OPT2025: 17th Annual Workshop on Optimization for Machine Learning

Extending ;/P: Spectral Conditions for Feature Learning Across

Optimizers
Akshita Gupta GUPTA417 @PURDUE.EDU
Purdue University, West Lafayette, IN, USA
Marieme Ngom MNGOM @ ANL.GOV
Sam Foreman FOREMANS @ ANL.GOV
Venkatram Vishwanath VENKAT @ ANL.GOV

Argonne National Laboratory, Lemont, IL, USA

Abstract

Tuning hyperparameters (HPs) for large language models (LLMs) is computationally expensive.
Maximal update parameterization (uP) offers width-independent scaling rules that stabilize HPs,
but prior derivations for SGD and Adam rely on tensor programs, which are difficult to extend.
Building on recent work that introduced spectral conditions as an alternative to tensor programs,
we propose a framework to derive uP for a broader class of optimizers, including AdamW, ADOPT,
LAMB, and Sophia. We validate our derivations on NanoGPT and further provide empirical in-
sights into depth-scaling parameterization for these optimizers.

1. Introduction

Large language models (LL.Ms) have achieved remarkable progress in generative Al, yet their per-
formance and reproducibility depend on many interacting factors. A key aspect of training LL.Ms
is the optimization routine, which can become unstable as models grow in size and complexity. To
improve stability and efficiency, several modifications to existing optimizers have been proposed.
For example, LAMB [17] proposes a layer-wise adaptive optimization routine to reduce the com-
putational time required for training deep neural networks over large mini-batches, while Sophia
[8] is a second-order method which uses a light-weight estimate of the diagonal of the Hessian as a
preconditioner, and achieves faster convergence than Adam while being more robust to non-convex
landscapes. Muon is another recent optimizer designed explicitly for scaling with model size [5, 9].

Although these recent algorithms demonstrate strong performance, the computational overhead
of hyperparameter (HP) tuning poses a fundamental scalability bottleneck for training LLMs. To
address this challenge, practitioners have heuristically tuned HPs on smaller models to guide the
search for optimal configurations in larger models. Authors in [13, 14] formalized this approach
by proposing a zero-shot HP transfer algorithm based on maximal update parameterization (uP)
which stabilizes feature learning across different model layers. P is implemented through careful
scaling of weights and HPs proportional to the model width, with scaling factors tailored to the
specific architecture and optimization algorithm. Under pP, feature learning is stable throughout the
training process and HPs are stable across increasing model width.

While uP delivers strong results [2, 12, 14], it is tedious to implement in existing large codebases
and difficult to understand in practice. To address this, authors in [15] proposed simpler spectral

© A. Gupta, M. Ngom, S. Foreman & V. Vishwanath.

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

norm conditions on weight matrices that lead to the same width-independent and maximal feature
learning properties of pP. This work focuses on using the more intuitive and tractable spectral con-
ditions to derive uP for a wide range of optimizers. This approach also allows to unify the analysis
for different layers of the model without requiring matching input-output dimensions for the hidden
layers.

Our contributions are threefold: (1) we derive uP for adaptive first and second-order optimizers
(AdamW, ADOPT, LAMB, Sophia) via a novel spectral-conditions approach; (2) we demonstrate
zero-shot HP transfer (specifically of the optimal learning rate) across model width on a benchmark
LLM (NanoGPT [6]); and (3) we provide an empirical study of zero-shot HP transfer across model
depth for these optimizers.

The final results can be summarized in Fig. 1 which shows that the optimal learning rate corre-
sponding to the minimum validation loss is stable across increasing model widths (256 to 2048)
based on the proposed pP scalings for AdamW, ADOPT, LAMB and Sophia (Table 2) on the
NanoGPT model [6].

AdamW ADOPT
4.0 4.0
@ @
o 3.51 o 3.51
| |
C C
5]) o i . . .
2 307 iaen ; £ 307 waen Figure 1: Mean validation
° —e— 256) o N g —a— 256 \‘ — . .
g5 g5 >~ loss for increasing model
2048 2048 . . .
20— S 20—~ 55 5 Wwidth and different 1.ea.rn1ng
Learning Rate Learning Rate rates across four optimizers:
, AdamW (top left), ADOPT
LAMB Sophia .
4.0 < 4.0 (top right), LAMB (bottom
("] %]
835 \ 835 left), and Sophia (bottom
c < 3.0 1
o o
B 3.0 Width \ / B 5] Wwidth N rlght)'
2,510 - 2 palH i
> 1024 > 2.0 1024
2048 2048
2.0 2714 11yl pls g2 2-14 5-11 578 -5 -2
Learning Rate Learning Rate

2. Background

For the discussion in Sections 2 and 3 we derive uP for a linear MLP, similar to the model used
in [15]. Let us consider an MLP with L layers. Let x € R™0 denote the input vector and W; €
R™*™-1 denote the weight matrix for the [—th layer of the model. Then the feature vector h; € R™
at layer [for the input x is given as

hl(X) :Wlhl_l(x), VI = 1,2,...,L (1)

where hg(x) = x. Let £ = g(hr(x),y) denote the loss, where g : R™ x R™2 — R is a loss
function, y € R™L is the target vector corresponding to the input x and hy (x) € R"Z is the output
vector returned by the MLP. After one step of training, the change in the weight matrices is typically
a function of the history of the gradients. Let us denote this function as ¥(-). The change in weights
from time instant ¢ to ¢ + 1 can be then written using the following update rule

Wl(t+1) _ Wl(t) _ n(t+1)\11({vwl<i)£}§:1) @

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

where 1(**1) is the learning rate at time instant ¢ + 1. We specify the forms of W(-) for different
optimizers in Table 1. To reduce cumbersome notation, we omit time indices in the remaining
sections unless their inclusion is necessary for clarity. This will not affect the derivation of uP as it
is sufficient to analyze a single update step of the weight update rule to determine the correct scaling
laws [2, 14]. Using eqgs. (1) and (2) we can write the change in the weights and feature vectors for
any layer [after one training step as

AW[= —H\IJ({leﬁ}) and Ahl(X) = AWlhl_l(x) + AWlAhl_l(X) + WZAhl_l(X).

Optimizer w(-)
()
m (#)
AdamW / ADOPT — + AW
VIO e :
()
: : m (t)
Sophia clip max{yh®, e}’ 1) + AW,

(t)
LAMB cﬁt(HWz ||1:) <rl(t)+)\wl(t)>
[rf” + AW ||

Table 1: Values of W (-) for different optimizers. Auxiliary variables are defined in Section 3 and
Appendix C.

2.1. Maximal Update Parametrization (uP)

Authors in [13, 14] proposed uP to ensure that overparameterized models do not learn trivial fea-
tures, or that the feature values do not blow up with increasing model width. In practice, uP is
implemented via the abc-parameterization [13] which ensures that the MLP weights, their initial
variance and the learning rate are appropriately scaled with respect to the width of the model. In
[13], the abc-parameterization was introduced for MLPs where the hidden layers have the same
width, that is, n;_y = n; = nforl = 2,..., L — 1. For simplicity, it was assumed that the inputs
and outputs are scalars. Then, for each layer, the set of parameters {a;, b}~ | U {c} comprise the
abc-parameterization to

1. Initialize the weight matrix at every layer as W; = n~% [wl(i’j)] where Wl(i,j) o N (0,n~2b152)

2. Scale the learning rate such that AW; = —np n=¢ U ({Vw,L})

where the scale of parameters ¢ and 7 are assumed to be independent of the model width. As
emphasized in Section 1, the theoretical principles behind pP can be difficult to grasp. Recognizing
these challenges, the following equivalent conditions for ;P were proposed [15]

Ihy(x)||2 = ©(v/m) and ||Ahy||y = O(/mp), forl=1,2,...,L—1, (C.1.)

where the appropriate vector and matrix norms are defined in Appendix A. While the above con-
ditions concisely represent the requirements of P, from eq. (1) we observe that corresponding
conditions on the weight matrices are needed to derive the correct parameterization.

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

2.2. Spectral Conditions for Feature Learning

In [15], the authors proposed the following spectral norm conditions on the weight matrices and
their one step updates

||Wl]|*:9(nl> and HAWlH*:@(nl) atlayers (=1,...,L. (C.2))
ni—1 ni—1
In (C.2.), the condition on ||W||. is used to determine the scalings for the weights and their initial
variance, while the condition on ||[AW,||, is used to determine the scaling for the learning rate.
Compared to the abc-parameterization, the condition on ||[W/||, determines the set of parameters
{ay, b}, which depends on the model architecture, while the condition on ||[AW/||, determines
the scalar ¢, which depends on the optimization routine. This means that deriving pP for different
optimizers only changes the value of ¢, while the values of {a;, b; } remain fixed since the underlying
architecture is unchanged. Therefore, following the parameterization in [15], we set b; = 0 for all
Il =1,2,..., L sothat the initial variance of the weights is 1, and, the weight matrices are scaled by

a factor of magnitude © (Wll,l min {1, n:‘i - }) .

3. Deriving P using Spectral Conditions

Input Weights Output Weights Hidden Weights

Il’llt Var. 1 (,Lll 1) 1 (”21) 1 (TLll 1)
‘-1 -
Multiplier = (1) m (1) 7= ()
AdamW LR 1 1) m{l () ﬁ ()
Sophia/ ADOPTLR 1 (—) = (-) - (=)
LAMB LR 1(-) b (-) " (—)

Table 2: Comparison of uP from spectral conditions (black) vs. tensor programs [14, Table 3] (red).

In [15], the authors used spectral conditions to derive P for SGD. However, while they empha-
sized that conditions (C.1.) and (C.2.) are universal to any optimizer, they did not further discuss
how to apply these conditions to derive uP for adaptive optimization routines. Our work highlights
that although spectral conditions are easier to work with than the original tensor program approach,
the analysis for each adaptive optimizer is different and requires a careful study of the order of
magnitude of the coefficient terms that scale the gradients.

Therefore, we first demonstrate how to apply condition (C.2.) by deriving uP for AdamW, and
corroborate our results with the uP scalings reported in the literature [14]. We then derive the proper
parameterization for the ADOPT, LAMB, and Sophia optimizers (Appendix C), which have shown
promising results for training LLMs. Our results are summarized in Table 2 and in Result 3.1.
Note that the uP scalings derived in Table 2 can be applied in practice if the assumptions listed in
Appendix B hold [15].

3.1. AdamW
Recall the update rule for AdamW [10],

h(®
W(t+1) _ W(t) _ n(tJrl) m +)\W(t) (AdamW)
l l / _|_ €

4

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

®) 1
where m® = (1n_1 A = = [51m(t—1) +(1-—- Bl)VWl(t)L} - m® =9
(t) 1
o= L= (1) 4 (1 — 2] . L0 _
Vo= (1 —ﬂé) B (1 _ﬂé) {'BQV + (1 52)(le(t)£)] vl =0

From the spectral conditions in (C.2.), we need to find c1, co € R such that
m

n
=0 — . 3
\/6"‘6 * < nl—l) ()

Similar to previous works, we first analyze AdamW for 8; = B3 = ¢ = 0. This reduces the
above update rule to that of signSGD [1]. Additionally, since the gradient term dominates the weight
decay term, we can ignore the latter because we are only concerned with an order-of-magnitude
calculation. Therefore, (3) reduces to

AW [= n(n)” (n—1) ™% lsign(Vw, L)« = n(n) = (ni—1) = *|sign(Vw, £)||F

where the last equation follows because the spectral norm is almost equal to the Frobenius norm for
low rank matrices (See Table 1 and discussion in [15, pg. 9]). From the definition of the Frobenius

norm, we have ||1,,xn, ,||% = > 1L, ;-”:_il 1 = nyny_1. This gives

1AW = ()™ (u-1)~20 (yam) = © (ng* "m0)

By fixing ¢; = 0 and c2 = 1, the spectral norm condition in (3) is satisfied. Therefore, the learning
rate for AdamW should be scaled by a factor of 1/n;_1. Observe that this scaling is consistent
with the uP derived using the tensor programming approach [14, Table 3], and this equivalence is
highlighted in Table 2.

Scaling the Weight Decay Parameter: If the value of the weight decay parameter,)\, can not
be ignored then it has to be scaled by a factor of n;_;. This holds since, after scaling the learning

rate, we want H#AW[H* = 0O (m) From conditions (C2), HWlH* =0 <1 / % 5

A

[AW, || = n(ny) " (ng—1) " + AW,

ni—1
therefore A should be scaled to eliminate the extra 1/n;_; factor. This is consistent with Table 1 in
[3].
We use similar techniques to derive P for ADOPT, Sophia and LAMB. The derivations are
moved to Appendix C. We summarize our derivations of xP in Table 2 and formally state our result
below.

Result: Under standing assumptions, for a linear MLP with L layers, if the weight
matrices W; = oyW,, | = 1,2,... L are initialized as W; ; ~ N(0,1), then the
spectral conditions (C.2.) are satisfied for AdamW, ADOPT and Sophia if

Jl:®< 1 min{l, m}), 77:®<1>,
V-1 ni—1 ny—1

and for LAMB if

m:@(ﬁifm{LVJZD; p=0),

where n;_; = 1 for input weights and n; = 1 for output weights.

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Figs. 2 and 3 illustrate the coordinate checking [13] validation of our derivation. We train the
model over a few steps and compute the mean of the feature vectors after each step relative to their
values at the first training step and increase the width of the model. The top rows show the mean
values blowing up under standard parametrization (SP) while the bottom rows show stable behavior
across width under our uP implementation. Coordinate check plots for LAMB and ADOPT are
provided in Appendix D.

Word Embeddin: Attention Output FFN Output Output Logits

~ 107 9 104 d d 102 L 9
= 10
e, 103
= 10°
s 2
% 10 102
‘s’ 10! 10!
Q
= 10° 10°

27 28 2‘3 210 211 27 25 29 210 211 27 28 2‘3 210 211 27 25 29 210 211

Width Width Width Width

~ 100 Word Embedding Attention Output FFN Output 100 Output Logits
= Step t
5 4
\:\=‘ : - ¥ ¥ | 1 1 3
s 10 10 10 = 10
= o
k=1 1
S — 12
= 1022 102 1072 1072

27 ZE 29 2]0 211 27 23 29 210 211 27 28 29 210 211 27 28 29 2)0 21

Width Width Width Width

Figure 2: Coordinate check plots for AdamW under SP (top) and uP (bottom).

4. Numerical Results

We implement the derivations in Table 2 and validate our implementation on the NanoGPT codebase
[6] via Fig. 1. Extensive numerical results, including training settings, hyperparameters values,
depth scaling studies, and training/validation loss values for the different optimizers and model
sizes can be found in Appendix D. All of our simulations were performed using four A100 GPUs
of the Argonne Leadership Computing Facility’s Polaris supercomputer [7].

Word Embedding Attention Output FFN Output Output Logits

=
=)
|

103

- 103 10!
s 102 102
= -3
| 10 10! 10! — o | =
= = = 10
£ 0 1004 &7 10°
R 107 107
Q ——
= 105 -2 102 102 107
27 28 29 2o oh 27 28 29 2o on 27 28 29 2o ohn 27 28 29 2o oin
Width Width Width Width
Word Embeddini Attention Output FFN Output Output Logits
2107 — 9 1071 P 1071 P 1071 P 9
= &
& "
- s
<10 H —s —
= : 1072 1072 1072
S0 3
= 10
5 g
2 100 L2 103 103 103
27 28 29 S0 Hu 27 28 29 Jlo Hu 27 28 29 Sl on 27 28 29 Sl oh
Width Width Width Width

Figure 3: Coordinate check plots for Sophia under SP (top) and pP (bottom).
S. Conclusion

We derived pP for AdamW, ADOPT, Sophia, and LAMB optimizers using spectral conditions for
feature learning across width and validated our results through zero-shot learning rate transfer on
NanoGPT (Fig. 1). In future work, we aim to extend these derivations to second-order meth-
ods such as Shampoo [4], scale our experiments to larger models and additional hyperparameters,
and, motivated by our depth-scaling simulations (Appendix D), develop a theoretical framework for
depth-scaling parameterization.

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

References

[1]

(3]

[4]

[6]
[7]

[8]

[9]

[10]

[11]

Jeremy Bernstein, Yu-Xiang Wang, Kamyar Azizzadenesheli, and Animashree Anandkumar.
signsgd: Compressed optimisation for non-convex problems. In International conference on
machine learning, pages 560-569. PMLR, 2018. URL https://doi.org/10.48550/
arXiv.1802.04434.

Charlie Blake, Constantin Eichenberg, Josef Dean, Lukas Balles, Luke Yuri Prince, Bjorn
Deiseroth, Andres Felipe Cruz-Salinas, Carlo Luschi, Samuel Weinbach, and Douglas Orr.
u-μp: The unit-scaled maximal update parametrization. In The Thirteenth Interna-
tional Conference on Learning Representations, 2025. URL https://openreview.
net/forum?id=P7KRIiLM8T.

Nolan Dey, Bin Claire Zhang, Lorenzo Noci, Mufan Li, Blake Bordelon, Shane Bergsma,
Cengiz Pehlevan, Boris Hanin, and Joel Hestness. Don’t be lazy: Completep enables compute-
efficient deep transformers. arXiv preprint arXiv:2505.01618, 2025. URL https://doi.
org/10.48550/arXiv.2505.01618.

Vineet Gupta, Tomer Koren, and Yoram Singer. Shampoo: Preconditioned stochastic tensor
optimization. In International Conference on Machine Learning, pages 1842-1850. PMLR,
2018. URL https://doi.org/10.48550/arXiv.1802.09568.

Keller Jordan, Yuchen Jin, Vlado Boza, Jiacheng You, Franz Cesista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks. Cited on,
page 10, 2024. URL https://kellerjordan.github.io/posts/muon/.

Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

Argonne Leadership Computing Facility. Polaris. https://www.alcf.anl.gov/
polaris.

Hong Liu, Zhiyuan Li, David Hall, Percy Liang, and Tengyu Ma. Sophia: A scalable stochastic
second-order optimizer for language model pre-training. arXiv preprint arXiv:2305.14342,
2023. URL https://doi.org/10.48550/arXiv.2305.14342.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025. URL https://doi.org/10.48550/arXiv.2502.16982.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101,2017. URL https://doi.org/10.48550/arXiv.1711.05101.

Shohei Taniguchi, Keno Harada, Gouki Minegishi, Yuta Oshima, Seong Cheol Jeong, Go Na-
gahara, Tomoshi liyama, Masahiro Suzuki, Yusuke Iwasawa, and Yutaka Matsuo. Adopt:
Modified adam can converge with any (2 with the optimal rate. Advances in Neural Informa-
tion Processing Systems, 37:72438-72474, 2024. URL https://doi.org/10.48550/
arXiv.2411.02853.

https://doi.org/10.48550/arXiv.1802.04434
https://doi.org/10.48550/arXiv.1802.04434
https://openreview.net/forum?id=P7KRIiLM8T
https://openreview.net/forum?id=P7KRIiLM8T
https://doi.org/10.48550/arXiv.2505.01618
https://doi.org/10.48550/arXiv.2505.01618
https://doi.org/10.48550/arXiv.1802.09568
https://kellerjordan.github.io/posts/muon/
https://github.com/karpathy/nanoGPT
https://www.alcf.anl.gov/polaris
https://www.alcf.anl.gov/polaris
https://doi.org/10.48550/arXiv.2305.14342
https://doi.org/10.48550/arXiv.2502.16982
https://doi.org/10.48550/arXiv.1711.05101
https://doi.org/10.48550/arXiv.2411.02853
https://doi.org/10.48550/arXiv.2411.02853

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

[12] Benjamin Thérien, Charles-Etienne J oseph, Boris Knyazev, Edouard Oyallon, Irina Rish, and
Eugene Belilovsky. p lo: Compute-efficient meta-generalization of learned optimizers. In
OPT 2024: Optimization for Machine Learning. URL https://doi.org/10.48550/
arXiv.2406.00153.

[13] Greg Yang and Edward J Hu. Feature learning in infinite-width neural networks. arXiv preprint
arXiv:2011.14522,2020. URL https://doi.org/10.48550/arXiv.2011.14522.

[14] Greg Yang, Edward Hu, Igor Babuschkin, Szymon Sidor, Xiaodong Liu, David Farhi, Nick
Ryder, Jakub Pachocki, Weizhu Chen, and Jianfeng Gao. Tuning large neural networks via
zero-shot hyperparameter transfer. Advances in Neural Information Processing Systems, 34:
17084-17097, 2021. URL https://doi.org/10.48550/arXiv.2203.03466.

[15] Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning.
arXiv preprint arXiv:2310.17813, 2023. URL https://doi.org/10.48550/arXiv.
2310.17813.

[16] Greg Yang, Dingli Yu, Chen Zhu, and Soufiane Hayou. Tensor programs vi: Feature learning
in infinite-depth neural networks. arXiv preprint arXiv:2310.02244, 2023. URL https:
//doi.org/10.48550/arXiv.2310.02244.

[17] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli, Xi-
aodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for
deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019. URL
https://doi.org/10.48550/arXiv.1904.00962.

Acknowledgement: This research used resources of the Argonne Leadership Computing Facility,
a U.S. Department of Energy (DOE) Office of Science user facility at Argonne National Laboratory
and is based on research supported by the U.S. DOE Office of Science-Advanced Scientific Com-
puting Research Program, under Contract No. DE-AC02-06CH11357.

Government License. The submitted manuscript has been created by UChicago Argonne, LLC,
Operator of Argonne National Laboratory (“Argonne”). Argonne, a U.S. Department of Energy
Office of Science laboratory, is operated under Contract No. DE-AC02-06CH11357. The U.S.
Government retains for itself, and others acting on its behalf, a paid-up nonexclusive, irrevocable
worldwide license in said article to reproduce, prepare derivative works, distribute copies to the pub-
lic, and perform publicly and display publicly, by or on behalf of the Government. The Department
of Energy will provide public access to these results of federally sponsored research in accordance
with the DOE Public Access Plan. http://energy.gov/downloads/doe- public-access-plan.

https://doi.org/10.48550/arXiv.2406.00153
https://doi.org/10.48550/arXiv.2406.00153
https://doi.org/10.48550/arXiv.2011.14522
https://doi.org/10.48550/arXiv.2203.03466
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.17813
https://doi.org/10.48550/arXiv.2310.02244
https://doi.org/10.48550/arXiv.2310.02244
https://doi.org/10.48550/arXiv.1904.00962

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Appendix A. Preliminaries

The [P—norm of a vector x € R™, denoted as ||x||p, is defined as ||x||, = (> i, \a:i|p)1/p. The

spectral norm of a matrix A € R™*", denoted as || A[l,, is defined as [|A ||, := maxycprn\ {0} %.

F,isdefined as ||A||p := \/2?1:1 Yo A7
It is a well known result that ||A ||« < [|A||r < /7||A[|«, Where 7 is the rank of matrix A. A vector
x € R™ is said to have ©(n®)-sized coordinates if ||x||3/n = ©(n?¥) as n — .

The Frobenius norm of a matrix A € R™*", denoted as || A |

Appendix B. Assumptions

The derivations in Table 2 hold in practice for more complex models if the following assumptions
are satisfied.

Assumption 1 The weight updates do not cancel initial quantities.

Wi+ AWl = O([[Wi][. + [|AW,]].)
[Ihy(x) + Abhy(x)[|2 = O([[hy(x)[[2 + [[Ah(x)||2)-

Assumption 2 If a nonlinear activation function ¢(-) is added to each layer of the MLP, then

o (hy(x))]|2 = O(| hy(x)]|2)-

In other words, assumption 2 ensures that the order of magnitude of the inputs and outputs of
an activation function are the same.

So far in our derivations, we assume that the mini-batch size is 1. In practice, if a mini-batch
size of B € R is used then for our calculations to hold, we need the following two assumptions.
Observe that assumption 3 plays the same role as assumption 1.

Assumption 3

1 i
aWinx)l, =6 (| AW)

)

Assumption 4 The batch size is independent of the width, that is B = ©(1).

Appendix C. Extending /P across optimizers
C.1. ADOPT

Recall that the update rule for ADOPT optimizer is the same as AdamW. The key difference lies in
the sequence in which the terms m®) and v are updated [11]. From a theoretical perspective, this
does not change the order of magnitude of the gradient function ¥ ({Vw,£}) from that of AdamW,
and hence, the parameterization derived for AdamW also holds for ADOPT.

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

C.2. Sophia
Recall the update rule for Sophia [8],

m(®
(t+1) _ yw® (1) g _pn® (t) '
W, =W, —q clip (max 0]’ 1) AW, (Sophia)

where h(®) is the estimate of the diagonal vector of the Hessian at time ¢. From the spectral condi-
tions in (C.2.), we need to find c;, cs € R such that
n
=0 (— > :
nj—1

(®)
clip (m 1) —aw
For analysis, we consider 31 = 2 = € = 0, and since the weight decay term is usually very small,

AW, ||, = —c1)¢)
H ZH 77(”!) (nl 1) max {’}/h(t), 6}
the above weight update simplifies to

—c —c : Vw, L
[[AW [« = n(ny) " (ng—1)~ || clip (7 Wi 1)”

_ - . Vw,L
— c1 _ c2 1 l 1
n(n) = (1) clip (7IV2 ok)

_ _) Vw, L
~n(ng) M(ni_q) @ clip | —=5+—,1
() (1) ’y|V2 £| -

where in the second equality we take modulus in the denominator because Sophia avoids negative
diagonal terms in the Hessian (thereby avoiding convergence to a saddle point; see discussion in
[8, pg. 6]). Observe that because of clip(-, 1) the coordinate-wise weight updates, [AW/]; ; , are
bounded as |[AW;]; ;| < 1. Therefore, we can compute an upper bound for the Frobenius norm as

clip Vw, L 1
NV L),

< ()~ <m_1>—02§@<\ﬁnmz_1>.

[[AW ||« = n(ng) = (ng—1)~

Therefore, condition (C.2.) is satisfied by fixing ¢; = 0 and cp = 1, which is the same scaling used
by AdamW.

Intuitively, it is easy to see why this result holds, because Sophia uses signSGD as the default
method to handle negative Hessian terms (to avoid convergence to a saddle point). Additionally,
when v = 1, that is, all the elements in the weight update are clipped to 1, the upper bound holds
exactly and we get the same scaling as AdamW. In practice, the authors suggest to choose ~ such
that 10% — 50% of the parameters are not clipped. Therefore, for each term which is not clipped,
the above bound incurs an error of less than 1. However, as demonstrated in our simulations (Fig.
1), for the typical values of ~y used in practice, the uP scaling derived based on the above calculation
works well.

10

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

C.3. LAMB
Recall the update rule for LAMB [17]

(t)
w
Wl(t+1) _ Wl(t) D) o([|W,"]|F) (rl(t) +)‘Wl(t)> (LAMB)
I+ AW e
where
RO
! \/W + 6'

The update rule for LAMB scales the gradient in each layer of the model by terms of orders
%. From the spectral conditions (C.2.) and because the update matrices typically have a

low stable rank, we know that

n
Wil ~ Wil = © ()

ni—1

and
llr; + A\W||p = © (W/nlnl_l)

if we ignore the weight decay term because it is dominated by the gradient term. Then,

1
AW |, & 1(n;) ™ (ny—1) "0 <n_> e AW O 4)
1
= n(ny) " (ny_1) 20 <m_1> O (y/rmi—1) (5)
= () (1)~ (”l) ©)
np—1

where the second equality follows using the same analysis as for AdamW. Therefore, the update
rule (LAMB) implicitly has the correct order for the weight updates. Hence, we fix ¢; = c2 = 0.
Intuitively, this result holds because the layerwise gradient scaling in (LAMB) causes the effective
learning rate to be different for each layer.

Appendix D. Simulations

Consistent with existing literature, we verify yP for ADOPT, Sophia and LAMB optimizers by im-
plementing the derived parameterization scheme (Table 2) in the NanoGPT codebase [6]. Although
prior works have already implemented pP for AdamW, we present the results again for complete-
ness. Table 3 lists some of the settings for our experimental setup to test uP.

We also present simulation results for depth-scaling parameterization for the above optimizers,
using the implementation suggested in [3, 16]. Note that deriving proper depth-scaling parameter-
ization for different optimizers is an ongoing work, and we only present preliminary results in this
section to motivate further theoretical analysis. Table 4 lists some of the settings for our experimen-
tal setup to test depth-scaling parameterization.

The remainder of this section documents the simulation results for AdamW (Subsection D.2),
ADOPT (Subsection D.3), Sophia (Subsection D.4) and LAMB (Subsection D.5) optimizers. For

11

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Table 3: Hyperparameter values and training settings to test uP.

Architecture NanoGPT [6]
Width 128 (scaled to 2048)
Depth 8
Number of heads 2
Total parameters 1.59 M (scaled to 403 M)
Dataset Tiny Shakespeare
Vocab size 65
Tokens per iteration 8192
Batch size 2
Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers AdamW / Adopt / Lamb / Sophia

Hyperparameter search range

ne2x1071,2 x 1079

Table 4: Hyperparameter values and training settings to test depth-scaling parameterization.

Architecture NanoGPT [6]
Width 256
Depth 2 (scaled to 64)
Total parameters 1.6 M (scaled to 50.56 M)
Dataset Tiny Shakespeare
Vocab size 65
Tokens per iteration 8192
Batch size 2
Stopping criteria Early stopping if validation loss doesnot improve in last 150 iterations
Optimizers AdamW / Adopt / Lamb / Sophia

Hyperparameter search range

ne2x1071,2 x 1079

12

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

each optimizer we first present the coordinate check plots under standard parameterization, uP
and depth-scaling parameterization. These plots serve as a quick implementation check to monitor
whether the weights blow-up, diminish to zero or remain stable with increasing model size (see
discussion [14, Section D.1, pg. 27]). We then provide tables and plots listing the training and
validation loss for different learning rates, and increasing model width and model depth. The values
in the table are the average loss values observed over multiple runs. While we do not document the
standard deviations in the tables, they are highlighted in the plots. Note that since we are using an
early stopping criteria, we rely more on the observations gained from the validation loss data than
the training loss data.

D.1. Discussions

Overall, it is observed that the implementation of uP following Table 2 is quite stable with increasing
model width. This is evident from the coordinate check plots for all the optimizers (Figs. 4, 5, 6, 7).
Under standard parameterization, the top row of the coordinate check plots shows that the relative
mean of the feature vectors blow-up with increasing model width. With the incorporation of pP in
the codebase, the relative mean values of the feature vectors stabilize with increasing model width
(middle row of coordinate check plots).

It is interesting to note that since the theoretical underpinnings for uP hold in infinite width
[13], the model width has to be “large enough” for the coordinate check plots to stabilize. This is
observed in the coordinate check plots for LAMB (Fig. 7) where the mean values of the feature
vectors initially increase, but gradually stabilize with increasing model width. This phenomenon is
also observed in Fig. 1 which demonstrate the zero-shot learning rate transfer across model width.
In the minimum validation loss tables for ADOPT (Table 9) and LAMB (Table 17) the optimal
value of the learning rate gradually stabilizes after a width of 256, whereas for AdamW (Table 5)
and Sophia (Table 13) the optimal learning rate stabilizes after a width of 128. These inconsistencies
across optimizers also suggest that introducing a “base model width” for P scaling will introduce
another HP. Therefore, we fix the value of the base model width to 1 in our implementation.

The second set of simulations empirically evaluate the performance of the depth-scaling param-
eterization in existing works [3, 16]. The coordinate check plots (bottom row) for depth-scaling
demonstrate that the feature vectors are stable with increasing model depth. In the coordinate check
plots for ADOPT and LAMB (Figs. 5 and 7) the feature vectors stabilize after a depth of 16, while
for AdamW and Sophia (Figs. 4 and 6) the feature vectors are stable for shallow depths too. This
phenomenon is similar to our observations for uP, because the depth-scaling parameterization is
also derived for an infinite depth limit [16]. Therefore, to prevent tuning an additional “base model
depth” HP, we fix its value to 1 in our simulation setup. However, the loss plots in Figs. 8 and 9 do
not consistently demonstrate zero-shot learning rate transfer across increasing model depths. While
the validation loss tables for AdamW (Table 7) and Sophia (Table 15) demonstrate that the optimal
value of the learning rate stabilizes for deep models, the same is not observed for ADOPT (Table
11) and LAMB (Table 19), where the value of the optimal learning rate oscillates as the depth is in-
creased. These results suggest that deriving depth-scaling parameterization for different optimizers
needs a more thorough theoretical analysis. Additionally, performing simulations on a finer grid of
learning rates can also give further insights into the depth-scaling behavior.

D.2. AdamW Optimizer

13

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

~ 101 Word Embedding 100 Attention Output FFN Output 102 Output Logits
il Step t 4|
s 5 102 °
< e 3

6 4
AI 7 / 102 10
= N 1071
S 10 1
= :; 10 10!
§ 1072 13 0 o

27 28 29 210 Ju 10 27 28 29 210 i 10 27 28 29 210 o1 27 28 29 210 Ju
Width Width Width Width

~ 100 Word Embedding Attention Output FFN Output 100 Output Logits
= Step t
s .
= K —

6
| —_— 1 1
s 101 s 10 10 10714
< 9
- 10
= 1
© - 12
2 102 L2 102 1072 102

27 25 29 210 21] 27 28 29 210 211 27 28 29 210 211 27 28 29 2]0 2]]
Width Width Width Width
~ 100 Word Embedding Attention Output FFN Output 100 Output Logits
.1 Step t
5 4
= : —t
| e e o e—
£_107! ; 10 — 10 1071
< 9
= 10
1 1
8 - 12
N il -2 -2 -2

=10 2?2 24 26 10 24 26 10 2?2 24 26 10 2?2 24 26

Depth

Depth

Depth

Figure 4: Coordinate check plots for AdamW under standard parameterization (top row), uP (mid-
dle row) and depth-scaling parameterization (bottom row).

Table 5: Mean validation loss for increasing model width and different learning rates for AdamW.
The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2 x 1071 2.54111195 | 2.54770319 | 2.50132585 | 2.53559383 | 2.45719266
2x 1072 2.57009896 | 2.56583707 | 2.57900651 | 2.53385917 | 2.51431378
2 x 1073 | 2.63474766 | 2.6022807 | 2.64679337 | 2.63449661 | 2.55710355
2 x 1077 3.38827054 | 3.5544157 | 3.38896998 | 3.44941664 | 3.44561863
2 x 1075 | 4.09221347 | 4.08871428 | 4.05257797 | 4.08837303 | 4.08405908

Table 6: Mean training loss for increasing model width and different learning rates for AdamW.
The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2x 1071 2.50418417 | 2.5338668 | 2.54295166 | 2.5088102 | 2.48891171
2 x 1072 2.5343496 | 2.54380401 | 2.52089596 | 2.53060627 | 2.48314587
2x 1073 | 2.62260453 | 2.64226564 | 2.62231874 | 2.64035686 | 2.61562872
2 x 10~% | 3.44006387 | 3.46894224 | 3.35684594 | 3.45759169 | 3.43261838
2x 1075 | 4.09007104 | 4.09235779 | 4.05840794 | 4.09009075 | 4.08594577

14

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Table 7: Mean validation loss for increasing model depth and different learning rates for AdamW.

The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 107" 2.53525917 | 2.55192765 | 2.53510944 | 2.50357556 | 2.51294963 | 2.53008548
5x 1072 2.52700798 | 2.49422677 | 2.50334986 | 2.29428236 | 2.45176029 | 2.36860998
2% 1072 2.55682977 | 2.52176666 | 2.56583563 | 2.30422862 | 2.45500112 2.5650301

2x 1073 2.59745781 | 2.63078475 | 2.60228316 | 2.61588136 | 2.64065663 | 2.65051214
2x 1077 3.41396125 | 3.41677833 | 3.55441554 | 3.45801504 | 3.43285489 | 3.47577778
2x10°° 4.09297959 | 4.05970796 | 4.08871428 | 4.08113146 | 4.06712834 | 4.10902596

Table 8: Mean training loss for increasing model depth and different learning rates for AdamW.

The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2 x 1071 2.52620586 | 2.51541392 | 2.55663538 | 2.55096157 | 2.53933263 | 2.51851972
5x 1072 | 2.53733587 | 2.47412181 | 2.48997227 | 2.25323725 | 2.4599328 2.29104145
2x 1072 | 2.55709076 | 2.5514137 | 2.54380743 | 2.25292548 | 2.43532848 | 2.54148165
2 x 1073 | 2.59405073 | 2.61922661 | 2.64226492 | 2.62052504 | 2.63042879 | 2.59986623
2x10~% | 3.43114074 | 3.43951575 | 3.46894217 | 3.44096637 | 3.43087451 | 3.48062642
2 x 107° | 4.09014066 | 4.05411609 | 4.09235779 | 4.07814837 | 4.06753333 | 4.10893885

D.3. ADOPT Optimizer

Table 9: Mean validation loss for increasing model width and different learning rates for ADOPT.
The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2x 1071 | 255120134 | 2.54616404 | 2.54178079 | 2.5524296 | 2.54457998
7x 1072 | 2.48560476 | 2.44316975 | 2.37087123 | 2.50733534 | 2.50883015
2 x 1072 243175697 | 2.58847451 | 2.57006375 | 2.54323697 | 2.53191725
2x 1073 | 2.63016931 2.6073552 | 2.65681744 | 2.66118956 | 2.55337548
2x 1074 3.528404 3.49065232 | 3.49065232 | 3.42789133 | 3.43255997
2 x 107" | 4.09183598 | 4.08832375 | 4.0521698 | 4.08806594 | 4.08391444

15

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Word Embedding Attention Output FFN Output Output Logits

10°

H
2

10° 102

; Step t
s_ : — 102 102 o
< 10-2 M 1]
T : 10! 10t 10
s 8

£ 10-3 s 10° 10° 100 =

= T]

H =i 10! 10!

g 1oe L 1072 102 10!

27 28 29 210 211 27 28 29 210 211 27 28 29 210 211 27 28 29 210 211
Width Width Width Width

. Word Embedding 10-1 Attention Output 10-1 FFN Output 100 Output Logits

= Step t
= 10-1
s 10 e =

] s 10
=, 1072 1072
10~ 9

= 10 1072

b=t 1

© — 12

o -3

= 10315 v ¢ T — 1073 1+ ¢ ¢ . — 1073 1= ¢ ¢ . — 10731 v ¢ . T

27 28 29 21[1 211 27 28 29 210 211 27 28 29 210 zll 27 zB 29 210 21]
Width Width Width Width

_ Word Embedding 10-1 Attention Output 10-1 FFN Output 100 Output Logits

) Step t
s_107! 4 -

= : rot | —

! 7

10

= T 1072

k= n

© - 12

U —— 13

= 1073 1073 103 1073

22 24
Depth

26 22 24 26 2?2 24 26 22
Depth Depth

24 26

Depth

Figure 5: Coordinate check plots for ADOPT under standard parameterization (top row), uP (middle
row) and depth-scaling parameterization (bottom row).

Table 10: Mean training loss for increasing model width and different learning rates for ADOPT.
The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2 x 1071 2.53555965 2.5340693 | 2.52383216 | 2.51339547 | 2.56196594
7x 1072 2.45205251 | 2.44086281 | 2.33517623 | 2.49570537 | 2.51303013
2 x 1072 2.42622383 2.55501 2.48055744 | 2.50041199 | 2.49231974
2x 1073 | 2.62170776 | 2.64970652 | 2.63305275 | 2.63701971 | 2.59599845
2 x 1074 3.48704513 | 3.46392854 | 3.42358224 | 3.36694487 | 3.44488136
2x 1075 | 4.08967559 | 4.09197982 4.058026 4.08978923 | 4.08580319

Table 11: Mean validation loss for increasing model depth and different learning rates for ADOPT.

The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 107" 256129368 | 2.51452438 | 2.54788987 | 2.51456078 | 2.52271922 | 2.55469418
9x 102 248695572 | 2.47477563 | 2.53124801 | 2.48145302 | 2.50687472 | 2.54724765
2x 1072 256718413 | 2.50419029 | 2.58847276 | 2.44447954 | 2.54996069 | 2.52524622
2x 1073 2.67992798 | 2.62949713 2.6073552 2.60433618 | 2.61753988 2.6286815
2x107% 3.41052596 | 3.46538957 | 3.56757394 | 3.47856442 | 3.43608022 | 3.56190586
2x107° 4.09267759 | 4.05929391 | 4.08832375 | 4.08074443 | 4.06675259 | 4.10877307

16

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Table 12: Mean training loss for increasing model depth and different learning rates for ADOPT.
The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 1071 2.52448209 | 2.50159733 | 2.53410482 2.5583094 2.50697446 2.5922548
9x 1072 2.49610837 | 2.49662844 | 2.51774661 | 2.51524353 | 2.48542205 | 2.53163505
2x 1072 2.53338401 | 2.51758933 | 2.55500905 | 2.45115765 | 2.50076302 | 2.47286979
2x 1073 2.66055544 | 2.61120963 | 2.64970525 | 2.59826287 | 2.59101653 | 2.58349856
2x 1074 3.42808644 | 3.46539354 | 3.46392854 3.4577349 3.43132528 | 3.49729109
2x107° | 4.08983533 | 4.05368471 | 4.09197982 | 4.07775084 | 4.06715266 | 4.10868088

D.4. Sophia Optimizer

~ 102 Word Embedding 103 Attention Output 108 FFN Output 100 Output Logits

§:i 102 102

jl: 1072 10! 10! o=

E 10-4 10° = 10° 1

T |z 107 10

2 105 L= 102 102 10

27 28 29 210 211 27 28 29 210 211 27 28 29 210 211 27 29 210 211
Width Width Width Width

~ 101 Word Embedding 10 Attention Output 10- FFN Output 10 Output Logits

é:=|\ 1072 % — —

s 1072 1072 1072

=102 -1

E 1074 ; 5 y : T — 10734 g T T — 10731 y y T — 10731 : : :

27 25 29 210 211 27 28 29 210 211 27 25 29 210 211 27 29 210 211
Width Width Width Width

— 10 Word Embedding 10-1 Attention Output 10-1 FFN Output 10-1 Output Logits

= 8 1072 1072 1072

% 103 ?o

E 1074 — 5 10°3 103 1073

22 24 26 22 24 26 22 24 26 22 24 26

Depth

Depth

Depth

Depth

Figure 6: Coordinate check plots for Sophia optimizer under SP (top row); uP (middle row); depth
scaling (bottom row).
Table 13: Mean validation loss for increasing model width and different learning rates for Sophia.
The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048
2x 1071 3.0969398 | 2.57144117 | 2.56875261 | 2.62573036 | 2.57240287
2 x 1072 2.27450609 | 2.27830847 | 2.31632638 | 2.53347905 | 1.98427689
2x 1073 2.5456597 | 2.61430057 | 2.5594302 | 2.54869485 | 2.65462987
2 x 10~% | 3.35409013 | 3.54614369 | 3.36089802 | 3.35862382 | 3.36431138
2 x 107" | 4.08766381 | 4.08859126 | 4.06069756 | 4.08811712 | 4.08371623

17

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Table 14: Mean training loss for increasing model width and different learning rates for Sophia.
The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2 x 1071 | 3.12824965 | 2.53182054 | 2.5844752 | 2.56465872 | 2.56372396
2 x 1072 2.1975925 | 2.25915702 | 2.20263139 | 2.48931464 | 1.89357849
2 x 1073 | 2.56100543 | 2.62829208 | 2.58921242 | 2.51228778 | 2.63180097
2x107* 3.4166019 3.4667743 | 3.33197419 | 3.31344899 | 3.38258688
2 x 1075 | 4.08155664 | 4.09204737 | 4.0652949 | 4.08984947 | 4.08579906

Table 15: Mean validation loss for increasing model depth and different learning rates for Sophia.

The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 10T 2.5213503 3.01081316 | 3.22649105 | 3.34855215 | 3.24310446 | 3.12229093
2x 1072 2.4717048 227232289 | 2.24736114 | 2.47475751 | 2.46061246 1.93401444
2x 1077 | 2.54103192 | 2.58136233 | 2.61035593 2.610612 245068415 | 2.55488427
2 x 10~% | 3.40887721 | 3.52765425 | 3.54587563 | 3.40669481 | 3.33997742 | 3.47574107
2x 107> | 4.09267314 | 4.06576761 | 4.08859126 | 4.08140405 4.066552 4.10874732

Table 16: Mean training loss for increasing model depth and different learning rates for Sophia.
The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 1071 2.5294884 | 2.98463766 | 3.19698143 | 3.31635459 | 3.18007644 | 3.11119755
2 x 1072 2.47805278 | 2.23049533 | 2.18775682 | 2.49183981 | 2.43022792 | 1.89074814
2x 1073 | 2.50706561 | 2.58210929 | 2.62436374 | 2.58181063 | 2.48254434 | 2.50322294
2 x 107% | 3.42514054 | 3.5769248 | 3.46681722 | 3.38244406 | 3.36329389 | 3.44658494
2x107° 4.0898249 | 4.06124306 | 4.09204753 | 4.07890431 | 4.06699435 | 4.10841576

18

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

D.5S. LAMB Optimizer

—~ 10-3 Word Embedding 100 Attention Output 100 FFN Output Output Logits
= Step t
= 4
= 107! 107! 0
S04 6 10
E_E ; v 10-2 Z 10-2
=105 -1 —— 10-t
1 n 1073 1073
g -1
-6l 13 -4 -4 -2
= 10 27 28 29 210 211 10 27 28 29 210 211 10 27 28 29 210 211 10 27 23 29 210 211
Width Width Width Width
~ 1073 Word Embedding 10-1 Attention Output 10- FFN Output 10-2 Output Logits
= Step t
S 4
B
T 10 ‘ —— | 107 f 102 / .
| 7 10~ /"—‘
o 8
=
=105 % 10-3 10-3
= 1
© ——12 104
L] —-—
= 108 2 ! ! — 1074 L ! ; ! 1070 L ; ! ! ! ; ! ! ! !
27 25 29 210 211 27 28 29 210 2]] 27 28 29 210 211 27 25 29 210 211
Width Width Width Width
~ 10-3 Word Embedding 101 Attention Output 10-1 FFN Output 10-2 Output Logits
= Step t
= 4
B
'|= 1074 z —_————, 1072 1072 107 /—"—'_—_‘
7
=10"° 10 1073 1073 1074
< 1
© —— 12
g jos =2 10~ 10~ 10-
22 24 26 22 24 26 22 24 26 22 24 26
Depth Depth Depth Depth

Figure 7: Coordinate check plots for LAMB optimizer under SP (top row); uP (middle row); depth
scaling (bottom row).
Table 17: Mean validation loss for increasing model width and different learning rates for LAMB.
The minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2 x 1071 3.3306915 | 2.91992474 | 2.75658234 | 2.84724092 | 2.84511503
2x 1072 2.27427769 | 2.55330944 | 2.53250345 | 2.50694895 | 2.51612274
2 x 1073 | 2.46762419 | 2.42723028 | 2.47571055 | 2.49152549 | 2.46575729
2 x 1077 3.69672974 | 3.70961714 | 3.66877778 | 3.2370429 | 3.37923479
2 x 1075 | 4.16929531 4.1694754 4.1684103 4.1674579 | 4.16771809

Table 18: Mean training loss for different model width and different learning rates for LAMB. The
minimum loss for each width is highlighted in green.

LR / Width 128 256 512 1024 2048

2 x 1071 3.31638861 | 2.88406754 | 2.75997527 | 2.79131405 | 2.84583108
2 x 1072 2.30849349 | 2.52181562 | 2.52505978 | 2.49564608 | 2.57582164
2x 1073 | 254151122 | 2.43793472 | 2.4520429 | 2.45778489 | 2.45273058
2 x 10~% | 3.71788796 | 3.71333241 | 3.66877246 | 3.21714981 | 3.37149858
2x 1075 | 416935237 | 4.1692287 4.1684432 | 4.16723283 | 4.16766739

19

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

Table 19: Mean validation loss for increasing model depth and different learning rates for LAMB.
The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64

2x 107" 276534136 | 2.85949779 | 2.88115621 | 3.26932732 | 3.24093787 3.097018
2x 1072 2.50858307 | 2.51164389 | 2.55355501 233967662 | 2.48308444 | 2.11406271
7x 103 245117172 | 2.46691815 | 2.50231234 | 2.45691435 | 2.48629936 | 2.45780365
2x 1073 250483624 | 2.54284684 | 2.42723123 | 2.43291903 | 2.43262172 | 2.42000318
2x 1077 3.6441706 3.79367606 | 3.70963343 | 3.57373738 | 3.61402575 | 3.42223287
2x107° 4.16981506 4.1691486 4.1694754 4.16932933 | 4.16817395 | 4.16773876

Table 20: Mean training loss for increasing model depth and different learning rates for LAMB.
The minimum loss for each depth is highlighted in green.

LR / Depth 2 4 8 16 32 64
2x 107! 2.75818356 | 2.83254337 | 2.89807558 | 3.24917714 | 3.13998501 3.04494317
2x 1072 248152947 | 2.48629141 | 2.52084017 2.32515387 | 2.51233983 2.11694264
7x 1073 2.51274339 | 2.50058635 | 2.52087537 | 2.48127453 2.40303373 | 2.41943057
2% 1073 2.52206691 2.49440336 2.43791986 2.4603858 244611494 | 2.39355747
2% 10742 3.63792483 | 3.75471322 | 3.71338932 | 3.57781116 | 3.61477113 3.3763895
2x107° 4.16952674 | 4.16912842 | 4.16922871 4.16896884 | 4.16813739 | 4.16744947
AdamW ADOPT
4.0 4.0
a a
8 35- \ S 3.5 AN
c Depth c Depth \
9 3.0 - 2 9 - 2
"('U’ ' y— 4 "{B’ 3.0 1 4
.-9 : .-9] \\
o 2.5 16 o — e 16 — - N
32 3 So5{ - =x —
64 64
5-14 o-11 5-8 -5 -2 5-14 9-11 5-8 -5 -2

Learning Rate

Learning Rate

Figure 8: Mean validation loss for increasing model depth and different learning rates for AdamW
(left) and ADOPT (right).

20

EXTENDING pP: SPECTRAL CONDITIONS FOR FEATURE LEARNING ACROSS OPTIMIZERS

LAMB Sophia
4.0 4.0

)] 0n

8 3.5+ a 3.51
- -

5 301 539
© ©

© 2.5 o 2.54
=50 = 2.0

2—I14 2—I11 2I—8 2I—5 2I—2 2—I14 2—I11 2I—8 2I—5 2I—2
Learning Rate Learning Rate

Figure 9: Mean validation loss for increasing model depth and different learning rates for LAMB
(left) and Sophia (right).

21

	Introduction
	Background
	Maximal Update Parametrization (P)
	Spectral Conditions for Feature Learning

	Deriving P using Spectral Conditions
	AdamW

	Numerical Results
	Conclusion
	Preliminaries
	Assumptions
	Extending P across optimizers
	ADOPT
	Sophia
	LAMB

	Simulations
	Discussions
	AdamW Optimizer
	ADOPT Optimizer
	Sophia Optimizer
	LAMB Optimizer

