resp. for all arms ak. After this, player pi checks for
all possible permutations of arm preferences, and selects
the preference which has disjoint confidence intervals i.e.
a preference σ such that LCB(i)

σk
> UCB(i)

σk+1
for any k ∈

[K − 1]. We define ∆
(i)
max as the maximum stable regret

suffered by pi in all rounds which is ∆(i)
max = µi,m̄i

.

Theorem 3.1 (Regret of Algorithm 2). Suppose algorithm 2
is played for T iterations. Then, player pi incurs the regret
of

RP i(T ) ≤
(
N +

64K log T

∆2
+K2 +

NKπ2

3

)
∆(i)

max.

Remark 3.2. The regret order-wise matches with the regret
in the 1 sided learning case (Kong & Li; Basu et al., 2021).
Remark 3.3. This is not realistic, knowledge of ∆ is not
usually, available apriori.

3.2. Main Algorithm: Epoch-based CA-ETC

We now present the main algorithm, namely CA-ETCwhich
doesn’t know ∆ apriori and is fully decentralized and
communication-free. For this, CA-ETC is an epoch-based
explore then commit type algorithm. Here (Algorithm 3) we
describe the player’s learning procedure, the arm’s learning
procedure is similar which we describe in the Appendix.

The algorithm first uses the Index estimation subroutine
(1) to get a distinct index for each arm. We then proceed
with an epoch-based learning where in each epoch l, every
player performs round-robin exploration for 2l/γT0 rounds.
After the exploration, every agent checks if there exists a
preference ranking by permuting over all possible rankings
such that the confidence intervals are disjoint. If true, this
assures that the ranking found is a correct preference ranking
else every agent uses an arbitrary but fixed ranking over all
epochs. We then perform Gale-Shapley algorithm using
the preference ranking found which lasts atmost K2 rounds.
Since we do not know ∆, we aim to collect samples in the
exploration rounds of each epoch. Note that, when the total
sample size exceeds ⌈ 32K log T

∆2 ⌉ (Kong & Li), with high
probability, player i can estimate the correct preference. In
Algorithm 3, this happens after a finitely many epochs.

4. Theoretical Guarantees
In this section, we present the regret bounds for CA-ETC
for player pi. Similar regret can be obtained for arm aj
(we defer this to the appendix). Note that these bounds are
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Algorithm 3 Main Algorithm: Epoch-based CA-ETC (view
of player pi)
Input : Epoch length T0, Parameter γ ∈ (0, 1) with b =

21/γ

20 Run Algorithm 1 for Index Estimation
for l = 1, 2, . . . do

21 Base Algorithm (Exploration rounds = 2lT0,
Horizon length = blT0)

22 end

Algorithm 4 Base Algorithm: Expore-then-Gale-Shapley
(view of player pi)
Input :Exploration rounds 2lT0, Horizon blT0

// Learning Preferences

23 for t =
∑l−1

l′=1 2
l′T0 + 1, . . . ,

∑l−1
l′=1 2

l′

T 0 + 2lT0 do
// t is the global time

24 Ai(t) = a(Index+t−1)%K+1 // Round-robin
exploration

25 Observe X(i)
Ai(t)

(t) and update µ̂(i)
Ai(t)

, T
(i)
Ai(t)

if Āi(t) =

Ai(t)
26 end
27 Compute UCB(i)

k and LCB(i)
k for each k ∈ [K]

if ∃σ such that LCB(i)
σk

> UCB(i)
σk+1

for any k ∈ [K − 1]

then
28 Preferences = σ
29 else
30 Preferences = arbitrary but fixed
31 end
// Perform Gale-Shapley

32 Propose using σ till acceptance
Initialize s = 1
for t = 1, 2, . . . , blT0 − 2lT0 do

33 Ai(t) = a
σ
(i)
s

s = s+ 1 if Āi(t) == ∅
34 end

player-optimal. Recall the definition of the gap of the i-th
player ∆(i) and the universal gap ∆. We have the following
regret upper bound.

Theorem 4.1. Suppose CA-ETC is run with initial epoch
length T0 and input parameter γ ∈ (0, 1). Then, provided
the initial epoch satisfies

T0 ≳

[
32K log T

∆2(T −N)γ

] 1
1−γ

,

the (player-optimal) regret for player pi is given by

RP i(T ) ≤ N∆(i)
max + T0

(
64K log T

T0(∆(i))2
+ 4

)1/γ

∆(i)
max

+ 2T0

(
T −N

T0
+ 1

)γ

∆(i)
max

+K2γ log

(
T −N

T0
+ 1

)
∆(i)

max +
NKπ2

3
∆(i)

max.

Remark 4.2. CA-ETC takes γ and T0 as input parameters
to be chosen by the learner. Typical values of γ would be
{1/3, 1/4, 1/5}, which would imply a polynomial depen-
dence on log T and a weakly increasing function of T .
Remark 4.3 (Different terms). First term in the regret comes
from the index estimation subroutine. The second term
results from the round-robin exploration before player pi
estimate the correct preference ranking. The third and fourth
term comes from the round-robin exploration and Gale-
Shapley after the rank estimation. The last term results from
the SubGaussian concentration bound.
Remark 4.4 (Choice of T0). We have a condition that re-
stricts T0 to be too small. However, note that, unless the gap
∆ is too small, the condition is rather-mild. Of course, the
optimal choice of T0 depends on the gap, ∆ and hence not
known to the learner apriori.
Remark 4.5 (Regret Comparison). In comparison to 1 sided
learning papers (Sankararaman et al., 2021; Liu et al., 2021;
Kong & Li), the regret incurred by CA-ETC is high. This
can be attributed to the cost of 2 sided assumption free
learning. The dependence on γ comes from the multi-phase
nature of CA-ETC.

5. Conclusion and Future Direction
In this paper, we propose practical algorithms for 2-sided
learning in matching markets without restrictive assump-
tions. We analyze a multi-epoch ETC type algorithm and
obtain sub-linear regret. Note that we only leverage the
Explore-Then-Commit (ETC) algorithm for 2-sided learn-
ing. We refer to some preliminary experimental results in
the Appendix for proof of concept. An immediate future
work will be to study the UCB based algorithms for two
sided markets. Moreover, we would like to study the market
setup, with transferable utilities (i.e., monetary transfer) in a
2-sided setting. Furthermore, markets are seldom static, and
the preference ranking changes over time. Capturing the
dynamic behavior of markets in an assumption free 2-sided
setting is certainly challenging. We keep these as our future
endeavors.
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A. Appendix
A.1. Experiments
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Figure 1. Experiment on Synthetic Matching Market (CA-ETC with l1 = 1)
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Figure 2. Experiment on Synthetic Matching Market (CA-ETC with l1 = 0)

We experiment on a synthetic market with 5 players and 5 arms. We consider that the reward distributions are Gaussian
with mean randomly selected without repetition from [0, 0.25, 0.5, 0.75, 1] with standard deviation σ as 0.1. We plot the
player-optimal regret as well as the arm-optimal regret for all the agents (players and arms) in the system.

We experiment on two cases where CA-ETC starts with epoch l1 as 0 and 1. Surprisingly, one can note that for l1 = 0,
CA-ETC suffers less regret as compared to the algorithm with known gap. This is because texp is an overestimate of the
number of exploration rounds.
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Parameters:

• γ = 0.25

• T0 is chosen based on ∆ = 0.25 for this market, however in general one can use an highly optimistic value.

In general one can use T0 ∈ {1000, 2000, . . .}. One can also use the following scheme in which one starts with lower value
of T0 say 1000 and then increment by factors of 10 in each epoch. However, in general CA-ETC performance does not
change much with different values of T0 as long as it is optimistically high.
Experiments are done on 5 different seeds and the plots show the line plot of regret vs horizon with shaded region being the
95% confidence interval.

A.2. Proof of Theorem 3.1

First we present lemmas, which will support our theorems. We note that the this analysis goes more or less along the same
lines of (Kong & Li).

Let us define the event Fp(t) =

∃i ∈ [N ], j ∈ [K] : |µ̂(i)
j − µ

(i)
j | >

√
2 log t

T
(i)
j

, a player’s bad event that some preference

of the arms are not estimated by the players correctly at time t. We present the following Lemma 5.1 of (Kong & Li)

Lemma A.1.

E

[
T∑

t=1

1{Fp(t)}

]
≤ NKπ2

3
(1)

Lemma A.2. In round t, let T (i)(t) = minj∈[K] T
(i)
j (t) and T̄ (i) = 32 log T/(∆(i))2 where ∆(i) = minj ̸=j′ ∆

(i)
j,j′ =

minj ̸=j′ |µ(i)
j − µ

(i)
j′ |. Conditional on Fp(t)

∁, if T (i) > T̄ (i) we have UCB(i)
j (t) < LCB(i)

j′ (t) for any j, j′ ∈ [K] with

µ
(i)
j < µ

(i)
j′ .

Proof. We will prove this by contradiction i.e. suppose there exists j, j′ ∈ [K] with µ
(i)
j < µ

(i)
j′ such that UCB(i)

j (t) ≥
LCB(i)

j′ . Conditioned on Fp(t)
∁ we have that

|µ̂(i)
j − µ

(i)
j | ≤

√
2 log t

T
(i)
j

, |µ̂(i)
j′ − µ

(i)
j′ | ≤

√
2 log t

T
(i)
j′

and using the definition of UCB(i)
j (t) and LCB(i)

j′ (t) we have

µ
(i)
j′ − 2

√
2 log t

T
(i)
j

≤ LCB(i)
j′ (t) ≤ UCB(i)

j (t) ≤ µ
(i)
j + 2

√
2 log t

T
(i)
j

This implies

∆
(i)
j,j′ = µ

(i)
j′ − µ

(i)
j ≤ 4

√
2 log t

T
(i)
j

=⇒ T (i)(t) ≤ 32 log T

(∆
(i)
j,j′)

2
≤ 32 log T

(∆(i))2
.

This contradicts the fact that T (i)(t) > T̄ (i)(t)

Lemma A.3. Conditional on Fp(t)
∁, UCB(i)

j (t) < LCB(i)
j′ (t) implies µ(i)

j < µ
(i)
j′ .
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Proof. Using the LCB and UCB definiton we have

LCB(i)
j (t) = µ̂

(i)
j −

√
2 log t

T
(i)
j

≤ µ
(i)
j ≤ µ̂

(i)
j +

√
2 log t

T
(i)
j

= UCB(i
j (t)

where the inequalities are consequences of the conditional Fp(t)
∁. Thus if UCB(i)

j (t) < LCB(i)
j′ (t), we would have

µ
(i)
j ≤ UCB(i)

j (t)) < LCB(i)
j′ (t) ≤ µ̂

(i)
j′

which proves the lemma.

Lemma A.4. Conditional on ∩T
t=1Fp(t)

∁, after texp number of exploration rounds a non-zero regret may be incurred for at
most K2 rounds where

texp =

⌈
32K log T

∆2

⌉
(2)

Proof. Since in each exploration period all players propose to distinct arms using a round-robin fashion, no collision occurs
and all players are accepted at each round of the exploration period in each epoch. Thus after texp number of exploration
rounds it holds that T (i)

j ≥ 32 log T/∆2 ≥ 32 log T/(∆(i))2 . for any i ∈ [N ] and j ∈ [K].

Now according to Lemma A.2, when T
(i)
j ≥ 32 log T/(∆(i))2 for any arm aj , player pi finds a permutation σ(i) over arms

such that LCB(i)

σ
(i)
k

< UCB(i)

σ
(i)
k+1

for any k ∈ [K − 1].

This implies that after texp, player pi finds a permutation of arms with disjoint confidence intervals. Since, Gale-Shapley
algorithm will last at most K2 steps, the regret afterwards will be zero conditioned on the event ∩T

t=1Fp(t)
∁.

Proof of Theorem 3.1.

RP i(T ) =

T∑
t=1

µ
(i)
m̄i

− E

[
T∑

t=1

X
(i)
j (t)

]

≤ E

[
T∑

t=1

1{Ā(t) ̸= m̄}∆(i)
max

]

≤ N∆(i)
max + E

[
T∑

t=N+1

1{Ā(t) ̸= m̄,Fp(t)
∁}∆(i)

max

]
+ E

[
T∑

t=1

1{Fp(t)}∆(i)
max

]

≤
(
N +

64K log T

∆2
+K2 +

NKπ2

3

)
∆(i)

max.

A.3. Proof of Theorem 4.1

Lemma A.5. Conditional on ∩T
t=1Fp(t)

∁, after epoch lmax, the regret for the period blT0 − 2lT0 −K2 in epoch l > lmax

is zero where

lmax = min

{
l :

l∑
l′=1

2l
′
T0 ≥ 32K log T/(∆(i))2

}
. (3)

Proof. Since in each exploration period all players propose to distinct arms using a round-robin fashion, no collision occurs
and all players are accepted at each round of the exploration period in each epoch. Thus at the end of epoch lmax it holds
that T (i)

j ≥ 32 log T/(∆(i))2 for any i ∈ [N ] and j ∈ [K].

Now according to Lemma A.2, when T
(i)
j ≥ 32 log T/(∆(i))2 for any arm aj , player pi finds a permutation σ(i) over arms

such that LCB(i)

σ
(i)
k

< UCB(i)

σ
(i)
k+1

for any k ∈ [K − 1].

This implies that after l > lmax, player pi finds a permutation of arms with disjoint confidence intervals. Since, Gale-Shapley
algorithm will last at most K2 steps, we will have zero regret in the period blT0 − 2lT0 −K2 conditioned on the event
∩T
t=1Fp(t)

∁.
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We will find an equation of lmax, from the definition we have and the fact that b > 2

lmax =

⌈
log

(
32K log T

T0(∆(i))2
+ 2

)
− 1

⌉
=

⌈
log

(
16K log T

T0(∆(i))2
+ 1

)⌉
=⇒ log

(
16K log T

T0(∆(i))2
+ 1

)
≤ lmax < log

(
16K log T

T0(∆(i))2
+ 1

)
+ 1 = log

(
32K log T

T0(∆(i))2
+ 2

)
Proof of Theorem 4.1. The optimal stable regret for player pj is the sum of regret before and after lmax.

RP i(T ) = E

[
T∑

t=1

µ
(i)
m̄i

−X(i)(t)

]

≤ E

[
T∑

t=1

1{Ā(t) ̸= m̄i}∆(i)
max

]

≤ N∆(i)
max + E

[
T∑

N+1

1{Ā(t) ̸= m̄i,Fp(t)
∁}

]
∆(i)

max + E

[
T∑

N+1

1{Fp(t)}

]
∆(i)

max

≤ N∆(i)
max + E

[
T∑

N+1

1{Ā(t) ̸= m̄i,Fp(t)
∁}

]
∆(i)

max +
NKπ2

3
∆(i)

max

Let T1 =
∑lmax

l=1 blT0 and T2 =
∑l̃

l=lmax+1 b
lT0 be the time-period before and after epoch l̃ with T −N = T1 + T2. Thus

we have

E

[
T∑

N+1

1{Ā(t) ̸= m̄i,Fp(t)
∁}

]
∆(i)

max = E

[
lmax∑
l=1

blT0

]
∆(i)

max + E

 l̃∑
l=lmax+1

2lT0 +K2

∆(i)
max

The regret before epoch lmax i.e. for l ≤ lmax is blT0. Thus the total regret till the end of the epoch lmax is

R1(lmax) = E

[
lmax∑
l=1

blT0

]
∆(i)

max

= T0
blmax+1 − b

b− 1
∆(i)

max

≤ T0
b
log

64K log T

T0(∆(i))2
+4


− b

b− 1
∆(i)

max

< T0

(
64K log T

T0(∆(i))2
+ 4

)log b

∆(i)
max

We have

l̃∑
l=1

blT0 = T −N

bl̃+1 − b

b− 1
T0 = T −N

bl̃+1 =
(T −N)

T0
(b− 1) + b

l̃ = logb

(
b− 1

b

(T −N)

T0
+ 1

)
< log

(
T −N

T0
+ 1

)logb 2
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Now we will check the regret for some epoch l > lmax is given by 2lT0 +K2. Hence total regret after epoch lmax is

E

 l̃∑
l=lmax+1

2lT0 +K2

∆(i)
max ≤ 2l̃+1T0∆

(i)
max − 2lmax+1 +K2(l̃ − lmax)

≤ 2T0

(
T −N

T0
+ 1

)logb 2

∆(i)
max − C1∆

(i)
max +K2

(
logb

(
T −N

T0
+ 1

)
− C2

)
∆(i)

max

< 2T0

(
T −N

T0
+ 1

)γ

∆(i)
max +K2γ log

(
T −N

T0
+ 1

)
∆(i)

max

C1 and C2 are positive constants independent of b. Thus the total regret is

RP i(T ) ≤ N∆(i)
max + T0

(
64K log T

T0(∆(i))2
+ 4

)1/γ

∆(i)
max

+ 2T0

(
T −N

T0
+ 1

)γ

∆(i)
max +K2γ log

(
T −N

T0
+ 1

)
∆(i)

max +
NKπ2

3
∆(i)

max.

where ∆
(i)
max is the maximum stable regret suffered by pi in all rounds which is ∆(i)

max = µi,m̄i where m̄i is the optimal
stable match of player pi.

For T2 to be defined correctly we need that

log

(
T −N

T0
+ 1

)γ

> l̃ ≥ lmax + 1 ≥ log

(
32K log T

T0(∆(i))2
+ 2

)
=⇒

(
T −N

T0

)γ

≳
32K log T

T0(∆(i))2

T0 ≳

(
32K log T

(∆(i))2(T −N)γ

) 1
1−γ

∀i

=⇒ T0 ≳

(
32K log T

∆2(T −N)γ

) 1
1−γ

A.4. Generalized CA-ETC

In this section, we consider a generalization of CA-ETC where in the l-th epoch, we have clT0 exploration and blT0 total
rounds with b > c > 1 and β = c/b ∈ (1/b, 1). With this, the new condition for T0 is as follows

T0 ≳

(
32K log T

∆2
(bβ − 1)

)− logβ b (
1

T −N

)−(logβ b+1)

(4)

Theorem A.6. For the generalized CA-ETC algorithm with b > 1 and β ∈ (1/b, 1) as input with T0 satisfying (4) the
regret for player pi is

RP i(T ) ≤ N∆(i)
max +

T0

b− 1

(
32K log T

T0(∆(i))2
(bβ)2 + (bβ)2

) 1
1+logb β

∆(i)
max

+
T0

bβ − 1

(
b
(T −N)

T0
+ b

)1+logb β

∆(i)
max +K2 logb

(
T −N

T0
+ 1

)
+

NKπ2

3
∆(i)

max

Remark A.7. Generalized CA-ETC gives us one extra degree of freedom, i.e., the parameter c. For the CA-ETC algorithm
of Algorithm 3, we have c = 2 and b = 21/γ .
Remark A.8. In general one can also choose the explorations rounds as 2l and total rounds as 2l+2−cl+K2 were c must be
appropriately chosen. The intuition behind this is that the rounds after Gale-Shapley of atmost K2 rounds should decrease
with epoch l.
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Lemma A.9. Conditional on ∩T
t=1Fp(t)

∁, after epoch lmax, the regret for the period blT0 − 2lT0 −K2 in epoch l > lmax

is zero where

lmax = min

{
l :

l∑
l′=1

cl
′
T0 ≥ 32K log T/(∆(i))2

}
. (5)

Proof. Since in each exploration period all players propose to distinct arms using a round-robin fashion, no collision occurs
and all players are accepted at each round of the exploration period in each epoch. Thus at the end of epoch lmax it holds
that T (i)

j ≥ 32 log T/(∆(i))2 for any i ∈ [N ] and j ∈ [K].

Now according to Lemma A.2, when T
(i)
j ≥ 32 log T/(∆(i))2 for any arm aj , player pi finds a permutation σ(i) over arms

such that LCB(i)

σ
(i)
k

< UCB(i)

σ
(i)
k+1

for any k ∈ [K − 1].

This implies that after l > lmax, player pi finds a permutation of arms with disjoint confidence intervals. Since, Gale-Shapley
algorithm will last at most K2 steps, we will have zero regret in the period blT0 − 2lT0 −K2.

We will find an equation of lmax, from the definition we have and the fact that b > 2

lmax ≥ logc

(
32K log T

T0(∆(i))2
(c− 1)

c
+ 1

)

lmax =

⌈
logc

(
32K log T

T0(∆(i))2
(c− 1)

c
+ 1

)⌉
=⇒ logc

(
32K log T

T0(∆(i))2
(c− 1)

c
+ 1

)
≤ lmax < logc

(
32K log T

T0(∆(i))2
(c− 1)

c
+ 1

)
+ 1 = logc

(
32K log T

T0(∆(i))2
(c− 1) + c

)

Proof of Theorem A.6. The optimal stable regret for player pi is the sum of regret before and after lmax.

RP i(T ) = E

[
T∑

t=1

µ
(i)
m̄i

−X(i)(t)

]

≤ E

[
T∑

t=1

1{Ā(t) ̸= m̄i}∆(i)
max

]

≤ N∆(i)
max + E

[
T∑

N+1

1{Ā(t) ̸= m̄i,Fp(t)
∁}

]
∆(i)

max + E

[
T∑

N+1

1{Fp(t)}

]
∆(i)

max

≤ N∆(i)
max + E

[
T∑

N+1

1{Ā(t) ̸= m̄i,Fp(t)
∁}

]
∆(i)

max +
NKπ2

3
∆(i)

max

Let T1 =
∑lmax

l=1 blT0 and T2 =
∑l̃

l=lmax+1 b
lT0 be the time-period before and after epoch l̃ with T −N = T1 + T2. Thus

we have

E

[
T∑

N+1

1{Ā(t) ̸= m̄i,Fp(t)
∁}

]
∆(i)

max = E

[
lmax∑
l=1

blT0

]
∆(i)

max + E

 l̃∑
l=lmax+1

2lT0 +K2

∆(i)
max

13
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The regret before epoch lmax i.e. for l ≤ lmax is blT0. Thus the total regret till the end of the epoch lmax is

R1(lmax) = E

[
lmax∑
l=1

blT0

]
∆(i)

max

= T0
blmax+1 − b

b− 1
∆(i)

max

≤ T0
b
logc

32K log T

T0(∆(i))2
c(c−1)+c2


− b

b− 1
∆(i)

max

<
T0

b− 1

(
32K log T

T0(∆(i))2
bγ(bγ − 1) + (bγ)2

) 1
1+logb γ

∆(i)
max

We have

l̃∑
l=1

blT0 = T −N

bl̃+1 − b

b− 1
T0 = T −N

bl̃+1 =
(T −N)

T0
(b− 1) + b

l̃ = logb

(
b− 1

b

(T −N)

T0
+ 1

)
< logb

(
T −N

T0
+ 1

)

Now we will check the regret for some epoch l > lmax is given by 2lT0 +K2. Hence total regret after epoch lmax is

E

 l̃∑
l=lmax+1

clT0 +K2

∆(i)
max ≤ cl̃+1

c− 1
T0∆

(i)
max +K2 l̃

≤ c
logb

(b−1)
(T −N)

T0
+b


c− 1

T0∆
(i)
max +K2 logb

(
T −N

T0
+ 1

)
≤ T0

c− 1

(
(b− 1)

(T −N)

T0
+ b

)logb c

∆(i)
max +K2 logb

(
T −N

T0
+ 1

)
=

T0

bγ − 1

(
(b− 1)

(T −N)

T0
+ b

)1+logb γ

∆(i)
max +K2 logb

(
T −N

T0
+ 1

)
Thus the total regret is

RP i(T ) ≤ N∆(i)
max +

T0

b− 1

(
32K log T

T0(∆(i))2
(bβ)2 + (bβ)2

) 1
1+logb β

∆(i)
max

T0

bβ − 1

(
b
(T −N)

T0
+ b

)1+logb β

∆(i)
max +K2 logb

(
T −N

T0
+ 1

)
+

NKπ2

3
∆(i)

max

where ∆
(i)
max is the maximum stable regret suffered by pi in all rounds which is ∆(i)

max = µj,m̄i
where m̄i is the optimal

stable match of player pi. Note that C1 and C2 depends on T0 and hence can be further optimized for different values of T0.
This is the total regret for player pi.

14
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For T2 to be defined correctly we need that

logb

(
T −N

T0
+ 1

)
> l̃ ≥ lmax + 1 ≥ logc

(
32K log T

T0(∆(i))2
(c− 1) + c

)
> logc

(
32K log T

T0(∆(i))2
(c− 1)

)
=⇒ log

(
T −N

T0
+ 1

)logb 2

> log

(
32K log T

T0(∆(i))2
(c− 1)

)logc 2

=⇒
(
T −N

T0

)
≳

(
32K log T

T0(∆(i))2
(c− 1)

) log b
log c

T0 ≳

(
32K log T

(∆(i))2
(c− 1)

) logc b
logc b−1

(
1

T −N

) 1
logc b−1

T0 ≳

(
32K log T

(∆(i))2
(bβ − 1)

)− logβ b (
1

T −N

)−(logβ b+1)

1 < c < b with β =
c

b
=⇒ 1

b
< β < 1

15
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A.5. Arm’s Learning

A.5.1. KNOWN GAP

Algorithm 5 Expore-then-Gale-Shapley (view of arm aj) with Known Gap ∆

Input :Exploration rounds texp =

⌈
32K log T

∆2

⌉
// Learning Preferences

35 for t = 1, . . . , texp do
36 Accept arm with estimated preferences

Observe Y
(j)

A−1
j (t)

(t) and update µ̂
(j)

A−1
j (t)

, T
(j)

A−1
j (t)

if Ā−1
j (t) = A−1

j (t)

37 end
38 Compute UCB(j)

n and LCB(j)
n for each n ∈ [N ]

if ∃β such that LCB(j)
βn

> UCB(j)
βn+1

for any n ∈ [N − 1] then
39 Preferences = β
40 else
41 Preferences = arbitrary but fixed
42 end
// Perform Gale-Shapley using the Preferences β(j) = β = (β

(j)
1 , β

(j)
2 , . . . , β

(j)
N ) found

43 Propose using β till acceptance
Initialize s = 1
for t = texp + 1, . . . , T do

44 Accept player using the estimated preference β(j)

s = s+ 1 if Ā−1
j (t) == ∅

45 end

A.5.2. CA-ETC

Algorithm 6 Base Algorithm: Expore-then-Gale-Shapley (view of arm aj)

Input :Exploration rounds 2lT0, Horizon blT0

// Learning Preferences

46 for t =
∑l−1

l′=1 2
l′T0 + 1, . . . ,

∑l−1
l′=1 2

l′T0 + 2lT0 do
47 Accept arm with estimated preferences

Observe Y
(j)

A−1
j (t)

(t) and update µ̂
(j)

A−1
j (t)

, T
(j)

A−1
j (t)

if Ā−1
j (t) = A−1

j (t)

48 end
49 Compute UCB(j)

n and LCB(j)
n for each n ∈ [N ]

if ∃β such that LCB(j)
βn

> UCB(j)
βn+1

for any n ∈ [N − 1] then
50 Preferences = β
51 else
52 Preferences = arbitrary but fixed
53 end
// Perform Gale-Shapley using the Preferences β(j) = β = (β

(j)
1 , β

(j)
2 , . . . , β

(j)
N ) found

54 Propose using β till acceptance
Initialize s = 1
for t = 1, 2, . . . , blT0 − 2lT0 do

55 Accept player using the estimated preference β(j)

s = s+ 1 if Ā−1
j (t) == ∅

56 end
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Algorithm 7 Main Algorithm: Epoch-based CA-ETC (view of player aj)

Input :Epoch length T0, Parameter γ ∈ (0, 1) with b = 21/γ

57 for l = 1, 2, . . . do
58 Base Algorithm (Exploration rounds = 2lT0, Horizon length = blT0)
59 end

A.5.3. ANALYSIS

Theorem A.10 (Regret of Algorithm 5). Suppose algorithm 5 is played for T iterations. Then, arm aj incurs the regret of

RAj(t) ≤
(
64K log T

∆2
+K2 +

NKπ2

3

)
∆̄(j)

max.

Theorem A.11 (Regret of Algorithm 7). Suppose CA-ETC is run with initial epoch length T0 and input parameter
γ ∈ (0, 1). Then, provided the initial epoch satisfies

T0 ≳

[
32K log T

∆2(T −N)γ

] 1
1−γ

,

the (arm-optimal) regret for arm aj is given by

RAj(t) ≤ T0

(
64K log T

T0(∆(j))2
+ 4

)1/γ

∆(j)
max

+ 2T0

(
T −N

T0
+ 1

)γ

∆(j)
max +K2γ log

(
T −N

T0
+ 1

)
∆(j)

max +
NKπ2

3
∆(j)

max.

The proof of these follow the same steps as the proof for the players, and hence skipped.
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