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Abstract

Visualization recommendations, which aim001
to automatically match proper visual charts002
for specific data tables, can significantly sim-003
plify the data analysis process. Traditional004
approaches in this domain have primarily re-005
lied on rule-based or machine learning-based006
methodologies. These methods often demand007
extensive manual maintenance and yet fail to008
fully comprehend the tabular data, leading to009
unsatisfactory performance. Recently, Large010
Language Models (LLMs) have emerged as011
powerful tools, exhibiting strong reasoning ca-012
pabilities. This advancement suggests their013
substantial promise in addressing visualization014
recommendation challenges. However, effec-015
tively harnessing LLMs to discern and rational-016
ize patterns in tabular data, and consequently017
deduce the essential information for chart gen-018
eration, remains an unresolved challenge. To019
this end, we introduce a novel Hierarchical Ta-020
ble Prompt-based reprogramming framework,021
named HTP. This framework aims to inte-022
grate multi-dimensional tabular data into LLMs023
through a strategically crafted prompt learning024
method while keeping the LLMs’ backbone025
and weights unaltered. The HTP framework026
uniquely incorporates a four-level prompt struc-027
ture, encompassing general, instance, cluster,028
and column levels. This multi-level approach is029
engineered to provide a comprehensive under-030
standing of both general distribution and mul-031
tifaceted fine-grained features of tabular data,032
before inputting the tabular data into the frozen033
LLM. Our empirical studies confirm that the034
HTP framework achieves state-of-the-art per-035
formance, marking an advancement in the field036
of data visualization and analysis. The code037
and data will be made publicly available upon038
acceptance.039

1 Introduction040

Data visualization, which facilitates effective041

decision-making via better responding the human042
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Figure 1: Illustration of HTP framework.

sensitivity and efficiency in processing visual in- 043

formation (Kosmyna et al., 2018), has become in- 044

creasingly crucial nowadays. Traditional visualiza- 045

tion tools necessitate extensive effort for manual 046

specification, which often requires domain exper- 047

tise in data analysis. Therefore, large efforts have 048

been made to develop automatic tools for solving 049

the visualization recommendation task, i.e., recom- 050

mending the proper visual charts. 051

Generally, prior arts can be divided into two 052

categories. The first, known as Rule-based ap- 053

proaches (Mackinlay, 1986; Mackinlay et al., 054

2007), relies on expert-designed rules to generate 055

visualizations. However, these approaches not only 056

suffer the massive manual labor for rule mainte- 057

nance, but also struggle to address the combinato- 058

rial explosion problem caused by increasing data 059

dimensions. In contrast, the Machine Learning- 060

based approaches (Dibia and Demiralp, 2019; Li 061

et al., 2021) are investigated to automatically learn 062

the best matching between tabular data and visual- 063

ization elements. Unfortunately, few of them could 064

fully extract the multi-level features within tables, 065

which severely limits the performance. 066

Last year has witnessed the prosperity of Large 067

Language Models (LLMs), whose advanced ca- 068

pabilities of LLM in processing and interpreting 069
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complex data unlocks new possibilities in the field070

of data visualization. However, significant chal-071

lenges persist in effectively harnessing the poten-072

tial of an LLM for visualization recommendation.073

Firstly, LLMs are typically designed to process074

sequences of discrete tokens in an unstructured for-075

mat, whereas tables used for visualization often076

display highly structured and predominantly nu-077

merical characteristics, which leads to a mismatch.078

Second, the inherent pre-training of LLMs does not079

naturally encompass the comprehension abilities080

required to interpret complex tabular data. Third,081

rather than fine-tuning the entire model, it is of-082

ten preferable to keep the LLM backbone “frozen”.083

This approach ensures the model’s versatility in084

supporting a variety of tasks without compromis-085

ing its fundamental capabilities.086

To that end, we propose a novel Hierarchical087

Table Prompt-based reprogramming framework088

(HTP), to adapt LLM for visualization recommen-089

dation without altering the backbone structure. The090

essence of HTP lies in leveraging data-driven multi-091

level prompts to adaptively reprogram the tabular092

data across various dimensions, thereby bridging093

the gap between the structured nature of tabular094

data, as well as the inherent capabilities of LLMs095

for textual processing. Specifically, HTP utilizes096

four levels of prompts as follows:097

• General-level prompt, which is employed to098

describe the overall distribution of table dataset,099

while facilitating information sharing and integra-100

tion among prompts at various levels, thereby en-101

hancing the generalization performance of LLM.102

• Instance-level prompt, which connects the in-103

dividual table instances with various charts, by104

leveraging the specific distribution of tabular data105

and corresponding chart.106

• Cluster-level prompt, which is generated via107

feature extraction and clustering, and targets en-108

hancing the LLM to capture the implicit patterns109

that exist within the table datasets, as well as the110

correlations among patterns.111

• Column-level prompt, which originates from112

the inherent structural information of tables, and113

highlights the columnar organization to improve114

the column-level information processing, and115

support cross-column comprehension.116

Based on these four prompts, as illustrated in117

Figure 1, we concatenate prompts at general, in-118

stance, and cluster levels with a serialized table119

before feeding them into LLMs, thereby facilitat-120

ing table-specific knowledge extraction and inte-121

gration. Meanwhile, the column-level prompts are 122

prepended to encoded inputs to retain the structural 123

information of tables, thereby improving the dis- 124

tinction among columns, and fostering a contextual 125

understanding between them. The contribution of 126

this paper could be summarized as follows: 127

• To the best of our knowledge, we are the first to 128

leverage LLMs to investigate the visualization 129

recommendation task without altering the pre- 130

trained backbone model. 131

• A novel prompt-based framework is proposed to 132

reprogram the hierarchical table information into 133

multi-prompts, which enhances the comprehen- 134

sion capabilities of LLMs. 135

• Extensive experiments on real-world datasets 136

demonstrate the effectiveness of the proposed 137

HTP compared with state-of-the-art approaches. 138

2 Related Work 139

2.1 Visualization Recommendation 140

Prior researches on automated visualization rec- 141

ommendation includes rule-based and machine 142

learning-based approaches. Rule-based approaches 143

(Mackinlay, 1986; Roth et al., 1994; Perry et al., 144

2013; Wongsuphasawat et al., 2016) are based 145

on manually developed rules, which heavily rely 146

on expert knowledge, and have high maintenance 147

costs. Moreover, as table size grows, these meth- 148

ods may encounter combinatorial explosion issues. 149

Recently, machine learning-based methods have 150

shown notable progress in enhancing recommen- 151

dation accuracy and scalability. (Luo et al., 2018) 152

employed expert rules for initial visualizations, and 153

evaluated them using a trained classifier. (Li et al., 154

2021; Hu et al., 2019) formulated the visualization 155

recommendation challenge as a series of classi- 156

fication tasks, learn to predict labels for various 157

design choices, while (Zhou et al., 2020; Dibia and 158

Demiralp, 2019) cast the challenge as a sequence 159

generation problem. The former utilized a Deep 160

Q-Network (DQN) for selecting action tokens to 161

fill the predefined chart templates, while the lat- 162

ter employed a seq2seq model to autoregressively 163

generate JSON-encoded charts. However, these ap- 164

proaches are limited to learning the existing knowl- 165

edge within datasets, and lack sufficient exploration 166

of multifaceted table features, such as table patterns 167

and structures, leading to a limited comprehension 168

of complicated tables. Different from prior arts, 169

in our work, we enrich the extensive pre-trained 170

knowledge of LLMs with multi-level prompt, to 171
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fully extract the semantics within table data from172

multiple dimensions.173

2.2 Prompt Tuning174

With continuous parameter scaling of pre-training175

models, fine-tuning entire models for downstream176

tasks becomes daunting due to inefficiency and po-177

tential catastrophic forgetting (Pfeiffer et al., 2021;178

Kan et al., 2023). Thus, Prompt Tuning (Lester179

et al., 2021), which prepends learnable continu-180

ous prompts to input text while keeping model181

parameters fixed, has achieved success across vari-182

ous domains. However, directly using this method183

to complex table datasets results in substantial in-184

formation loss. In this paper, we use multi-level185

prompts to integrate table information, enhancing186

the efficiency of utilizing prior knowledge.187

3 Preliminaries188

3.1 Problem Formulation189

We formulate the visualization recommendation190

task as a text generation problem. Consider a la-191

beled training dataset D = {(T, V )i}|D|
i=1 where Ti192

represents a serialized table and Vi = v1i , v
2
i , · · · v

li
i193

is a concise json description of chart with length194

li, which encapsulating key information for defin-195

ing a chart. Our goal is to generate Vi in an auto-196

regressive way. Based on Prompt Tuning (Lester197

et al., 2021), we learn a prompts group P that have198

multi-level prompts, with a module G designed199

to dynamically produce prompts P . We train our200

model by maximizing the likelihood of generating201

the target sequence, as follows:202

max
P,G

pθ

|D|∏
i=1

li∏
j=1

(vji | v
1
i , v

2
i · · · v

j−1
i , Ti,P,G).

(1)203

Here parameters θ of LLM remain frozen, only the204

prompts group P and G are updated.205

3.2 Data Serialization206

3.2.1 Table Linearization207

As demonstrated in (Suadaa et al., 2021; Zhang208

et al., 2020), the representation of data in table209

form has a significant impact on generation perfor-210

mance. In this paper, we adopt a template-based211

linearization approach, transforming tables into flat212

string representations to enhance their compatibil-213

ity with the internal structures of LLMs. Formally,214

given a table T , it is represented as:215

< header1,1 > is < value1,1 >, · · · < 216

headeri,j > is < valuei,j >, · · · . 217

3.2.2 Chart Mapping 218

We employs a JSON-based template to encode 219

chart data similar to (Poco and Heer, 2017; Satya- 220

narayan et al., 2017). The template encapsulates 221

the key information necessary for defining a chart, 222

including the visualization types and the arrange- 223

ment of x-/y-axes. The details of our template are 224

as follows: 225

226

where each object in “y” and the objects of “x” 227

form a visual trace. 228

4 Methodology 229

In this section, we will introduce the proposed 230

framework in detail. As depicted in Figure 2, 231

our framework consists of four primary prompts, 232

namely general, instance, column and cluster level 233

prompts, to inject table insights into the LLM. Tech- 234

nical details of each component are discussed in 235

the following subsections, step-by-step. 236

4.1 General-level Prompt Generation 237

To encompass the overall information of the table 238

dataset and enhance generalization ability, we in- 239

troduce a soft prompt Pgen as (Lester et al., 2021) 240

do, which is uniformly applied across all instances. 241

This general prompt ensures that the model com- 242

prehensively understanding table dataset. It also 243

facilitates sharing and integrating information from 244

other level prompts. 245

4.2 Instance-level Prompt Synthesization 246

Since tables target for visualizing data across 247

diverse domains, there are inherent differences 248

among tables within the dataset. Obviously, a sin- 249

gle general prompt is insufficient to fully adapt 250

to these complicated variations of tables. In re- 251

sponse, we introduce an instance-aware prompt 252

capable of dynamically capturing the table-specific 253

features. In detail, we first synthesize a style vector 254

that reflects the characteristics of different types 255

of charts, named style query. Then, we use this 256
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Style query generation. (c) Clustering table features to generate cluster-level prompts. (d) The overall workflow of
the model. (e) The detailed structure of Style Controller.

style query to project information from the serial-257

ized table embedding into the chart space. In this258

way, the style query facilitates the extraction of259

fine-grained information from tables across various260

dimensions, enhancing the table’s perceptibility to261

charts. Moreover, projecting table information into262

chart space narrows down the search space for the263

LLM, thereby reducing the likelihood of producing264

hallucinations.265

4.2.1 Style Query Generation266

To ensure that the style query adequately represents267

the stylistic characteristics of each chart type, our268

style query is composed of two parts: hard codes269

and soft codes. Hard codes capture the inter-class270

features among different chart types, while soft271

codes are employed to explore the intra-class fea-272

tures within each chart type.273

Hard Codes Generation. Since chart images have274

explicit labels (e.g., bar charts, pie charts), enabling275

distinction of different chart styles and further guid-276

ing chart generation. Thus, we employ a supervised277

contrastive learning approach that trains a projector278

P on labeled chart images, enabling it to learn the279

distinct representation of each chart style.280

The detailed process is shown in Figure 2 (a).281

During training, we first feed a chart image i282

alongside its augmented version i+ (e.g., rotation,283

grayscale), as well as other batch samples, into284

a frozen pre-trained image encoder to obtain vi- 285

sual embeddings. These extracted embeddings are 286

then fed into a bottleneck architecture projector P , 287

which maps them to vectors that reflecting chart 288

style. 289

Then, we utilize supervised contrastive learning 290

loss on generated vectors to train the projector P . 291

Drawing inspiration from MOCO (He et al., 2020), 292

we maintain a continuously updated memory bank 293

for each chart type. In our work, positive samples 294

for a given instance include its augmented versions, 295

and same-type instances within batch and memory 296

bank. Correspondingly, negative samples encom- 297

pass instances of different chart types within the 298

same batch and memory bank, which ensures that 299

the model learns to distinguish different chart cate- 300

gories. 301

As shown in Figure 2 (b), after the contrastive 302

learning phase, we reprocess the visual embeddings 303

of images through projector P to obtain style fea- 304

tures. To obtain an overall stylistic representation 305

for each chart type, we categorize these features 306

by chart type and perform an averaging operation 307

within each category. In this way, we obtain a stylis- 308

tic representation set {qih}mi=1, named hard codes, 309

where m represents the number of chart types. 310

Soft Codes Generation. Even within the same 311

chart category, there are many subtle variations. 312
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Relying solely on hard codes could lead to over-313

looking significant intra-class differences among314

chart types, limiting the model’s ability to detect315

subtle stylistic differences between charts. To more316

effectively explore the intra-class features among317

charts, we introduce m trainable soft style codes318

{qis}mi=1, which are prepended to the hard codes to319

provide a more comprehensive representation of320

the chart space.321

Now the style query can be defined as follows:322

Qs = {[qis; qih]} i = 1, 2, ...,m.323

Here [·; ·] denotes the concatenation operation.324

Consequently, the style query Qs captures intra325

and inter-class characteristics of each chart type326

simultaneously, which will be updated during train-327

ing, allowing a better perception of input table.328

4.2.2 Generating Instance-level Prompts with329

Style Query330

We then use style query to guide instance-level331

prompt generation through a structure called Style332

Controller. As depicted in Figure 2 (e), we first333

employ a mapping network M to align dimension334

and modality between Qs and the serialized input335

embedding Tr. For efficiency, M consists of down336

and up projection layers, with a nonlinear layer337

situated between them. Then we adopt two atten-338

tion layers: the self-attention over Qs, followed by339

cross-attention from Tr, as follows:340

Qs = M(Qs),

Qs = Self -Attn(Qs),

S = Cross-Attn(Qs, Tr).

(2)341

The S = {s1, s2, ...sm} represents features ex-342

tracted by style query from m spaces based on343

the distributional information of table embedding.344

Intuitively, self-attention layer enables the model to345

effectively process and integrate contextual infor-346

mation from style query. While the cross-attention347

layer can dynamically emphasize the essential348

chart-related information within a table through349

style query. Finally, we generate the instance-level350

prompt Pins by averaging the si ∈ S.351

4.3 Cluster-level Prompt Generation352

When two tables exhibit similar messages, they are353

likely to be represented by similar charts. Thus,354

using the shared information within table pattern355

is crucial for comprehending table representations356

and making chart recommendations. The diverse357

features of table data, such as trends, entropy, and358

variance, provide a comprehensive overview of ta- 359

ble data, thus play a crucial role in identifying dis- 360

tinct table patterns. Thus, we extract various table 361

features and cluster them into k different table pat- 362

terns. Each table schema has its own shared prompt, 363

resulting in a cluster prompts pool {pic}ki=1. Cor- 364

respondingly, for a given table T ∈ Ci, its cluster 365

prompt can be directly set as pic. 366

4.4 Column-level Prompt Generation 367

The previous discussion emphasized the overall se- 368

mantic understanding of the table. However, since 369

the selection of chart type and the arrangement of 370

x-/y-axes are fundamentally based on column data, 371

a detailed understanding of each column’s role and 372

characteristics within the table is also critical for 373

recommending appropriate charts. To this end, we 374

introduce column-level prompt that designed to 375

encapsulate column structure information within 376

table, facilitating intra-column understanding and 377

cross-column analysis. 378

As shown in Figure 2 (d), following (Chen et al., 379

2022), we first encode a given table T on a per-cell 380

basis to retain structure. Specifically, for each cell 381

in T , we concatenate the cell’s header and value, 382

and query the LLM to obtain embeddings. To en- 383

hance representation at the column level, we intro- 384

duce a unique soft prompt for each column, which 385

is prepended to the embeddings of cells within the 386

same column, yielding a refined, column-centric ta- 387

ble structure representation E ∈ Rm×n×s×d, with 388

s, m and n denoting sequence length, number of 389

rows and columns, respectively. 390

Next, we employ a two-layer attention structure, 391

the first is a cell-wise layer that focus on individual 392

cells, while the second operates on single column 393

to explore column semantics: 394

E0 = E + Ecpe,

Ê0 = Linear(Self -Attn(E0)) + E0,

E1 =
1

s

∑s

i=1
Ê0[:, :, i, :],

Ê1 = Self -Attn(E1),

(3) 395

where Ecpe ∈ Rs×d is the cell text position em- 396

bedding, which will be updated during training. In 397

this way, the Ê1 can grasp the column structure 398

information inside the table. 399

4.5 Prompt Integration for Reprogramming 400

LLM 401

After obtaining the general, instance, and cluster 402

level prompts, we use a shallow network V with 403
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a skip connection to reparameterize them. Subse-404

quently, the reparameterized prompts are concate-405

nated:406

P
′
= [V(Pgen);V(Pins);V(Pclu)],

V(P ) = ϕ(P ) + P,
(4)407

where ϕ is a simple linear layer. Furthermore, a408

self attention layer is applied to enable information409

sharing among the prompts:410

Ppre = Self -Attn(P
′
). (5)411

The refined prompts Ppre ∈ Rlp×d are concate-412

nated with the serialized table embedding Tr ∈413

Rls×d, where lp denotes the prefix length, ls de-414

notes the input sequence length. They are then415

fed into the LLM to obtain the last hidden states416

H . After that, we apply a cross-attention layer, us-417

ing H as a query, to integrate the structured and418

unstructured information from the entire table:419

E2 = Ê1 + Etpe,

H = Cross-Attn(H,E2) +H,
(6)420

where Etpe ∈ Rm×n×d is the table position embed-421

ding that provides row and column information for422

tables. This obtained hidden state will replace the423

original one to estimate probability of next word.424

5 Experiments425

5.1 Settings426

Datasets Due to inaccessibility of the Plotly427

Corpus, a publicly available dataset collected by428

(Hu et al., 2019), we independently re-extracted429

a substantial dataset of 443, 526 public visualiza-430

tion pairs from the Plotly community feed via431

the Plotly REST API1. Following rigorous data432

cleaning, the refined dataset contains 116, 528433

visualization pairs across 439, 001 columns,434

including 4, 091(3.51%) pie, 36, 576(31.38%)435

line, 29, 740(25.52%) scatter, 6, 269(5.38%) his-436

togram, 29, 641(25.43%) bar and 10, 211(8.77%)437

box charts. More details are in Appendix A.438

Baselines To evaluate the performance of our439

HTP framework, we compare our method with fol-440

lowing baselines: (1) VizML (Hu et al., 2019), (2)441

KG4Vis (Li et al., 2021), (3) MultiVision (Wu et al.,442

2021), (4) Data2Vis (Dibia and Demiralp, 2019),443

(5) Table2Charts (Zhou et al., 2020), (6) DeepEye444

(Luo et al., 2018). More details are in Appendix B.445

1https://api.plot.ly/v2/

Metrics Referring to VizML, we employ Accu- 446

racy to evaluate whether models can recommend 447

correct design choices, including: XY (whether the 448

field encoded on the X-axis and Y-axis is correct), 449

chart type (whether the correct chart type is rec- 450

ommended) and overall (both XY-axis and chart 451

type are considered). Due to the variations among 452

the above baseline models in calculating metrics, 453

with some evaluations based on individual fields 454

and others on entire tables, for fair comparisons, 455

we report the metrics at the both level. More details 456

are in Appendix C. 457

Implementations We randomly split the dataset 458

into three parts: 80% for training, 10% for valida- 459

tion, and 10% for testing. For contrast learning, we 460

use CLIP (Radford et al., 2021) visual encoder to 461

extract features of input images. For our chart gen- 462

eration model, we primarily utilize the pre-trained 463

Bloom (Workshop et al., 2022) model with 1.1B 464

parameters as the backbone. We use K-Means 465

(MacQueen et al., 1967) to cluster table features. 466

Additional details are provided in Appendix D. 467

5.2 Comparison with Baselines 468

The performance comparison of our HTP and base- 469

lines is presented in Table 1, in which the mean 470

and standard deviation of all metrics are obtained 471

through three random runs. We have the following 472

observations: (1) Our HTP consistently achieves 473

the best performance in most of the evaluation 474

metrics, with 25.4% and 32.8% absolute improve- 475

ments of overall accuracy in field level and table 476

level. This indicates that our model is capable 477

of processing and integrating subtasks within vi- 478

sualization recommendation from a comprehen- 479

sive perspective. (2) In chart type accuracy, our 480

model achieves an accuracy of 0.780 at the field 481

level and 0.802 at the table level, with a large mar- 482

gin of 13.1% and 17.8% over the best-performing 483

baseline, respectively. This demonstrates the ef- 484

fectiveness of using style query to enhance table 485

perception across various chart types. Moreover, 486

chart type prediction accuracy is generally lower 487

than xy prediction across all models, suggesting 488

it’s more challenging and could be a bottleneck in 489

chart recommendation. (3) Table2Charts exhibits 490

greater accuracy on the xy-axis than other methods. 491

This may be due to the pre-defined chart template 492

constraining the selection of x and y-axis. How- 493

ever, in real-world scenarios with more complex 494

charts, such a strongly constrained template might 495

6
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Model
Field Level Table Level

XY Chart Type Overall XY Chart Type Overall

VizML 0.892 ± 0.008 0.553 ± 0.009 0.507 ± 0.014 0.795 ± 0.018 0.393 ± 0.015 0.334 ± 0.017
KG4Vis 0.819 ± 0.038 0.418 ± 0.055 0.319 ± 0.052 0.552 ± 0.030 0.257 ± 0.014 0.111 ± 0.024
MultiVision - 0.649 ± 0.020 - - 0.624 ± 0.021 -
Data2Vis 0.646 ± 0.038 0.341 ± 0.010 0.321 ± 0.012 0.508 ± 0.027 0.415 ± 0.007 0.281 ± 0.014
Table2Charts 0.932 ± 0.015 0.453 ± 0.016 0.436 ± 0.010 0.881 ± 0.013 0.426 ± 0.007 0.397 ± 0.012
DeepEye 0.523 ± 0.009 0.396 ± 0.022 0.237 ± 0.006 0.493 ± 0.006 0.427 ± 0.004 0.249 ± 0.004
HTP 0.928 ± 0.011 0.780 ± 0.014 0.761 ± 0.013 0.874 ± 0.009 0.802 ± 0.011 0.725 ± 0.008

Table 1: Performance comparison between HTP and all the baselines. The best results are in bold and the second
are underlined.
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Figure 3: Performance comparison between HTP and
its variants on Table Level.

lack flexibility. (4) KG4Vis has high standard devi-496

ation across all metrics, and a large drop in overall497

accuracy from field to table level. This demon-498

strates that focusing solely on single-column fea-499

tures while neglecting the comprehensive attributes500

of the entire table leads to incomplete understand-501

ing, consequently impairing performance at the502

table level. In contrast, our HTP , by encompassing503

information across all table levels, achieves higher504

accuracy with exhibiting great consistency.505

5.3 Ablation Analysis506

To verify the effectiveness of each design in our507

model, we further compare HTP with six variants:508

• w/o-CLUP removes the cluster-level prompt.509

• w/o-TSI removes the all table structure informa-510

tion (include the column-level prompt).511

• w/o-COLP removes the column-level prompt.512

• w/o-GP removes the general prompt.513

• w/o-INSP removes the instance-level prompt.514

• w/o-SSC removes the soft codes, using only hard515

codes as source style query.516

According to the results shown in Figure 3, HTP517

outperforms all its variants, proving the signifi-518

cance of our special designed prompts. Specifi-519

cally, w/o-INSP and w/o-TSI underperform other520

variants, highlighting the need for dynamically gen-521

erating customized prompts to capture fine-grained522

information and the internal structure of tables.523

Meanwhile, we can see w/o-INSP has a significant524

performance degradation on the chart type predic- 525

tion, proving that instance-level prompt can effec- 526

tively obtain perceptual information between table 527

and different types of charts. Besides, we observe 528

a decrease when removing the cluster-level prompt, 529

which demonstrates the importance of sharing in- 530

formation within table patterns (w/o-CLUP). In ad- 531

dition, the performance degrades if the soft codes is 532

not used, suggesting a comprehensive understand- 533

ing of chart representation through capturing intra- 534

class connections is crucial for enhancing model 535

performance. Further, removing the table-column 536

prompt results in a notable performance decline, 537

which verifies the importance of understanding ta- 538

ble structure and enhancing column-level insights. 539

540

5.4 Comparison with Adaptation Methods 541

across Model Scales 542

To evaluate the effectiveness and adaptability of our 543

model, we conduct a comprehensive comparison 544

between HTP and the following methods at differ- 545

ent model scales, including Fine-Tuning, Prompt 546

Tuning (Lester et al., 2021), Prefix Tuning (Li and 547

Liang, 2021) and LoRA (Hu et al., 2022). From 548

Table 2, we observe that: (1) Across the majority 549

of metrics and model scales, our model signifi- 550

cantly outperforms other partial parameter tuning 551

methods. This indicates that our proposed prompt- 552

based framework can comprehensively unearth the 553

implicit insights of tables and more efficiently har- 554

ness the potential of LLMs for visualization recom- 555

mendation. (2) Our HTP outperforms parameter- 556

efficient tuning methods by a large margin in small- 557

scale LLMs. For example, HTP achieves abso- 558

lute improvements of 8.3% and 12.9% over the 559

best-performing PEFT method in overall metric 560

at field level and table level respectively. (3) We 561

can see that there is still a significant gap between 562

Fine-Tuning and parameter-efficient tuning meth- 563

ods. However, our method achieves comparable 564
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Model Method
Field Level Table Level

XY Chart Type Overall XY Chart Type Overall

Bloom-Small

(560M)

Fine-Tuning 0.953 0.745 0.734 0.918 0.701 0.649

Prompt Tuning 0.899 0.550 0.534 0.843 0.549 0.492
Prefix Tuning 0.924 0.592 0.584 0.869 0.584 0.550
LoRA 0.927 0.624 0.613 0.887 0.577 0.536
HTP 0.902 0.714 0.696 0.845 0.746 0.679

Bloom-Medium

(1.1B)

Fine-Tuning 0.940 0.782 0.772 0.896 0.803 0.755

Prompt Tuning 0.876 0.682 0.656 0.834 0.615 0.543
Prefix Tuning 0.912 0.746 0.726 0.858 0.765 0.697
LoRA 0.915 0.758 0.739 0.864 0.777 0.703
HTP 0.928 0.780 0.761 0.874 0.802 0.725

Bloom-Large

(3B)

Fine-Tuning 0.950 0.832 0.820 0.915 0.834 0.787

Prompt Tuning 0.817 0.670 0.672 0.845 0.748 0.676
Prefix Tuning 0.923 0.841 0.818 0.897 0.804 0.763
LoRA 0.936 0.813 0.798 0.897 0.820 0.764
HTP 0.938 0.850 0.836 0.899 0.831 0.773

Table 2: Performance comparison between HTP and adaptation methods at different model scales. The best results
except Fine-Tuning are in bold, and the second are underlined.
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Figure 4: Performance comparison between different
prompt initialization methods.

performance to Fine-Tuning across models of var-565

ious scales, and even outperforms Fine-Tuning in566

most metrics. In the 560M model, both the chart567

type and overall accuracy at table level exceed Fine-568

Tuning. Moreover, in the 3B model, these two met-569

rics also surpass Fine-Tuning performance at the570

field level. This demonstrates that HTP can better571

enrich the semantic features of table data and align572

highly structured table data with the pre-training573

paradigm of LLMs without loss of information.574

5.5 Parameters Analysis575

5.5.1 Prompt Initialization576

We explore the impact of soft prompt initializa-577

tion in our study. Our investigation focuses on578

two distinct initialization strategies: (1) Random-579

based Initialization. Soft prompts are generated by580

randomly initializing their embeddings. (2) Sam-581

ple Vocabulary-based Initialization. We sample582

high-frequency word chunks from the training set583

dictionary, concatenate them in order of frequency,584

then trim to match the prompts’ length. We use the585

embeddings of the trimmed version as initial values.586

As shown in Figure 4, we can see that HTP is ro-587

bust to the prompt initialization method, achieving588
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Figure 5: Parameter sensitivity of the number of table
pattern clusters K.

comparable results with both initialization choices. 589

5.5.2 Number of Table Patterns Clusters K 590

As depicted in Figure 5, more clusters of table pat- 591

tern, namely increasing K, enables HTP to capture 592

more complex and diverse table pattern informa- 593

tion. However, if K gets too large, there may be 594

insufficient corresponding table groups in the table 595

dataset to support cluster representation learning, 596

and some superfluous clusters may introduce noise 597

and undermine performance instead. 598

6 Conclusion 599

In this paper, we introduced a novel Hierarchical 600

Table Prompt-based reprogramming Framework, 601

called HTP, to enhance the visualization recom- 602

mendation process through Large Language Mod- 603

els (LLMs). The HTP harnessed potential of LLMs 604

through foul level of prompts, aiming at extracting 605

semantic information from table through compre- 606

hensive perspectives. In this way, HTP effectively 607

unlocked the potential of LLM for transforming 608

table into insightful charts. Extensive experimental 609

results demonstrated the superior performance of 610

HTP framework. 611
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7 Limitations612

We briefly mention some limitations of our work.613

First, we have only used a single self-collected614

dataset. This is mainly due to the fact that the only615

open-source dataset Plotly Corpus, collected by616

(Hu et al., 2019), was not accessible. Moreover,617

we mainly consider data-encodings attributes in-618

cluding visualization types and the arrangement of619

x-/y-axes while non-data-encoding attributes such620

as layouts and colors are not considered, which is621

because the evaluation of non-data-encoding at-622

tributes is relatively subjective, and our dataset623

predominantly utilizes default settings for these624

attributes.625
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A Data Cleaning767

We developed our dataset using a data cleansing768

pipeline, outlined as follows:769

(1) Format Verification. Since the Plotly commu-770

nity stores table and chart data in json format, we771

will initially filter out data that cannot be parsed in 772

json format. 773

(2) Completeness Assessment. Data samples 774

lacking either non-empty source table data or chart 775

data are discarded. Additionally, if data columns 776

corresponding to the x and y axes in the chart data 777

are missing in the table data, if table data contains 778

empty columns, or if chart data lacks specified 779

chart type or axes, the sample is excluded. 780

(3) Data Deduplication. In the Plotly community, 781

each visualization pair is uniquely identified by a 782

“fid”. When encountering multiple data entries with 783

the same “fid”, only the first one is retained. Since 784

many tables are slight modifications of each other, 785

we calculate their basic features, integrate these 786

values into a single feature identifier, and retain 787

only the first entry for each set of samples sharing 788

this feature identifier. 789

B Baselines 790

To evaluate the proposed framework, we adopt six 791

baselines for comparison. Here are the descriptions 792

of these baselines: 793

• VizML (Hu et al., 2019), which formulates vi- 794

sualization recommendation task as a series of 795

classification challenges, deploying distinct Neu- 796

ral Network-based models for each classification 797

task. We train VizML in our dataset on its Mark 798

Type task (chart type predixtion task and Is on 799

X-axis or Y-axis task). Due to VizML training by 800

columns on its Mark Type task and dividing the 801

dataset at the column level in its source code, it 802

is possible that different columns from the same 803

table could be allocated to different sets(e.g. the 804

first column in the table is classified to the train- 805

ing set while the second column is classified to 806

the test set), which potentially introducing bias. 807

In our training process, we divide the dataset by 808

tables, meaning all columns from the same table 809

are assigned to the same set. 810

• KG4Vis (Li et al., 2021), which leverages 811

knowledge graphs to recommend from dataset- 812

visualization pairs. 813

• MultiVision (Wu et al., 2021), which design two 814

scoring network for recommending single and 815

multiple-view visualizations. Because we do not 816

recommend multiple-view visualizations, only 817

the first network is used to train on our dataset. 818

Specially, due to the incomplete disclosure of all 819

training parameters, we set the batch size to 4096 820

and the learning rate to 3e-3, conducting training 821
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over 30 epochs. Because our dataset contains six822

types of charts, so we set the initialization param-823

eter num_class of the ChartTypeLSTM model824

to 6. The remaining model hyperparameters are825

consistent with those in the source code.826

• Data2Vis (Dibia and Demiralp, 2019), which827

leverages an LSTM-based neural translation828

model to generate json encoded visualizations829

in an autoregressive way. Following Data2Vis,830

for each table-chart pair, three training samples831

are generated by sampling three rows from table832

(three different data rows with the same encoded833

chart), resulting in a total of 279, 609 pairs which834

are used for training. The vocabulary sizes of835

source and target are 95 and 38.836

• Table2Charts (Zhou et al., 2020), which use deep837

Q-Network to fill the predefined chart templates838

by estimating the next token or action. Specif-839

icallybecause the chart templates defined in ta-840

ble2charts—scatter, line, bar, and pie match the841

types of charts in our dataset, we retain only these842

four types of data for training.843

• DeepEye (Luo et al., 2018), which provides two844

public models (ML and rule-based) without train-845

ing scripts. Thus, we evaluate its models on our846

test set and report the best results between two847

models.848

For all baselines, all hyperparameter settings were849

based on the values reported in the original paper850

for optimal results, unless otherwise specified.851

C Evaluation Details852

Let N denote the total number of tables, Ci denote853

the number of columns in table i, correctijxy and854

correctijtype as binary indicators for column j in855

table i, where correctijxy=1 if the xy axis allocation856

for column j is correct and 0 otherwise. Similarly,857

correctijxy=1 if the chart type for column j is cor-858

rectly predicted, and 0 otherwise.859

At the table level, when calculating metrics, the860

entire table is treated as a single unit; a prediction is861

only considered correct if the X-Y axis allocation862

and chart type for all columns within the table are863

accurately predicted, as follows:864

Accxy=

∑N
i=1(

∏Ci
j=1 correct

ij
xy)

N
,

Accchart type=

∑N
i=1(

∏Ci
j=1 correct

ij
type)

N
,

Accoverall=

∑N
i=1(

∏Ci
j=1(correct

ij
xy & correctijtype))

N
.

(7)865

While at the field level, we calculate metrics on a 866

per-column basis: 867

M =

N∑
i=1

Ci, Accxy =

∑N
i=1

∑Ci
j=1 correct

ij
xy

M
,

Accchart type =

∑N
i=1

∑Ci
j=1 correct

ij
type

M
,

Accoverall =

∑N
i=1

∑Ci
j=1(correct

ij
xy & correctijtype)

M
.

(8) 868

D Implementations 869

To prevent bias towards imbalanced data, we ran- 870

domly split the dataset by chart type, allocating 871

80% for training, 10% for validation, and 10% 872

for testing for each chart category. We run all ex- 873

periments on NVIDIA RTX A100 GPUs, and use 874

the Adam (Kingma and Ba, 2015) optimizer with 875

β1 = 0.9 and β2 = 0.999 to optimize models. For 876

contrast learning , we adopt CLIP’s (Radford et al., 877

2021) visual encoder to extract the global features 878

of input images. The temperature parameter, mem- 879

ory bank size, batch size and learning rate are set 880

to 0.07, 2048, 1024, and 9e-4, respectively. We em- 881

ploy K-Means (MacQueen et al., 1967) to cluster 882

table features, to minimize the impact of random 883

initialization of initial cluster centers as much as 884

possible, we execute the algorithm five times and 885

select the iteration with the lowest Sum of Squared 886

Errors (SSE) as the final result. For our chart gen- 887

eration model, we primarily utilize the pre-trained 888

Bloom (Workshop et al., 2022) model with 1.1 bil- 889

lion parameters as our backbone. For training our 890

chart generation model, we set the learning rate, 891

batch size to 1e-5 and 4. The length of general- 892

level, instance-level, column-level, cluster-level 893

prompts are set to 20, 100, 1, and 15. In addition 894

to parametric experiments, we fixed the number 895

of clusters for cluster prompt at 8 and the prompt 896

initialization method to Sample Vocabulary-based 897

Initialization. In the generation stage, we adopt top- 898

p sampling as the default decoding method with a 899

temperature of 0.1 and a top-p = 0.75. 900

E Table Features for Clustring 901

We use table features that introduced in VizML (Hu 902

et al., 2019) for clustering. Following VizML, we 903

first extract 81 single-column features, comprising 904

both 50 continuous features and 31 categorical fea- 905

tures. These features are categorized into four main 906

groups: the data type of the column (Types), sta- 907

tistical characteristics of the column’s values such 908
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Figure 6: Performance comparison between HTP and
its variants on Field Level.

as distribution and outliers (Values), the column’s909

name (Names), and the column’s row count (Di-910

mensions). To describe the relationship between911

pairs of columns, we employ 30 pairwise-column912

features. In the final step, we utilize 16 aggregation913

functions to combine both pairwise-column and914

single-column features, yielding 841 dataset-level915

features for clustering.916

F More Results about Ablation Analysis917

Due to space constraints and the fact that trends918

at both the table level and field level are largely919

similar, we have chosen to present only the table920

level results in the main text. For completeness,921

we also include the field level results in Figure 6.922

The analysis of ablation studies at the field level923

follows a similar pattern to that at the table level.924

G Image Dataset925

We collect 125,121 chart images from the public926

web. These include 28100 bar images, 9838 box927

images, 7319 histogram images, 38725 line images,928

37215 scatter images and 3924 pie images.929
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