
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING TO OPTIMIZE FOR MIXED-INTEGER NON-
LINEAR PROGRAMMING

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixed-integer non-linear programs (MINLPs) arise in various domains, such as
energy systems and transportation, but are notoriously difficult to solve. Recent
advances in machine learning have led to remarkable successes in optimization
tasks, an area broadly known as learning to optimize. This approach includes us-
ing predictive models to generate solutions for optimization problems with contin-
uous decision variables, thereby avoiding the need for computationally expensive
optimization algorithms. However, applying learning to MINLPs remains chal-
lenging primarily due to the presence of integer decision variables, which compli-
cate gradient-based learning. To address this limitation, we propose two differen-
tiable correction layers that generate integer outputs while preserving gradient in-
formation. Combined with a soft penalty for constraint violation, our framework
can tackle both the integrality and non-linear constraints in a MINLP. Experi-
ments on three problem classes with convex/non-convex objective/constraints and
integer/mixed-integer variables show that the proposed learning-based approach
consistently produces high-quality solutions for parametric MINLPs extremely
quickly. As problem size increases, traditional exact solvers and heuristic meth-
ods struggle to find feasible solutions, whereas our approach continues to deliver
reliable results. Our work extends the scope of learning-to-optimize to MINLP,
paving the way for integrating integer constraints into deep learning models. Our
code is available at https://anonymous.4open.science/r/L2O-MINLP/.

1 INTRODUCTION

Mixed-integer optimization is fundamental to a broad spectrum of real-world applications spanning
problems in fields as diverse as pricing Kleinert et al. (2021), battery dispatch (Nazir & Almas-
salkhi, 2021), transportation (Schouwenaars et al., 2001), and optimal control (Marcucci & Tedrake,
2020). These problems involve discrete decisions, such as determining the number of items or the
activation of generators, combined with complex non-linear system constraints. Mixed-integer lin-
ear programming (MILP) has been widely adopted due to its well-established solution techniques.
However, many practical problems exhibit non-linear relationships, leading to mixed-integer non-
linear programs (MINLPs). Unlike MILPs, where techniques such as branch-and-bound (Land &
Doig, 2010), cutting planes (Gomory, 2010), and heuristics (Crama et al., 2005; Johnson & Mc-
Geoch, 1997) have matured, MINLPs require more complex approaches due to the combination
of discrete variables and non-convex constraints and objective function. Standard methods include
outer approximation (Fletcher & Leyffer, 1994), spatial branch-and-bound (Belotti et al., 2009), and
decomposition techniques (Nowak, 2005), but these often struggle to scale to large problems.

Many applications demand that MINLPs be solved within a limited time budget, further compli-
cating the picture. To overcome this, learning-to-optimize (L2O) methods offer a promising alter-
native by leveraging machine learning (ML) to enhance or even replace conventional optimization
approaches. In particular, end-to-end optimization directly maps input instance parameters to solu-
tions of optimization problems through a trained model (Kotary et al., 2021b; Chen et al., 2022a).
By identifying patterns in a distribution of similar instances of the same optimization problem and
predicting solutions accordingly, end-to-end optimization can bypass traditional, computationally
intensive optimization methods, enabling faster computation and improved scalability.

1

https://anonymous.4open.science/r/L2O-MINLP/

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Many real-world applications have stringent requirements on operational, physical, or safety con-
straints. Thus, recent research in machine learning has focused on the feasibility issue. While
various strategies exist, such as embedding hard constraints into neural network architectures (Hen-
driks et al., 2020), using penalty terms in loss functions for soft constraints (Pathak et al., 2015; Jia
et al., 2017), or projecting solutions onto feasible regions (Donti et al., 2021), these methods are not
directly applicable for problems that involve integer decisions.

This work tackles, for the first time, the non-differentiability associated with predicting integer vari-
ables using a deep neural network, in conjunction with non-linear objective function and constraints.
This challenge has been underexplored in learning-based methods due to the absence of useful gradi-
ent information. To that end, we propose two differentiable correction layers for rounding, allowing
for gradient-based optimization of a neural network that generates high-quality integer solutions
while maintaining feasibility. Our contributions are as follows:

– We initiate the study of the learning-to-optimize problem in MINLP for the first time in the
literature, a paradigm that can enable efficient solution generation as problem parameters
vary.

– We develop differentiable correction layers that perform soft rounding of neural network
outputs into integer assignments to decision variables.

– We adopt a self-supervised approach that requires no labeled data for training, making our
method efficient and scalable to large problem instances.

– We evaluate our methods on diverse problem benchmarks and show that they find high-
quality solutions extremely fast even for large-scale instances where other methods fail.

2 RELATED WORK

End-to-end optimization. End-to-end optimization focuses on training machine learning models
to predict the problem solutions, bypassing the need for computationally expensive solvers. One
of the early approaches was proposed by Hopfield & Tank (1985), who used Hopfield networks to
solve the traveling salesperson problem by incorporating a Lagrangian penalty for constraint feasi-
bility. Similarly, Fioretto et al. (2020) applied the Lagrangian penalty in the context of continuous
non-linear optimization for energy systems. In addition to penalty-based methods for ensuring feasi-
bility, Pan et al. (2020) embedded certain constraints directly into neural networks by leveraging the
range of output values and solving linear systems. Although these supervised learning methods sig-
nificantly reduce inference time, they typically require large offline datasets of solutions (Gleixner
et al., 2021; Kotary et al., 2021a), which can be impractical for large-scale problems where gener-
ating solutions is computationally expensive. This limitation highlights the need for self-supervised
learning approaches (Donti et al., 2021), which minimize both the objective function and constraint
violation from the predicted values, without relying on the imimitation of pre-solved solutions. Our
method first extends this self-supervised paradigm to problems involving discrete decision variables,
further broadening its applicability to mixed-integer optimization.

Constrained neural architectures. Specific neural network architectures can be designed to im-
pose certain classes of hard constraints. For instance, Hendriks et al. (2020) incorporate linear
operator constraints directly into the model design. Vinyals et al. (2015) and Dai et al. (2017) lever-
aged the inherent structure of graphs to construct feasible solutions for the traveling salesperson
problem. Additionally, Kervadec et al. (2022) demonstrated that employing a log-barrier method
for inequality constraints improves accuracy, constraint satisfaction, and training stability. Penalty
methods (Pathak et al., 2015; Jia et al., 2017), which impose inequality constraints through regu-
larization terms in the loss function, have also gained popularity for constraining neural networks.
As noted by Márquez-Neila et al. (2017), in practice, methods that incorporate hard constraints
rarely outperform their soft constraint counterparts, despite the latter offering weaker theoretical
performance guarantees. Building on penalty methods, Donti et al. (2021) proposed a differentiable
correction approach to complete partial solutions for linear equations and project solutions onto the
feasible region. In this paper, we adopt a penalty method for handling constraints and introduce two
novel differentiable rounding correction layers to guarantee the integrity of the solution.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Learning for mixed-integer programming. There has been significant interest in using ML to
accelerate the solution of integer programs. The vast majority of the work in this space focuses on
learning search strategies for exact MILP solvers. This includes parameter tuning (Xu et al., 2011),
preprocessing (Berthold & Hendel, 2021), branching variable selection (Khalil et al., 2016; Alvarez
et al., 2017; Gasse et al., 2019; Zarpellon et al., 2021), node selection (He et al., 2014), heuristic
selection (Chmiela et al., 2021), and cut selection and generation (Deza & Khalil, 2023). Another
line of research in ML-for-MILP relates to learning to generate integer solutions heuristically (Nair
et al., 2020; Khalil et al., 2022; Ding et al., 2020; Sonnerat et al., 2021; Song et al., 2020; Bertsimas
& Stellato, 2022; Huang et al., 2023; Ye et al.). We refer to the surveys of Bengio et al. (2021)
and Zhang et al. (2023) for more details. In contrast, there has been much less work on MINLP.
Illustrative examples include the work of Cauligi et al. (2021) who proposed a two-stage algorithm
for quickly finding high-quality solutions for mixed-integer convex programs (MICPs), Baltean-
Lugojan et al. (2019) who use supervised learning to select cuts for quadratic optimization, Nowak
et al. (2018) who learn to solve quadratic assignment problems with graph networks, and Bonami
et al. (2022) who use a classifier to decide on the linearization of mixed-integer quadratic prob-
lems. Most relevant to our method is the recently proposed SurCO approach of Ferber et al. (2023).
They focus on mixed-integer problems with non-linear objective and linear constraints, learning to
approximate the former with a linear function for a simpler heuristic optimization. Our approach
differs from all of the above in its scope, addressing the most general class of MINLPs.

Differentiable optimization. A different category of methods integrates optimization solvers as
layers within deep neural network architectures (Agrawal et al., 2019). These methods can handle
various types of optimization problems, such as quadratic programs (Amos & Kolter, 2017; Samb-
harya et al., 2023), stochastic optimization (Donti et al., 2017), submodular optimization (Djolonga
& Krause, 2017), and even integer linear programs (Wilder et al., 2019; Berthet et al., 2020; Pogančić
et al., 2020). In these approaches, optimization algorithms or solvers are embedded within the neu-
ral network, allowing gradients of optimization solvers to be computed and propagated during back-
propagation. King et al. (2024) shows how differentiable optimization can enhance the convergence
of proximal operator algorithms via end-to-end learning of proximal metrics. However, as Tang &
Khalil (2024) noted, training with a differentiable optimizer requires iteratively solving optimization
throughout the training process, making the computational burden prohibitively expensive. In con-
trast, our self-supervised approach generates solutions directly through neural network structures,
eliminating the need to repeatedly call high-complexity solvers and thus significantly reducing com-
putational overhead.

3 LEARNING TO OPTIMIZE MINLPS: A PROBLEM FORMULATION

A generic learning-to-optimize formulation for parametric mixed-integer non-linear programming
is given by:

min
Θ

E
[
f(x̂, ξ)

]
, s.t. g(x̂, ξ) ≤ 0, x̂ ∈ Rnr × Znz , x̂ = ψΘ(ξ).

Here, ξi ∈ Rnξ is a vector of instance parameters which vary across different instances; the mapping
ψΘ(ξ

i) is a neural network with weights Θ that outputs a parametric solution x̂i; x̂i = (x̂i
r, x̂

i
z) is a

predicted assignment for the mixed-integer decision variables, where x̂i
r ∈ Rnr and x̂i

z ∈ Znz rep-
resent the continuous and integer parts, respectively. The goal is to find the neural network weights
that minimize the expected objective function f(x̂, ξ) over the parameter distribution, subject to the
constraints g(x̂, ξ) ≤ 0. Note that g(·) is a vector-valued function representing one or more in-
equality constraints. As is typical in MINLP, we assume that the objective and constraint functions
are differentiable.

As is typical, we will train the neural network using empirical risk minimization on a sample of m
training instances. Then, the average value of the objective function f(·) serves as a natural loss
function. Our approach is self-supervised since the loss calculation does not require any labeled
data. This is particularly appealing as computing optimal or even feasible solutions to a MINLP
is, in general, extremely challenging. Solely minimizing the average objective is insufficient if the
solutions violate the constraints. Therefore, similarly to Donti et al. (2021), we incorporate penalty
terms into the loss function to account for constraint violations, enhancing the feasibility of the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

solution and resulting in a soft-constrained empirical risk minimization loss function given:

L(Θ) =
1

m

m∑
i=1

[
f(x̂i, ξi) + λ · ∥g(x̂i, ξi)+∥1

]
with x̂i = ψΘ(ξ

i), (2)

where ∥ (·)+ ∥1 ensures only the sum of positive constraint violations are penalized (implemented
via a ReLU function), and λ > 0 is a penalty hyperparameter that balances the trade-off between
minimizing the objective function and satisfying the constraints.

4 PRELIMINARIES: DIFFERENTIATING THROUGH DISCRETE OPERATIONS

Straight-through Estimator. The Straight-through Estimator (STE) (Bengio et al., 2013) is a sim-
ple yet effective method for handling non-differentiable operations in neural networks. In our ap-
proaches, STE plays a crucial role in enabling backpropagation through discrete operations. During
the forward pass, STE applies a (non-differentiable) discrete operation, such as rounding a variable
up or down, binarizing it, or using an indicator function I(·). However, in the backward pass, STE
replaces the non-existent gradient of these discrete functions with soft approximations. For round-
ing operations, the gradient of the identity function is used during backpropagation, whereas for
binarization or indicator functions, the gradient of the Sigmoid function is applied.

Gumbel-Sigmoid Noise. Although the STE is effective for backpropagating through discrete de-
cisions, it lacks the stochasticity that can improve model training. This is where the Gumbel-noise
method (Jang et al., 2016) comes into play. Specifically, Gumbel noise perturbs the logits before
applying the Sigmoid function, allowing for randomness in the binary decisions. After this, a hard
binarization step is applied using the STE, ensuring that the final outputs are discrete binary values
while retaining gradients for backpropagation. Further technical details can be found in Appendix A.

5 LEARNING TO OPTIMIZE MINLPS WITH CORRECTION LAYERS

Samples of problem
parameters 𝝃𝝃ϵ𝑃𝑃𝝃𝝃

Solution mapping 𝜋𝜋Θ1 𝝃𝝃𝑖𝑖

for Continuous Relaxation
Rounding correction

φΘ2 �𝒙𝒙𝑖𝑖 , 𝝃𝝃𝑖𝑖 for integrality
Loss function ℒ Θ

with Constraint Penalties

𝝃𝝃𝑖𝑖 �𝒙𝒙𝑖𝑖 ∈ ℝ𝑛𝑛𝑟𝑟+𝑛𝑛𝑧𝑧 �𝒙𝒙𝑖𝑖 ∈ ℝ𝑛𝑛𝑟𝑟 × ℤ𝑛𝑛𝑧𝑧

𝝃𝝃𝑖𝑖

Figure 1: Conceptual diagram for our self-supervised differentiable programming-based solution
approach for parametric MINLP problems.

Our learnable correction layers, Rounding Classification (RC) and Learnable Threshold (LT), are
designed to handle the integrality constraints of MINLPs. We decompose the mapping ψΘ : Rnξ 7→
Rnr × Znz from an instance parameter vector to a candidate mixed-integer solution into two steps:

1. The first step consists in applying a learnable relaxed solution mapping πΘ1
: Rnξ 7→

Rnr+nz encoded by a deep neural network with weights Θ1. It outputs a continuously
relaxed solution x̄i ∈ Rnr+nz without enforcing the integrality requirement. Note that
continuous variables are also predicted in this first step.

2. The second step is a differentiable correction layer φΘ2
: Rnr+nz×Rnξ 7→ Rnr×Znz that

takes as input the instance parameter vector and the continuous solution produced in the first
step, and outputs a candidate mixed-integer solution while maintaining differentiability.
Here, Θ2 represents the weights of the neural network δΘ2 : Rnr+nz × Rnξ 7→ Rnr+nz ,
which implicitly influences the rounding strategy employed by the correction layer φΘ2 .

They differ in how to determine the rounding direction but are equally easy to train with gradient
descent and fast at test time. RC utilizes a classification-based stochastic rounding approach, while
LT employs learnable thresholds to determine rounding directions. Further details are provided in
Appendix B.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Alogorithm. Algorithm 1 summarizes both of our approaches. Line 1 invokes the first step’s
network πΘ1

and lines 2–11 describe both versions of φΘ2
. Our correction layers are not only simple

and efficiently computable but also designed to be trainable to refine its rounding strategy. While
the STE and Gumbel-Sigmoid techniques have been used to train binarized or quantized neural
networks, they have not been leveraged in the context of learning-to-optimize to our knowledge. As
we will see in the experimental results, the simplicity of the correction layers is key to fast solution
generation in large-scale MINLP problems.

Algorithm 1 Learning-to-optimize MINLPs with Correction Layers: Forward Pass.

Require: Instance of the problem parameters ξi, neural networks πΘ1(·) and δΘ2(·)
1: Predict a continuously relaxed solution x̄i ← πΘ1(ξ

i)
2: Obtain an initial correction prediction hi ← δΘ2(x̄

i, ξi)
3: Update continuous variables: x̂i

r ← x̄i
r + hi

r

4: Round integer variables down: x̂i
z ← ⌊x̄i

z⌋
5: if using Rounding Classification then
6: Compute bi as the rounding direction using Gumbel-Sigmoid(hi

z)
7: else if using Learnable Threshold then
8: Compute vi ∈ [0, 1]nz ← Sigmoid(hi

z)
9: Compute rounding direction: bi ← I

(
(x̄i

z − x̂i
z)− vi > 0

)
10: end if
11: Update integer variables: x̂i

z ← x̂i
z + bi

12: return x̂i

Finally, during training, the loss function eq. (2) is used to train the neural network weights Θ =
Θ1 ∪ Θ2, implicitly taking into account the objective function value and constraint violations of
the predicted mixed-integer solution x̂i. This process is illustrated in Figure 1. Additionally, an
example of the evolution of predicted solutions during training is provided in Appendix C for further
visualization.

These approaches can be viewed as an end-to-end learnable version of the Relaxation Enforced
Neighborhood Search (RENS) algorithm (Berthold, 2014). Instead of explicitly searching the neigh-
borhood of the relaxed solution, the neural network implicitly learns the corrections required to
achieve a feasible integer solution by exploring the solution space near the integer variables while
updating the continuous variables.

6 EXPERIMENTAL RESULTS

6.1 EXPERIMENTAL SETUP

Methods. Table 1 provides an overview of all the methods used in the following experiments. A
1000-second time limit is enforced for all methods and problems. The experiments evaluate our
learning-based methods, Rounding Classification (RC) and Learnable Threshold (LT), against tra-
ditional exact optimization (EX), which can compute optimal solutions but is often computationally
expensive, and heuristic-based approaches such as Rounding after Relaxation (RR) and root node
solutions (N1), which offer faster results without quality guarantees. Note that baselines EX and
N1 include a wide range of heuristics that are embedded in the MINLP solver of choice (Gurobi or
SCIP) and that are executed in conjunction with the tree search procedure; we are also implicitly
comparing to these heuristics, not just to the exact search. As such, the competing methods cover
a broad spectrum of optimization strategies, from exact solvers to fast heuristics, allowing for a
comprehensive evaluation of solution quality and computational efficiency. In addition, we evaluate
two ablation baselines, which isolate different aspects of our correction layers φΘ2

to highlight their
impact on performance. Details of these ablation studies, including methodology and results, are
provided in Appendix F.

Problem classes. We tested the methods on a variety of optimization problems, including inte-
ger convex quadratic problems, simple integer non-convex problems, and high-dimensional mixed-
integer Rosenbrock problems. These problem classes were selected to cover both convex and non-
convex scenarios and to evaluate the scalability of the methods in higher-dimensional settings. Each

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Summary of Methods. Methods with “*” use a trained model.

Method Abbr Description

Rounding Classification* RC* Learning-based rounding approach using classification for inte-
ger variable rounding.

Learnable Threshold* LT* Learning-based method where a neural network learns the
threshold for rounding integer variables.

Exact Optimization EX Solves the problem using Gurobi for convex problems and SCIP
+ Ipopt for non-convex problems.

Rounding after Relaxation RR Solves the continuous relaxation, then rounds the continuous
solution to the nearest integer.

Root Node Solution N1 A feasible solution from the root node of the solver, which uses
heuristics after continuous relaxation with cutting planes.

method was assessed in terms of objective value, constraint violation, and solving time, provid-
ing a comprehensive view of their performance across different types of problems. In addition,
we evaluated our methods on integer linear programs (MILPs), in which the dataset from the MIP
Workshop 2023 Computational Competition Bolusani et al. (2023). These experiments primarily
serve to demonstrate that our methods can also handle integer linear cases, though the use of MILP
solvers may be preferable. Further details are provided in Appendix H.

Training protocol. The solution mapping πΘ1 used across all learning-based methods (RC, LT,
and RL) and the rounding correction network φΘ2 for RC and LT are based on fully connected
layers with ReLU activations. Further details regarding the network hyperparameters can be found
in Appendix D. For all problems, the training samples 8,000 instances from the distribution, and
the test set includes 100 instances. An additional set of 1,000 instances was used for validation to
fine-tune the models and select hyperparameters.

Computational setup. All experiments were conducted on a system with 2 Intel Silver 4216 Cas-
cade Lake @ 2.1GHz CPUs, 64GB RAM, and 4 NVIDIA V100 Volta GPUs. The software envi-
ronment was configured with Python 3.10.13, PyTorch 2.5.0+cu122 (Paszke et al., 2019) for deep
learning models, and NeuroMANCER 1.5.2 (Drgona et al., 2023) for modeling parametric con-
strained optimization problems. Gurobi 11.0.1 (Gurobi Optimization, LLC, 2021) is used as the
exact method for convex quadratic problems; beyond quadratic polynomials, Gurobi needs to ap-
proximate non-linearities using piecewise-linear functions. For those more general mixed-integer
non-convex problems, we use SCIP 9.0.0 (Bestuzheva et al., 2021) with Ipopt 3.14.14 (Wächter
& Biegler, 2006) as the continuous non-linear solver. Note that Gurobi and SCIP are considered
to be among the state-of-the-art solvers for MINLP, as noted by Lundell & Kronqvist (2022) who
performed a comprehensive benchmarking of more than ten MINLP solvers: “It is clear, however,
that the global solvers Antigone, BARON, Couenne and SCIP are the most efficient at finding the
correct primal solution when regarding the total time limit. [...] Gurobi also is very efficient when
considering that it only supports a little over half of the total number of problems!”

Overall results. As shown in Figure 2, the exact solvers like Gurobi and SCIP gradually improve
the objective value over time, but this often comes at a high computational cost. For more complex
problems, they may even fail to find feasible solutions within reasonable time limits. In contrast,
our methods, RC and LT, achieve high-quality, feasible solutions in mere milliseconds. Even when
accounting for the 131.72 seconds required to train the neural network for the Rosenbrock problem,
our approaches remain significantly more efficient. Once trained, these models generalize well
to unseen instances, making them ideal for repeated problem-solving scenarios where the training
cost is amortized. Additionally, RC and LT could provide high-quality initial solutions for exact
solvers, reducing the search space and accelerating convergence, thus enhancing the performance of
traditional optimization methods.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

9.2e+17

An Instance on 100×100 Quadratic

0 100 200 300 400 500 600

Time (Second)

−20

−10

0

O
b

je
ct

iv
e

V
al

u
e

Method

EX (Gurobi)

RC

LT

0 100 200 300 400 500 600

Time (Second)

50

100

150

200

O
b

je
ct

iv
e

V
al

u
e

An Instance on 60×4 Rosenbrock

Method

EX (SCIP)

RC

LT

Figure 2: Illustration of objective value evolution for a 100 × 100 Convex Quadratic instance and
60× 4 Rosenbrock instance over 600 seconds.

Table 2: Result for a Convex Quadratic Problem. Each problem size is evaluated on a test set of
100 instances. “Obj Mean” and “Obj Median” represent the mean and median objective values for
this minimization problem, with smaller values being better. “% Infeasible” denotes the fraction of
infeasible solutions, and “Time (Sec)” is the average solving/inference time per instance. The “—”
symbol indicates that no solution is found for any instance within 1000 seconds.

Method Metric 5×5 10×10 20×20 50×50 100×100 200×200 500×500 1000×1000

RC

Obj Mean 0.827 −0.773 −3.859 −11.967 −12.809 −29.830 −67.518 −129.088
Obj Median 0.641 −1.180 −3.888 −12.013 −12.760 −29.965 −67.633 −129.263
% Infeasible 0% 1% 0% 1% 1% 2% 0% 0%
Time (Sec) 0.0019 0.0019 0.0021 0.0019 0.0021 0.0025 0.0026 0.0045

LT

Obj Mean 0.869 −1.419 −3.830 −11.606 −12.227 −30.688 −69.136 −120.480
Obj Median 0.672 −1.702 −3.818 −11.736 −12.299 −31.030 −69.222 −120.651
% Infeasible 0% 0% 0% 0% 0% 7% 0% 5%
Time (Sec) 0.0019 0.0019 0.0019 0.0019 0.0024 0.0026 0.0028 0.0047

EX

Obj Mean 0.294 −2.779 −5.120 −15.928 −20.790 — — —
Obj Median 0.129 −2.991 −5.130 −15.956 −20.778 — — —
% Infeasible 0% 0% 0% 0% 0% — — —
Time (Sec) 0.496 0.664 8.728 1520.73 1237.53 — — —

RR

Obj Mean 0.211 −2.858 −5.179 −16.173 −21.922 −46.727 −106.526 −213.312
Obj Median 0.058 −3.033 −5.217 −16.205 −21.892 −46.755 −106.536 −213.292
% Infeasible 97% 100% 100% 100% 100% 100% 100% 100%
Time (Sec) 0.411 0.412 0.417 0.440 0.583 0.846 2.639 8.874

N1

Obj Mean 0.549 1.2e15 9.8e07 1.7e17 1.5e18 — — —
Obj Median 0.369 −1.900 9.600 2.4e17 1.4e18 — — —
% Infeasible 0% 0% 0% 0% 0% — — —
Time (Sec) 0.420 0.422 0.415 0.498 104.204 — — —

6.2 CONVEX QUADRATIC PROBLEM

Since there is a lack of publicly available datasets for parametric MINLPs, the convex quadratic
problems used in the experiments are adapted from Donti et al. (2021), which originally focused on
learning under continuous constraints. We introduced integrality constraints on all decision variables
to tailor these problems to our discrete setting. Additionally, we removed equality constraints to
avoid the issue of generating infeasible instances. These modifications ensure compatibility with
our framework while preserving the essential structure of the original problems. Further details on
the mathematical formulation and data generation process can be found in Appendix E.

We experimented with quadratic problems of different sizes, from 5 decision variables and 5 con-
straints (5×5) up to (1000×1000). The results in Table 2 summarize the performance of all methods
across different problem sizes. For a detailed analysis of constraint violation metrics, please refer
to Appendix G. The RC and LT methods exhibit robust performance across the board, achieving
objective values second only to EX while consistently maintaining low percentages of infeasible
solutions and fast solution times across all problem sizes. These methods achieve several orders
of magnitude speed-ups, scaling effectively even for large instances up to 1000 × 1000. The exact
solver EX, while performing well on smaller problem sizes, fails to produce any solutions for in-
stances of size 200 × 200 and larger within the 1000-second time limit, highlighting its limitations
when handling more complex problems. N1, on the other hand, can find feasible solutions within a
short time frame for smaller cases but suffers from severe numerical instability as the problem size
increases. When scaled to 200 × 200, N1 also fails to produce a solution. The RR method, which
relies on rounding relaxations, encounters significant feasibility challenges. Overall, this analysis

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

underscores that learning-based methods like RC and LT offer considerable advantages in both solu-
tion quality and computational speed, especially for large-scale problems, compared to exact solvers
or other heuristics.

It is important to note that some of the Obj Mean and Median values are extremely large. This occurs
when the baseline methods, such as EX and N1, generate poor-quality feasible solutions, particularly
for larger problem instances. Since the decision variables are not explicitly upper/lower bounded,
the baselines occasionally produce trivial yet suboptimal solutions, leading to inflated objective
values. This issue is not limited to this particular case but also appears in other problem instances,
further underscoring the limitations of the baseline methods in handling larger-scale optimization
tasks effectively.

In addition to evaluating solution quality, feasibility, and solving/inference times, we also measured
the offline training times for our two approaches on different problem sizes. These results, along
with training times for other problem types, are presented in Appendix I, where it is evident that the
training times for the learning-based methods scale well with problem size.

6.3 SIMPLE NON-CONVEX PROBLEM

To evaluate the performance on non-convex optimization tasks, we extended the convex quadratic
programming problem by introducing a trigonometric term to the objective function, following the
approach in Donti et al. (2021). This modification introduces non-convexity, increasing the chal-
lenge of finding optimal solutions. Additionally, we parameterized the constraint matrix to further
enrich the complexity. Further details on the formulation, parameter generation, and experimental
setup can be found in Appendix E. In addition, the scales of the problem and the experiment setting
are also identical to those of the quadratic problems.

Table 3: Results for a Simple Non-convex Problem. See the caption of Table 2 for details. “%
Unsolved” denotes the percentage of instances that could not be solved within the given time limit.

Method Metric 5×5 10×10 20×20 50×50 100×100 200×200 500×500 1000×1000

RC

Obj Mean 0.855 1.236 0.598 1.352 1.208 1.522 −0.351 4.051
Obj Median 0.496 0.865 0.601 1.325 1.198 1.522 −0.341 3.869
% Infeasible 1% 0% 0% 0% 1% 0% 1% 0%
Time (Sec) 0.0019 0.0019 0.0019 0.0020 0.0021 0.0022 0.0027 0.0049

LT

Obj Mean 0.778 1.175 0.608 0.932 1.627 0.729 0.254 6.651
Obj Median 0.461 0.786 0.601 0.916 1.619 0.700 0.173 6.368
% Infeasible 0% 1% 0% 0% 3% 0% 0% 5%
Time (Sec) 0.0019 0.0019 0.0019 0.0020 0.0022 0.0022 0.0026 0.0054

EX

Obj Mean 0.001 −0.182 −0.453 1.649 256.926 — — —
Obj Median −0.095 −0.310 −0.463 −0.052 134.620 — — —
% Infeasible 0% 0% 0% 0% 0% — — —
% Unsolved 0% 0% 0% 0% 86% 100% 100% 100%
Time (Sec) 0.1168 2.454 994.912 1001.52 1000.56 — — —

RR

Obj Mean −0.047 −0.168 −0.464 −1.039 −2.068 −3.990 −9.391 —
Obj Median −0.089 −0.325 −0.476 −1.215 −2.307 −4.327 −9.221 —
% Infeasible 64% 86% 97% 100% 100% 100% 100% —
% Unsolved 0% 0% 0% 0% 0% 0% 0% 100%
Time (Sec) 0.216 0.411 0.996 1.189 4.600 54.009 449.02 —

N1

Obj Mean 1.690 1073.90 2.13e4 3.72e6 4411.45 — — —
Obj Median 0.183 0.557 2.222 45.847 155.254 — — —
% Infeasible 0% 0% 0% 0% 0% — — —
% Unsolved 0% 0% 0% 0% 86% 100% 100% 100%
Time (Sec) 0.040 0.103 0.144 8.968 940.43 — — —

The results presented in Table 3 reflect patterns similar to those observed in the quadratic problem.
However, the sine function exacerbates the non-convexity of the problem, rendering it more chal-
lenging for traditional methods. Despite this added complexity, the RC and LT methods perform
robustly, scaling to large instances for which the baselines fail to produce any solutions.

6.4 MULTI-DIMENSIONAL MIXED-INTEGER ROSENBROCK PROBLEM

The high-dimensional mixed-integer Rosenbrock problem is a challenging benchmark adapted from
the classic Rosenbrock function, extended with integer variables, non-linear constraints, and para-
metric variations. It evaluates scalability and the ability to handle complex optimization landscapes.
All parameters and the constraint structure, are described in Appendix E.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

We conducted experiments on mixed-integer Rosenbrock problems with the number of decision
variables ranging from 2 to 20,000; the number of constraints was fixed at 5. The results in Table 4
show that RC and LT exhibit strong performance, even outperforming EX in smaller cases. However,
as the problem size increases to 10,000 variables, a noticeable decline in feasibility is observed for
both RC and LT, while solver-based methods such as EX, N1, and RR fail to produce any solutions.
As seen in previous experiments, RR, which relies on rounding relaxations, continues to suffer from
significant infeasibility issues.

Table 4: Results for the Mixed-Integer Rosenbrock Problem. The number of decision variables
varies from 2 to 20,000, while the number of constraints is 5. See the caption of Table 2 for details.

Method Metric 2×4 20×4 200×4 2000×4 20000×4

RC

Obj Mean / Median 23.84/21.77 53.94/50.48 550.95/536.18 6034.64/5864.99 6.05e4/5.07e4
% Infeasible 0% 0% 0% 0% 31%
Time (Sec) 0.0019 0.0019 0.0022 0.0032 0.0126

LT

Obj Mean / Median 23.40/21.00 54.97/52.34 563.67/541.81 5465.80/5400.32 1.86e5/1.74e5
% Infeasible 0% 0% 0% 0% 45%
Time (Sec) 0.0020 0.0019 0.0022 0.0031 0.0119

EX

Obj Mean / Median 19.62/18.20 64.67/59.16 8.43e5/908.81 4.70e10/9262.09 1.09e15/1.03e5
% Infeasible 0% 0% 0% 0% 0%
% Unsolved 0% 0% 0% 4% 22%
Time (Sec) 3.509 1004.61 1002.20 1001.69 1040.06

RR

Obj Mean / Median 22.24/22.19 12036.99/51.17 1.43e4/501.90 2.10e6/5436.60 1.75e8/7.03e6
% Infeasible 45% 41% 18% 1% 4%
% Unsolved 0% 0% 42% 93% 78%
Time (Sec) 0.181 0.557 1.240 9.233 1064.12

N1

Obj Mean / Median 40.37/27.93 87.83/77.34 3.72e8/957.42 8.27e12/9379.37 1.22e15/1.03e5
% Infeasible 0% 0% 0% 0% 0%
% Unsolved 0% 0% 0% 5% 22%
Time (Sec) 0.032 0.081 0.261 71.911 782.052

6.5 EFFECT OF PENALTY WEIGHT

This section investigates the impact of the penalty weight, a critical hyperparameter, on the perfor-
mance of the optimization methods. Experiments were conducted on three representative problems:
a 1000×1000 convex quadratic problem, a 1000×1000 simple non-convex problem, and a 20000×4
Rosenbrock problem. For each problem, we evaluated the RC and LT methods under penalty weights
of 1, 5, 10, 50, 100, 500, and 1000.

1 5 10 50 100 500 1000
−180

−160

−140

−120

−100

O
b

je
ct

iv
e

V
al

ue

1000×1000 Convex Quadratic

Method

RC

LT

1 5 10 50 100 500 1000
−20

−10

0

10

20

30

1000×1000 Simple Non-Convex

Method

RC

LT

1 5 10 50 100 500 1000
0.0
0.2
0.4
0.6
0.8
1.0
1.2

×106 20000×4 Rosenbrock

Method

RC

LT

1 5 10 50 100 500 1000
Penalty Weights

0

20

40

60

80

100

%
In

fe
as

ib
ili

ty Method

RC

LT

1 5 10 50 100 500 1000
Penalty Weights

0

20

40

60

80

100
Method

RC

LT

1 5 10 50 100 500 1000
Penalty Weights

0

20

40

60

80

100
Method

RC

LT

Figure 3: Illustration of the objective value (Top) and proportion of infeasible solutions (Bottom) on
the test set. As the penalty weight increases, the fraction of infeasible solutions decreases while the
objective value generally deteriorates, as expected.

Figure 3 reveals an inherent trade-off between achieving a higher proportion of feasible solutions
and maintaining lower objective values. While increasing the penalty weight improves the feasibility
rate, it often results in worse objective values. However, for the 20000×4 Rosenbrock problem, even
with progressively increasing penalties, the predictor still yields many infeasible solutions. This
limitation is addressed in Section 6.6.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

6.6 EFFECT OF TRAINING SAMPLE SIZE

The large number of infeasible solutions observed in the 20000×4 Rosenbrock problem can primar-
ily be attributed to significant overfitting within the model. Given that we have prior knowledge
of the parameter distribution and our self-supervised learning approach does not rely on optimal
solution labels, we can easily scale up the sample size to effectively mitigate overfitting.

To assess the impact of sample size, we trained the model on datasets of 800, 8,000, and 80,000
instances with 100 penalty weight, adjusting training epochs to 2000, 200, and 20 (with early stop-
ping) to ensure comparable iterations. All other hyperparameters remained consistent to isolate the
effect of sample size.

800 8,000 80,000
Training Sample Size

0
10
20
30
40
50
60

%
F

ea
si

b
ili

ty
R

at
e

49%

24%

5%

62%

34%

4%

Method

RC

LT

800 8,000 80,000
Training Sample Size

50

100

150

200

250

O
b

je
ct

iv
e

V
al

u
e

×103

Method

RC

LT

Figure 4: Illustration of the objective value (Left) and proportion of infeasible solutions (Right) of
20000×4 Rosenbrock problem on the test set. As the training sample size increases, the fraction of
infeasible solutions decreases while the objective value generally deteriorates, as expected.

As shown in Section 6.6, increasing the sample size yields significant improvements in both objec-
tive values and feasibility. With 80,000 samples for training, the infeasibility ratio was reduced to
5% on the test set, demonstrating better generalization to unseen instances. This emphasizes the crit-
ical role of sufficient sample size and demonstrates the scalability advantage of our self-supervised
framework.

7 CONCLUSION

We have introduced a new learning-based heuristic method for MINLP. Our approach includes two
novel correction layers—rounding classification and learnable threshold—that enable neural net-
works to generate high-quality integer solutions while preserving gradient information for training
through backpropagation. These layers allow us to tackle optimization tasks with discrete vari-
ables and non-linear constraints in a way that is scalable and computationally efficient. As a self-
supervised approach, our method does not require collecting optimal solutions as labels, significantly
reducing the time and effort typically needed for data collection.

Our experiments demonstrate that our learning-based methods outperform traditional solvers and
other heuristics across various problem types, including convex quadratic, non-convex, and high-
dimensional mixed-integer optimization problems. Despite the increasing complexity of these tasks,
our methods maintain strong performance in terms of both feasibility and solution quality, particu-
larly in high-dimensional settings where traditional approaches often fail to produce solutions within
a reasonable time due to the curse of dimensionality. To our knowledge, our work is the first to tackle
learning for parametric MINLPs in full generality.

Our method enables efficient heuristic solutions for large-scale parametric MINLPs, achieving better
performance and computational efficiency, though feasibility is not guaranteed. Future work could
explore improving feasibility through alternative constraint-handling techniques or post-processing.
For certain problem classes, a subset of constraints could be relaxed into the loss function while
directly optimizing over the rest using differentiable optimization layers Agrawal et al. (2019). Ad-
ditionally, redesigning neural network architectures to handle varying instance parameters and deci-
sion variables is a promising direction, leveraging set-based, permutation-equivariant architectures
such as graph neural networks Cappart et al. (2023); Dumouchelle et al. (2024); Chen et al. (2022b;
2024).

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Akshay Agrawal, Brandon Amos, Shane Barratt, Stephen Boyd, Steven Diamond, and Zico Kolter.
Differentiable convex optimization layers. ArXiv, abs/1910.12430, 2019.

Alejandro Marcos Alvarez, Quentin Louveaux, and Louis Wehenkel. A machine learning-based
approximation of strong branching. INFORMS Journal on Computing, 29(1):185–195, 2017.

Brandon Amos and J Zico Kolter. Optnet: Differentiable optimization as a layer in neural networks.
In International conference on machine learning, pp. 136–145. PMLR, 2017.

Radu Baltean-Lugojan, Pierre Bonami, Ruth Misener, and Andrea Tramontani. Scoring positive
semidefinite cutting planes for quadratic optimization via trained neural networks. https://
optimization-online.org/2018/11/6943/, 2019.

Pietro Belotti, Jon Lee, Leo Liberti, François Margot, and Andreas Wächter. Branching and bounds
tightening techniques for non-convex MINLP. Optimization Methods & Software, 24(4-5):597–
634, 2009.

Yoshua Bengio, Nicholas Léonard, and Aaron Courville. Estimating or propagating gradients
through stochastic neurons for conditional computation. arXiv preprint arXiv:1308.3432, 2013.

Yoshua Bengio, Andrea Lodi, and Antoine Prouvost. Machine learning for combinatorial opti-
mization: a methodological tour d’horizon. European Journal of Operational Research, 290(2):
405–421, 2021.

Quentin Berthet, Mathieu Blondel, Olivier Teboul, Marco Cuturi, Jean-Philippe Vert, and Francis
Bach. Learning with differentiable pertubed optimizers. Advances in neural information process-
ing systems, 33:9508–9519, 2020.

Timo Berthold. Rens: the optimal rounding. Mathematical Programming Computation, 6:33–54,
2014.

Timo Berthold and Gregor Hendel. Learning to scale mixed-integer programs. In Proceedings of
the AAAI Conference on Artificial Intelligence, 2021.

Dimitris Bertsimas and Bartolomeo Stellato. Online mixed-integer optimization in milliseconds.
INFORMS Journal on Computing, 34(4):2229–2248, 2022.

Ksenia Bestuzheva, Mathieu Besançon, Wei-Kun Chen, Antonia Chmiela, Tim Donkiewicz, Jasper
van Doornmalen, Leon Eifler, Oliver Gaul, Gerald Gamrath, Ambros Gleixner, et al. The scip
optimization suite 8.0. arXiv preprint arXiv:2112.08872, 2021.

Suresh Bolusani, Mathieu Besançon, Ambros Gleixner, Timo Berthold, Claudia D’Ambrosio, Gon-
zalo Muñoz, Joseph Paat, and Dimitri Thomopulos. The MIP Workshop 2023 computational
competition on reoptimization, 2023. URL http://arxiv.org/abs/2311.14834.

Pierre Bonami, Andrea Lodi, and Giulia Zarpellon. A classifier to decide on the linearization of
mixed-integer quadratic problems in cplex. Operations research, 70(6):3303–3320, 2022.

Quentin Cappart, Didier Chételat, Elias B Khalil, Andrea Lodi, Christopher Morris, and Petar
Veličković. Combinatorial optimization and reasoning with graph neural networks. Journal of
Machine Learning Research, 24(130):1–61, 2023.

Abhishek Cauligi, Preston Culbertson, Edward Schmerling, Mac Schwager, Bartolomeo Stellato,
and Marco Pavone. Coco: Online mixed-integer control via supervised learning. IEEE Robotics
and Automation Letters, 7(2):1447–1454, 2021.

Tianlong Chen, Xiaohan Chen, Wuyang Chen, Howard Heaton, Jialin Liu, Zhangyang Wang, and
Wotao Yin. Learning to optimize: A primer and a benchmark. Journal of Machine Learning
Research, 23(189):1–59, 2022a.

Ziang Chen, Jialin Liu, Xinshang Wang, Jianfeng Lu, and Wotao Yin. On representing linear pro-
grams by graph neural networks. arXiv preprint arXiv:2209.12288, 2022b.

11

https://optimization-online.org/2018/11/6943/
https://optimization-online.org/2018/11/6943/
http://arxiv.org/abs/2311.14834

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Ziang Chen, Xiaohan Chen, Jialin Liu, Xinshang Wang, and Wotao Yin. Expressive power of graph
neural networks for (mixed-integer) quadratic programs. arXiv preprint arXiv:2406.05938, 2024.

Antonia Chmiela, Elias Khalil, Ambros Gleixner, Andrea Lodi, and Sebastian Pokutta. Learning to
schedule heuristics in branch and bound. Advances in Neural Information Processing Systems,
34:24235–24246, 2021.

Yves Crama, Antoon WJ Kolen, and EJ Pesch. Local search in combinatorial optimization. Artificial
Neural Networks: An Introduction to ANN Theory and Practice, pp. 157–174, 2005.

Hanjun Dai, Elias Khalil, Yuyu Zhang, Bistra Dilkina, and Le Song. Learning combinatorial opti-
mization algorithms over graphs. Advances in neural information processing systems, 30, 2017.

Arnaud Deza and Elias B. Khalil. Machine learning for cutting planes in integer programming: A
survey. In Proceedings of the Thirty-Second International Joint Conference on Artificial Intelli-
gence, IJCAI-2023. International Joint Conferences on Artificial Intelligence Organization, Au-
gust 2023. doi: 10.24963/ijcai.2023/739. URL http://dx.doi.org/10.24963/IJCAI.
2023/739.

Jian-Ya Ding, Chao Zhang, Lei Shen, Shengyin Li, Bing Wang, Yinghui Xu, and Le Song. Ac-
celerating primal solution findings for mixed integer programs based on solution prediction. In
Proceedings of the AAAI Conference on Artificial Intelligence, 2020.

Josip Djolonga and Andreas Krause. Differentiable learning of submodular models. Advances in
Neural Information Processing Systems, 30, 2017.

Priya Donti, Brandon Amos, and J Zico Kolter. Task-based end-to-end model learning in stochastic
optimization. Advances in neural information processing systems, 30, 2017.

Priya L Donti, David Rolnick, and J Zico Kolter. DC3: A learning method for optimization with
hard constraints. arXiv preprint arXiv:2104.12225, 2021.

Jan Drgona, Aaron Tuor, James Koch, Madelyn Shapiro, Bruno Jacob, and Draguna Vrabie. Neuro-
mancer: Neural modules with adaptive nonlinear constraints and efficient regularizations, 2023.
URL https://github.com/pnnl/neuromancer.

Justin Dumouchelle, Esther Julien, Jannis Kurtz, and Elias Boutros Khalil. Neur2RO: Neural two-
stage robust optimization. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=T5Xb0iGCCv.

Aaron M Ferber, Taoan Huang, Daochen Zha, Martin Schubert, Benoit Steiner, Bistra Dilkina,
and Yuandong Tian. Surco: Learning linear surrogates for combinatorial nonlinear optimization
problems. In International Conference on Machine Learning, pp. 10034–10052. PMLR, 2023.

Ferdinando Fioretto, Terrence WK Mak, and Pascal Van Hentenryck. Predicting ac optimal power
flows: Combining deep learning and lagrangian dual methods. In Proceedings of the AAAI con-
ference on artificial intelligence, 2020.

Roger Fletcher and Sven Leyffer. Solving mixed integer nonlinear programs by outer approximation.
Mathematical programming, 66:327–349, 1994.

Maxime Gasse, Didier Chételat, Nicola Ferroni, Laurent Charlin, and Andrea Lodi. Exact combi-
natorial optimization with graph convolutional neural networks. Advances in neural information
processing systems, 32, 2019.

Ambros Gleixner, Gregor Hendel, Gerald Gamrath, Tobias Achterberg, Michael Bastubbe, Timo
Berthold, Philipp Christophel, Kati Jarck, Thorsten Koch, Jeff Linderoth, et al. Miplib 2017: data-
driven compilation of the 6th mixed-integer programming library. Mathematical Programming
Computation, 13(3):443–490, 2021.

Ralph E Gomory. Outline of an algorithm for integer solutions to linear programs and an algorithm
for the mixed integer problem. Springer, 2010.

12

http://dx.doi.org/10.24963/IJCAI.2023/739
http://dx.doi.org/10.24963/IJCAI.2023/739
https://github.com/pnnl/neuromancer
https://openreview.net/forum?id=T5Xb0iGCCv

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Gurobi Optimization, LLC. Gurobi Optimizer Reference Manual, 2021. URL https://www.
gurobi.com.

He He, Hal Daume III, and Jason M Eisner. Learning to search in branch and bound algorithms.
Advances in neural information processing systems, 27, 2014.

Johannes Hendriks, Carl Jidling, Adrian Wills, and Thomas Schön. Linearly constrained neural
networks. arXiv preprint arXiv:2002.01600, 2020.

John J Hopfield and David W Tank. “neural” computation of decisions in optimization problems.
Biological cybernetics, 52(3):141–152, 1985.

Taoan Huang, Aaron M Ferber, Yuandong Tian, Bistra Dilkina, and Benoit Steiner. Searching large
neighborhoods for integer linear programs with contrastive learning. In International Conference
on Machine Learning, pp. 13869–13890. PMLR, 2023.

Eric Jang, Shixiang Gu, and Ben Poole. Categorical reparameterization with gumbel-softmax. arXiv
preprint arXiv:1611.01144, 2016.

Zhipeng Jia, Xingyi Huang, I Eric, Chao Chang, and Yan Xu. Constrained deep weak supervision for
histopathology image segmentation. IEEE transactions on medical imaging, 36(11):2376–2388,
2017.

David S Johnson and Lyle A McGeoch. The traveling salesman problem: a case study. Local search
in combinatorial optimization, pp. 215–310, 1997.

Hoel Kervadec, Jose Dolz, Jing Yuan, Christian Desrosiers, Eric Granger, and Ismail Ben Ayed.
Constrained deep networks: Lagrangian optimization via log-barrier extensions. In 2022 30th
European Signal Processing Conference (EUSIPCO), pp. 962–966. IEEE, 2022.

Elias Khalil, Pierre Le Bodic, Le Song, George Nemhauser, and Bistra Dilkina. Learning to branch
in mixed integer programming. In Proceedings of the AAAI Conference on Artificial Intelligence,
2016.

Elias Khalil, Christopher Morris, and Andrea Lodi. MIP-GNN: A data-driven framework for guiding
combinatorial solvers. In Proceedings of the AAAI Conference on Artificial Intelligence, 2022.

Ethan King, James Kotary, Ferdinando Fioretto, and Jan Drgona. Metric learning to accelerate
convergence of operator splitting methods for differentiable parametric programming, 2024. URL
https://arxiv.org/abs/2404.00882.

Thomas Kleinert, Martine Labbé, Ivana Ljubić, and Martin Schmidt. A survey on mixed-integer
programming techniques in bilevel optimization. EURO Journal on Computational Optimization,
9:100007, 2021.

James Kotary, Ferdinando Fioretto, and Pascal Van Hentenryck. Learning hard optimization prob-
lems: A data generation perspective. Advances in Neural Information Processing Systems, 34:
24981–24992, 2021a.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end con-
strained optimization learning: A survey. arXiv preprint arXiv:2103.16378, 2021b.

Ailsa H Land and Alison G Doig. An automatic method for solving discrete programming problems.
Springer, 2010.

Andreas Lundell and Jan Kronqvist. Polyhedral approximation strategies for nonconvex mixed-
integer nonlinear programming in shot. Journal of Global Optimization, 82(4):863–896, 2022.

Tobia Marcucci and Russ Tedrake. Warm start of mixed-integer programs for model predictive
control of hybrid systems. IEEE Transactions on Automatic Control, 66(6):2433–2448, 2020.

Pablo Márquez-Neila, Mathieu Salzmann, and Pascal Fua. Imposing hard constraints on deep net-
works: Promises and limitations. arXiv preprint arXiv:1706.02025, 2017.

13

https://www.gurobi.com
https://www.gurobi.com
https://arxiv.org/abs/2404.00882

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Vinod Nair, Sergey Bartunov, Felix Gimeno, Ingrid von Glehn, Pawel Lichocki, Ivan Lobov, Bren-
dan O’Donoghue, Nicolas Sonnerat, Christian Tjandraatmadja, Pengming Wang, et al. Solving
mixed integer programs using neural networks. arXiv preprint arXiv:2012.13349, 2020.

Nawaf Nazir and Mads Almassalkhi. Guaranteeing a physically realizable battery dispatch without
charge-discharge complementarity constraints. IEEE Transactions on Smart Grid, 14(3):2473–
2476, 2021.

Alex Nowak, Soledad Villar, Afonso S Bandeira, and Joan Bruna. Revised note on learning quadratic
assignment with graph neural networks. In 2018 IEEE Data Science Workshop (DSW), pp. 1–5.
IEEE, 2018.

Ivo Nowak. Relaxation and decomposition methods for mixed integer nonlinear programming,
volume 152. Springer Science & Business Media, 2005.

Xiang Pan, Tianyu Zhao, Minghua Chen, and Shengyu Zhang. Deepopf: A deep neural network
approach for security-constrained dc optimal power flow. IEEE Transactions on Power Systems,
36(3):1725–1735, 2020.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-
performance deep learning library. In Advances in Neural Information Processing Systems, pp.
8024–8035, 2019.

Deepak Pathak, Philipp Krahenbuhl, and Trevor Darrell. Constrained convolutional neural networks
for weakly supervised segmentation. In Proceedings of the IEEE international conference on
computer vision, pp. 1796–1804, 2015.

Marin Vlastelica Pogančić, Anselm Paulus, Vit Musil, Georg Martius, and Michal Rolinek. Differ-
entiation of blackbox combinatorial solvers. In International Conference on Learning Represen-
tations, 2020.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization. In Learning for Dynamics and Control Confer-
ence, pp. 220–234. PMLR, 2023.

Tom Schouwenaars, Bart De Moor, Eric Feron, and Jonathan How. Mixed integer programming for
multi-vehicle path planning. In 2001 European control conference (ECC), pp. 2603–2608. IEEE,
2001.

Jialin Song, Yisong Yue, Bistra Dilkina, et al. A general large neighborhood search framework
for solving integer linear programs. Advances in Neural Information Processing Systems, 33:
20012–20023, 2020.

Nicolas Sonnerat, Pengming Wang, Ira Ktena, Sergey Bartunov, and Vinod Nair. Learning a large
neighborhood search algorithm for mixed integer programs. arXiv preprint arXiv:2107.10201,
2021.

Bo Tang and Elias B Khalil. Cave: A cone-aligned approach for fast predict-then-optimize with bi-
nary linear programs. In International Conference on the Integration of Constraint Programming,
Artificial Intelligence, and Operations Research, pp. 193–210. Springer, 2024.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly. Pointer networks. Advances in neural informa-
tion processing systems, 28, 2015.

Andreas Wächter and Lorenz T Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical programming, 106:25–57, 2006.

Bryan Wilder, Bistra Dilkina, and Milind Tambe. Melding the data-decisions pipeline: Decision-
focused learning for combinatorial optimization. In Proceedings of the AAAI Conference on
Artificial Intelligence, 2019.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Lin Xu, Frank Hutter, Holger H Hoos, and Kevin Leyton-Brown. Hydra-mip: Automated algorithm
configuration and selection for mixed integer programming. In RCRA workshop on experimental
evaluation of algorithms for solving problems with combinatorial explosion at the international
joint conference on artificial intelligence (IJCAI), pp. 16–30, 2011.

Huigen Ye, Hua Xu, and Hongyan Wang. Light-milpopt: Solving large-scale mixed integer linear
programs with lightweight optimizer and small-scale training dataset. In The Twelfth International
Conference on Learning Representations.

Giulia Zarpellon, Jason Jo, Andrea Lodi, and Yoshua Bengio. Parameterizing branch-and-bound
search trees to learn branching policies. In Proceedings of the AAAI Conference on Artificial
Intelligence, 2021.

Jiayi Zhang, Chang Liu, Xijun Li, Hui-Ling Zhen, Mingxuan Yuan, Yawen Li, and Junchi Yan.
A survey for solving mixed integer programming via machine learning. Neurocomputing, 519:
205–217, 2023.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A GUMBEL-SIGMOID TRICK

The Gumbel-Sigmoid trick is a stochastic approximation method that enables gradient-based opti-
mization for discrete variables. It introduces controlled random perturbations to the logits h, pro-
ducing a continuous relaxation of the binary decision. The method relies on noise sampled from the
Gumbel distribution, which is defined as:

g = − log(− log(U)), U ∼ Uniform(0, 1).

where U is a random variable drawn from the uniform distribution over the interval [0, 1]. This noise
g is added to the logits to introduce randomness while preserving differentiability.

The Gumbel-Sigmoid function provides a soft, differentiable approximation of binary outputs as:

Gumbel-Sigmoid(h) =
1

1 + exp
(
− h+g1−g2

τ

)
where g1 and g2 are independent samples from the Gumbel distribution, and τ > 0 is the temperature
parameter that controls the smoothness of the approximation. For large values of τ , the output of the
Gumbel-Sigmoid function is smooth and probabilistic, resembling a sigmoid function. As tau→ 0,
the output approaches a hard binary decision, mimicking the behavior of a step function.

In optimization contexts, this property allows the Gumbel-Sigmoid trick to approximate discrete
variables while maintaining differentiability, facilitating gradient-based methods. The noise intro-
duced by g1 and g2 promotes exploration, potentially helping to escape poor local minima during
training—an issue that is particularly common in discrete optimization problems.

In our experiments, we set τ = 1 for simplicity. This setting has been empirically shown to per-
form well across various learning-to-optimize tasks but can be further tuned to balance the trade-off
between exploration and exploitation.

B DETAILS OF CORRECTION LAYERS

The following subsections describe two distinct approaches for designing the correction layer φΘ2
;

the same network πΘ1
is used in both approaches.

Rounding Classification. Line 6 of Algorithm 1 is the key step in the rounding classification
(RC) approach. For the integer variables, RC applies a stochastic soft-rounding to the output hi

z
of the neural network δΘ2

(x̄i, ξi), yielding bi ∈ {0, 1}nz . An entry of bi determines whether the
continuously relaxed value x̄i

z of the corresponding variable is rounded down or up. In the backward
pass, STE is used in line 4 for the rounding down operation. In line 6, the derivative of the Sigmoid
function is used.

Learnable Threshold. The key steps of the learnable threshold (LT) approach are described in
lines 8 and 9 of Algorithm 1. Rather than use Gumbel-Sigmoid for the rounding as in RC, LT
learns a vector of per-variable rounding thresholds, vi ∈ [0, 1]nz , that the Sigmoid generates in line
8 of Algorithm 1. A variable is rounded up if the fractional part of its relaxed value, (x̄i

z − x̂i
z),

exceeds the threshold. The indicator function I(·) in line 9 produces a binary output in the forward
pass. In the backward pass, the gradient is approximated by that of the Sigmoid function with a
slope:

bi ← 1

1 + exp
(
− 10 · (x̄i

z − x̂i
z − vi)

) .
Here, the slope is set to 10 to sharpen the Sigmoid function.

C EXAMPLE ILLUSTRATION

Figure 5 shows the evolution of both the relaxed and rounded solutions, (x̄, ȳ) and (x̂, ŷ), across
different epochs of the training of an RC model on two-dimensional mixed-integer Rosenbrock

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

y = -1

y = 0

y = 1

y = 2

y = 3

y = 4

y = 5

-3 -2 -1 0
x

-1

0

1

2

3

4

5

y

20.1

36.6

66.7

66.7

121.5

121.5

221.4

221.4

403.4

403.4735.1

735.1

1339.4

1339.4

2440.6 x
0

x2
b

y b/2

Optimal Solution
Relaxed Solutions
Rounding Solutions

Figure 5: Example of the relaxed solutions x̄, ȳ and the rounding solutions x̂, ŷ across different
epochs of training for the same sample instance using the Rounding Classification approach.

problems defined as follows:

min
x∈R,y∈Z

(a− x)2 + 50(y − x2)2

subject to y ≥ b/2, x2 ≤ b, x ≤ 0, y ≥ 0.

In this formulation, x is a continuous decision variable, and y is an integer decision variable, subject
to linear constraints. The instances have parameters a and b, which represent the input features to the
neural network; for the instance illustrated in Figure 5, these are set to 3.83 and 6.04, respectively.

The illustration shows that the training of this differentiable rounding approach converges remark-
ably well in this particular instance, with the final rounding solution being very close to the optimum.
We will show this to be a generalizable phenomenon, with both of our learning approaches converg-
ing to highly accurate neural network models on a variety of problem classes and sizes.

D NEURAL NETWORK STRUCTURE AND HYPERPARAMETERS

The solution mapping πΘ1 used across all learning-based methods—RC, LT, and RL—consists of
five fully connected layers with ReLU activations. The rounding correction network φΘ2 for RC
and LT is composed of four fully connected layers, also with ReLU activations, and incorporates
Batch Normalization and Dropout with a rate of 0.2 to prevent overfitting.

The hidden layer sizes were adjusted based on the problem size. For the convex quadratic and
simple non-convex problems, the hidden layer width used in the learning-based methods was scaled
accordingly, increasing from 16, 32, 64 up to 1024 for the corresponding problem sizes. Smaller
problems, such as 5×5, used smaller hidden layers 16, while larger problems, such as 500×500, used
hidden layers with widths up to 1024 to accommodate the complexity. Similarly, for the Rosenbrock
problem, the hidden layer width was scaled based on the number of variables: a width of 4 was used
for problems with 2 variables, 16 for problems with 20 variables, and up to 1024 for problems with
10, 000 variables.

The constraint penalty weight λ was set to 300 for benchmark problems. All networks were trained
using the AdamW optimizer with a learning rate of 10−3 and a batch size of 64 over 200 epochs.
Early stopping was applied based on validation performance to ensure convergence without overfit-
ting.

E MINLP PROBLEM SETUP AND PARAMETER SAMPLING

Convex Quadratic Problems The convex quadratic problems used in our experiments are formu-
lated as follows:

min
x∈Zn

1

2
x⊺Qx+ p⊺x subject toAx ≤ b

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

where the coefficientsQ ∈ Rn×n, p ∈ Rn, andA ∈ Rm×n were fixed, while b ∈ Rm were treated
as parametric coefficients (input features), varying across instances.

where Q ∈ Rn×n is a diagonal matrix with entries sampled uniformly from [0, 0.01], ensuring
convexity. The vector p ∈ Rn has entries drawn from a uniform distribution over [0, 0.1], while
the constraint matrix A ∈ Rm×n is generated from a normal distribution with a standard deviation
of 0.1. The parameter b ∈ Rm, representing the right-hand side of the inequality constraints, is
sampled uniformly from [−1, 1]. These variations in b across instances ensure the parametric nature
of the problem.

Simple Non-convex Problems The simple non-convex problem used in the experiments is derived
by modifying the convex quadratic programming problem as follows:

min
x∈Zn

1

2
x⊺Qx+ p⊺ sin (x) subject toAx ≤ b

where the sine function is applied element-wise to the decision variables x. This introduces non-
convexity into the problem, making it more challenging compared to the convex case. For the simple
non-convex problems, the coefficients Q, p, A, and b are generated in the same way as in the
quadratic formulation. However, an additional parameter d ∈ Rm is introduced, with each element
independently sampled from a uniform distribution over [−0.5, 0.5]. The parameter d modifies
the constraint matrix A by adding d to its first column and subtracting d from its second column.
Alongside d, the right-hand side vector b remains a dynamic parameter in the problem.

Ronsenbrock Problems. The mixed-integer Rosenbrock problem used in this study is defined as:

min
x∈Rn,y∈Zn

(a− x)⊺(a− x) + 50(y − x2)⊺(y − x2)

subject to ∥x∥22 ≤ nb,1⊺y ≥ nb

2
,p⊺x ≤ 0, q⊺y ≤ 0,

where x ∈ Rn are continuous decision variables and y ∈ Zn are integer decision variables. The
vectors p ∈ Rn and q ∈ Rn are fixed for each instance, while the parameters b and a vary. In details,
the vectors p ∈ Rn and q ∈ Rn aregenerated from a standard normal distribution. The parameter b
is uniformly distributed over [1, 8] for each instance, and the parameter a ∈ Rn represents a vector
where elements drawn independently from a uniform distribution over [0.5, 4.5]. The parameters b
and a influence the shape of the feasible region and the landscape of the objective function, serving
as input features to the neural network.

F ABLATION STUDY

Overview. To better understand the contribution of the correction layers φΘ2 , we include two
ablation baselines in our experiments:

• Rounding after Learning (RL): This baseline trains only the first neural network πΘ1
,

which predicts relaxed solutions. Rounding to the nearest integer is applied post-training,
meaning that the rounding step does not participate in the training process. This isolates
the effect of excluding the corrective adjustments provided by φΘ2

. This direct rounding
can lead to significant deviations in the objective value and feasibility violations, under-
scoring the importance of end-to-end learning where updates are guided by the ultimate
loss function.

• Rounding with STE (RS): In the Algorithm 2, continuous values predicted by πΘ1
are

rounded during training using the Straight-Through Estimator (STE), allowing gradients to
pass through the rounding operator. While this mechanism applies a correction to produce
integer values by rounding to the nearest integer, it is not learnable and does not adjust the
rounding based on the parameter or the relaxation output. Thus, the correction is fixed and
solely determined by the nearest-integer rounding, without leveraging additional learning
for refinement.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Rounding with STE for Learning-to-optimize MINLPs: Forward Pass.

Require: Training instance ξi and neural networks πΘ1
(·)

1: Predict a continuously relaxed solution x̄i ← πΘ1
(ξi)

2: Round integer variables down: x̂i
z ← ⌊x̄i

z⌋
3: Compute bi as the rounding direction using Gumbel-Sigmoid(x̄i

z − x̂i
z − 0.5)

4: Update integer variables: x̂i
z ← x̂i

z + bi

5: return x̂i

Results and Insights. The results of the ablation experiments, summarized in Table 5, Table 6 and
Table 7, demonstrate the importance of the correction layers φΘ2

in improving both solution quality
and feasibility. The experimental setup and model parameters used are consistent with those in the
main text, ensuring the results are directly comparable. RL shows a significant drop in feasibility
rates, highlighting the importance of incorporating learnable corrective adjustments during training.
Similarly, while RS benefits from differentiability via STE, the lack of learnable correction limits its
performance compared to RC and LT.

Table 5: Ablation Study for Convex Quadratic Problems. See the caption of Table 2 for details.

Method Metric 5×5 10×10 20×20 50×50 100×100 200×200 500×500 1000×1000

RL

Obj Mean 0.563 −2.182 −4.569 −13.732 −15.985 −37.363 −86.385 −165.047
Obj Median 0.390 −2.547 −4.585 −13.755 −15.970 −37.363 −86.385 −165.047
% Infeasible 37% 55% 32% 32% 51% 96% 100% 100%
Time (Sec) 0.0005 0.0006 0.0004 0.0004 0.0006 0.0005 0.0006 0.0011

RS

Obj Mean 1.087 −0.694 −3.202 −11.213 −9.240 −21.975 −47.732 −92.846
Obj Median 0.926 −1.084 −3.195 −11.244 −9.237 −21.975 −47.732 −92.846
% Infeasible 0% 0% 0% 0% 0% 0% 0% 0%
Time (Sec) 0.0010 0.0013 0.0010 0.0012 0.0014 0.0012 0.0015 0.0034

Table 6: Ablation Study for Simple Non-Convex Problems. See the caption of Table 3 for details.

Method Metric 5×5 10×10 20×20 50×50 100×100 200×200 500×500 1000×1000

RL

Obj Mean 0.374 0.741 0.054 −0.421 −0.915 −2.177 −10.684 −21.837
Obj Median 0.230 0.575 0.032 −0.458 −0.915 −2.177 −10.684 −21.837
% Infeasible 19% 19% 17% 42% 66% 88% 100% 100%
Time (Sec) 0.0005 0.0005 0.0005 0.0005 0.0007 0.0005 0.0006 0.0012

RS

Obj Mean 0.866 1.421 0.588 2.704 3.531 7.038 15.065 37.559
Obj Median 0.537 0.959 0.572 2.693 3.533 7.038 15.065 37.559
% Infeasible 0% 0% 0% 0% 0% 0% 0% 0%
Time (Sec) 0.0011 0.0010 0.0010 0.0011 0.0015 0.0014 0.0016 0.0032

Table 7: Ablation Study for Rosenbrock Problems. See the caption of Table 4 for details.

Method Metric 2×4 20×4 200×4 2000×4 20000×4

RL
Obj Mean / Median 22.19/22.59 62.75/62.32 609.94/626.64 6131.90/5806.59 7.00e4/5.55e4
% Infeasible 44% 28% 36% 17% 31%
Time (Sec) 0.0005 0.0005 0.0005 0.0006 0.0015

RS
Obj Mean / Median 25.26/25.98 67.36/65.05 667.72/641.89 7538.04/7597.98 8.41e4/8.44e4
% Infeasible 0% 3% 0% 1% 30%
Time (Sec) 0.0010 0.0011 0.0011 0.0021 0.0091

G DETAILS FOR CONSTRAINTS VIOLATIONS

In this section, we analyze constraint violations for three benchmark problems. The analysis focuses
on both the frequency and magnitude of constraint violations, visualized through heatmaps for a
comprehensive understanding. Each heatmap (Figure 6, Figure 7 and Figure 8) illustrates rows
as test instances and columns as individual constraints. The heatmaps illustrate results for models
trained on datasets of 8,000 samples, with penalty weights set to 200, 100, and 100, respectively, for
the three problems.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

0 100 200 300 400

Constraint Index

0

20

40

60

80In
st

an
ce

In
d

ex

Constraint Violations Heatmap for 500×500 Convex Quadtratic (RC Method)

10−6

10−5

10−4

10−3

10−2

10−1

100

V
io

la
ti

on
M

ag
n

it
u

d
e

0 100 200 300 400

Constraint Index

0

20

40

60

80In
st

an
ce

In
d

ex

Constraint Violations Heatmap for 500×500 Convex Quadtratic (LT Method)

10−6

10−5

10−4

10−3

10−2

10−1

100

V
io

la
ti

on
M

ag
n

it
u

d
e

Figure 6: Illustration of Constraint Violation Heatmap for 500×500 Convex Quadratic Problem for
RC method (Top) and LT method (bottom) on 100 test instances: Each row represents an instance
in the test set, while each column corresponds to a specific constraint.

0 100 200 300 400

Constraint Index

0

20

40

60

80In
st

an
ce

In
d

ex

Constraint Violations Heatmap for 500×500 Simple Non-Convex (RC Method)

10−6

10−5

10−4

10−3

10−2

10−1

100

V
io

la
ti

on
M

ag
n

it
u

d
e

0 100 200 300 400

Constraint Index

0

20

40

60

80In
st

an
ce

In
d

ex

Constraint Violations Heatmap for 500×500 Convex Quadtratic (LT Method)

10−6

10−5

10−4

10−3

10−2

10−1

100

V
io

la
ti

on
M

ag
n

it
u

d
e

Figure 7: Illustration of Constraint Violation Heatmap for 500×500 Simple Non-Convex Problem
for RC method (Top) and LT method (bottom) on 100 test instances: Each row represents an instance
in the test set, while each column corresponds to a specific constraint.

The heatmap for the convex quadratic problem (Figure 6) and the simple non-convex problem (Fig-
ure 7) reveals a sparse distribution of violations, predominantly concentrated in a single constraint.
This indicates that most constraints are consistently satisfied, with only a few isolated violations.
Notably, 4 out of 100 test instances of convex quadratic problem under RC are infeasible, and
among these, 3 violations occur within the same constraint, and all 3 infeasible solutions of convex
quadratic from LT method also appear in the one constraint. Overall, the constraint violations are
nearly negligible, confirming the effectiveness of the proposed methods.

Figure 8 highlights a much denser distribution of violations, reflecting the complexity of this bench-
mark. The nonlinear constraint ∥x∥22 ≤ nb is particularly challenging, as shown by the more fre-
quent and larger violations.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

‖x‖2
2 ≤ nb y ≥ nb/2 pTx ≤ 0 qTy ≤ 0

Constraint

0

20

40

60

80In
st

an
ce

In
d

ex

Constraint Violations Heatmap for 20000×4 Rosenbrock (RC Method)

0

5000

10000

15000

20000

25000

30000

V
io

la
ti

on
M

ag
n

it
u

d
e

‖x‖2
2 ≤ nb y ≥ nb/2 pTx ≤ 0 qTy ≤ 0

Constraints

0

20

40

60

80In
st

an
ce

In
d

ex

Constraint Violations Heatmap for 20000×4 Rosenbrock (LT Method)

0

5000

10000

15000

20000

25000

30000

V
io

la
ti

on
M

ag
n

it
u

d
e

Figure 8: Illustration of Constraint Violation Heatmap for 20000×4 Rosenbrock Problem for RC
method (Top) and LT method (bottom) on 100 test instances: Each row represents an instance in the
test set, while each column corresponds to a specific constraint.

The heatmaps reveal key insights into the performance of the RC and LT methods. While the con-
vex quadratic and simple non-convex problems exhibit minimal violations, the Rosenbrock problem
highlights the difficulty of satisfying nonlinear constraints. These observations underscore the need
for further refinement of penalty weights. Specifically, constraint-specific adjustments could miti-
gate violations by placing higher penalties on constraints that are harder to satisfy.

H EXPERIMENTS ON BINARY LINEAR PROGRAMS

Dataset. For our experiments involving mixed-integer linear programs (MILPs), we utilized the
‘Obj Series 1‘ dataset from the MIP Workshop 2023 Computational Competition (Bolusani et al.,
2023). This dataset comprises 50 related MILP instances derived from a common mathematical for-
mulation, where the instances differ in a subset of the objective function coefficients. Each instance
contains 360 binary variables and 55 constraints, with 120 out of the 360 objective coefficients
varying across instances. All other components of the problem remain consistent.

Model Configuration. The neural network architecture and hyperparameters were consistent with
those used for other experiments in the main paper. Specifically for the MILP problem in this study,
the input dimension of the neural network was set to 120, corresponding to the number of varying
objective function coefficients, and the output dimension was set to 360, representing the binary
decision variables. The hidden layer consisted of 256 neurons.

Results. Table 8 summarizes the results of the ILP experiments: Both learning-based methods
(RC and LT) demonstrate the ability to generate high-quality feasible solutions efficiently, with RC
even surpassing the heuristic-based method N1 in terms of objective value. However, N1 is the
fastest method overall, showcasing the robustness and efficiency of the heuristic in the MILP solver.
Notably, the training time for the learning-based models is approximately 120 seconds, making them
well-suited for applications requiring repeated problem-solving.

I TRAINING TIME COMPARISON

In this section, we present the training times for the LR, LT, and RL methods across various problem
sizes. All training runs were conducted using datasets of 9,000 instances for each problem with
1,000 instances reserved for validation per epoch. It is important to note that while the training

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 8: Comparison of Optimization Methods on the MILP. See the caption of Table 2 for details.

Method Obj Mean Obj Median % Infeasible Time (Sec)
RC 9745.90 9763.00 0% 0.04
LT 14149.00 14149.00 0% 0.04
EX 8756.80 8747.00 0% 28.91
N1 11901.10 11933.00 0% 0.01

process was set for 200 epochs, an early stopping strategy was applied, allowing the training to
terminate earlier when performance plateaued.

Table 9: Training Times (in seconds) for LR, LT, and RL methods across different problem sizes for
the Convex Quadratic Problem. Each method was set to train for 200 epochs, with early stopping
applied.

Method 5x5 10x10 20x20 50x50 100x100 200x200 500x500 1000x1000
RC 242.28 225.38 153.98 237.11 141.15 149.43 606.23 727.32
LT 217.01 225.38 154.33 158.61 128.86 139.17 458.62 462.41
RL 213.53 63.96 73.72 61.95 85.91 88.49 304.80 277.78

Table 10: Training Times (in seconds) for RC, LT, and RL methods across different problem sizes for
the Simple Non-convex Problem. Each method was set to train for 200 epochs, with early stopping
applied.

Method 5x5 10x10 20x20 50x50 100x100 200x200 500x500 1000x1000
RC 257.28 144.46 173.02 138.53 136.01 104.05 116.01 156.85
LT 226.09 260.34 104.35 88.41 111.38 89.24 230.52 195.67
RL 111.07 75.67 79.28 58.86 81.43 84.28 149.87 131.42

Table 11: Training Times (in seconds) for RC, LT, and RL methods across different problem sizes
for the Rosenbrock Problem. Each method was set to train for 200 epochs, with early stopping
applied.

Method 2×4 20×4 200×4 2000×4 20000×4
RC 230.68 112.35 75.49 106.76 5227.05
LT 126.60 125.11 86.43 84.61 6508.41
RL 39.79 98.12 103.38 61.30 1920.59

Table 9, 10 and 11, summarize the training times (in seconds) required by each method for prob-
lems of different scales. These results highlight the computational efficiency of our methods during
training, with training times for most problem instances remaining within a few hundred seconds.
Even for large-scale problems, such as the 20000×4 Rosenbrock problem, the RC and LT method
required only a few hours of training to handle a problem that exact solvers struggle to even find
feasible solutions for in reasonable time. This efficiency is largely attributed to our simple neural
network architecture, which enables scalable and efficient training. Thus, our method is particularly
advantageous in real-world scenarios where rapid deployment and scalability are critical.

22

	Introduction
	Related Work
	Learning to Optimize MINLPs: a Problem Formulation
	Preliminaries: Differentiating through Discrete Operations
	Learning to Optimize MINLPs with Correction Layers
	Experimental Results
	Experimental Setup
	Convex Quadratic Problem
	Simple Non-convex Problem
	Multi-Dimensional Mixed-Integer Rosenbrock Problem
	Effect of Penalty Weight
	Effect of Training Sample Size

	Conclusion
	Gumbel-Sigmoid Trick
	Details of Correction Layers
	Example Illustration
	Neural Network Structure and Hyperparameters
	MINLP Problem Setup and Parameter Sampling
	Ablation Study
	Details for Constraints Violations
	Experiments on Binary Linear Programs
	Training Time Comparison

