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Abstract

We propose a novel data augmentation model
for text, using all available data through weak
supervision. To improve generalization, recent
work in the field uses BERT and masked lan-
guage modeling to conditionally augment data.
These models all involve a small, high-quality
labeled dataset, but omit the abundance of unla-
beled data, which is likely to be present if one
considers a model in the first place. Weak su-
pervision methods, such as Snorkel, make use
of the vastness of unlabeled data, but largely
omit the available ground truth labels. We com-
bine data augmentation and weak supervision
techniques into a holistic method, consisting
of 4 training phases and 2 inference phases, to
efficiently train an end-to-end model when only
a small amount of annotated data is available.
We outperform the benchmark (Kumar et al.,
2020) for the SST-2 task by 1.5, QQP task by
4.4, and QNLI task by 3.0 absolute accuracy
points, and show that data augmentation is also
effective for natural language understanding
tasks, such as QQP and QNLI.

1 Introduction

In Natural Language Processing, task-specific vo-
cabulary construction, text cleaning, and model
architectures have been rendered mostly obsolete
by transformer models (Vaswani et al., 2017), such
as BERT (Devlin et al., 2019). However, as model
architectures have grown larger, so did the amount
of data required to train them. The limiting factor
has become the collection of high-quality labels
for the training data, which is often expensive to
obtain (Hancock et al., 2019). We focus on the
common situation, in which there is only a small
dataset with high-quality labels, but an abundance
of unlabeled data. We present novel techniques to
extract more information out of all data available,
by proposing weak supervision tasks to improve
augmentation using the unlabeled data.

In data augmentation, high-quality labeled sam-
ples are augmented to create new samples, while
entirely omitting the large unlabeled dataset. Data
augmentation increases invariance by feature-
averaging, and the variance of the augmented sam-
ples acts as a regularization term that penalizes
model complexity (Dao et al., 2019). In contrast,
weak supervision uses external knowledge bases,
related datasets, or rules of thumb to generate low-
quality label estimates for a large collection of unla-
beled data. High-quality labeled data - if available -
is typically used for validation only. Both methods
aim to solve a different part of the same problem,
but are rarely found together in academic research.

In this work, we propose to combine data aug-
mentation and weak supervision, using span extrac-
tion, into a holistic methodology that - to the best of
our knowledge - is a new contribution to the field.
We present the methodology as Data Augmenta-
tion using Weak Supervision On Natural Language
(DAWSON). The output of DAWSON is a dataset,
which is a combination of both the original and
augmented texts. The aim is to improve the aug-
mentations by adding additional training steps to
obtain a better augmentation model (AM).

The paper is structured as follows: in Section 2,
we give a brief introduction to existing methods. In
Section 3, we present DAWSON. In Section 4, an
ablation study is done. Our conclusion is drawn in
Section 5. The code is available at XXXX!.

2 Background

In this section, we give an introduction to the cur-
rently used methods that DAWSON is based on. As
running example, we use a sentiment classification
task for the negative movie review:

“one relentlessly depressing situation”

All operations are on foken level, however, in the
examples, they are demonstrated on word level.
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2.1 Data Augmentation

In computer vision, augmentations are often trivial
and intuitive. An image can be flipped, cropped,
or manipulated otherwise, and still agreeably show
the same object. The same does not hold for text.

To preserve semantically valid sentences, most
methods inject or replace words to augment the
text. The challenge becomes choosing the optimal
words that maintain label quality, while introducing
enough diversity for the augmentation to improve
generalization. Crucially, the word choice needs
to be conditional on the label of the sample. Re-
placing with a word that is semantically feasible,
but ignores the label, can harm the meaning of the
sentence, in our example:

“one relentlessly brilliant situation"

would completely negate the sentiment of the re-
view. BERT is normally fine-tuned on a different
type of downstream task, such as classification or
regression, using the masked language modeling
(MLM) task for pre-training only. In MLLM, a hid-
den word in a sequence needs to be predicted, thus,
also making BERT an ideal candidate for word re-
placement augmentation. In EDA (Wei and Zou,
2019), a thesaurus such as WordNet (Miller, 1995)
would be used, which is unconditional and might
only be partially applicable to the domain. Kumar
et al. (2020) found that the most effective and sim-
ple way is to train the model using the MLM task
on the labeled dataset, and to simply prepend the
label in natural form as follows:

“negative one relentlessly [MASK] situation”

where the label is “negative". In this manner,
during training, replacement candidates are con-
ditioned on the label.

2.2 Weak Supervision

Weak supervision aims to obtain low-quality la-
bels for the unlabeled data when no high-quality
labels are available. The obtained dataset is used
for further pre-training, or even as the only train-
ing set. Methods such as Snorkel (Ratner et al.,
2020), make use of a combination of expert-defined
heuristics, existing models, and any other sources
of information to estimate training labels without
any access to ground truth data. Snorkel is called a
generative model. Next, a discriminative model is
trained, using the generative model predictions as
labels, with a noise-aware loss function to appropri-
ately weigh each observation. Ideally, the discrimi-
native model generalizes beyond the heuristics of

the generative model. For example, a heuristic
might be a list of negative words that contains the
word “depressing” but misses the word “hopeless”.
When using BERT as the discriminative model,
both words have similar meaning from pre-training,
and will also correctly classify:

“one relentlessly hopeless situation”

Snorkel yields probabilistic labels rather than bi-
nary predictions, meaning that each class is as-
signed a probability. Snorkel aims to have the prob-
abilities best reflect the confidence in the labels,
rather than minimizing cross-entropy. Labels with
less confidence have a lower probability, acting as
sample weights. This way, labels can have hetero-
geneous noise levels. In our research, we assume
that a Snorkel-like weak supervision method - with
weighted confidence - is used.

2.3 Span Extraction

In question-answering tasks, a question and a se-
quence of text containing the answer are given. The
model has to highlight only the part of the sequence
that is the answer to the question. Such a task is
categorized as a span extraction problem. The prob-
lem is formulated as a classification problem over
all tokens in the sequence. Typically, there are two
classification heads; one to predict the first token
in the span, and the other for the last token. Keskar
et al. (2019) propose a method to reformulate any
task as a span extraction problem by posing a natu-
ral question, such that a wider variety of tasks and
datasets can be used for transfer learning. In case of
the example, the classification task is to determine
whether the review is positive or negative:

“positive or negative ? one relentlessly
0 0 1 0 0 0

depressing situation”
0 0

The labels are shown below the tokens. As the
review is negative, it is the only token with its label
equal to 1.

3 DAWSON

AM is improved by pre-training on weakly-labeled
data and making the augmentation heterogeneous.
The procedure requires a large, weakly-labeled
dataset and a small, high-quality labeled dataset.
The high-quality dataset holds the observations,
which are to be augmented, whereas the weakly-
labeled dataset serves to improve AM with pre-
training. The methodology consists of new and



adjusted tasks. A sequential transfer learning pro-
cedure is used consisting of: (1) SpanBERT (Joshi
et al., 2020) - an MLM task - to train semantically
sound word replacement, (2) (weakly) supervised
span-extractive (SpEx) classification tasks to train
the co-occurrence relations between words and la-
bels, and (3) heterogeneous augmentation.
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Figure 3.1: Overview of the steps in the methodology.
The arrows represent the flow of AM, with as exception
the target analysis, where the complexity and attention
of the expert-labeled data is passed.

Note that for each step, the training or inference
is done on all applicable data at once, the steps
are not executed per observation. For each step,
the task-specific head of BERT is changed, and
the improvement of AM comes from further pre-
training of the weights in the BERT layer only.

In contrast to the benchmark (Kumar et al.,
2020), which only uses augmentation training (step
4), and augmentation without target analysis (step
5 simplified), the weakly supervised dataset and
the span extraction formulation make it possible
to have more domain-specific pre-training and im-
proved conditional, heterogeneous augmentation.
In the next sections, we describe each step in de-
tail. After the augmented dataset is obtained, it is
combined with the original labeled dataset to form
the final training set for an end-model of choice.

Implementation details and an end-to-end example
are given in Appendices B and C, respectively.

3.1 SpanBERT MLM

The MLM task is included to both further improve
domain-specific augmentation and classification
performance. In pre-training, BERT predicts the
masked tokens in a sequence. From a sequence of
tokens, 15% are randomly selected. Of the selected
tokens, 80% is masked, 10% is kept unchanged,
and 10% is replaced by a random token. The un-
changed set is kept such that the original tokens for
the selection remain the most probable. In BERT,
MLM is used to learn embeddings of the corpus
and the actual performance is not of importance.
However, the MLM performance does influence
the quality of the augmentations, although there
still may be multiple valid candidate words.

SpanBERT (Joshi et al., 2020) extends the MLM
task by masking spans of tokens, and introduc-
ing a Span Boundary Objective (SBO). Joshi et al.
(2020) found that SpanBERT is a more challenging
pre-training task that not only improves MLM, but
also yields greater gains downstream, especially
for span extraction tasks, wherefore we include it.
Again, 15% of the tokens are masked. However,
the words are selected by an iterative process. First,
a span length is sampled from a geometric distribu-
tion [ ~ Geo(p). Next, a starting point is uniformly
chosen. For example, if the drawn span length and
drawn starting point are both 2, the running exam-
ple is masked as:

“one [MASK] [MASK] situation”

This is repeated until 15% of the tokens have been
masked. Similar to BERT, 80% is actually masked,
one half of the remainder is kept unchanged, while
the other half is replaced randomly.

The Span Boundary Objective is a second task
in addition to the MLM task. The goal is again
to predict masked tokens, but using only the non-
masked tokens at the boundaries of a span. SBO
forces the start-, and end-token embeddings of a
span to summarize the content of the masked span.

An alternative embedding is calculated for the
masked token using two dense layers, layer nor-
malization (Ba et al., 2016), and GELU activations
(Hendrycks and Gimpel, 2016). The first dense
layer takes the concatenation of the start-, end-,
and positional token as input, reducing the vector
back to the normal hidden size. The second dense
layer is part of the token classifier, as for MLM.



The probability density, and loss function are iden-
tical to the MLM task. The final SpanBERT loss is
the sum of both the MLM and SBO task losses. As
no labels are required, the SpanBERT task is done
on the full corpus, which includes both the labeled
and unlabeled datasets.

In our implementation, since we mask within
individual observations rather than a continuous
text, we calculate an observation-specific geometric
mean for the span length, such that on average, 15%
of an observation is masked. Furthermore, we only
have one span per sequence for simplicity, and
never mask boundary tokens. During training, the
dataset is repeated 10 times, such that the same
observation is included with 10 different spans. In
this manner, we adjust for only having a single
span and make sure that there is variety in how the
model must predict masks in each version of an
observation, forcing it to generalize more. Note
that we include the rask but not the trained mode!
from Joshi et al. (2020).

3.2 Span-Extractive Training

The classification task is included to condition the
words in a sequence on the label. As a result, the
label actively influences the masked tokens during
conditional augmentation. Since the label is placed
at the start of the sequence during augmentation,
it should be during the training of AM as well. A
regular classification architecture would not condi-
tion the words on the textual names of the classes.
Furthermore, AM is trained on the weakly-labeled
dataset, thus, the labels contain noise and prepend-
ing the incorrect label is harmful. Similar to weak
supervision, probabilistic labels are required to in-
corporate the confidence of a sample, while con-
ditioning the labels. We propose to pre-train AM
using a weakly-supervised span extraction formu-
lation. Both the positive and negative labels are
prepended as words, and the objective is to select
the span containing the correct label.

We diverge from Keskar et al. (2019) by using
a noise-aware loss function, not posing a natural
question, and selecting a single token only instead
of a span where possible, in order to best mirror
the task at the augmentation stage and to reduce
complexity. Only the labels are included, omit-
ting the tokens needed to phrase a natural question.
Suppose that in the example, the weak supervision
estimates with 70% probability that the review is
negative, the training input is:

“positive negative one relentlessly depressing
0.3 0.7 0 0 0

situation"
0

with the labels shown below their respective tokens.
Unlike the original formulation, the order of the
textual labels is also randomly shuffled for each
observation, such that the model is forced to train
on the actual label rather than token position.

In span extraction tasks, there are two trainable
parameter vectors, one for the start-, and end-token.
However, most simple natural labels - such as posi-
tive and negative in our example - will be present
in the vocabulary, and not be split-up in multiple
tokens. If this is the case, we propose to simplify
the span extraction task to only one trainable pa-
rameter vector, s. The probability of token x; being
selected is computed as:

S'X;

pse(Y = i) = =¥ (3.2.1)

Zj:l 5%
In case the natural label consists of multiple tokens,
the implementation remains a standard span extrac-
tion task, where two trainable vectors are used to
predict the start-, and end-token of the label.

We add a noise-aware loss function to make use
of the noise information of the weak supervision.
Ground truth labels are unknown, but from the
weak supervision phase, probabilistic labels are
obtained. Let g be the weak supervision label for a
sample. We extend the labels by including all other
tokens:

( ) pws(y = z;) if z; is label
PSP =20 =0 if ; is not label
(3.2.2)
The confidence is incorporated in the loss function
to act as a sample weight using cross-entropy:
N

Lsg=—Y psply=x:)logpsp(y = z;)

- (32.3)
First, the model is pre-trained on the large, weakly-
labeled data, after which the model is fine-tuned
on the expert-labeled data. Although the datasets
could be merged for a single training step, they
are kept separate, such that a target analysis of
the labeled data can be done, as well as to ensure
that the final training is on the highest quality data
only. For both pre-training and fine-tuning, the
model is trained for at most 10 epochs, but with an
early stopping rule using the development dataset
to prevent over-fitting.



3.3 Target Analysis

Samples may have different levels of complexities
and the extent to which a sample can be augmented
while preserving label quality varies. By including
the weakly supervised training step, a classifier for
the task is obtained, for which the labeled data is
out-of-sample. By comparing the predictions for
the labeled data and the ground truth labels, an
error e, is obtained, which gives an estimate for the
difficulty of classifying a sample s.

The relative importance of the tokens is esti-
mated using attention. In AM (BERT-Base), there
are 12 layers, and for each layer, 12 attention heads.
An attention head yields a probability density for
every token, over all tokens in the sentence. The
probabilities act as weights that are used when cal-
culating the embedding for the token. We take the
attentions from the last layer only, and compute the
average over all heads and tokens to obtain a final
vector or probability density, which is considered
as the weights of importance of the tokens.

3.4 Augmentation Training

AM is fine-tuned on the labeled data itself using the
augmentation task. First, the dataset is duplicated
10 times, tokens are randomly masked, and the
label prepended. The duplication is used in order
to train different masks for the same sentence, as
in Section 3.1. The model is trained for up to 15
epochs, but again with early stopping using the
validation dataset to prevent over-fitting. The initial
learning rate is set to 2¢ — 5. The MLM training
is as the standard BERT task, but with the label
prepended as token. Note that the span masking
strategy and SBO are omitted, and the masking is
uniform, instead of using the attention from the
target analysis, to train a generalized AM.

3.5 Heterogenous Augmentation

Using the target analysis, information about each
observation is incorporated in which tokens are
masked, and how they are replaced. Also, the prob-
abilities of the replacement tokens can be used
to estimate probabilistic labels. We consider the
observation-specific augmentation heterogeneous.

The level of augmentation can be controlled in
two directions: the amount of augmented tokens,
and the likelihood of the replacement candidates.
Again, the amount of masked tokens is kept fixed
at 15%. During inference, the masked positions are
sampled using the attention vector from the target

analysis instead of a uniform distribution. This se-
lection strategy is more efficient, as the augmented
tokens are more important to the classifier.

AM computes a distribution of probabilities for
the token candidates of a masked position. If a
sample is complex and already hard to classify,
more probable tokens are selected to preserve label
quality. Only the expert-labeled dataset is used for
both training and augmentation.

3.5.1 Candidate Selection

Depending on the prediction error for a sample dur-
ing the target analysis, more or less token-diversity
is permitted. A task-specific upper bound (UB)
and lower bound (LB) are set empirically for the
probability range of eligible replacement tokens.
Using the prediction error e4 for observation s, an
observation-specific lower bound LBy is used:

LB, = LB + (UB — LB)e; (3.5.1)

The tokens in the vocabulary are sorted by proba-
bility for each observation, and a token is discarded
if the cumulative probability up to and including
that token is out-of-bounds. The leftover candidate
tokens are re-weighted, using a softmax mapping
based on their original probabilities. The resulting
probabilities are used to sample the final selected
token. By setting the upper and lower bound on the
cumulative distribution of candidate tokens, tokens
that are not diverse enough or too unlikely can be
omitted. Thus, the overall level of noise can be con-
trolled. As AM improves through (pre-)training,
the probability of suitable tokens increases, while
the probability for the rest of the vocabulary de-
creases, thus, allowing for more diverse sampling
while preserving quality.

3.5.2 Probabilistic Labels

In contrast to Kumar et al. (2020), we make use of
probabilistic labels as in weak supervision. Nor-
mally, the original binary labels are used. The aug-
mented samples introduce uncertainty and noise,
and, as the degree of augmentation is known, an
estimation of the reliability of a label can be made.
In determining a formulation for the probabilis-
tic label, the following considerations have been
made:

* The probabilistic label is a function of token
probabilities;

* Adding a token mask should always decrease
confidence;



* The label should be roughly in the neighbor-
hood of the lowest token probability;

* The probability of a candidate token is relative
to all other tokens in the vocabulary. As the
vocabulary is large - and many tokens may be
feasible - even the largest token probabilities
are typically below 10%;

* The label of the observation may never flip,
thus, the confidence is at least 50%.

The probability for the augmented observation la-
bel y* is calculated using average probability for
the tokens in the sentence, that is:

N—K+YE .
max ( + > e pvrv (my = &)

N ,0.50

(3.5.2)
where 2, is the selected replacement token for
mask my, at position mx, parrar(mi = I, ) is the
MLM probability of Z,,, and N and K are the
total and masked number of tokens, respectively.

4 Experiments

The methodology is evaluated on multiple types
of binary classification tasks. An ablation study is
done to understand the contribution of the different
components to the overall performance.

4.1 Benchmark Tasks

We make use of a selection of the GLUE tasks
(Wang et al., 2018) which form the benchmark
for leading language models. We consider three
tasks: (1) the Stanford Sentiment Treebank (SST-2,
Socher et al., 2013) is a binary sentiment classifi-
cation task on movie reviews, (2) the Quora Ques-
tion Pairs (QQP) task (Iyer et al., 2017) consists of
pairs of questions that are classified as semantically
equivalent or not, and (3) the Question-answering
NLI (QNLI) task is a reformulation from SQuAD
(Rajpurkar et al., 2016) where it needs to be evalu-
ated if a question is answered by a randomly paired
paragraph.

4.1.1 Expert-Labeled Dataset Selection

The selected datasets are large and therefore suit-
able candidates for the weak supervision approach,
resembling most practical use cases. Not all test
sets are publicly available, for consistency, we fully
omit these. To simulate having a small dataset with

high-quality labels, for each iteration of an experi-
ment, two small datasets are sampled from the train-
ing data; one serving as the small expert-labeled
dataset and the other as the test set for the experi-
ment. The remaining training data is treated as if it
is unlabeled, and a weak supervision method has
generated weak labels. The original development
sets are used for early stopping, if indicated in the
methodology, to ensure a comparable optimization
as to any other GLUE based research. For SST-2
and QNLI, the sampled datasets consist of 1% of
the original training data, and 0.5% for QQP.

Expert Mean
Task [\Z iii}(; Labeled Dev. Token
/ Test Length
SST-2 66,002 673 872 13.3
QQP 360,211 1,819 40,430 304
QNLI 102,648 1,047 5,463 50.0

Table 4.1: The average number of observations and
sequence length in tokens for the experimental datasets.

4.1.2 Simulating Weak Supervision

To simulate weak supervision, the true labels are
assigned a probability. The Beta distribution is se-
lected due to its domain of [0, 1] and flexible shape,
allowing for different types of noise settings. We
use the Matthews Correlation Coefficient (MCC),
proposed by Matthews (1975), to evaluate the qual-
ity of the generated noisy labels. To simulate a
real-life weak supervision scenario for complex
tasks, we empirically set 4 = 0.57 and o = 0.05.
Figure D.1 shows a histogram of draws from the
Beta distribution to visualize the generated noise.

SST-2  QQP QNLI
MCC 0.244 0.235 0.242
Accuracy 0.623 0.622 0.621

Table 4.2: Metrics of the simulated weak supervision
method compared to the ground truth.

For all datasets, the noisy labels are better than
random, and thus, contain information that a dis-
criminative model can generalize. However, the
labels are of low enough quality to simulate a weak
supervision method.



4.2 Evaluation Criteria

For a direct comparison to the state-of-the-art, we
follow Kumar et al. (2020) in the intrinsic and ex-
trinsic evaluation methods.

The intrinsic evaluation consists of semantic fi-
delity and generated diversity of the augmented
samples. The semantic fidelity is determined by
training a BERT-Base model on all labeled data
originally available, with true labels, and use its
predictions as ground truth for the augmented data
to estimate if the labels are still valid. The gen-
erated diversity is measured using the type-token
ratio (Roemmele et al., 2017), which is the number
of unique predicted tokens (types) divided by all
predicted tokens in the dataset.

The extrinsic evaluation is the end-to-end perfor-
mance - using any classifier - for a regular clas-
sification task trained on the combined dataset
(original+augmented). We compare two classifiers
for the extrinsic evaluation: a BERT-Base model
(Base) - only pre-trained by Devlin et al. (2019) -
and AM itself, to make use of the transfer learning
from the domain-specific tasks. Both models have
the same architecture with a newly initialized clas-
sification head, the only difference is the starting
point of the weights of the BERT layer before fine-
tuning. Note that this implies that AM will train on
the samples it has augmented.

4.3 Ablation Study

To understand which aspects are an improvement
over direct data augmentation, an ablation study of
the training tasks is done. The benchmark is the
conditional augmentation, as proposed by Kumar
etal. (2020). We implement our own version to con-
trol the experimental setting and obtain results for
the new datasets. The heterogeneous augmentation
addition expands the benchmark augmentation with
the attention-based sampling of the mask positions
and error analysis-based token selection. However,
the probabilistic labels are added separately. The
extrinsic metrics are chosen to be in line with the
GLUE benchmark. For the extrinsic evaluation, the
models are trained with an unbounded number of
epochs, but with early stopping until the validation
accuracy decreases. This strategy prevents that the
difference between results may be attributed to the
number of training epochs, as every configuration
is trained based on the same criteria for optimal
performance. The maximum sequence length for
all tasks is set to 200 tokens, which is 4 times the

longest mean token length (which is of QNLI). The
UB and LB are empirically set to 1.0 and 0.6, re-
spectively. The experiments are repeated 15 times
with different expert-labeled datasets.

4.4 Results

The results of the ablation study are given in Table
4.3. When AM is used as downstream classifier, it
has only been pre-trained up to the included steps.
For all three tasks, the best-performing configu-
ration is the proposed methodology, sometimes
excluding the probabilistic labels, and using the
augmentation model as final classifier. The benefit
from weak supervision and transfer learning is pro-
portional to the amount of unlabeled data available.
The heterogeneous augmentation and probabilistic
labels provide a small additional gain. Not using
any augmentation, for all tasks, results in large
variance in extrinsic accuracies across experiments,
showing the need for robustness from augmenta-
tion. The AM classifier outperforms the Base clas-
sifier, providing an additional performance gain
from transfer learning without any extra work.

SST-2 is the only task shared with the other re-
search in the field. Data augmentation is mostly
tested on topic classification or sentiment analysis.
To the best of our knowledge, this is the first paper
to apply textual augmentation to any natural lan-
guage understanding task. One could argue that,
intuitively, a topic classification task is easier to
augment. However, to our surprise, both the QQP
and QNLI tasks have greater absolute performance
improvements than SST-2. This might be related
to the spread in performance between using the
small sampled dataset, and when all data is avail-
able, or simply because QQP and QNLI have more
data. When comparing the relative performance
improvements, SST-2 still has the smallest gain,
but the results are closer. The sampled dataset for
SST-2 has the smallest number of observations, but
the baseline without augmentation is 83%, com-
pared to 76% for QQP and 71% for QNLI. Thus,
SST-2 is clearly an easier task for a BERT classifier.
Therefore, even though SST-2 intuitively is more
suited for augmentation, there is less performance
to be gained from it, similarly to how a less com-
plex model (e.g. logistic regression) will be closer
to a BERT model in performance for a simple task
than for a complex task.

For QNLI, both the benchmark and best type-
token ratios are larger than for either the SST-2 or



Task SST-2 QQP QNLI
Extrinsic Classifier Base AM Base AM Base AM

No Augmentation 83078 5665 70611
Benchmark Aug. 86.0 (2.3) 85.2(2.4) 77.0(1.3) 76.4(1.3) 76.6 (1.7) 77.0(1.1)
+ SpEx Fine-Tuning 86.2 (1.5) 85.2(1.6) 76.6 (1.0) 76.1(1.3) 76.02.1) 77.1(1.4)
+ SpEx Pre-Training 86.4(1.4) 86.4(2.1) 77.1 (1.0) 80.8(1.5) 759(19) 79.2(1.4)
+ SpanBERT Training 87.2(1.3) 87.1(1.6) 76.9 (1.3) 81.2(1.4) 76.0(2.0) 79.5(1.1)
+ Heterogenous Aug. 86.9 (1.5) 87.3(1.5) 77.4(1.3) 81.4(1.2) 772 (1.4) 79.6 (1.3)
+ Probabilistic Labels 866 (1.1) §7.5(L7) _ 776(L5) 813(12) _ T63(L5) 79.6(L5)
All Data 934 (1.4) 88.6 (1.5) 88.7 (1.0)

Intrinsic Metric TTR SF TTR SF TTR SF
Benchmark Aug. 9.2(0.7) 87.3(1.0) 134 (1.5) 86.7(1.6) 13.8(0.5) 84.8(0.8)
+ SpEx Fine-Tuning 9.0(04) 86.8(1.2) 13.0(1.8) 86.3 (1.6) 13.1 (0.5) 83.9(0.6)
+ SpEx Pre-Training 8.9(0.7) 87.8(1.3) 11.7 (2.1) 85.9(1.6) 12.7(0.5) 84.1(1.2)
+ SpanBERT Training 14.1(0.7) 89.0(1.6) 14.2(0.8) 87.4(0.8) 15.6 (0.4) 85.5(1.0)
+ Heterogenous Aug. 14.3 (0.7) 89.0(1.4) 14.3 (0.9) 87.5(0.8) 15.5(0.3) 85.8 (1.0)
+ Probabilistic Labels 14.2 (0.8) 89.6 (1.3) 14.3 (0.9) 87.3(0.9) 155(0.4) 85.6(0.9)

Table 4.3: Results of the ablation study. All measures are reported as the mean and standard deviation over the
15 repeated experiments, multiplied by 100. The extrinsic results are reported in accuracy for the Base and AM
classifier as downstream model. For the intrinsic evaluation, the Type-Token Ratio (TTR) and Semantic Fidelity

(SF) are reported.

QQP tasks. QQP has more unlabeled data, but a
smaller average number of tokens in the sequences
(Table 4.1). We hypothesize that the better type-
token ratio is explained by the larger mean token
length. Recall that, in our implementation, Span-
BERT uses span lengths drawn from a geometric
distribution, with as mean, 15% of the number of
tokens of that specific observation. Therefore, the
span lengths in QNLI are larger on average (7.5
tokens) than the spans in QQP (4.6 tokens), and
thus more challenging. This would also explain
the smaller type-token ratio for SST-2, where the
average span length is only 2.0 tokens. However,
the difference might also be explained simply by
the difference in corpora, and their similarity to the
datasets used by for the initial pre-training.

4.5 Discussion and Limitations

The ablation study is computationally expensive.
For example, a single iteration for QQP, on an
NVIDIA V100 GPU with 16GB of RAM from
Google Colab, takes over 12 hours. Thus, we are
constraint in the number of configurations that can
feasibly be compared. There are numerous varia-
tions on our experiments that could be done to fur-
ther understand the methodology. These variations
include: (1) different textual labels, (2) different

levels of simulated noise, (3) other formulations
for probabilistic labels, and (4) a real-life weak
supervision method.

5 Conclusion

We proposed a new methodology for data augmen-
tation, using weak supervision and span extrac-
tion. Multiple methods of transfer learning and pre-
training are combined that were previously consid-
ered disjoint solutions to the same problem. We out-
perform the benchmark for the SST-2 task by 1.5,
QQP task by 4.4, and QNLI task by 3.0 absolute
accuracy points. This shows that the advantages
of weak supervision and span extraction extend be-
yond the direct benefits, as they also allow for the
further improvement of data augmentation. Addi-
tionally, the downstream model improves further
when it has been pre-trained using DAWSON, and
we show that data augmentation is not only possible
for natural language understanding, but more effec-
tive than for a simpler task. As DAWSON does not
require any domain-specific adjustment, we argue
that in an era where unlabeled data is abundant,
computational resources are cheap and Moore’s
law is still valid, combining weak supervision and
data augmentation is a scalable and effective way
to improve downstream models.
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A List of Acronyms

This section serves as a reference for all acronyms
used throughout the paper.

Table A.1: Overview of all acronyms used, in alphabeti-
cal order.

Acronym  Description

AM Augmentation Model

BERT Bidirectional Encoder Representa-
tions from Transformers (Devlin
et al., 2019)

DAWSON Data Augmentation using Weak
Supervision On Natural Language

EDA Easy Data Augmentation (Wei and
Zou, 2019)

GLUE General Language Understand-
ing Evaluation benchmark (Wang
et al., 2018)

GPU Graphics Processing Unit

LAMB Layer-wise Adaptive Moments
(You et al., 2020)

LB Lower Bound

MCC Matthews Correlation Coefficient
(Matthews, 1975)

MLM Masked Language Modeling

QNLI Question-Answering Natural Lan-
guage Inference (Rajpurkar et al.,
2016)

QQP Quora Question Pairs (Iyer et al.,
2017)

SBO Span Boundary Objective (Joshi
et al., 2020)

SE Span Extraction

SQuAD Stanford Queston Answering
Dataset (Rajpurkar et al., 2016)

SST Stanford Sentiment Treebank
(Socher et al., 2013)

UB Upper Bound

WS Weak Supervision

B Implementation Details

The starting point for the augmentation model is
a BERT-Base uncased, with L. = 12 transformer
blocks, H = 768 hidden size, and A = 12 atten-
tion heads, resulting in 110M parameters. This
configuration is chosen as it is the most commonly
used in the field, mainly because the larger version
of BERT does not fit on most GPUs and smaller
versions have only been recently introduced. We
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make use of the implementation from Hugging-
face?, a library providing a common interface for
all transformer-based models. We use the origi-
nal model by Devlin et al. (2019), pre-trained on
the BookCorpus dataset and the English version
of Wikipedia. Our implementation is in Tensor-
Flow. We make use of layerwise learning rates by
using Layer-wise Adaptive Moments (LAMB) as
optimizer. Proposed by You et al. (2020), LAMB
is originally intended to speed up pre-training by
allowing for larger batch sizes without loss in
performance. However, You et al. (2020) found
that LAMB also yields excellent performance for
smaller batch sizes and is typically more consis-
tent than the often used Adam with Weight Decay
(Loshchilov and Hutter, 2018).

During training, we make use of smart batch-
ing. Attention is computed for every token in re-
lation to every other token. Thus, including more
tokens increases the number of relations exponen-
tially. Within a batch, all sequences need to be
padded to the same length such that they can be
fitted into an non-ragged tensor. However, batches
do not have to be the same shape. By first sorting
the dataset based on string length, and shuffling
locally within a range of 3-6 batch sizes as a rolling
window to maintain randomness, the maximum
sequence length per batch is optimized and com-
putation time is decreased. After the batches have
been created, they are shuffled for the training order.
Smart batching is especially useful in a dataset with
strongly heterogeneous sequence lengths, such as
movie reviews, where one can leave a single word
or an extensive essay. Decreasing the overall maxi-
mum sequence length results in a loss of informa-
tion, while keeping the maximum sequence length
larger results in many unnecessary computation for
short reviews.

C End-to-End Example

For the step-by-step example, the methodology is
applied to two movie reviews. The first review -
the running example - is a negative review taken
from the expert-labeled dataset:

“one relentlessly depressing situation"

The second review is taken from the large unlabeled
dataset:

“even if you've never heard of chaplin, you’ll still
be glued to the screen”

https://huggingface.co/transformers/


https://huggingface.co/transformers/

STEP 1: SpanBERT

First, a BERT model, pre-trained by Devlin et al.
(2019), is initialized with a SpanBERT head on top.
No labels are required, wherefore all available data
can be used. Suppose that for the examples, span
lengths of [ = 1 and [ = 2 are drawn respectively.
The starting point of the spans is random. In the
example, the masks are placed as:

“one [MASK] depressing situation”
“even if you've never heard of [MASK] [MASK] still
be glued to the screen”

The dataset is repeated 10 times, such that masks
are placed at different places in a sentence. The
masks are predicted both using the full sequence
and just the boundary tokens, as explained in Sec-
tion 3.1. In this manner, the model is trained for a
predefined number of epochs. The SpanBERT pre-
training both fits the model to the domain-specific
data and improves augmentation.

STEP 2: Span-Extractive Pre-Training

Next, the model is trained on the unlabeled data
only, using weak labels. Suppose that the weak
supervision method estimates there is a probability
of 60% that the unlabeled example is positive, that
is Pr(y = positive) = 0.6. Both textual labels
are prepended and the model is trained using span
extraction. The sentence, with probabilistic labels,
looks as follows:

“positive negative even if you’ve never heard of
0.6 0.4 0 07 o0 0 0o 0

chéplin, you’ll still be glued to the screen”
0 0o 0 0°0 0 0 0

The model has to both determine the sentiment of
the sentence, and select the token-label with the
corresponding sentiment.

STEP 3.1: Target Analysis

In the previous step, a classifier is trained, that has
not yet seen the sentiment of the expert-labeled re-
view. As such, first the classifier is used to make a
prediction for the sentence, which can be compared
to the true label as analysis of the complexity. Sup-
pose the classifier makes the following prediction:

“positive negative one relentlessly depressing
03 0.6 0 0.1 0
situation”

0
The predicted probabilities to select a token are
shown below the corresponding token. For illus-
tration purposes, the classifier has also incorrectly

assigned some probability to the non-label token
“relentlessly”. It is known that the correct label
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is negative, and the model has predicted the nega-
tive token is to be selected with 60% probability.
Therefore the error - or complexity - is 40%, that
ise=0.4.

Not only the prediction, but also the attention to
the tokens is saved. The label tokens are removed,
and the remaining probabilities re-weighted such
that again, their sum is equal to 100%. For the ex-
ample, the attention probabilities for the remaining
tokens are:

“one relentlessly depressing situation"
0.1 0.2 0.4 0.3

STEP 3.2: Span-Extractive Fine-Tuning

After the target analysis, the model is trained fur-
ther on the expert-labeled data. The fine-tuning
procedure is identical to the pre-training, except
that, instead of weak labels, the ground truth labels
are used:

“posétive negclztive oroze relenzlessly depr%ssing
situation”
0
Note that the span-extractive pre-training step al-
ready trained the classifier to only select the label
tokens and generalize beyond the noisy labels as
much as possible. During the fine-tuning step, only

the relationship between the token-label and corre-
sponding sentiment has to be strengthened further.

STEP 4: Augmentation Training

The final training step is the conditional augmen-
tation task. Only high-quality textual labels may
be prepended, therefore the model is trained on the
expert-labeled data only. The tokens are masked
randomly:

“negative one relentlessly depressing [MASK]"

Because of the pre-training steps, the augmentation
model will allocate more attention to the textual
label, and make use of the sentiment of the sentence
when predicting for the masked token. Like in the
SpanBERT step, the dataset is repeated 10 times
with different masks.

STEP 5: Heterogeneous Augmentation

The last step is the actual augmentation that is used
to create the augmented dataset. Different than in
the augmentation training, the dataset is not neces-
sarily repeated, therefore the tokens are not masked
using a uniform distribution, but with the atten-
tion probabilities from the target analysis, in order
to increase the probability that relevant words are
masked. In this case, the token “depressing", with
the largest probability, is drawn:



“negative one relentlessly [MASK] situation”

When selecting a replacement token, a lower, and
upper bound are used. We empirically set the gen-
eral upper bound (UB) to 0.95 and lower bound
(LB) to 0.8. Recall the error from the target anal-
ysis is 0.4. The observation-specific lower bound
is:

LB, = 0.8+ (0.95—-0.8) « 0.4 = 0.86

When predicting a masked token, for each token in
the vocabulary, a probability is estimated. We sort
the tokens based on their respective probabilities,
and calculate the cumulative probability up to each
token. The tokens are only considered candidates
if the associated cumulative probability is within
the bounds of UB and LB;. In the table below, the
probabilities for all tokens in the vocabulary are
given. Only the tokens in between the dotted lines
are within bounds.

Token Probability Cumulative

| Horrible 005 1.00
Bad 0.04 0.95
Sad 0.03 091
Boring 0.02 0.88

__ Lame 0.02 ¢ 086
Mediocre 0.01 0.84
Parachute 0.00 0.00
Catalogue 0.00 0.00

Table C.1: Candidate tokens for the masked token in the
example.

For the remaining tokens, their probabilities are re-
scaled to again sum up to 100%. In the case of this
example, there are 4 candidate tokens. The final
token is sampled using the re-scaled probabilities.
In this case, the augmented sample is:

“one relentlessly boring situation”

where the token “boring” is selected as replace-
ment. As the number of masked tokens and the
probability of the replacements are known, a prob-
abilistic label is calculated to account for the added
uncertainty in the data. The total number of tokens
is N = 4, the number of replaced tokens is K = 1,
and the probability of “boring” is 0.02. Thus, the
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probability of the augmented review’s label is:

max (

If the probabilistic labels were to be omitted,
Pr(y* = negative) would be equal to 1. The
augmented review is added to a new dataset of aug-
mented observations. After all expert-labeled data
is augmented, both datasets are combined. Finally,
a new classifier - of any kind - may be trained on
the combined dataset, using a normal classification
formulation.

Pr(y* = negative) =
4—-1+40.02

1 ,0.50> =0.755

D Weak Supervision Simulation

In Figure D.1, a histrogram of draws for a simu-
lated weak supervision confidence distribution are
shown. The random draws have fat tails, such that
a lot of noise is present during pre-training.

150
100
01 |||||||||||“ ‘ |.
| | | | | |
0 02 04 06 08 1
Probability

Figure D.1: Histogram of random draws of a Beta dis-
tribution with u = 0.57 and o2 = 0.05, for the weak
supervision simulation. The draws are task-independent.
In the histogram, the distribution of 10,000 draws is
shown.



