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Abstract
The sparsely gated mixture of experts (MoE)
architecture sends different inputs to different
subnetworks (experts), through trainable routers.
MoE reduces the training computation signifi-
cantly for large models, but its deployment can
be still memory/computation expensive for some
downstream tasks. Model pruning is a popular
approach to reduce inference computation, but its
application in MoE architecture is largely unex-
plored. To the best of our knowledge, this paper
provides the first provably efficient technique for
pruning experts in fine-tuned MoE models. We
theoretically prove that prioritizing the pruning of
the experts with a smaller change of the router’s l2
norm from the pre-trained model guarantees the
preservation of test accuracy, while significantly
reducing the model size and the computational re-
quirements. Although our theoretical analysis is
centered on binary classification tasks on simpli-
fied MoE architecture, our expert pruning method
is verified on large vision MoE models such as
V-MoE and E3-MoE fine-tuned on benchmark
datasets such as CIFAR-10, CIFAR-100, and Ima-
geNet.

1. Introduction
In deep learning, a typical approach is to adapt the same
large pre-trained model (often based on the Transformer
architecture (Vaswani et al., 2017)) to a plethora of down-
stream tasks. This method circumvents the substantial cost
associated with training separate models for each task. This
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approach has consistently achieved state-of-the-art results
in many application domains (Devlin et al., 2019; Dosovit-
skiy et al., 2020; Wortsman et al., 2022; Yu et al., 2022).
Notably, a larger pre-trained model usually leads to better
performance (Chen et al., 2022b; Chowdhery et al., 2023;
Dehghani et al., 2023). However, an increase in model size
typically leads to a proportional rise in the computational
resources required for training, scaling linearly with the
number of parameters.

The sparsely gated mixture of experts (MoE) has been intro-
duced to reduce the training cost of large models (Shazeer
et al., 2017; Lepikhin et al., 2020). The MoE layer in a
Transformer encoder block replaces the single feed-forward
network (FFN) module with multiple FFN modules, referred
to as the experts. Each expert is associated with a trainable
router that selectively activates the expert based on the in-
put tokens. The sparse computation over the tokens allows
for the expansion of the model size with only a sub-linear
increase in the training compute (Shazeer et al., 2017; Lep-
ikhin et al., 2020; Fedus et al., 2022).

Due to their large model sizes, the deployment of MoE
models still needs significant memory requirements, and in-
ference compute (Riquelme et al., 2021; Zhou et al., 2022),
which may restrict their applications in resource-constrained
environments. Because different experts often learn diverse
features (Lepikhin et al., 2020; Riquelme et al., 2021; Fedus
et al., 2022), and not all experts are essential for a partic-
ular downstream task (Riquelme et al. (2021), Figure 29),
pruning irrelevant and redundant experts may reduce the
inference compute and memory requirement of a fine-tuned
MoE model while maintaining the inference accuracy.

Despite the extensive research on neural network pruning
(Han et al., 2015; 2016b;a; Frankle & Carbin, 2018; Li et al.,
2020a; Frantar & Alistarh, 2023), pruning experts in the
MoE architecture has not been much explored. To the best
of our knowledge, only recent work by Chen et al. (2022a)
and Koishekenov et al. (2023) prune non-essential experts,
which are identified by the total number of tokens received
by each expert throughout the fine-tuning stage or over the
validation set after fine-tuning. These pruning methods can
reduce memory requirements by reducing the number of
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experts and the communication among experts but cannot
reduce the inference compute because tokens are routed
to other experts after pruning. Moreover, no theoretical
analysis has been provided, and it is not clear whether the
total token count is the correct measure to identify essential
experts. A fundamental question remains to be open:

For a given downstream task, what characteristic of an
MoE layer provably separates the essential experts so that

removing the rest does not hurt generalization?

This paper addresses this question empirically and theo-
retically on a binary supervised classification task1. We
analyze the training dynamics of the routers and experts of
a pre-trained MoE layer during the fine-tuning stage. Our
analysis reveals that prioritizing the pruning of the experts
with smaller l2 norm change of the router’s weights from
the pre-trained model guarantees the preservation of test
accuracy, while significantly reducing the model size and
the computational requirements. The significance of our
contributions are summarized as follows:

1. Theoretical generalization analysis: To the best of our
knowledge, this paper provides the first provably effec-
tive technique for pruning experts in MoE models. We
theoretically prove that experts who learned task-relevant
features (that determine labels) have larger changes of their
router’s l2 norm during the fine-tuning stage than those ex-
perts that learn task-irrelevant features. We then prove that
pruning experts with smaller changes of their router’s l2
norm can guarantee the pruning of irrelevant and redundant
experts, while maintaining the same test accuracy in a wide
range of pruning ratios.

Figure 1: Generalization performance of the pruned VMoE
on CIFAR-10 with post-pruning fine-tuning. ‘pruned 2
exp/enc’ implies pruning two experts from each MoE en-
coder.

2. Empirical validation: We provide experimental demon-
1We consider binary tasks for the simplicity of the analysis.

Our analysis can be extended to the multi-class case at the cost of
higher complexity in the analysis.

stration of the proposed pruning technique’s effective-
ness on state-of-the-art vision MoE models. We evaluate
on several vision MoE (VMoE) (Riquelme et al., 2021) and
ensembles of vision MoE (known as the efficient ensemble
of experts, E3) (Allingham et al., 2022) models with thou-
sands of millions of parameters, fine-tuned on benchmark
datasets such as CIFAR-10, CIFAR-100, and ImageNet. For
example, as shown in Figure 1 our method can prune 75%
of the experts of the fine-tuned V-MoE model on CIFAR-10
to reduce 60% of the memory requirements, while main-
taining the model accuracy within 1% of the un-pruned
model. Moreover, the method can reduce 40% of the infer-
ence FLOPs and 40% of inference time (see Section 5 for
details). Furthermore, our pruning technique is designed
for seamless integration with contemporary digital hard-
ware accelerators, such as GPUs and TPUs, and can be
implemented without the need for specialized software or
hardware modifications.

2. Related Works
Mixture-of-Experts. The sparsely gated MoE sends dif-
ferent tokens of an input sequence to different experts in
language models (Shazeer et al., 2017; Lepikhin et al., 2020;
Fedus et al., 2022; Du et al., 2022) and vision models
(Riquelme et al., 2021; Puigcerver et al., 2022; Allingham
et al., 2022). To address the challenge of load balancing
among the experts (Lewis et al., 2021), expert-choice rout-
ing is introduced in Zhou et al. (2022) so that, instead of
selecting experts for each token, the router selects tokens
for each expert.

Despite the empirical success of MoE, its theoretical analy-
sis is underexplored except for a few recent works. Specif-
ically, Chen et al. (2022c) provides the theoretical gener-
alization analysis of MoE with sample-level routing, and
Chowdhury et al. (2023) proves the computational efficiency
of modern MoE with patch-level routing.

Pruning deep neural networks. Network pruning has
been widely explored recently to reduce the computation
and memory cost of deep neural networks (DNN) (Han
et al., 2016a; Luo et al., 2017; Lee et al., 2019b; Liu et al.,
2021a; Jaiswal et al., 2023) Unstructured pruning methods
prune individual weights (Han et al., 2015; 2016b; Frankle
& Carbin, 2018; Wang et al., 2020; Liu et al., 2021b), while
structured pruning methods remove neurons, channels, and
layers (Li et al., 2016; Tung & Mori, 2018; Nonnenmacher
et al., 2021). Although unstructured pruning can lead to
a smaller model size because of the higher flexibility in
pruning, the resulting irregular sparsity can lead to com-
putational and memory overhead in practice. In contrast,
structured pruning produces more regular and structured
architecture, leading to possibly better hardware utilization
and computational efficiency.
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For large Transformer-based models, some focus on pruning
pre-trained models (Chen et al., 2020; Zafrir et al., 2021; Li
et al., 2024a) while others focus on task-specific pruning dur-
ing or after the fine-tuning stage (Wang et al., 2020; Li et al.,
2020b; Sanh et al., 2020). Note that all of these methods
are compatible with our method and can be implemented
together to further compress MoE models.

Convergence and Generalization Analyses of Neural Net-
works. The Neural Tangent Kernel (NTK) based approaches
(Jacot et al., 2018; Lee et al., 2019a; Du et al., 2019; Allen-
Zhu et al., 2019b; Li et al., 2022) assume the model weights
stay close to the initialization during the training process,
which might not reflect the practical learning dynamics.
The model estimation approach (Zhong et al., 2017; Zhang
et al., 2020b;a; Fu et al., 2020; Zhang et al., 2023; Li et al.,
2024b) requires the input data to satisfy the Gaussian distri-
bution. Recent works based on the feature learning frame-
work (Daniely & Malach, 2020; Shalev-Shwartz et al., 2020;
Shi et al., 2021; Allen-Zhu & Li, 2022; Zhang et al., 2022;
Li et al., 2023; Allen-Zhu & Li, 2023; Chowdhury et al.,
2023) can better characterize the practical learning dynam-
ics in which the neural network gradually learns important
features and discards unimportant features. Our theoretical
analysis follows the feature learning framework.

3. Method
3.1. The Mixture-of-Experts Architecture

An MoE layer consists of multiple position-wise FFN mod-
ules referred to as experts, each associated with a router.
The routers are collectively referred to as the gating net-
work. Generally, MoE is implemented in the transformer
encoder and decoder. As input samples in a transformer are
tokenized, the MoE layer receives tokens as input.

Let us denote x =
[
x(1)T , x(2)T , ..., x(n)T

]
∈ Rdn as

the input sample of an MoE layer tokenized into n to-
kens of dimension d. Here, x(j) ∈ Rd denotes the j-
th token where j ∈ [n]. The MoE layer generates the
n corresponding tokens of dimension d′ of the output
xout =

[
x
(1)T

out , x
(2)T

out , ..., x
(n)T

out

]
. The layer with k experts

computes the output x(j)
out ∈ Rd′

for the token x(j) as,

x
(j)
out =

∑
s∈[k]

fs

(
x(j)

)
where, (1)

fs

(
x(j)

)
= W

(s)
2 σ

(
W

(s)T

1 x(j)
)
G

(s)
j (2)

fs
(
x(j)

)
is the output for the expert s ∈ [k] for input token

x(j). Here, W
(s)
1 ∈ Rd×m represents the hidden layer

weights of the expert s ∈ [k] with hidden dimension m, i.e.
with m hidden neurons. We denote the neuron r ∈ [m] of
expert s ∈ [k] (the r-th column of W (s)

1 ) by w
(s)
r . σ(·) is

the element-wise activation function, and W
(s)
2 ∈ Rd′×m is

the output layer weights converting hidden representations
into output tokens.

The gating network. G
(s)
j ∈ [0, 1] is the output of the

gating network, referred to as the gating value associated
with the expert s and the j-th token. To show how G

(s)
j

is calculated, for the MoE layer with k experts, the gating
network contains k corresponding trainable routers denoted
as {ws}ks=1 ∈ Rd. We follow the definition in Riquelme
et al. (2021) that the routing value associated with the router
ws and token x(j) as g(s)j := ⟨ws, x

(j)⟩.

The routing function is characterized as either token-choice
routing (Fedus et al., 2022) or the expert-choice routing
(Zhou et al., 2022). Token-choice routing selects the top l
experts for each token, according to the routing values of
that token over the k experts. Let Jj ⊂ [k] with |Jj | = l
denote the index set of the top l experts for the j-th token.
Then gating values of the top l experts are non-zero and
calculated as the softmax function over their routing values,
while gating values for other experts are zero, i.e.,

G
(s)
j :=

{
eg

(s)
j /

∑
i∈Jj

eg
(i)
j if s ∈ Jj

0 else
. (3)

Similarly, expert-choice routing selects top l tokens for each
expert, according to the routing values of that expert over
the n tokens of the input. Let Js ⊂ [n] with |Js| = l denote
the index set of the top l tokens for the s-th expert. The
gating values are computed by

G
(s)
j :=

{
eg

(s)
j /

∑
i∈Js

eg
(s)
i if j ∈ Js

0 else
. (4)

See Figure 2 for a visual description of the two routing
methods.

Note that zero gating values in (3)-(4) are introduced for
mathematical completeness. In the implementation of sparse
computation, fs

(
x(j)

)
is directly set as zero when s is not

in Js for token-choice routing or when j is not in Js for
expert-choice routing, without actually computing (2). That
means tokens are only routed to the experts with non-zero
gating values.

3.2. Expert Pruning Method in MoE

Let {w(0)
s ,W

(s,0)
1 ,W

(s,0)
2 }ks=1 denote the pre-trained

weights of an MoE layer. The model is fine-tuned us-
ing the stochastic gradient descent (SGD) with batch
size B, the expert learning rate ηe for parameters W

(s)
1

and W
(s)
2 , and the router learning rate ηr for ws. Let
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Figure 2: Left: Token-choice routing: each token selects
experts based on the routing values over the experts. Right:
Expert-choice routing: Each expert selects tokens based on
the routing value over the tokens. In both cases, the experts
with a smaller norm change of router’s weights are pruned
(Expert 2). The output tokens for the pruned experts are set
to zero (Token 1 in the figure). In the left, the routers of the
pruned experts are retained to calculate the gating value. In
the right, the routers of the pruned experts are also pruned.

{w(T )
s ,W

(s,T )
1 ,W

(s,T )
2 }ks=1 denote the corresponding fine-

tuned weights after T iterations. We define the change of
router’s l2 norm from the pre-trained model for any expert
s ∈ [k] after T training steps as,

∆
(T )
s := ∥w(T )

s ∥ − ∥w(0)
s ∥

Let Sk′ denote the index set of remaining experts after prun-
ing, where k′ is the number of unpruned experts. Sk′ is se-
lected based on ∆

(T )
s . For example, Sk′ can contain experts

with top k′ values of {∆(T )
s }ks=1. We define the expert-

pruning-ratio of the pruned model as ρ := 1− (k′/k). Note
that the computation of nonzero gating values G(s)

j is inde-
pendent of the expert pruning. In token-choice routing, each
token is only routed to those experts in Sk′ that are among
the selected l experts for that token. The resulting gating
values of token-choice routing with expert pruning is

G
(s)
j :=

{
eg

(s)
j /

∑
i∈Jj

eg
(i)
j if s ∈ Jj ∩ Sk′

0 else
. (5)

In expert-choice routing, because the routers select l tokens
for each expert, if an expert is pruned, its corresponding
router is also pruned. The resulting gating values of expert-
choice routing with expert pruning is

G
(s)
j :=

{
eg

(s)
j /

∑
i∈Js

eg
(s)
i if j ∈ Js and s ∈ Sk′

0 else
.

(6)

See Figure 2 for a visual description of the pruning method
for the two routing techniques.

The model after pruning can be directly employed in a down-
stream task. It can also be fine-tuned again post-pruning
using SGD with batch size B and learning rates ηe and ηr
for T ′ iterations before deployment.

4. Theoretical Guarantees of the Expert
Pruning Method

4.1. Key Theoretical Findings

We consider the setup that some tokens represent task-
specific features that determine the data label in the down-
stream tasks, while some other tokens represent task-
irrelevant features that do not affect the label. Before pre-
senting our analysis setup and the formal theoretical results,
we first present the key insights.

(I) Experts learning task-specific features have a large
change in router’s norm, while experts not learning task-
specific features have a small change in router’s norm.
We theoretically show that the experts that learned task-
specific features for the downstream task to a sufficient
extent after pre-training continue to learn the task-specific
features during fine-tuning, which leads to a large change
of the router’s l2 norm in the fine-tuned model (Lemma
4.1). In contrast, the experts that do not learn task-specific
features will still only learn irrelevant features during fine-
tuning and have a small change of the router’s l2 norm in
the fine-tuned model.

(II) Post-pruning fine-tuning promotes unpruned experts
to learn task-specific features. We show that the routers
of the unpruned experts always selects task-specific pat-
terns. As a result, post-pruning fine-tuning can promote the
neurons of these experts to learn task-specific features.

(III) The pruned model provides guaranteed generaliza-
tion for a wide range of pruning ratios. Using the above
two findings, we formally show all the experts not learning
task-specific features can be pruned without hurting gener-
alization accuracy. Moreover, if the pruned model can be
further fine-tuned, one can prune up to 1−O(1/k) fraction
of experts with the least changes of router’s l2 norm while
maintaining the generalization accuracy.

4.2. The Analysis Setup

Network architecture. We consider fine-tuning a pre-
trained MoE layer with k experts on a binary classification
task. Any input samples (x, y) is drawn from an unknown
distribution D where y ∈ {+1,−1}. The output of the
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fine-tuned model is defined as,

f(x) :=

n∑
j=1

x
(j)
out =

n∑
j=1

∑
s∈[k]

fs

(
x(j)

)
(7)

Here, the output token dimension, d′ = 1. We replace
the output layer weights W

(s)
2 of the pre-trained model

by a fixed classification head a(s)1⃗ where 1⃗ is a vector of
1s with dimension m and where a(s) is generated from
Unif({+1,−1}). In other words, each expert is positively
or negatively connected to the model’s output. Following
the typical setup of theoretical generalization analysis of
neural networks (Li & Liang, 2018; Brutzkus et al., 2018;
Allen-Zhu et al., 2019a; Arora et al., 2019; Zhang et al.,
2022), a(s) is not updated during training. The activation
function σ(·) is the rectified linear unit (ReLU) i.e. σ(z) =
ReLU(z) := max(z, 0) for any z ∈ R. We analyze the
expert-choice routing MoE with l = O(1) and k = O(

√
d),

but our theoretical results are also validated in experiments
on token-choice routing MoEs.

Training method. The learning method minimizes the
hinge loss, l̂(f(x), y) = max(1− yf(x), 0) while the gra-
dient is evaluated on l(f(x), y) = 1− yf(x), same as the
setting in Zhang et al. (2022).We employ vanilla SGD using
a batch size of B for T training steps with learning rate ηe
and ηr in the experts and the routers, respectively.

Pruning model. Let us denote S1 and S2 as the two sets of
experts positively and negatively connected to the output,
respectively, i.e., S1 := {s ∈ [k] : a(s) = +1} and S2 :=
{s ∈ [k] : a(s) = −1}. We prune the experts based on the
change of router’s l2 norm separately over the set S1 and S2.
More specifically, given an expert pruning ratio ρ, we retain
the experts with top |S1|(1− ρ) values of {∆(T )

s }s∈S1 and
top |S2|(1 − ρ) values of {∆(T )

s }s∈S2
to construct the set

Sk′ while pruning rest of the experts.

The data model2. The tokens are drawn from a fixed or-
thonormal pattern set, denoted by P , which includes d pat-
terns in Rd, where d = Ω(n). P includes two task-specific
patterns, denoted by o1 and o2, which determine the labels
for class-1 (y = +1) and class-2 (y = −1), respectively.
Each input sample x contains exactly one task-specific pat-
tern, which determines the label. P also contains d − 2
task-irrelevant patterns, denoted by {qi}d−2

i=1 , which do not
affect labels. Each qi appears in both classes with the same
probability. The probability of qi appearing in x can vary
for different i, but is O(1/d) for all i. We denote the data
generating distribution by D.

2Assumptions on the structure of the input data are required to
analyze the feature-learning dynamics of neural networks. Similar
assumptions have been made in many recent works (Brutzkus &
Globerson, 2021; Shi et al., 2021; Karp et al., 2021; Allen-Zhu &
Li, 2022; Chen et al., 2022c; Zhang et al., 2022; Li et al., 2022;
Zhang et al., 2022; Allen-Zhu & Li, 2023; Chowdhury et al., 2023).

Experts’ proficiency measure. We introduce a probability
measure to quantify the quality of a router’s capability of
selecting task-specific features. Let p(s,t)1 and p

(s,t)
2 denote

the proficiency measure of router s at iteration t in selecting
the task-specific feature o1 and o2 with a gating value of at
least 1/l, respectively. Specifically,

p
(s,t)
1 := P[(x,+1) ∼ D :∃j ∈ J (t)

s s.t.

x(j) = o1 and, G(s,t)
j ≥ 1/l]

Likewise for p(s,t)2 . The larger values indicate the higher
chances of expert s in selecting task-specific features.

4.3. Main Generalizalization Results of Expert Pruning

The generalization results of the pruned model without and
with post-pruning fine-tuning are summarized in Theorems
4.3 and 4.5. We also present three important lemmas that
lead to the theorems. Lemmas 4.1 and 4.2 jointly show
that the change of router’s l2 norm in an important expert
that learns task-specific features is significantly larger than
the l2 norm change of the router of unimportant expert that
learns task-irrelevant features. Lemma 4.4 shows that post-
pruning fine-turning can promote the unpruned experts to
be specialized in learning task-specific features.

Lemma 4.1 (Important experts become more specialized).
Suppose the expert learning rate ηe, the router learning rate
ηr, the batch-size B, and the number of iterations T satisfy

ηr = O(ηe/mdl2), B = Ω(l2d2) (8)

T = Ω(l2
√
d log l/ηe). (9)

For any expert s ∈ S1 such that p(s,0)1 = Ω(1), we have

(i) p(s,T )
1 = 1,

(ii) for every (x,+1) ∼ D, G(s,T )
j (x) > 1/2, if x(j) = o1,

(iii) ⟨w(s,T )
r , o1⟩ = Ω(l

√
d log l), for a constant fraction

r ∈ [m],

(iv) ∆(T )
s >

3

2
log l. The counterpart results also hold for

experts in S2.

Lemma 4.1 shows that expert s in the pre-trained model
that learns the task-specific feature (say, o1) to some extent
(important experts, i.e., p(s,0)1 = Ω(1)) will become more
specialized in learning the task-specific features after fine-
tuning T iterations, and the norm of the corresponding router
has a significant increase. Specifically, (i) indicates that the
router s will always select o1 as one of the l tokens in all
class-1 samples. (ii) shows that for a class-1 sample x, the
gating value that corresponds to the token o1 is large, at
least 1/2. (iii) shows that a constant fraction of neurons in
expert s has a large component along the direction of the
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task-specific feature. (iv) shows that the router norm has a
significant increase after fine-tuning.

In contrast, Lemma 4.2 shows that experts that do not learn
the downstream task-specific features (unimportant experts)
will still only learn task-irrelevant features after fine-tuning,
and the norm changes of the corresponding routers are rela-
tively small.

Lemma 4.2 (Unimportant experts stay unimportant). Sup-
pose (8) and (9) hold. For any expert s ∈ S1 such
that p(s,0)1 = O(1/d), we have (i) p(s,T )

1 = O(1/d), (ii)
∆

(T )
s = O(log2 l/

√
d) +O(l4 log2 l/d2). The counterpart

results also hold for experts in S2.

Lemma 4.2 (i) indicates that the router of the fine-tuned
expert still can only select task-specific features for a very
small fraction of data, less than O(1/d), while the router
fails to select task-specific features for the dominating frac-
tion of the samples. Lemma 4.2 (ii) shows that the router
norm stays small. That is because l is O(1), much smaller
than d.

Next we will present the generalization result of expert prun-
ing without post-pruning fine-tuning. Let f (T )(x) denote
the output of the unpruned model in equation (7) after T
SGD iterations. Let f̂ (T ;ρ)(x) denote the resulting pruned
model where ρ (in [0, 1)) fraction of experts are pruned.

Theorem 4.3 (Generalization of pruned model with no
post-pruning fine-tuning). Suppose (8) and (9) hold, the
number of experts k = O(

√
d), and at least γ fraction

of s ∈ S1 with p
(s,0)
1 = O(1/d) and s′ ∈ S2 with

p
(s′,0)
2 = O(1/d). Then, we have for any 0 ≤ ρ ≤ γ,

P
[
∀(x, y) ∼ D : yf̂ (T ;ρ)(x) > 0

]
= 1. (10)

Theorem 4.3 shows that the pruned model with no post-
pruning fine-tuning can still achieve zero generalization if
up to γ fraction of experts with the smallest router l2-norm
change are removed. The intuition is that those γ fraction
of experts do not learn task-specific features, and, thus,
removing these experts does not affect generalization.

We next analyze the impact of post-pruning fine-tuning. If
the pruned model is fine-tuned again for T ′ iterations, let
f̂ (T ;ρ,T ′)(x) denote resulting model after post-pruning fine-
tuning. Lemma 4.4 shows that the routers with large norm
change are specialized in selecting task-specific patterns.
If these experts remain in the model after pruning, post-
pruning fine-tuning can ensure that the hidden neurons of
the experts are trained to learn task-specific features.

Lemma 4.4 (Post-pruning fine-tuning promotes experts to
learn task-specific features). Suppose (8) and (9) hold. For
any expert s ∈ S1 such that ∆(T )

s > 3
2 log l, we have

(i) p(s,T )
1 = 1,

(ii) for every (x,+1) ∼ D, G(s,T )
j (x) > 1/2, if x(j) = o1,

Moreover, after pruning experts with the ratio ρ ≥ γ, if
s ∈ Sk′ , and the number of post-pruning fine-tuning steps
satisfies

T ′ = Ω(kl2
√
log l/ηe) (11)

then we have

⟨w(s,T,T ′)
r , o1⟩ = Ω(kl2

√
log l) (12)

for a constant fraction r ∈ [m], where w
(s,T,T ′)
r is the

resulting weights of neuron r in expert s. The counterpart
results hold for experts in S2.

The first half of Lemma 4.4 shows that if expert s has
large router norm change after pre-pruning fine-tuning, then
router s is specialized in selecting task-specific patterns and
the corresponding gating values for task-specific patterns are
large. The second of Lemma 4.4 shows that if we prune all
unimportant experts and then continue to further fine-tuning
expert s, then a constant fraction of neurons in expert s will
be specialized in learning task-specific features. Therefore,
if we allow post-pruning fine-tuning, the tolerable pruning
rate can be large, as described in Theorem 4.5.

Theorem 4.5 (Generalization of pruned model with
post-pruning fine-tuning). Suppose (8), (9) and (11) hold,
and the number of experts k = O(

√
d). Then for any

ρ ≤ 1−O(1/k),

P
[
∀(x, y) ∼ D : yf̂ (T ;ρ,T ′)(x) > 0

]
= 1. (13)

Theorem 4.5 guarantees that a high expert-pruning-ratio
(1 − O(1/k)) is achievable without hurting the general-
ization performance using post-pruning fine-tuning. The
intuition is that post-pruning fine-tuning allows some ex-
perts to become more specialized in learning task-specific
patterns, and therefore, pruning more experts does not hurt
generalization overall. The required number of post-pruning
fine-tuning iterations T ′ is less than pre-pruning fine-tuning
iterations T , because k = O(

√
d).

5. Experimental Results
5.1. Experiments on Synthetic Data

We verify our theoretical findings on synthetic data for the
analyzed model. The data are generated by following the
description given in section 4.2. We selected d = 200 and
n = 100 to generate the data. We select 20 experts in the
MoE layer (i.e., k = 20), each selecting five tokens (i.e.,
l = 5). The first ten experts are positively connected to
the output, while the last ten are negatively connected. We
initialize the routers and the neurons of the experts randomly
following zero-mean Gaussian distribution with very small
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(a)

(b) Router 5 (c) Router 1

(d) Expert 5 (e) Expert 1

Figure 3: (a) The norm of the post-training router weights,
(b)(c) Projections of router weights to different directions,
(d)(e) Projections of neuron weights to different directions
(larger pixel intensity represents larger component of the
router weights).

variance (1 × 10−8 and 1 × 10−4, respectively) and train
using SGD up to zero training error.

We present the norms of the post-training routerweights for
the 20 routers in Figure 3a. One can see that in both groups,
a few routers have significantly larger weight norms than
others, e.g., experts 4 and 5 in the positive group, experts
11 and 20 in negative group. Figure 3b and 3c visualize
the projection of router weights in different directions. The
weight of Router 5 has a significant norm, and has a large
component along the o1 direction. In contrast, the weight of
Router 1 has a small norm, and it does not have a significant
component along o1. Figure 3d and 3e show the projection
of the neuron weights of experts 5 and 1 in these directions.
One can see that a constant fraction of neurons in expert 5
have a large component along o1, while neurons in expert 1
do not. We have similar results for the negative group, see
section B.1 in the appendix. These results are consistent
with Lemmas 4.1 and 4.2.

5.2. Experiments on State-of-the-art Vision MoE
Models

We implement the proposed change in router’s l2 norm
based expert pruning method in state-of-the-art vision MoE
models fine-tuned on several benchmark datasets such as
CIFAR-10, CIFAR-100 (Krizhevsky, 2009) and ImageNet
(Russakovsky et al., 2015). More specifically, we implement
the method to prune the released fine-tuned sparse vision

MoE (V-MoE) by Riquelme et al. (2021). Moreover, we
present results on the released fine-tuned efficient ensembles
of experts in MoE (E3-MoE) by Allingham et al. (2022).

The V-MoE model. The model contain 12 transformer
encoders (encoders 0, 1, ..., and 11). Every odd encoder
(i.e., encoders 1, 3, 5, 7, 9, and 11) is the MoE encoder.
Each MoE encoder contains 8 experts (i.e., k = 8).

The E3-MoE model. The model contain 8 transformer
encoders (i.e., encoders 0, 1, ..., and 7), where the last two
encoders contain the ensemble of MoEs (i.e., encoders 5
and 7). There are 2 MoE ensembles in the model and each
MoE ensembles contains 4 experts per MoE encoder (i.e.,
k = 4).

Both of these models implement the token-choice routing
with l = 2 and l = 1, respectively. More details can be
found in section A of appendix.

Pruning and post-pruning fine-tuning details. We use
both the pre-trained and the fine-tuned versions of the re-
leased model to calculate the change in the router’s norm
for each expert. We apply our pruning method over each
MoE layer separately in V-MoE model while applying the
method separately over the experts in each ensemble group
of each MoE encoder in the E3-MoE model. We imple-
ment the pruned model in parallel into two NVIDIA RTX
A5000 GPUs for inference and the post-pruning fine-tuning.
For post-pruning fine-tuning, as the model size is large, we
divide the batch size into half from the original case for
CIFAR-10 and CIFAR-100. However, the number of steps
is the same. For the same reason, we divide the original
batch-size by 32 folds so as the learning rate for ImageNet
and hence increase the post-training fine-tuning steps by
32 times of the original. Rest of the hyperparameters are
same as in the original fine-tuning process described by the
authors.

5.2.1. RESULTS

Generalization performance. Here, we present the gen-
eralization performance of the pruned models in terms of
the model pruning ratio, which is defined as the ratio of
the number of parameters pruned to the total number of
parameters of the unpruned model. Primarily, we verify
the effectiveness of our method compared to the random
pruning baseline. As shown in Figure 4a for CIFAR-10, our
method can effectively select the task-specific experts as it
retains the original performance while the random pruning
of experts falls sharply after a small pruning ratio. Figure 4b
presents generalization results on CIFAR-10 without post-
pruning fine-tuning. As we can see, the method can prune
50% of the experts (35% of the whole model) while main-
taining accuracy within 1% of the unpruned model when
we do not prune from the penultimate MoE layer. However,
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(a) (b) (c)

(d) (e) (f)

Figure 4: Generalization performance of the pruned V-MoE models: (a) Comparison with random pruning on CIFAR-10,
(b) On CIFAR-10 w/o post-pruning fine-tuning, (c) On CIFAR-100 w/o post-pruning fine-tuning, (d) On CIFAR-100 with
post-pruning fine-tuning, (e) On ImageNet w/o post-pruning fine-tuning, (f) On ImageNet with post-pruning fine-tuning

as described in Riquelme et al. (2021), due to the extra sen-
sitivity of the penultimate MoE layer, pruning in the layer is
not feasible without post-pruning fine-tuning. However, as
shown in Figure 1, we can overcome the limitation by post-
pruning fine-tuning and prune up to the maximum possible
percentage (75% of the experts, 60% of the whole model)3.

We found similar results for pruning V-MoE on CIFAR-100
(50% of the experts; 41% of the whole model is pruned) and
ImageNet (42% of the experts; 35% of the whole model is
pruned) and E3-MoE on CIFAR-10 and CIFAR-100 (75%
of the experts; 45% of the whole model is pruned for both
of the datasets). The results for V-MoE on CIFAR-100
and ImageNet are presented in Figure 4c, Figure 4d and
Figure 4e, Figure 4f, respectively. The results for E3-MoE
are presented in section B.2 of Appendix. As we can see,
when the size of the downstream task goes up (1000 class
classification in ImageNet compared to 100 class classifica-
tion in CIFAR-100 and 10 class classification in CIFAR-10)
the maximum allowable pruning ratio goes down as more
experts are now important for the larger sized task.

Comparison with other methods. We compare our pro-
posed method of pruning experts based on the change in
router’s l2 norm with some other potential methods for prun-

3pruning more than 6 experts out of 8 experts is not allowed
for l = 2.

ing experts in MoE. Before presenting the results, we briefly
describe the methods we consider for comparison as:
(I) Importance score. As mentioned in section 1, there are
only two recent works (Chen et al., 2022a; Koishekenov
et al., 2023) that explored the expert pruning of MoE. Both
of them used the fraction of the total number of tokens re-
ceived as the metric to order the experts according to their
importance. Specifically, Koishekenov et al. (2023) defines
the importance score of any expert s ∈ [k] over the valida-
tion set as follows:

Importance score(s) := top1(s)× conf(s)

Here, top1(s) is the fraction of the total tokens received as
top-1 tokens by the expert s, and conf(s) is the confidence
value of the expert s, which is essentially the average gating
value of the top-1 tokens received by the expert.
We also consider two magnitude-based pruning metrics:
(II) Router magnitude. The absolute l2 norm of the router.
(III) Average neuron magnitude. The average value of the
l2 norm of the hidden neurons of the expert.
Similar to the change of router’s l2 norm based method
proposed in this paper, we also consider
(IV)Average change of neuron magnitude. The average
value of the change in l2 norm of the neurons of the experts.

Figure 5a, 5b, 5c and, Figure 5d, 5e, 5f present the compara-
tive results for pruning V-MoE on CIFAR-10 and ImageNet,
respectively while the corresponding results on CIFAR-100
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(a) (b) (c)

(d) (e) (f)

Figure 5: Comparison between different expert pruning methods: (a) vs. importance score on CIFAR-10, (b) vs. absolute
magnitude on CIFAR-10, (c) vs. average change-in-neurons-magnitude on CIFAR-10, (d) vs. importance score on ImageNet,
(e) vs. absolute magnitude on ImageNet, (f) vs. average change-in-neurons-magnitude on ImageNet

are presented in section B.3 of Appendix. As we can see,
the proposed method consistently provides an upper bound
to all the other methods described above, at least within
the range of acceptable model pruning ratio (model per-
formance is within 1% of the unpruned model, the gray
area).

Figure 6: FLOPs per image in V-MoE on CIFAR-10

Inference efficiency. We measure the inference efficiency
of the pruned model in terms of FLOPs per image and the
inference time. Figure 6 shows the linear reduction of in-
ference FLOPs per image with the increment of pruning
ratio in pruning V-MoE on CIFAR-10. By combining the
results of this figure with the results in Figure 1, we can
infer that the proposed pruning method can reduce 40%
of the inference FLOPs. We have similar results showing
the linear reduction of inference time (see section B.4 in

Appendix for details). The linear reduction of FLOPs and
time indicates the prompt implementation of the method
without any loss of estimated efficiency (e.g., due to the
overhead of the dedicated software kernels or hardware) as
our results are generated from the computation on typical
modern GPUs without any requirement of special software
(e.g., dedicated CUDA kernels). We have similar results
for pruning E3-MoE on CIFAR-100 (linear reduction; 15%
reduction of FLOPs and time for the 1% tolerance in accu-
racy) and pruning V-MoE on ImageNet (linear reduction;
14% reduction of FLOPs and time for the 1% tolerance in
accuracy), see section B.4 in appendix.

6. Conclusion
MoE allows faster pre-training of large deep models. How-
ever, the inference compute is at the same order as in its
dense counterpart. In this paper, we theoretically and em-
pirically investigated pruning irrelevant and redundant ex-
perts from the fine-tuned MoE model. We show that prun-
ing experts based on the change in the router’s norm can
provably maintain the generalization accuracy. The results
are verified in the state-of-the-art vision MoE models. Fu-
ture works include co-implementing the method with other
network compression techniques such as neurons pruning,
fine-grained structured sparsity, low rank factorization and
quantization.
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A. More Details on V-MoE and E3-MoE
The V-MoE models. The released set of V-MoE models by Riquelme et al. (2021) includes the pre-trained version of the
models on ImageNet-21k (Kolesnikov et al., 2020) and the two fine-tuned versions on CIFAR-10 and ImageNet-1k (i.e.,
ILSVRC2012), respectively. The models contain 12 transformer encoders (encoders 0, 1, ..., and 11). Every odd encoder
(i.e., encoders 1, 3, 5, 7, 9, and 11) is the MoE encoder. Each MoE encoder contains 8 experts (i.e., k = 8). The input
images are divided into 16× 16 patches and then transformed into the encoder’s hidden dimension of 768 (i.e., d = 768).
The MoE hidden dimension is 3072 (i.e., m = 3072). The CIFAR-10 fine-tuned version contains 65 tokens for an input
image (i.e., n = 65). The ImageNet fine-tuned version contains 577 tokens for an input image (i.e., n = 577). The MoE
routers in the model implement token-choice routing where each token is routed to 2 experts (i.e., l = 2). The total number
of parameters in the model is roughly 979 million. SGD with momentum and cosine learning rate decay is implemented to
obtain the fine-tuned models. The fine-tuning steps are 1000 and 10,000 for CIFAR-10 and ImageNet, respectively. More
details can be found in Riquelme et al. (2021).

The E3-MoE models. Allingham et al. (2022) proposed the efficient ensembles of experts in MoE (i.e., E3-MoE) to improve
the generalization performance of V-MoE. The architecture implements the ensembles of experts where, in each MoE
encoder the experts are divided into multiple ensembles. The released set of E3-MoE models includes the pre-trained version
on ImageNet and the fine-tuned version on CIFAR-100. The models contain 8 transformer encoders (i.e., encoders 0, 1, ...,
and 7), where the last two encoders contain the ensemble of MoEs (i.e., encoders 5 and 7). There are 2 MoE ensembles
in the model and each MoE ensembles contains 4 experts per MoE encoder (i.e., k = 4). The input images are divided
into 32× 32 patches and then transformed into encoder’s hidden dimension of 512 (i.e., d = 512) where the MoE hidden
dimension is 2048 (i.e., m = 2048). The number of tokens per image in each encoder is 65 (i.e., n = 65). The MoE routers
implement the token-choice routing, selecting one expert per token (i.e., l = 1). Total number of parameters in the model is
roughly 167 million. Again, SGD with momentum and cosine learning rate decay is implemented during fine-tuning for
2000 steps.

B. More Experimental Results
B.1. On Synthetic Data

As described in section 5.1, here we present results for experts in the negative group. Figure 7a and 7b present the
components for large router (router 20) and small router (router 12), respectively. Figure 7c and 7d present the components
for neurons of the corresponding experts.

(a) (b) (c) (d)

Figure 7: Verification of the theoretical findings on synthetic data: (a) Router’s components for large router (router 20),
(b) Router’s components for small router (router 12), (c) Neurons components for expert with large router (expert 20), (d)
Neurons components for expert with small router (expert 12) (larger pixel intensity represents larger component of the router
weights)

B.2. Generalization Performance On E3-MoE

We present generalization results of the pruned E3-MoE models fine-tuned on CIFAR-10 and CIFAR-100 in Figure 8a, 8b
and Figure 8c, 8d, respectively. As we can see and as reported in the main paper, similar results are found for the pruned
E3-MoE models as for the pruned V-MoE models. More specifically, for the pruned E3-MoE, 75% of the experts and 45%
of the whole model can be pruned for both of the datasets while maintaining generalization performance within 1% of the
unpruned model. We do not test the generalization performance of the pruned E3-MoE on ImageNet as the released E3-MoE
model is pre-trained on ImageNet itself.
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(a) (b)

(c) (d)

Figure 8: Generalization performance of the pruned E3-MoE models: (a) On CIFAR-10 without post-pruning fine-tuning,
(b) On CIFAR-10 with post-pruning fine-tuning, (c) On CIFAR-100 without post-pruning fine-tuning, (d) On CIFAR-100
with post-pruning fine-tuning

(a) (b) (c)

Figure 9: Comparison between different expert pruning methods on CIFAR-100 for pruning V-MoE: (a) vs. importance
score, (b) vs. absolute magnitude, (c) vs. average change-in-neurons-magnitude

B.3. Comparison with Other Methods for Pruning V-MoE on CIFAR-100

Figure 9a, 9b and, 9c presents the comparative results for pruning V-MoE on CIFAR-100 among different expert pruning
methods. The proposed method outperforms all other methods for this dataset.

B.4. On the Inference Efficiency of V-MoE and E3-MoE

We present the results in Figure 10a for inference time in predicting the whole CIFAR-10 test set by the pruned V-MoE.
As we described in section 5, inference time falls linearly with pruning ratio. We also present results for linear reduction
of FLOPs and inference time in the pruned V-MoE on CIFAR-100 and ImageNet in Figure 10b, 10c and Figure 10d, 10e
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and, in the pruned E3-MoE on CIFAR-10 and CIFAR-100 in Figure 10f,10g and Figure 10h,10i, respectively. The slight
sublinearity in Figure 10g and 10i occurs from the parallel implementation of ensembles. The relatively lower percentage
of reduction of FLOPs and time in E3-MoE compared to V-MoE occurs from the fact that the unpruned E3-MoE is much
smaller than the unpruned V-MoE in terms of parameters (167 million compared to 979 million).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 10: Inference cost of the pruned models: (a) Inference time in V-MoE on CIFAR-10, (b) FLOPs per Image in V-MoE
on CIFAR-100, (c) Inference time in V-MoE on CIFAR-100, (d) FLOPs per Image in V-MoE on ImageNet, (e) Inference
time in V-MoE on ImageNet, (f) FLOPs per Image in E3-MoE on CIFAR-10, (g) Inference time in E3-MoE on CIFAR-10,
(h) FLOPs per Image in E3-MoE on CIFAR-100, (i) Inference time in E3-MoE on CIFAR-100

C. Preliminaries
As we analyze the expert-choice routing, for any fine-tuning step t, we re-write (7) as,

f (t)(x) =
∑k

s=1 a
(s)
∑

j∈J
(t)
s (x)

G
(s,t)
j

∑m
r=1 ReLU

(
⟨w(s,t)

r , x(j)⟩
)

For any input (x, y) and iteration t, the gradient of the hidden neuron r ∈ [m] of the expert s ∈ [k] is calculated as,

∂l(t)(x, y)

∂w
(s,t)
r

= −ya(s)
∑

j∈J
(t)
s (x)

G
(s,t)
j x(j)1⟨w(s,t)

r ,x(j)⟩≥0
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and the gradient of the router of the expert s ∈ [k] is calculated as,

∂l(t)(x, y)

∂w
(t)
s

= −ya(s)
∑

j∈J
(t)(x)
s

σ
(s,t)
j G

(s,t)
j

∑
i∈J

(t)
s (x)\j G

(s,t)
i (x(j) − x(i)), where, σ(s,t)

j =
∑m

r=1 ReLU(⟨w(s,t)
r , x(j)⟩)

We express the batch gradient of SGD at iteration t for the batch Bt as,
∂l

∂w
(s,t)
r

=
1

B

∑
x∈Bt

∂l(t)(x, y)

∂w
(s,t)
r

for the expert and,

∂l

∂w
(t)
s

=
1

B

∑
x∈Bt

∂l(t)(x, y)

∂w
(t)
s

for the router.

We present the pruning algorithm considered for analysis at Algorithm 14.

Algorithm 1 The Expert Pruning Algorithm for the Theoretical Analysis
Input : Training data {(xi, yi)}Ni=1, learning rates ηr and ηe, number of iterations T and T ′, batch-

size B, expert-pruning-ratio ρ

Step-1: Initialize the pre-trained weights {w(0)
s , w

(s,t)
r , a(s)}s∈[k],r∈[m]

Step-2: for t = 0, 1, ..., T − 1 do:

w
(t+1)
s = w

(t)
s − ηr

∂l

∂w
(t)
s

,∀s ∈ [k]

w
(t+1)
r,s = w

(t)
r,s − ηe

∂l

∂w
(t)
r,s

, ∀r ∈ [m], s ∈ [k]

Step-3: Construct the set Sk′ = {s ∈ S1 : ∆
(T )
s ∈ TOP(1−ρ)|S1| ({∆s}s∈S1

)}
⋃
{s ∈ S2 : ∆

(T )
s ∈

TOP(1−ρ)|S2| ({∆s}s∈S2
)}

Step-4: for t = 0, 1, ..., T ′ − 1 do:

w
(t+1)
s = w

(t)
s − ηr

∂l

∂w
(t)
s

,∀s ∈ Sk′

w
(t+1)
r,s = w

(t)
r,s − ηe

∂l

∂w
(t)
r,s

, ∀r ∈ [m], s ∈ Sk′

Notations:

1. Õ(·) and Ω̃(·) hides factor log(poly(d)) with a sufficiently large polynomial poly(·)

2. With high probability (abbreviated as w.h.p.) refers to the probability 1−
1

poly(d)

Definitions:

We denote,

• G
(s,t)
1 (x): Gating value of o1 for the sample x at the expert s at time t

• G
(s,t)
2 (x): Gating value of o2 for the sample x at the expert s at time t

• G
(s,t)
q (x): Gating value of the task-irrelevant pattern q ∈ P for the sample x at the expert s at time t

• l
(s,t)
q (x) := |{j ∈ J

(t)
s (x) : x(j) = q}|, is the number of copies of the task-irrelevant pattern q ∈ P in the set of top l

tokens for the sample x at the expert s at time t

We restate the definition of the set, S1 := {s ∈ [k] : a(s) = +1} and S2 := {s ∈ [k] : a(s) = −1}
4Here, TOPz(S) function provides the set of top z values of the set S.
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We restate the definition of the probability measures,

p
(s,t)
1 := P

[
(x, y) ∼ D : ∃j ∈ J

(t)
s (x) s.t. x(j) = o1 and G

(s,0)
1 ≥

1

l
|y = +1

]

and p
(s,t)
2 := P

[
(x, y) ∼ D : ∃j ∈ J

(t)
s (x) s.t. x(j) = o2 and G

(s,0)
2 ≥

1

l
|y = −1

]

For any x, σ(s,t)
j (x) :=

∑m
r=1 ReLU(⟨w(s,t)

r , x(j)⟩) and, for any pattern q ∈ P , σ(s,t)
q :=

∑m
r=1 ReLU(⟨w(s,t)

r , q⟩)

σ
(s,t)
1 :=

∑m
r=1 ReLU(⟨w(s,t)

r , o1⟩) and σ
(s,t)
2 :=

∑m
r=1 ReLU(⟨w(s,t)

r , o2⟩)

For any task-irrelevant pattern q ∈ P , δ(s,t)1,q (x) := σ
(s,t)
1 −σ

(s,t)
q and δ

(s,t)
2,q (x) := σ

(s,t)
2 −σ

(s,t)
q . Therefore, δ(s,t)q,1 = −δ

(s,t)
1,q

and δ
(s,t)
q,2 = −δ

(s,t)
2,q

For any two different task-irrelevant patterns q, q′ ∈ P , δ(s,t)q,q′ := σ
(s,t)
q − σ

(s,t)
q′

Note that, for any x and q, l(s,t)q (x)G
(s,t)
q ≤ 1.

Let us define, C1 := max{
∣∣∣∣∣∣w(0)

s

∣∣∣∣∣∣}s∈[k] and C2 := max{
∣∣∣∣∣∣w(s,0)

r

∣∣∣∣∣∣}s∈[k],r∈[m].

WLOG, we analyze the case where l ≥ e2C1 . Therefore, ∀s ∈ [k],
∣∣∣∣∣∣w(0)

s

∣∣∣∣∣∣ ≤ 1

2
log l.

Assumptions on the pre-trained model. Based on the experts’ proficiency measure described in section 4.2, we define the
important and unimportant experts for the downstream task in the pre-trained model.

Definition C.1 (Important and Unimportant experts in pre-trained model5). An expert s ∈ [k] is important for the class-1
task-specific feature o1 if p(s,0)1 = Ω(1), and unimportant for the feature if p(s,0)1 = O(1/d). Similarly, an expert s ∈ [k] is
important for the class-2 task-specific feature o2 if p(s,0)2 = Ω(1), and unimportant for the feature if p(s,0)2 = O(1/d).

We assume the existence of at least one class-1 important expert in the set S1 and at least one class-2 important expert in the
set S2 of the pre-trained model. This assumption is minimal as we need only one important expert per class.

For any class-1 important expert s, we assume that the router’s component along o1 (i.e., ⟨w(0)
s , o1⟩) is minimally separated

(Ω(1/d)) from the components along any irrelevant pattern q ∈ P (i.e., ⟨w(0)
s , q⟩), i.e.,∣∣∣⟨w(0)

s , o1 − q⟩
∣∣∣ = Cp where, Cp = Θ(1/d), for any s such that p(s,0)1 = Ω(1) and, for any q ∈ P .

We further assume that, for any class-1 important expert s, at least a fraction of the m neurons (i.e., Ω(1) fraction) of the
expert are minimally activated (i.e., ⟨w(s,0)

r , o1⟩ ≥ 0) by o1, i.e.,∣∣∣{r ∈ [m] : ⟨w(s,0)
r , o1⟩ ≥ 0}

∣∣∣ = Ω(1), for any s such that p(s,0)1 = Ω(1).

We assume that similar assumptions hold for the class-2 important experts. Again, these two assumptions are minimal for an
expert to be important for a task-specific pattern.

Components of the Router-gradients:

We calculate the components of the gradient of the router s ∈ [k] for the input (x, y) along the task-specific patterns, i.e., o1
and o2 and along any task-irrelevant pattern q ∈ P at time t as follows:

5Our definitions of important and unimportant experts are minimal in the sense that (I) for an expert to be important for a particular
downstream pattern, it should learn to route the pattern with at least the uniform gating value (1/l) for a minimal fraction of samples
(p(s,0)1 = Ω(1)) during pre-training and, (II) if an expert does not learn to route the pattern at all (p(s,0)1 = O(1/d)), it should be
unimportant for the pattern.
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〈
∂l(x, y)

∂w
(t)
s

, q

〉
=


0 if ̸ ∃j ∈ J

(t)
s (x) s.t. x(j) = q

ya(s)l
(s,t)
q G

(s,t)
q

∑
j∈J

(t)
s (x)/{j:x(j)=q} G

(s,t)
j

(
σ
(s,t)
j − σ

(s,t)
q

)
if ∃j ∈ J

(t)
s (x) s.t. x(j) = q

(14)

〈
∂l(x, y)

∂w
(t)
s

, o1

〉
=



0 if y = −1

0 if y = +1 but
̸ ∃j ∈ J

(t)
s (x) s.t.

x(j) = o1

a(s)G
(s,t)
1 (x)
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i∈J

(t)
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j

(
σ
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j − σ
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1
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if y = +1 and
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s (x) s.t.

x(j) = o1

(15)

〈
∂l(x, y)

∂w
(t)
s

, o2

〉
=



0 if y = +1

0 if y = −1 but
̸ ∃j ∈ J

(t)
s (x) s.t.

x(j) = o2

−a(s)G
(s,t)
2 (x)

∑
i∈J

(t)
s (x)/{j:x(j)=o2}

G
(s,t)
j

(
σ
(s,t)
j − σ

(s,t)
2

)
if y = −1 and

∃j ∈ J
(t)
s (x) s.t.

x(j) = o2

(16)

Components of the Neuron-gradients:

We calculate the components of the gradient of the hidden neuron r ∈ [m] of the expert s ∈ [k] for the input (x, y) along the
task-specific patterns, i.e., o1 and o2 and along any task-irrelevant pattern q ∈ P at time t as follows:

〈
∂l(x, y)

∂w
(s,t)
r

, q

〉
=



0 if ⟨w(s,t)
r , q⟩ < 0

0 if ⟨w(s,t)
r , q⟩ ≥ 0 but ̸ ∃j ∈ J

(t)
s (x) s.t. x(j) = q

−ya(s)l
(s,t)
q G

(s,t)
q if ⟨w(s,t)

r , q⟩ ≥ 0, ∃j ∈ J
(t)
s (x) s.t. x(j) = q

(17)

〈
∂l(x, y)

∂w
(s,t)
r

, o1

〉
=



0 if y = −1

0 if y = +1 but ⟨w(s,t)
r , o1⟩ < 0

0 if y = +1 and ⟨w(s,t)
r , o1⟩ ≥ 0 but ̸ ∃j ∈ J

(t)
s (x) s.t. x(j) = o1

−a(s)G
(s,t)
1 (x) if y = +1, ⟨w(s,t)

r , o1⟩ ≥ 0 and ∃j ∈ J
(t)
s (x) s.t. x(j) = o1

(18)
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〈
∂l(x, y)

∂w
(s,t)
r

, o2

〉
=



0 if y = +1

0 if y = −1 but ⟨w(s,t)
r , o2⟩ < 0

0 if y = −1 and ⟨w(s,t)
r , o2⟩ ≥ 0 but ̸ ∃j ∈ J

(t)
s (x) s.t. x(j) = o2

a(s)G
(s,t)
2 (x) if y = −1, ⟨w(s,t)

r , o2⟩ ≥ 0 and ∃j ∈ J
(t)
s (x) s.t. x(j) = o2

(19)

D. Proof of Lemma 4.1
Lemma D.1 (Full version of the Lemma 4.1). Suppose the expert learning rate ηe such that, the router learning rate

ηr = O

(
ηeCp

mdl2C2
2

)
, the batch-size B = Ω̃(l2d2), and the number of iterations T = Ω

(
l2C2

ηe

√
log l

Cp

)
. Then,

For any expert s ∈ S1 such that p(s,0)1 = Ω(1), we have

(i) p(s,T )
1 = 1,

(ii) for every (x,+1) ∼ D, G(s,T )
j (x) > 1/2, if x(j) = o1,

(iii) ⟨w(s,T )
r , o1⟩ = Ω(lC2

√
d log l), for a constant fraction r ∈ [m],

(iv) ∆(T )
s >

3

2
log l.

and, for any expert s ∈ S2 such that p(s,0)2 = Ω(1), we have

(v) p(s,T )
2 = 1,

(vi) for every (x,−1) ∼ D, G(s,T )
j (x) > 1/2, if x(j) = o2,

(vii) ⟨w(s,T )
r , o2⟩ = Ω(lC2

√
d log l), for a constant fraction r ∈ [m],

(viii) ∆(T )
s >

3

2
log l.

Proof. For any expert s ∈ S1 such that p(s,0)1 = Ω(1), from Lemma E.4, for any task-irrelevant pattern q, δ(s,T
′′)

1,q = Ω(mC2)

and |δ(s,T
′′)

(2,q) | = O(mC2). Furthermore, for any different two task-irrelevant pattern q and q′, |δ(s,T
′′)

q,q′ | = O(mC2)

Therefore, ⟨
∂l

∂w
(T ′′)
s

, o1⟩ ≤ −Ω(
mC2

l
) + Õ(

mC2

l
√
B
),

as from Lemma E.4, p(s,T
′′)

1 = p
(s,0)
1 , ∀q s.t. ⟨w(T ′′)

s , q⟩ < ⟨w(T ′′)
s , o1⟩; ⟨w(T ′′)

s , o1 − q⟩ < 2 log l which implies from

Lemma E.6 that, ∀(x, y = +1) ∼ D s.t. ∃j ∈ J
(T ′′)
s (x) with x(j) = q, G(s,T ′′)

1 (x)(1−G
(s,T ′′)
1 (x)) ≥

1

4l
.

Therefore, ⟨w(T ′′+1)
s , o1⟩ ≥ ⟨w(T ′′)

s , o1⟩+Ω(
mC2

l
ηr)− Õ(

mC2

l
√
B
ηr).

Now, for any q, ⟨
∂l

∂w
(T ′′)
s

, q⟩ ≥ −O(
mC2

d
)− Õ(

mC2√
B

).

Therefore, for any q, ⟨w(T ′′+1)
s , q⟩ ≤ ⟨w(T ′′)

s , q⟩+O(
mC2

d
ηr) + Õ(

mC2√
B

ηr).

Therefore, for any q, ⟨w(T ′′+1)
s , o1 − q⟩ ≥ ⟨w(T ′′)

s , o1 − q⟩+Ω(
mC2

l
ηr) as we are selecting B = Ω̃(l2d2).
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Now, from Lemma E.4, for any q s.t. ⟨w(T ′′)
s , q⟩ < ⟨w(T ′′)

s , o1⟩, ⟨w(T ′′)
s , o1 − q⟩ = Ω(Cp), which implies

⟨w(T ′′+1)
s , o1 − q⟩ ≥ Ω(Cp) + Ω(

mC2

l
ηr).

Therefore, for any q s.t. ⟨w(T ′′)
s , q⟩ < ⟨w(T ′′)

s , o1⟩, ⟨w(T ′′+1)
s , o1⟩ > ⟨w(T ′′+1)

s , q⟩ and hence p
(s,T ′′+1)
1 ≥ p

(s,T ′′)
1 = p

(s,0)
1 .

Now, as p
(s,T ′′)
1 = p

(s,0)
1 , using the same procedure as in the proof of Lemma E.4, ∀q, δ(s,T

′′+1)
1,q = δ

(s,T ′′)
1,q + Ω(

mηe

l
)

and, δ(s,T
′′+1)

2,q ≤ δ
(s,T ′′)
2,q = O(mC2). Furthermore, for any two different task-irrelevant patterns, |δ(s,T

′′+1)
q,q′ − δ

(s,T ′′)
q,q′ | =

O(
m

d
ηe).

Hence, by induction, ∀t ≥ T ′′ such that, for any q with ⟨w(t)
s , q⟩ < ⟨w(t)

s , o1⟩ satisfies ⟨w(t)
s , o1 − q⟩ ≤ 2 log l,

p
(s,t)
1 ≥ p

(s,0)
1 and hence,

for all q,

δ
(s,t+1)
1,q − δ

(s,t)
1,q = Ω(

mηe

l
) (20)

δ
(s,t)
2,q = O(mC2), |δ(s,t)q,q′ | = O(mC2) and hence for all q,

⟨w(t+1)
s , o1 − q⟩ ≥ ⟨w(T ′′)

s , o1 − q⟩+Ω(
1

l
mC2ηr)(t− T ′′) + Ω(

1

l2
mηeηr)

(t− T ′′)2 − (t− T ′′)

2
(21)

Now, from Lemma E.4, for all q, ⟨w(T ′′)
s , o1 − q⟩ < log l. Let us assume that upto T iterations, for all q,

⟨w(T )
s , o1 − q⟩ ≤ 2 log l.

Now, if ∃q′ s.t. ⟨w(T )
s , o1 − q′⟩ ≤ log l, then ∀q ̸= q′,

⟨w(T )
s , o1 − q⟩ ≤ ⟨w(T )

s , o1 − q′⟩+ ⟨w(T )
s , q′ − q⟩ ≤ ⟨w(T )

s , q′ − q⟩+ log l (22)

On the other hand, from inequality (21), by selecting T = Ω(
l2C2

ηe

√
log l

Cp
) we get,

⟨w(T+1)
s , o1 − q′⟩ > log l.

Now, ∀q, and ∀t, δ(s,t)1,q − δ
(s,t−1)
1,q = O(mηe) and δ

(s,t−1)
2,q − δ

(s,t)
2,q = O(mηe) and |δ(s,t−1)

q,q′ − δ
(s,t)
q,q′ | = O(

m

d
ηe).

Hence, ⟨w(t+1)
s , q⟩ ≥ ⟨w(0)

s , q⟩ −O(
mC2

d
ηr)t−O(

m

d
ηeηr)

t2 − t

2
.

On the other hand, ⟨w(t+1)
s , q′⟩ ≤ ⟨w(0)

s , q′⟩+O(
mC2

d
ηr)t.

Therefore,

⟨w(t+1)
s , q′ − q⟩ ≤ ⟨w(0)

s , q′ − q⟩+O(
mC2

d
ηr)t+O(

m

d
ηeηr)t

2 (23)
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Now, for the choice of T = O(
l2C2

ηe

√
log l

Cp
) and as ⟨w(0)

s , q′ − q⟩ ≤
1

2
log l, using inequality (23) we get,

⟨w(T )
s , q′ − q⟩ ≤

1

2
log l +O(

l2

d
log l) ≤ log l

Therefore, from inequality (22), for the choice of T = O(
l2C2

ηe

√
log l

Cp
), ∀q, ⟨w(T )

s , o1 − q⟩ ≤ 2 log l holds.

Now, as for any q, ⟨w(T+1)
s , o1 − q⟩ > log l, p(s,T+1)

1 = 1 and ∀(x, y = +1) ∼ D, G(s,T+1)
1 (x) >

1

2
.

Now, as for any t, p(s,T
′′)

1 ≥ p
(s,0)
1 , at least for Ω(1) fraction of r ∈ [m] of s, ⟨w(s,t)

r , o1⟩ ≥ ⟨ws,0
r , o1⟩ + Ω

(
ηe

l
t

)
.

Therefore, for T = O(
l2C2

ηe

√
log l

Cp
), ⟨w(s,T )

r , o1⟩ = Ω(lC2

√
d log l) for Ω(1) fraction of r ∈ [m] of s.

Now,
∣∣∣∣∣∣w(T+1)

s

∣∣∣∣∣∣ = (⟨w(T+1)
s , o1⟩2 + ⟨w(T+1)

s , o2⟩2 +
∑d−2

i=1 ⟨w
(T+1)
s , qi⟩2

)1
2 ≥ ⟨w(T+1)

s , o1⟩ > 2 log l where, qi denotes

the i-th task-irrelevant pattern. Now, as
∣∣∣∣∣∣w(0)

s

∣∣∣∣∣∣ ≤ 1

2
log l, ∆(T )

s >
3

2
log l.

Similarly, using Lemma E.5, for s ∈ S2 such that, p(s,0)2 = Ω(1), we can proof the statements (v), (vi), (vii) and (viii).

E. Lemmas Used to Prove the Lemma 4.1
Lemma E.1. Let, S ⊂ D such that p := P [(x, y) ∼ D : (x, y) ∈ S]. Then, w.h.p. over any randomly sampled batch Bt of

size B at the iteration t,
∣∣∣∣∣∣Bt ∩ S

∣∣−Bp

∣∣∣∣ = Õ
(√

B
)

.

Proof. Let us define a random variable X associated with any sample (x, y) ∼ D such that,

X :=

{
1 if (x, y) ∈ S

0 if (x, y) ̸∈ S

Therefore, X ∼ Ber(p).

Now, for any randomly sampled batch Bt := {(x1, y1), (x2, y2), ..., (xB , yB)} of size B, we can denote the B i.i.d. random
variables following the same distribution as X by X1, X2, ..., XB corresponding to the B samples of the batch, respectively.

Therefore,
∣∣Bt ∩ S

∣∣ =∑B
i=1 Xi.

Now, E
[∣∣Bt ∩ S

∣∣] =∑B
i=1 E [Xi] = Bp.

Therefore, using the Hoeffding’s inequality, P
[∣∣∣∣∣∣Bt ∩ S

∣∣−Bp

∣∣∣∣ = Õ
(√

B
)]

≥ 1−
1

poly(d)
which completes the proof.

Lemma E.2. For any expert s ∈ S1 such that p(s,0)1 = Ω(1), w.h.p. over a randomly sampled batch of size B we can ensure
that,
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(i)

∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩

∣∣∣∣∣ ≤ O

(
mC2

d

)
+ Õ

(
mC2√

B

)

(ii)

∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, o1⟩

∣∣∣∣∣ ≤ O (mC2) + Õ

(
mC2√

B

)

(iii) ⟨
∂l

∂w
(s,0)
r

, o1⟩ ≤ −
1

2l
+ Õ

(
1

l
√
B

)
and ⟨

∂l

∂w
(s,0)
r

, o1⟩ ≥ −
1

2
− Õ

(
1

√
B

)

(iv) ⟨
∂l

∂w
(s,0)
r

, o2⟩ ≥ 0 and ⟨
∂l

∂w
(s,0)
r

, o2⟩ ≤
1

2
+ Õ

(
1

√
B

)

(v)

∣∣∣∣∣⟨ ∂l

∂w
(s,0)
r

, q⟩

∣∣∣∣∣ ≤ O

(
1

d

)
+ Õ

(
1

√
B

)

Proof. For any task-irrelevant pattern q,

|δ(s,0)1,q | = |σ(s,0)
1 − σ

(s,0)
q | = |

∑m
r=1 ReLU(⟨w(s,0)

r , o1⟩)−
∑m

r=1 ReLU(⟨w(s,0)
r , q⟩)| = O(mC2)

Similarly, |δ(s,0)2,q | = O(mC2) and for any two different task-irrelevant patterns q, q′ ∈ P ,
∣∣∣δ(s,t)q,q′

∣∣∣ = O(mC2).

We denote B0 as the randomly sampled batch before the first update of SGD.

(i)

⟨
∂l

∂w
(0)
s

, q⟩ =
1

B

∑
x∈B0

⟨
∂l(x, y)

∂w
(0)
s

, q⟩

Let us define the set Sq := {(x, y) ∼ D : ∃j ∈ J
(0)
s s.t. x(j) = q}. Then, p(s,0)q := P [(x, y) ∼ D : (x, y) ∈ Sq]

Here, p(s,0)q = O(
1

d
)

Therefore, ⟨
∂l

∂w
(0)
s

, q⟩ =
1

B

∑
x∈B0∩Sq

⟨
∂l(x, y)

∂w
(0)
s

, q⟩+
1

B

∑
x∈B0∩S′

q

⟨
∂l(x, y)

∂w
(0)
s

, q⟩

Now, from equation (14), for any (x, y) ∈ D\Sq , ⟨
∂l(x, y)

∂w
(0)
s

, q⟩ = 0

Therefore, ⟨
∂l

∂w
(0)
s

, q⟩ =
1

B

∑
x∈B0∩Sq

⟨
∂l(x, y)

∂w
(0)
s

, q⟩

Now, as s ∈ S1, a(s) = +1
Furthermore, for any (x, y), l(s,0)q (x)G

(s,0)
q (x) ≤ 1

Therefore, as |δ(s,0)1,q | = O(mC2), |δ(s,0)2,q | = O(mC2) and |δ(s,0)q,q′ | = O(mC2), from equation (14),∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩

∣∣∣∣∣ ≤ |B0 ∩ Sq|
B

O(mC2)

Now, from Lemma E.1, w.h.p.
|B0 ∩ Sq|

B
≤ p

(s,0)
q + Õ

(
1

√
B

)
which implies,∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩

∣∣∣∣∣ ≤ O

(
mC2

d

)
+ Õ

(
mC2√

B

)
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(ii) Using equation (15) and the fact that p(s,0)1 = Ω(1), by following the same procedure as in the proof of statement (i), we
can complete the proof.

(iii) Using equation (18) and the fact that p(s,0)1 = Ω(1), by following the same procedure as in the proof of the statement (i)
we can complete the proof.

(iv) As p
(s,0)
2 ≥ 0, using equation (19) and the same procedure as in the proof of the statement (i) we can show that

⟨
∂l

∂w
(s,0)
r

, o2⟩ ≥ 0. Similarly, as G(s,0)
2 (x) ≤ 1 we can show that ⟨

∂l

∂w
(s,0)
r

, o2⟩ ≤
1

2
+ Õ

(
1

√
B

)
.

(v) Using equation (17) and the fact that for any (x, y) ∼ D, l(s,t)q (x)G
(s,t)
q (x) ≤ 1 and by following the same procedure as

in the proof of the statement (i) we can complete the proof.

Lemma E.3. For any expert s ∈ S2 such that p(s,0)2 = Ω(1), w.h.p. over a randomly sampled batch of size B we can ensure
that,

(i)

∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩

∣∣∣∣∣ ≤ O

(
mC2

d

)
+ Õ

(
mC2√

B

)

(ii)

∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, o2⟩

∣∣∣∣∣ ≤ O (mC2) + Õ

(
mC2√

B

)

(iii) ⟨
∂l

∂w
(s,0)
r

, o1⟩ ≤
1

2
+ Õ

(
1

√
B

)
and ⟨

∂l

∂w
(s,0)
r

, o1⟩ ≥ 0

(iv) ⟨
∂l

∂w
(s,0)
r

, o2⟩ ≥ −
1

2
− Õ

(
1

√
B

)
and ⟨

∂l

∂w
(s,0)
r

, o2⟩ ≤ −
1

2l
+ Õ

(
1

l
√
B

)

(v)

∣∣∣∣∣⟨ ∂l

∂w
(s,0)
r

, q⟩

∣∣∣∣∣ ≤ O

(
1

d

)
+ Õ

(
1

√
B

)

Proof. Using the Lemma E.1 and following the same procedure as in Lemma E.2, we can complete the proof.

Lemma E.4. For any expert s ∈ S1 such that p(s,0)1 = Ω(1), by selecting ηr = O

(
ηeCp

ml2C2
2

)
and B = Ω̃

(
l2d2

)
, we can

ensure that after T ′′ = O

(
lC2

ηe

)
iterations,

(i) for any task-irrelevant pattern q, δ(s,T
′′)

1,q = Ω(mC2), |δ(s,T
′′)

2,q | = O(mC2) and, for any different two task-irrelevant

pattern q and q′ |δ(s,T
′′)

q,q′ | = O(mC2)

(ii) for any task-irrelevant pattern q such that ⟨w(0)
s , q⟩ < ⟨w(0)

s , o1⟩, ⟨w(T ′′)
s , o1⟩ − ⟨w(T ′′)

s , q⟩ = Ω(Cp) and ⟨w(T ′′)
s , o1⟩ −

⟨w(T ′′)
s , q⟩ < log l

(iii) for any task-irrelevant pattern q such that ⟨w(0)
s , q⟩ > ⟨w(0)

s , o1⟩, ⟨w(T ′′)
s , q⟩ − ⟨w(T ′′)

s , o1⟩ = Ω(Cp) and ⟨w(T ′′)
s , q⟩ −

⟨w(T ′′)
s , o1⟩ < log l

(iii) p(s,T
′′)

1 = p
(s,0)
1

Proof. From the statement (i) of the Lemma E.2, w.h.p. over a randomly sampled batch,

∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, q⟩

∣∣∣∣∣ ≤ O(
mC2

d
)+Õ(

mC2√
B

)
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Therefore, ⟨w(1)
s , q⟩ = ⟨w(0)

s , q⟩ − ηr⟨
∂l

∂w
(0)
s

, q⟩ ≤ ⟨w(0)
s , q⟩+O(

mC2

d
ηr) + Õ(

mC2√
B

ηr)

On the other hand, from the statement (ii) of the Lemma E.2, w.h.p. over a randomly sampled batch,∣∣∣∣∣⟨ ∂l

∂w
(0)
s

, o1⟩

∣∣∣∣∣ ≤ O(mC2) + Õ(
mC2√

B
)

Therefore, ⟨w(1)
s , o1⟩ = ⟨w(0)

s , o1⟩ − ηr⟨
∂l

∂w
(0)
s

, o1⟩ ≥ ⟨w(0)
s , o1⟩ −O(mC2ηr)− Õ(

mC2√
B

ηr)

Therefore, if ⟨w(0)
s , q⟩ < ⟨w(0)

s , o1⟩,

⟨w(1)
s , o1⟩ − ⟨w(1)

s , q⟩ ≥ ⟨w(0)
s , o1⟩ − ⟨w(0)

s , q⟩ −O(mC2ηr)−O(
mC2

d
ηr)− Õ(

mC2√
B

ηr)

≥ Cp −O(mC2ηr)− Õ(
mC2√

B
ηr)

and if ⟨w(0)
s , q⟩ > ⟨w(0)

s , o1⟩

⟨w(1)
s , q⟩ − ⟨w(1)

s , o1⟩ ≤ ⟨w(0)
s , q⟩ − ⟨w(0)

s , o1⟩+O(mC2ηr) +O(
mC2

d
ηr) + Õ(

mC2√
B

ηr)

≤
1
√
2
log l +O(mC2ηr) + Õ(

mC2√
B

ηr)

Now, by selecting ηr = O(
Cp

mC2
) and B = Ω̃(d2), for ⟨w(0)

s , q⟩ < ⟨w(0)
s , o1⟩ we get ,

⟨w(1)
s , o1⟩ − ⟨w(1)

s , q⟩ = Ω(Cp) which ensures that p
(s,1)
1 ≥ p

(s,0)
1 . Similarly for ⟨w(0)

s , q⟩ > ⟨w(0)
s , o1⟩ we get,

⟨w(1)
s , q⟩ − ⟨w(1)

s , o1⟩ < log l as, Cp = Θ

(
1

d

)
.

Now, for any r ∈ [m] such that ⟨w(s,0)
r , o1⟩ ≥ 0, from the statement (iii) of the Lemma E.2, w.h.p. ⟨

∂l

∂w
(s,0)
r

, o1⟩ ≤

−(
1

2l
− Õ(

1

l
√
B
)) which implies ⟨w(s,1)

r , o1⟩ = ⟨w(s,0)
r , o1⟩ − ηe⟨

∂l

∂w
(s,0)
r

, o1⟩ ≥ ⟨w(s,0)
r , o1⟩+

ηe

2l
− Õ(

ηe

l
√
B
) and hence

σ
(s,1)
1 ≥ σ

(s,0)
1 +Ω(

mηe

l
)− Õ(

mηe

l
√
B
).

Again, for any r ∈ [m] such that ⟨w(s,0)
r , o2⟩ ≥ 0, from the statement (iv) of the Lemma E.2, w.h.p. ⟨

∂l

∂w
(s,0)
r

, o2⟩ ≥ 0

which implies

⟨w(s,1)
r , o2⟩ = ⟨w(s,0)

r , o2⟩ − ηe⟨
∂l

∂w
(s,0)
r

, o2⟩ ≤ ⟨w(s,0)
r , o2⟩ and hence σ

(s,1)
2 ≤ σ

(s,0)
2 .

On the other hand, for any r ∈ [m] and any q such that ⟨w(s,0)
r , q⟩ ≥ 0, from the statement (v) of the Lemma E.2, w.h.p.∣∣∣∣∣⟨ ∂l

∂w
(s,0)
r

, q⟩

∣∣∣∣∣ ≤ O

(
1

d

)
+ Õ(

1
√
B
).

Therefore, for any q, ⟨w(s,1)
r , q⟩ = ⟨w(s,0)

r , q⟩ − ηe⟨
∂l

∂w
(s,0)
r

, q⟩ ≥ ⟨w(s,0)
r , q⟩ − O(

ηe

d
) − Õ(

ηe√
B
) and

⟨w(s,1)
r , q⟩ ≤ ⟨w(s,0)

r , q⟩+O(ηe
1

d
) + Õ(

ηe√
B
) which implies σ(s,1)

q ≥ 0 and
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σ
(s,1)
q ≤ σ

(s,0)
q +O(

m

d
ηe) + Õ(

mηe√
B
).

Therefore, for any task-irrelevant pattern q, δ(s,1)1,q ≥ δ
(s,0)
1,q +Ω(

mηe

l
)− Õ(

mηe√
B
) and for any two different task-irrelevant

pattern, |δ(s,1)q,q′ − δ
(s,0)
q,q′ | ≤ O(

m

d
ηe) + Õ(

mηe√
B
).

Now, selecting B = Ω̃(l2d2) we get, δ(s,1)1,q − δ
(s,0)
1,q = Ω(

mηe

l
) and |δ(s,1)q,q′ − δ

(s,0)
q,q′ | ≤ O(

m

d
ηe).

In that case, ⟨
∂l

∂w
(1)
s

, q⟩ ≥ −O(
mC2

d
)−O(

m

d2
ηe)− Õ(

mC2√
B

) and ⟨
∂l

∂w
(1)
s

, o1⟩ ≤ O(mC2) + Õ(
mC2√

B
) as p(s,1)1 ≥ p

(s,0)
1 .

Therefore, for any T ′′ such that ∀0 ≤ t ≤ T ′′, p(s,t)1 ≥ p
(s,0)
1 , by induction we can show that,

for any q, ⟨
∂l

∂w
(t)
s

, q⟩ ≥ −O(
mC2

d
)− Õ(

mC2√
B

) and ⟨
∂l

∂w
(t)
s

, o1⟩ ≤ O(mC2) + Õ(
mC2√

B
).

Therefore, for ⟨w(0)
s , q⟩ < ⟨w(0)

s , o1⟩, ⟨w(T ′′)
s , o1⟩ − ⟨w(T ′′)

s , q⟩ ≥ Cp −O(mC2ηrT
′′)−O(

m

d2
ηeηrT

′′)− Õ(
mC2√

B
ηrT

′′)

and for ⟨w(0)
s , q⟩ > ⟨w(0)

s , o1⟩, ⟨w(T ′′)
s , q⟩ − ⟨w(T ′′)

s , o1⟩ ≤
1

2
log l +O(mC2ηrT

′′) +O(
m

d2
ηeηrT

′′) + Õ(
mC2√

B
ηrT

′′).

On the other hand, assuming for all 0 ≤ t ≤ T ′′, p
(s,t)
1 ≥ p

(s,0)
1 , for any q we get, δ

(s,T ′′)
1,q ≥

δ
(s,0)
1,q +Ω(

mηe

l
T ′′)− Õ(

mηe√
B
T ′′), which implies we need T ′′ = O(

lC2

ηe
) iterations to achieve δ

(s,T ′′)
(1,q) = Ω(mC2). In that

case, for any different two task-irrelevant pattern q and q′, |δ(s,T
′′)

q,q′ | = O(mC2) and |δ(s,T
′′)

2,q | = O(mC2).

Now, to ensure that for all 0 ≤ t ≤ T ′′, p(s,t)1 ≥ p
(s,0)
1 , we need ηr = O(

Cp

mC2

1

T ′′) = O(
Cpηe

mlC2
2

) such that, for any q s.t.

⟨w(0)
s , q⟩ < ⟨w(0)

s , o1⟩, ⟨w(t)
s , o1⟩ − ⟨w(t)

s , q⟩ ≥ Ω(Cp) for all 0 ≤ t ≤ T ′′.

In that case, for any q s.t. ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩, ⟨w(T ′′)
s , q⟩ − ⟨w(T ′′)

s , o1⟩ < log l.

Now, ⟨w(1)
s , o1⟩ ≤ ⟨w(0)

s , o1⟩+O(mC2ηr) + Õ(
mC2√

B
ηr) and, ⟨w(1)

s , q⟩ ≥ ⟨w(0)
s , q⟩ −O(

mC2

d
ηr)− Õ(

mC2√
B

ηr).

Therefore, if ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩,

⟨w(1)
s , q⟩ − ⟨w(1)

s , o1⟩ ≥ ⟨w(0)
s , q⟩ − ⟨w(0)

s , o1⟩ −O(mC2ηr)−O(
mC2

d
ηr)− Õ(

mC2√
B

ηr)

≥ Cp −O(mC2ηr)− Õ(
mC2√

B
ηr)

Therefore, for any q s.t. ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩, by the selection of ηr, ⟨w(1)
s , q⟩ − ⟨w(1)

s , o1⟩ = Ω(Cp) which implies
p
(s,1)
1 = p

(s,0)
1 .

Now, for any r ∈ [m] such that ⟨w(s,0)
r , o1⟩ ≥ 0, from the statement (iii) of the Lemma E.2, w.h.p.

⟨
∂l

∂w
(s,0)
r

, o1⟩ ≥ −O(1) − Õ(
1

√
B
) which implies ⟨w(s,1)

r , o1⟩ ≤ ⟨w(s,0)
r , o1⟩ + O(ηe) + Õ(

ηe√
B
) and hence
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σ
(s,1)
1 ≤ σ

(s,0)
1 +O(mηe) + Õ(

mηe√
B
).

Therefore, for any q, δ
(s,1)
1,q − δ

(s,0)
1,q ≤ O(mηe) and as from the statement (v) of the Lemma E.2, w.h.p.

⟨
∂l

∂w
(s,0)
r

, o2⟩ ≤
1

2
+ Õ

(
1

√
B

)
, δ(s,1)q,2 − δ

(s,0)
q,2 ≤ O(mηe).

Now, as p(s,1)1 = p
(s,0)
1 ,

⟨w(2)
s , o1⟩ ≤ ⟨w(1)

s , o1⟩+O(mC2ηr) +O(mηeηr) + Õ(
mC2√

B
ηr) + Õ(

mηe√
B
ηr)

and,

⟨w(2)
s , q⟩ ≥ ⟨w(1)

s , q⟩ −O(
mC2

d
ηr)−O(

m

d
ηeηr)− Õ(

mC2√
B

ηr)− Õ(
mηe

d
√
B
ηr)

Therefore, for any q s.t. ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩,

⟨w(2)
s , q⟩ − ⟨w(2)

s , o1⟩

≥ ⟨w(1)
s , q⟩ − ⟨w(1)

s , o1⟩ −O(mC2ηr)−O(mηeηr)− Õ(
mC2√

B
ηr)− Õ(

mηe√
B
ηr)

= Cp −O(Cp

2

T
)−O(Cp

l

T ′′2) = Ω(Cp)

which implies p(s,2)1 = p
(s,0)
1 .

Therefore, by induction, for any t ≤ T ′′, and for any q s.t. ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩, by selecting ηr = O(
ηeCp

ml2C2
2

),

⟨w(t)
s , q⟩ − ⟨w(t)

s , o1⟩ ≥ Cp −O(Cp

t

T ′′)−O(Cp

t2

T ′′2)

which implies, for any q s.t. ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩, ⟨w(T ′′)
s , o1⟩ < ⟨w(T ′′)

s , q⟩ = Ω(Cp) and hence p
(s,T ′′)
1 = p

(s,0)
1 .

Similarly, for any t ≤ T ′′, and for any q s.t. ⟨w(0)
s , q⟩ < ⟨w(0)

s , o1⟩,

⟨w(t)
s , o1⟩ − ⟨w(t)

s , q⟩ ≤ ⟨w(1)
s , o1⟩ − ⟨w(1)

s , q⟩+O(Cp

t

T ′′) +O(Cp

l(t− 1)

T ′′2 )

≤
1

2
log l +O(Cp

t

T ′′) +O(Cp

t2

T ′′2)

which implies, for any q s.t. ⟨w(0)
s , q⟩ < ⟨w(0)

s , o1⟩, ⟨w(T ′′)
s , o1⟩ − ⟨w(T ′′)

s , q⟩ < log l.

Lemma E.5. For any expert s ∈ S2 such that p(s,0)2 = Ω(1), for ηr and B as in Lemma E.4, we can ensure that after T ′′

iterations where T ′′ is as in Lemma E.4,

(i) for any task-irrelevant pattern q, δ(s,T
′′)

2,q = Ω(mC2) , |δ(s,T
′′)

1,q | = O(mC2) and, for any different two task-irrelevant

pattern q and q′ |δ(s,T
′′)

q,q′ | = O(mC2)

(ii) for any task-irrelevant pattern q such that ⟨w(0)
s , q⟩ < ⟨w(0)

s , o2⟩, ⟨w(T ′′)
s , o2⟩−⟨w(T ′′)

s , q⟩ = Ω(Cp), and ⟨w(T ′′)
s , o2⟩−

⟨w(T ′′)
s , q⟩ < log l
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(iii) for any task-irrelevant pattern q such that ⟨w(0)
s , q⟩ > ⟨w(0)

s , o2⟩, ⟨w(T ′′)
s , q⟩− ⟨w(T ′′)

s , o2⟩ = Ω(Cp), and ⟨w(T ′′)
s , q⟩−

⟨w(T ′′)
s , o2⟩ < log l

(iv) p(s,T
′′)

2 = p
(s,0)
2

Proof. Using Lemma E.3 and following the same procedure as in Lemma E.4 we can complete the proof.

Lemma E.6. For any t and q with ⟨w(t)
s , q⟩ < ⟨w(t)

s , o1⟩ such that ⟨w(t)
s , o1⟩−⟨w(t)

s , q⟩ ≤ 2 log l, G(s,t)
1 (x)(1−G

(s,t)
1 (x)) ≥

1

4l
, where (x, y = +1) ∼ D s.t. ∃j ∈ J

(t)
s (x) with x(j) = q. Similarly, for any t and q with ⟨w(t)

s , q⟩ < ⟨w(t)
s , o2⟩ such that

⟨w(t)
s , o2⟩ − ⟨w(t)

s , q⟩ ≤ 2 log l, G(s,t)
2 (x)(1−G

(s,t)
2 (x)) ≥

1

4l
, where (x, y = −1) ∼ D s.t. ∃j ∈ J

(t)
s (x) with x(j) = q

Proof. For any t and q with ⟨w(t)
s , q⟩ < ⟨w(t)

s , o1⟩, as ⟨w(t)
s , o1⟩ − ⟨w(t)

s , q⟩ ≤ log l, for any (x, y) ∼ D s.t. ∃j ∈ J
(t)
s (x)

with x(j) = q, G(s,t)
1 (x)(1−G

(s,t)
1 (x)) ≥ min{

(l − 1)

l2

(1 +
(l − 1)

l2
)2
,
(l − 1)

l2
} =

(l − 1)

l2

(1 +
(l − 1)

l2
)2

.

Now,

(l − 1)

l2

(1 +
(l − 1)

l2
)2

=
l2(l − 1)

(l2 + l − 1)2
.

Now, let there exists a constant C > 0 such that
l2(l − 1)

(l2 + l − 1)2
≥

C

l
⇔ l4(1− C)− l3(1 + 2C) + Cl2 + 2Cl − C ≥ 0.

Now, Cl2+2Cl−C > 0 as l ≥ 2. Therefore, l3(1+2C) ≤ l4(1−C) satisfies l4(1−C)−l3(1+2C)+Cl2+2Cl−C ≥ 0.

Now, l3(1 + 2C) ≤ l4(1 − C) ⇔ C ≤
l − 1

l + 2
. Now,

l − 1

l + 2
≥

1

4
as l ≥ 2. Hence, picking C =

1

4
satisfies that

l2(l − 1)

(l2 + l − 1)2
≥

1

4l
which implies G(s,t)

1 (x)(1−G
(s,t)
1 (x)) ≥

1

4l
.

Similarly, we can show that for any t and q with ⟨w(t)
s , q⟩ < ⟨w(t)

s , o2⟩ such that ⟨w(t)
s , o2⟩−⟨w(t)

s , q⟩ ≤ 2 log l, G(s,t)
2 (x)(1−

G
(s,t)
2 (x)) ≥

1

4l
, where (x, y = −1) ∼ D s.t. ∃j ∈ J

(t)
s (x) with x(j) = q.

F. Proof of Lemma 4.2
Lemma F.1 (Full version of the Lemma 4.2). Suppose the expert learning rate ηe such that, the router learning rate

ηr = O

(
ηeCp

mdl2C2
2

)
, the batch-size B = Ω̃(l2d2), and the number of iterations T = Ω

(
l2C2

ηe

√
log l

Cp

)
. Then,

For any expert s ∈ S1 such that p(s,0)1 = O

(
1

d

)
, we have

(i) p(s,T )
1 = O(1/d),

(ii) ∆(T )
s = O(log2 l/

√
d) +O(l4 log2 l/d2).

and, for any expert s ∈ S2 such that p(s,0)2 = O

(
1

d

)
, we have

(iii) p(s,T )
2 = O(1/d),
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(iv) ∆(T )
s = O(log2 l/

√
d) +O(l4 log2 l/d2).

Proof. For any expert s ∈ S1 such that p(s,0)1 = O

(
1

d

)
, for any q, ⟨

∂l

∂w
(0)
s

, q⟩ ≤ O(
mC2

d
) + Õ(

mC2√
B

).

Therefore, with B = Ω̃(l2d2), ⟨
∂l

∂w
(0)
s

, q⟩ ≤ O(
mC2

d
).

Hence, ⟨w(1)
s , q⟩ ≥ ⟨w(0)

s , q⟩ −O(
mC2

d
ηr).

Similarly, ⟨w(1)
s , o1⟩ ≤ ⟨w(0)

s , o1⟩+O(
mC2

d
ηr).

Therefore, for any q s.t. ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩, ⟨w(1)
s , q − o1⟩ ≥ ⟨w(0)

s , q − o1⟩ −O(
mC2

d
ηr).

Now, with ηr = O(
ηeCp

ml2C2
2

) and ⟨w(0)
s , q − o1⟩ ≥ Cp, we get ⟨w(1)

s , q − o1⟩ = Ω(Cp).

Therefore, p(s,1)1 ≤ p
(s,0)
1 .

Now, for B = Ω̃(l2d2), w.h.p. for any q, as p(s,0)1 = O(
1

d
),

δ
(s,1)
1,q − δ

(s,0)
1,q ≤ O(

mηe

d
), δ

(s,0)
2,q − δ

(s,1)
2,q ≤ O(mηe) and for any two different task-irrelevant patterns q and q′,

|δ(s,0)q,q′ − δ
(s,1)
q,q′ | = O(

mηe

d
).

Therefore, for any q s.t. ⟨w(0)
s , o1⟩ < ⟨w(0)

s , q⟩,

⟨w(2)
s , q − o1⟩ ≥ ⟨w(1)

s , q − o1⟩ −O(
mC2

d
ηr)−O(

mηe

d
ηr) = Ω(Cp) which implies p(s,2)1 ≤ p

(s,0)
1 .

Therefore,

by induction, for any t′ s.t. ∀0 ≤ t ≤ t′, p(s,t)1 ≤ p
(s,0)
1 = O(

1

d
), for any q s.t. ⟨w(0)

s , o1⟩ < ⟨w(0)
s , q⟩,

⟨w(t′+1)
s , q − o1⟩ ≥ ⟨w(0)

s , q − o1⟩ −O(
mC2

d
ηr)t

′ −O(
mηe

d2
ηr)t

′2 (24)

Now, given, T = O(
l2C2

ηe

√
log l

Cp
).

Therefore, using inequality (24), ⟨w(T+1)
s , q − o1⟩ = Ω(Cp) which implies that,

for any t ≤ T + 1, p(s,t)1 ≤ p
(s,0)
1 = O(

1

d
).

Now, as p(s,T )
1 ≤ p

(s,0)
1 = O(

1

d
), ∀q,

⟨w(T+1)
s , q⟩ ≤ ⟨w(0)

s , q⟩+O(
mC2

d
ηr)T +O(

mηe

d2
ηr)T

2 (25)

as ∀t ≤ T , δ(s,t−1)
q,2 − δ

(s,t)
q,2 ≤ 0, δ(s,t)q,1 − δ

(s,t−1)
q,1 ≤ O(

mηe

d
), |δ(s,t−1)

q,q′ − δ
(s,t)
q,q′ | = O(

mηe

d
),
∣∣∣δ(s,0)2,q

∣∣∣ = O(mC2) and,
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∣∣∣ = O(mC2).

Therefore, as given T = O(
l2C2

ηe

√
log l

Cp
), using inequality (25),

⟨w(T+1)
s , q⟩ − ⟨w(s,0)

s , q⟩ ≤ O(
1

d3/2
log l).

Therefore, ⟨w(T+1)
s , q⟩2 ≤ ⟨w(0)

s , q⟩2 +O(
1

d3/2
log2 l).

Similarly, we can show that, ⟨w(T+1)
s , o1⟩2 ≤ ⟨w(0)

s , o1⟩2 +O(
1

d3/2
log2 l).

Again as δ(t−1)
2,q − δ

(t)
2,q ≤ O(

mηe

d
),

⟨w(T+1)
s , o2⟩ ≤ ⟨w(0)

s , o2⟩+O(mC2ηr)T +O(
mηe

d
ηr)T

2 (26)

Therefore, with T = O(
l2C2

ηe

√
log l

Cp
), using inequality (26),

⟨w(T+1)
s , o2⟩ − ⟨w(s,0)

s , o2⟩ ≤ O(
1

d1/2
log l) +O(

l2

d
log l).

Therefore, ⟨w(T+1)
s , o2⟩2 ≤ ⟨w(0)

s , o2⟩2 +O(
l4

d2
log2 l).

Therefore, ∣∣∣∣∣∣w(T+1)
s

∣∣∣∣∣∣2 − ∣∣∣∣∣∣w(0)
s

∣∣∣∣∣∣2 ≤ O(
1

d1/2
log2 l) +O(

l4

d2
log2 l)

Therefore, ∆(T )
s ≤ O(

1

d1/2
log2 l) +O(

l4

d2
log2 l).

Similarly, for any expert s ∈ S2 such that p(s,0)1 = O

(
1

d

)
, we can complete the proof for the statements (iii) and (iv).

G. Proof of Theorem 4.3
Proof. From Lemma D.1 (i.e., Lemma 4.1) and F.1 (i.e., Lemma 4.2), after pruning the model with expert-pruning-ratio
ρ ≤ γ, there exist s ∈ S1 such that p(s,0)1 = Ω(1) and exist s ∈ S2 such that p(s,0)2 = Ω(1).

Again, from Lemma D.1, for any expert s ∈ S1 such that p(s,0)1 = Ω(1), ⟨w(s,T+1)
r , o1⟩ = Ω(lC2

√
d
√
log l)

Similarly, for any s ∈ S2 s.t. p(s,0)2 = Ω(1), ⟨w(s,T+1)
r , o2⟩ = Ω(lC2

√
d
√
log l).

Now, ∀s ∈ [k], ∀q and ∀r ∈ [m] s.t. ⟨w(s,0)
r , q⟩ ≥ 0, ∀t, ⟨

∂l

∂w
(s,t)
r

, q⟩ ≥ −O(
1

d
)− Õ(

1
√
B
).

Therefore,

⟨w(s,T+1)
r , q⟩ ≤ ⟨w(s,0)

r , q⟩+O(
1

d
ηeT ) = C2 +O(

l2
√
d

√
log l)C2
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Again, ∀s ∈ S2, ∀t and, ∀r ∈ [m], ⟨
∂l

∂w
(s,t)
r

, o1⟩ ≥ 0 which implies ⟨w(s,T+1)
r , o1⟩ ≤ ⟨w(s,0)

r , o1⟩ ≤ C2.
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Here, (I) comes from the statement (i) of Lemma D.1, q(s) in (I) denotes the task-irrelevant pattern routed to expert
s ∈ S2 ∩ Sk′ and, (II) comes from the statement (ii) of Lemma D.1 and the fact that ∃s ∈ S1 ∩ Sk′ s.t. p(s,0)1 = Ω(1).

Therefore, for k = O(
√
d), ∀(x, y = +1) ∼ D, f (T+1,ρ)(x) > 1.

Similarly, using the statements (vi),(vii) and (viii) of Lemma D.1, and as ∃s ∈ S2 ∩ Sk′ s.t. p(s,0)2 = Ω(1), we can show
that, ∀(x, y = −1) ∼ D, f (T+1,ρ)(x) < −1.

Therefore, ∀(x, y) ∼ D, yf (T+1,ρ)(x) > 1 which implies that,
l̂(f (T+1,ρ)(x), y) = 0 and, P

[
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]
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H. Proof of Lemma 4.4
Lemma H.1 (Full version of the Lemma 4.4). Suppose the expert learning rate ηe such that, the router learning rate
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Now, as σ(s,0)
1 = O(mC2), for the selection of ηr and T , there is contradiction if there is only o(1) fraction of r ∈ [m] of s
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Similarly, we can complete the proof of the statements (iv), (v) and (vi).

I. Proof of Theorem 4.5

Proof. For the pruning ratio of ρ = 1−O(
1

k
), |S1 ∩ Sk′ | = O(1) and |S2 ∩ Sk′ | = O(1).

Now, using Lemma 4.4 and following the same procedure as in the proof of Theorem 4.3 we can complete the proof.
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