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Abstract

We propose a novel data augmentation model001
for text, using all available data through weak002
supervision. To improve generalization, recent003
work in the field uses BERT and masked lan-004
guage modeling to conditionally augment data.005
These models all involve a small, high-quality006
labeled dataset, but omit the abundance of unla-007
beled data, which is likely to be present if one008
considers a model in the first place. Weak su-009
pervision methods, such as Snorkel, make use010
of the vastness of unlabeled data, but largely011
omit the available ground truth labels. We com-012
bine data augmentation and weak supervision013
techniques into a holistic method, consisting014
of 4 training phases and 2 inference phases, to015
efficiently train an end-to-end model when only016
a small amount of annotated data is available.017
We outperform the benchmark (Kumar et al.,018
2020) for the SST-2 task by 1.5, QQP task by019
4.4, and QNLI task by 3.0 absolute accuracy020
points, and show that data augmentation is also021
effective for natural language understanding022
tasks, such as QQP and QNLI.023

1 Introduction024

In Natural Language Processing, task-specific vo-025

cabulary construction, text cleaning, and model026

architectures have been rendered mostly obsolete027

by transformer models (Vaswani et al., 2017), such028

as BERT (Devlin et al., 2019). However, as model029

architectures have grown larger, so did the amount030

of data required to train them. The limiting factor031

has become the collection of high-quality labels032

for the training data, which is often expensive to033

obtain (Hancock et al., 2019). We focus on the034

common situation, in which there is only a small035

dataset with high-quality labels, but an abundance036

of unlabeled data. We present novel techniques to037

extract more information out of all data available,038

by proposing weak supervision tasks to improve039

augmentation using the unlabeled data.040

In data augmentation, high-quality labeled sam- 041

ples are augmented to create new samples, while 042

entirely omitting the large unlabeled dataset. Data 043

augmentation increases invariance by feature- 044

averaging, and the variance of the augmented sam- 045

ples acts as a regularization term that penalizes 046

model complexity (Dao et al., 2019). In contrast, 047

weak supervision uses external knowledge bases, 048

related datasets, or rules of thumb to generate low- 049

quality label estimates for a large collection of unla- 050

beled data. High-quality labeled data - if available - 051

is typically used for validation only. Both methods 052

aim to solve a different part of the same problem, 053

but are rarely found together in academic research. 054

In this work, we propose to combine data aug- 055

mentation and weak supervision, using span extrac- 056

tion, into a holistic methodology that - to the best of 057

our knowledge - is a new contribution to the field. 058

We present the methodology as Data Augmenta- 059

tion using Weak Supervision On Natural Language 060

(DAWSON). The output of DAWSON is a dataset, 061

which is a combination of both the original and 062

augmented texts. The aim is to improve the aug- 063

mentations by adding additional training steps to 064

obtain a better augmentation model (AM). 065

The paper is structured as follows: in Section 2, 066

we give a brief introduction to existing methods. In 067

Section 3, we present DAWSON. In Section 4, an 068

ablation study is done. Our conclusion is drawn in 069

Section 5. The code is available at XXXX1. 070

2 Background 071

In this section, we give an introduction to the cur- 072

rently used methods that DAWSON is based on. As 073

running example, we use a sentiment classification 074

task for the negative movie review: 075

“one relentlessly depressing situation" 076

All operations are on token level, however, in the 077

examples, they are demonstrated on word level. 078

1Anonymized link
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2.1 Data Augmentation079

In computer vision, augmentations are often trivial080

and intuitive. An image can be flipped, cropped,081

or manipulated otherwise, and still agreeably show082

the same object. The same does not hold for text.083

To preserve semantically valid sentences, most084

methods inject or replace words to augment the085

text. The challenge becomes choosing the optimal086

words that maintain label quality, while introducing087

enough diversity for the augmentation to improve088

generalization. Crucially, the word choice needs089

to be conditional on the label of the sample. Re-090

placing with a word that is semantically feasible,091

but ignores the label, can harm the meaning of the092

sentence, in our example:093

“one relentlessly brilliant situation"094

would completely negate the sentiment of the re-095

view. BERT is normally fine-tuned on a different096

type of downstream task, such as classification or097

regression, using the masked language modeling098

(MLM) task for pre-training only. In MLM, a hid-099

den word in a sequence needs to be predicted, thus,100

also making BERT an ideal candidate for word re-101

placement augmentation. In EDA (Wei and Zou,102

2019), a thesaurus such as WordNet (Miller, 1995)103

would be used, which is unconditional and might104

only be partially applicable to the domain. Kumar105

et al. (2020) found that the most effective and sim-106

ple way is to train the model using the MLM task107

on the labeled dataset, and to simply prepend the108

label in natural form as follows:109

“negative one relentlessly [MASK] situation"110

where the label is “negative". In this manner,111

during training, replacement candidates are con-112

ditioned on the label.113

2.2 Weak Supervision114

Weak supervision aims to obtain low-quality la-115

bels for the unlabeled data when no high-quality116

labels are available. The obtained dataset is used117

for further pre-training, or even as the only train-118

ing set. Methods such as Snorkel (Ratner et al.,119

2020), make use of a combination of expert-defined120

heuristics, existing models, and any other sources121

of information to estimate training labels without122

any access to ground truth data. Snorkel is called a123

generative model. Next, a discriminative model is124

trained, using the generative model predictions as125

labels, with a noise-aware loss function to appropri-126

ately weigh each observation. Ideally, the discrimi-127

native model generalizes beyond the heuristics of128

the generative model. For example, a heuristic 129

might be a list of negative words that contains the 130

word “depressing" but misses the word “hopeless". 131

When using BERT as the discriminative model, 132

both words have similar meaning from pre-training, 133

and will also correctly classify: 134

“one relentlessly hopeless situation" 135

Snorkel yields probabilistic labels rather than bi- 136

nary predictions, meaning that each class is as- 137

signed a probability. Snorkel aims to have the prob- 138

abilities best reflect the confidence in the labels, 139

rather than minimizing cross-entropy. Labels with 140

less confidence have a lower probability, acting as 141

sample weights. This way, labels can have hetero- 142

geneous noise levels. In our research, we assume 143

that a Snorkel-like weak supervision method - with 144

weighted confidence - is used. 145

2.3 Span Extraction 146

In question-answering tasks, a question and a se- 147

quence of text containing the answer are given. The 148

model has to highlight only the part of the sequence 149

that is the answer to the question. Such a task is 150

categorized as a span extraction problem. The prob- 151

lem is formulated as a classification problem over 152

all tokens in the sequence. Typically, there are two 153

classification heads; one to predict the first token 154

in the span, and the other for the last token. Keskar 155

et al. (2019) propose a method to reformulate any 156

task as a span extraction problem by posing a natu- 157

ral question, such that a wider variety of tasks and 158

datasets can be used for transfer learning. In case of 159

the example, the classification task is to determine 160

whether the review is positive or negative: 161

“positive
0

or
0

negative
1

?
0

one
0

relentlessly
0

162

depressing
0

situation
0

" 163

The labels are shown below the tokens. As the 164

review is negative, it is the only token with its label 165

equal to 1. 166

3 DAWSON 167

AM is improved by pre-training on weakly-labeled 168

data and making the augmentation heterogeneous. 169

The procedure requires a large, weakly-labeled 170

dataset and a small, high-quality labeled dataset. 171

The high-quality dataset holds the observations, 172

which are to be augmented, whereas the weakly- 173

labeled dataset serves to improve AM with pre- 174

training. The methodology consists of new and 175
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adjusted tasks. A sequential transfer learning pro-176

cedure is used consisting of: (1) SpanBERT (Joshi177

et al., 2020) - an MLM task - to train semantically178

sound word replacement, (2) (weakly) supervised179

span-extractive (SpEx) classification tasks to train180

the co-occurrence relations between words and la-181

bels, and (3) heterogeneous augmentation.182

Step 4
(Main Model)

SpanBERT
Training

Step 1

Span-Extractive
Pre-Training

Step 2

Target
Analysis

Step 3.1
(inference)Span-Extractive

Fine-Tuning

Step 3.2

Augmentation
Training

Heterogeneous
Augmentation

Step 5
(inference)

Analysis
Only

All Data Weakly Labeled Expert Labeled

Figure 3.1: Overview of the steps in the methodology.
The arrows represent the flow of AM, with as exception
the target analysis, where the complexity and attention
of the expert-labeled data is passed.

Note that for each step, the training or inference183

is done on all applicable data at once, the steps184

are not executed per observation. For each step,185

the task-specific head of BERT is changed, and186

the improvement of AM comes from further pre-187

training of the weights in the BERT layer only.188

In contrast to the benchmark (Kumar et al.,189

2020), which only uses augmentation training (step190

4), and augmentation without target analysis (step191

5 simplified), the weakly supervised dataset and192

the span extraction formulation make it possible193

to have more domain-specific pre-training and im-194

proved conditional, heterogeneous augmentation.195

In the next sections, we describe each step in de-196

tail. After the augmented dataset is obtained, it is197

combined with the original labeled dataset to form198

the final training set for an end-model of choice.199

Implementation details and an end-to-end example 200

are given in Appendices B and C, respectively. 201

3.1 SpanBERT MLM 202

The MLM task is included to both further improve 203

domain-specific augmentation and classification 204

performance. In pre-training, BERT predicts the 205

masked tokens in a sequence. From a sequence of 206

tokens, 15% are randomly selected. Of the selected 207

tokens, 80% is masked, 10% is kept unchanged, 208

and 10% is replaced by a random token. The un- 209

changed set is kept such that the original tokens for 210

the selection remain the most probable. In BERT, 211

MLM is used to learn embeddings of the corpus 212

and the actual performance is not of importance. 213

However, the MLM performance does influence 214

the quality of the augmentations, although there 215

still may be multiple valid candidate words. 216

SpanBERT (Joshi et al., 2020) extends the MLM 217

task by masking spans of tokens, and introduc- 218

ing a Span Boundary Objective (SBO). Joshi et al. 219

(2020) found that SpanBERT is a more challenging 220

pre-training task that not only improves MLM, but 221

also yields greater gains downstream, especially 222

for span extraction tasks, wherefore we include it. 223

Again, 15% of the tokens are masked. However, 224

the words are selected by an iterative process. First, 225

a span length is sampled from a geometric distribu- 226

tion l ∼ Geo(p). Next, a starting point is uniformly 227

chosen. For example, if the drawn span length and 228

drawn starting point are both 2, the running exam- 229

ple is masked as: 230

“one [MASK] [MASK] situation" 231

This is repeated until 15% of the tokens have been 232

masked. Similar to BERT, 80% is actually masked, 233

one half of the remainder is kept unchanged, while 234

the other half is replaced randomly. 235

The Span Boundary Objective is a second task 236

in addition to the MLM task. The goal is again 237

to predict masked tokens, but using only the non- 238

masked tokens at the boundaries of a span. SBO 239

forces the start-, and end-token embeddings of a 240

span to summarize the content of the masked span. 241

An alternative embedding is calculated for the 242

masked token using two dense layers, layer nor- 243

malization (Ba et al., 2016), and GELU activations 244

(Hendrycks and Gimpel, 2016). The first dense 245

layer takes the concatenation of the start-, end-, 246

and positional token as input, reducing the vector 247

back to the normal hidden size. The second dense 248

layer is part of the token classifier, as for MLM. 249
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The probability density, and loss function are iden-250

tical to the MLM task. The final SpanBERT loss is251

the sum of both the MLM and SBO task losses. As252

no labels are required, the SpanBERT task is done253

on the full corpus, which includes both the labeled254

and unlabeled datasets.255

In our implementation, since we mask within256

individual observations rather than a continuous257

text, we calculate an observation-specific geometric258

mean for the span length, such that on average, 15%259

of an observation is masked. Furthermore, we only260

have one span per sequence for simplicity, and261

never mask boundary tokens. During training, the262

dataset is repeated 10 times, such that the same263

observation is included with 10 different spans. In264

this manner, we adjust for only having a single265

span and make sure that there is variety in how the266

model must predict masks in each version of an267

observation, forcing it to generalize more. Note268

that we include the task but not the trained model269

from Joshi et al. (2020).270

3.2 Span-Extractive Training271

The classification task is included to condition the272

words in a sequence on the label. As a result, the273

label actively influences the masked tokens during274

conditional augmentation. Since the label is placed275

at the start of the sequence during augmentation,276

it should be during the training of AM as well. A277

regular classification architecture would not condi-278

tion the words on the textual names of the classes.279

Furthermore, AM is trained on the weakly-labeled280

dataset, thus, the labels contain noise and prepend-281

ing the incorrect label is harmful. Similar to weak282

supervision, probabilistic labels are required to in-283

corporate the confidence of a sample, while con-284

ditioning the labels. We propose to pre-train AM285

using a weakly-supervised span extraction formu-286

lation. Both the positive and negative labels are287

prepended as words, and the objective is to select288

the span containing the correct label.289

We diverge from Keskar et al. (2019) by using290

a noise-aware loss function, not posing a natural291

question, and selecting a single token only instead292

of a span where possible, in order to best mirror293

the task at the augmentation stage and to reduce294

complexity. Only the labels are included, omit-295

ting the tokens needed to phrase a natural question.296

Suppose that in the example, the weak supervision297

estimates with 70% probability that the review is298

negative, the training input is:299

“positive
0.3

negative
0.7

one
0

relentlessly
0

depressing
0

300

situation
0

" 301

with the labels shown below their respective tokens. 302

Unlike the original formulation, the order of the 303

textual labels is also randomly shuffled for each 304

observation, such that the model is forced to train 305

on the actual label rather than token position. 306

In span extraction tasks, there are two trainable 307

parameter vectors, one for the start-, and end-token. 308

However, most simple natural labels - such as posi- 309

tive and negative in our example - will be present 310

in the vocabulary, and not be split-up in multiple 311

tokens. If this is the case, we propose to simplify 312

the span extraction task to only one trainable pa- 313

rameter vector, s. The probability of token xi being 314

selected is computed as: 315

pSE(y = xi) =
es·xi∑N
j=1 e

s·xj
(3.2.1) 316

In case the natural label consists of multiple tokens, 317

the implementation remains a standard span extrac- 318

tion task, where two trainable vectors are used to 319

predict the start-, and end-token of the label. 320

We add a noise-aware loss function to make use 321

of the noise information of the weak supervision. 322

Ground truth labels are unknown, but from the 323

weak supervision phase, probabilistic labels are 324

obtained. Let ỹ be the weak supervision label for a 325

sample. We extend the labels by including all other 326

tokens: 327

pSE(y = xi) =

{
pWS(ỹ = xi) if xi is label
0 if xi is not label

(3.2.2) 328

The confidence is incorporated in the loss function 329

to act as a sample weight using cross-entropy: 330

LSE = −
N∑
i=1

pSE(y = xi) log pSE(y = xi)

(3.2.3) 331

First, the model is pre-trained on the large, weakly- 332

labeled data, after which the model is fine-tuned 333

on the expert-labeled data. Although the datasets 334

could be merged for a single training step, they 335

are kept separate, such that a target analysis of 336

the labeled data can be done, as well as to ensure 337

that the final training is on the highest quality data 338

only. For both pre-training and fine-tuning, the 339

model is trained for at most 10 epochs, but with an 340

early stopping rule using the development dataset 341

to prevent over-fitting. 342
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3.3 Target Analysis343

Samples may have different levels of complexities344

and the extent to which a sample can be augmented345

while preserving label quality varies. By including346

the weakly supervised training step, a classifier for347

the task is obtained, for which the labeled data is348

out-of-sample. By comparing the predictions for349

the labeled data and the ground truth labels, an350

error es is obtained, which gives an estimate for the351

difficulty of classifying a sample s.352

The relative importance of the tokens is esti-353

mated using attention. In AM (BERT-Base), there354

are 12 layers, and for each layer, 12 attention heads.355

An attention head yields a probability density for356

every token, over all tokens in the sentence. The357

probabilities act as weights that are used when cal-358

culating the embedding for the token. We take the359

attentions from the last layer only, and compute the360

average over all heads and tokens to obtain a final361

vector or probability density, which is considered362

as the weights of importance of the tokens.363

3.4 Augmentation Training364

AM is fine-tuned on the labeled data itself using the365

augmentation task. First, the dataset is duplicated366

10 times, tokens are randomly masked, and the367

label prepended. The duplication is used in order368

to train different masks for the same sentence, as369

in Section 3.1. The model is trained for up to 15370

epochs, but again with early stopping using the371

validation dataset to prevent over-fitting. The initial372

learning rate is set to 2ϵ − 5. The MLM training373

is as the standard BERT task, but with the label374

prepended as token. Note that the span masking375

strategy and SBO are omitted, and the masking is376

uniform, instead of using the attention from the377

target analysis, to train a generalized AM.378

3.5 Heterogenous Augmentation379

Using the target analysis, information about each380

observation is incorporated in which tokens are381

masked, and how they are replaced. Also, the prob-382

abilities of the replacement tokens can be used383

to estimate probabilistic labels. We consider the384

observation-specific augmentation heterogeneous.385

The level of augmentation can be controlled in386

two directions: the amount of augmented tokens,387

and the likelihood of the replacement candidates.388

Again, the amount of masked tokens is kept fixed389

at 15%. During inference, the masked positions are390

sampled using the attention vector from the target391

analysis instead of a uniform distribution. This se- 392

lection strategy is more efficient, as the augmented 393

tokens are more important to the classifier. 394

AM computes a distribution of probabilities for 395

the token candidates of a masked position. If a 396

sample is complex and already hard to classify, 397

more probable tokens are selected to preserve label 398

quality. Only the expert-labeled dataset is used for 399

both training and augmentation. 400

3.5.1 Candidate Selection 401

Depending on the prediction error for a sample dur- 402

ing the target analysis, more or less token-diversity 403

is permitted. A task-specific upper bound (UB) 404

and lower bound (LB) are set empirically for the 405

probability range of eligible replacement tokens. 406

Using the prediction error es for observation s, an 407

observation-specific lower bound LBs is used: 408

LBs = LB + (UB − LB)es (3.5.1) 409

The tokens in the vocabulary are sorted by proba- 410

bility for each observation, and a token is discarded 411

if the cumulative probability up to and including 412

that token is out-of-bounds. The leftover candidate 413

tokens are re-weighted, using a softmax mapping 414

based on their original probabilities. The resulting 415

probabilities are used to sample the final selected 416

token. By setting the upper and lower bound on the 417

cumulative distribution of candidate tokens, tokens 418

that are not diverse enough or too unlikely can be 419

omitted. Thus, the overall level of noise can be con- 420

trolled. As AM improves through (pre-)training, 421

the probability of suitable tokens increases, while 422

the probability for the rest of the vocabulary de- 423

creases, thus, allowing for more diverse sampling 424

while preserving quality. 425

3.5.2 Probabilistic Labels 426

In contrast to Kumar et al. (2020), we make use of 427

probabilistic labels as in weak supervision. Nor- 428

mally, the original binary labels are used. The aug- 429

mented samples introduce uncertainty and noise, 430

and, as the degree of augmentation is known, an 431

estimation of the reliability of a label can be made. 432

In determining a formulation for the probabilis- 433

tic label, the following considerations have been 434

made: 435

• The probabilistic label is a function of token 436

probabilities; 437

• Adding a token mask should always decrease 438

confidence; 439
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• The label should be roughly in the neighbor-440

hood of the lowest token probability;441

• The probability of a candidate token is relative442

to all other tokens in the vocabulary. As the443

vocabulary is large - and many tokens may be444

feasible - even the largest token probabilities445

are typically below 10%;446

• The label of the observation may never flip,447

thus, the confidence is at least 50%.448

The probability for the augmented observation la-449

bel y∗ is calculated using average probability for450

the tokens in the sentence, that is:451

Pr(y∗ = y) =

max

(
N −K +

∑K
k=1 pMLM (mk = x̂πk

)

N
, 0.50

)
(3.5.2)452

where x̂πk
is the selected replacement token for453

mask mk at position πk, pMLM (mk = x̂πk
) is the454

MLM probability of x̂πk
, and N and K are the455

total and masked number of tokens, respectively.456

4 Experiments457

The methodology is evaluated on multiple types458

of binary classification tasks. An ablation study is459

done to understand the contribution of the different460

components to the overall performance.461

4.1 Benchmark Tasks462

We make use of a selection of the GLUE tasks463

(Wang et al., 2018) which form the benchmark464

for leading language models. We consider three465

tasks: (1) the Stanford Sentiment Treebank (SST-2,466

Socher et al., 2013) is a binary sentiment classifi-467

cation task on movie reviews, (2) the Quora Ques-468

tion Pairs (QQP) task (Iyer et al., 2017) consists of469

pairs of questions that are classified as semantically470

equivalent or not, and (3) the Question-answering471

NLI (QNLI) task is a reformulation from SQuAD472

(Rajpurkar et al., 2016) where it needs to be evalu-473

ated if a question is answered by a randomly paired474

paragraph.475

4.1.1 Expert-Labeled Dataset Selection476

The selected datasets are large and therefore suit-477

able candidates for the weak supervision approach,478

resembling most practical use cases. Not all test479

sets are publicly available, for consistency, we fully480

omit these. To simulate having a small dataset with481

high-quality labels, for each iteration of an experi- 482

ment, two small datasets are sampled from the train- 483

ing data; one serving as the small expert-labeled 484

dataset and the other as the test set for the experi- 485

ment. The remaining training data is treated as if it 486

is unlabeled, and a weak supervision method has 487

generated weak labels. The original development 488

sets are used for early stopping, if indicated in the 489

methodology, to ensure a comparable optimization 490

as to any other GLUE based research. For SST-2 491

and QNLI, the sampled datasets consist of 1% of 492

the original training data, and 0.5% for QQP. 493

Task
Weakly
Labeled

Expert
Labeled

/ Test
Dev.

Mean
Token
Length

SST-2 66,002 673 872 13.3
QQP 360,211 1,819 40,430 30.4
QNLI 102,648 1,047 5,463 50.0

Table 4.1: The average number of observations and
sequence length in tokens for the experimental datasets.

4.1.2 Simulating Weak Supervision 494

To simulate weak supervision, the true labels are 495

assigned a probability. The Beta distribution is se- 496

lected due to its domain of [0, 1] and flexible shape, 497

allowing for different types of noise settings. We 498

use the Matthews Correlation Coefficient (MCC), 499

proposed by Matthews (1975), to evaluate the qual- 500

ity of the generated noisy labels. To simulate a 501

real-life weak supervision scenario for complex 502

tasks, we empirically set µ = 0.57 and σ2 = 0.05. 503

Figure D.1 shows a histogram of draws from the 504

Beta distribution to visualize the generated noise. 505

SST-2 QQP QNLI

MCC 0.244 0.235 0.242
Accuracy 0.623 0.622 0.621

Table 4.2: Metrics of the simulated weak supervision
method compared to the ground truth.

For all datasets, the noisy labels are better than 506

random, and thus, contain information that a dis- 507

criminative model can generalize. However, the 508

labels are of low enough quality to simulate a weak 509

supervision method. 510
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4.2 Evaluation Criteria511

For a direct comparison to the state-of-the-art, we512

follow Kumar et al. (2020) in the intrinsic and ex-513

trinsic evaluation methods.514

The intrinsic evaluation consists of semantic fi-515

delity and generated diversity of the augmented516

samples. The semantic fidelity is determined by517

training a BERT-Base model on all labeled data518

originally available, with true labels, and use its519

predictions as ground truth for the augmented data520

to estimate if the labels are still valid. The gen-521

erated diversity is measured using the type-token522

ratio (Roemmele et al., 2017), which is the number523

of unique predicted tokens (types) divided by all524

predicted tokens in the dataset.525

The extrinsic evaluation is the end-to-end perfor-526

mance - using any classifier - for a regular clas-527

sification task trained on the combined dataset528

(original+augmented). We compare two classifiers529

for the extrinsic evaluation: a BERT-Base model530

(Base) - only pre-trained by Devlin et al. (2019) -531

and AM itself, to make use of the transfer learning532

from the domain-specific tasks. Both models have533

the same architecture with a newly initialized clas-534

sification head, the only difference is the starting535

point of the weights of the BERT layer before fine-536

tuning. Note that this implies that AM will train on537

the samples it has augmented.538

4.3 Ablation Study539

To understand which aspects are an improvement540

over direct data augmentation, an ablation study of541

the training tasks is done. The benchmark is the542

conditional augmentation, as proposed by Kumar543

et al. (2020). We implement our own version to con-544

trol the experimental setting and obtain results for545

the new datasets. The heterogeneous augmentation546

addition expands the benchmark augmentation with547

the attention-based sampling of the mask positions548

and error analysis-based token selection. However,549

the probabilistic labels are added separately. The550

extrinsic metrics are chosen to be in line with the551

GLUE benchmark. For the extrinsic evaluation, the552

models are trained with an unbounded number of553

epochs, but with early stopping until the validation554

accuracy decreases. This strategy prevents that the555

difference between results may be attributed to the556

number of training epochs, as every configuration557

is trained based on the same criteria for optimal558

performance. The maximum sequence length for559

all tasks is set to 200 tokens, which is 4 times the560

longest mean token length (which is of QNLI). The 561

UB and LB are empirically set to 1.0 and 0.6, re- 562

spectively. The experiments are repeated 15 times 563

with different expert-labeled datasets. 564

4.4 Results 565

The results of the ablation study are given in Table 566

4.3. When AM is used as downstream classifier, it 567

has only been pre-trained up to the included steps. 568

For all three tasks, the best-performing configu- 569

ration is the proposed methodology, sometimes 570

excluding the probabilistic labels, and using the 571

augmentation model as final classifier. The benefit 572

from weak supervision and transfer learning is pro- 573

portional to the amount of unlabeled data available. 574

The heterogeneous augmentation and probabilistic 575

labels provide a small additional gain. Not using 576

any augmentation, for all tasks, results in large 577

variance in extrinsic accuracies across experiments, 578

showing the need for robustness from augmenta- 579

tion. The AM classifier outperforms the Base clas- 580

sifier, providing an additional performance gain 581

from transfer learning without any extra work. 582

SST-2 is the only task shared with the other re- 583

search in the field. Data augmentation is mostly 584

tested on topic classification or sentiment analysis. 585

To the best of our knowledge, this is the first paper 586

to apply textual augmentation to any natural lan- 587

guage understanding task. One could argue that, 588

intuitively, a topic classification task is easier to 589

augment. However, to our surprise, both the QQP 590

and QNLI tasks have greater absolute performance 591

improvements than SST-2. This might be related 592

to the spread in performance between using the 593

small sampled dataset, and when all data is avail- 594

able, or simply because QQP and QNLI have more 595

data. When comparing the relative performance 596

improvements, SST-2 still has the smallest gain, 597

but the results are closer. The sampled dataset for 598

SST-2 has the smallest number of observations, but 599

the baseline without augmentation is 83%, com- 600

pared to 76% for QQP and 71% for QNLI. Thus, 601

SST-2 is clearly an easier task for a BERT classifier. 602

Therefore, even though SST-2 intuitively is more 603

suited for augmentation, there is less performance 604

to be gained from it, similarly to how a less com- 605

plex model (e.g. logistic regression) will be closer 606

to a BERT model in performance for a simple task 607

than for a complex task. 608

For QNLI, both the benchmark and best type- 609

token ratios are larger than for either the SST-2 or 610
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Task SST-2 QQP QNLI

Extrinsic Classifier Base AM Base AM Base AM

No Augmentation 83.3 (7.8) 75.6 (3.5) 70.6 (11.1)
Benchmark Aug. 86.0 (2.3) 85.2 (2.4) 77.0 (1.3) 76.4 (1.3) 76.6 (1.7) 77.0 (1.1)
+ SpEx Fine-Tuning 86.2 (1.5) 85.2 (1.6) 76.6 (1.0) 76.1 (1.3) 76.0 (2.1) 77.1 (1.4)
+ SpEx Pre-Training 86.4 (1.4) 86.4 (2.1) 77.1 (1.0) 80.8 (1.5) 75.9 (1.9) 79.2 (1.4)
+ SpanBERT Training 87.2 (1.3) 87.1 (1.6) 76.9 (1.3) 81.2 (1.4) 76.0 (2.0) 79.5 (1.1)
+ Heterogenous Aug. 86.9 (1.5) 87.3 (1.5) 77.4 (1.3) 81.4 (1.2) 77.2 (1.4) 79.6 (1.3)
+ Probabilistic Labels 86.6 (1.1) 87.5 (1.7) 77.6 (1.5) 81.3 (1.2) 76.3 (1.5) 79.6 (1.5)
All Data 93.4 (1.4) 88.6 (1.5) 88.7 (1.0)

Intrinsic Metric TTR SF TTR SF TTR SF

Benchmark Aug. 9.2 (0.7) 87.3 (1.0) 13.4 (1.5) 86.7 (1.6) 13.8 (0.5) 84.8 (0.8)
+ SpEx Fine-Tuning 9.0 (0.4) 86.8 (1.2) 13.0 (1.8) 86.3 (1.6) 13.1 (0.5) 83.9 (0.6)
+ SpEx Pre-Training 8.9 (0.7) 87.8 (1.3) 11.7 (2.1) 85.9 (1.6) 12.7 (0.5) 84.1 (1.2)
+ SpanBERT Training 14.1 (0.7) 89.0 (1.6) 14.2 (0.8) 87.4 (0.8) 15.6 (0.4) 85.5 (1.0)
+ Heterogenous Aug. 14.3 (0.7) 89.0 (1.4) 14.3 (0.9) 87.5 (0.8) 15.5 (0.3) 85.8 (1.0)
+ Probabilistic Labels 14.2 (0.8) 89.6 (1.3) 14.3 (0.9) 87.3 (0.9) 15.5 (0.4) 85.6 (0.9)

Table 4.3: Results of the ablation study. All measures are reported as the mean and standard deviation over the
15 repeated experiments, multiplied by 100. The extrinsic results are reported in accuracy for the Base and AM
classifier as downstream model. For the intrinsic evaluation, the Type-Token Ratio (TTR) and Semantic Fidelity
(SF) are reported.

QQP tasks. QQP has more unlabeled data, but a611

smaller average number of tokens in the sequences612

(Table 4.1). We hypothesize that the better type-613

token ratio is explained by the larger mean token614

length. Recall that, in our implementation, Span-615

BERT uses span lengths drawn from a geometric616

distribution, with as mean, 15% of the number of617

tokens of that specific observation. Therefore, the618

span lengths in QNLI are larger on average (7.5619

tokens) than the spans in QQP (4.6 tokens), and620

thus more challenging. This would also explain621

the smaller type-token ratio for SST-2, where the622

average span length is only 2.0 tokens. However,623

the difference might also be explained simply by624

the difference in corpora, and their similarity to the625

datasets used by for the initial pre-training.626

4.5 Discussion and Limitations627

The ablation study is computationally expensive.628

For example, a single iteration for QQP, on an629

NVIDIA V100 GPU with 16GB of RAM from630

Google Colab, takes over 12 hours. Thus, we are631

constraint in the number of configurations that can632

feasibly be compared. There are numerous varia-633

tions on our experiments that could be done to fur-634

ther understand the methodology. These variations635

include: (1) different textual labels, (2) different636

levels of simulated noise, (3) other formulations 637

for probabilistic labels, and (4) a real-life weak 638

supervision method. 639

5 Conclusion 640

We proposed a new methodology for data augmen- 641

tation, using weak supervision and span extrac- 642

tion. Multiple methods of transfer learning and pre- 643

training are combined that were previously consid- 644

ered disjoint solutions to the same problem. We out- 645

perform the benchmark for the SST-2 task by 1.5, 646

QQP task by 4.4, and QNLI task by 3.0 absolute 647

accuracy points. This shows that the advantages 648

of weak supervision and span extraction extend be- 649

yond the direct benefits, as they also allow for the 650

further improvement of data augmentation. Addi- 651

tionally, the downstream model improves further 652

when it has been pre-trained using DAWSON, and 653

we show that data augmentation is not only possible 654

for natural language understanding, but more effec- 655

tive than for a simpler task. As DAWSON does not 656

require any domain-specific adjustment, we argue 657

that in an era where unlabeled data is abundant, 658

computational resources are cheap and Moore’s 659

law is still valid, combining weak supervision and 660

data augmentation is a scalable and effective way 661

to improve downstream models. 662
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A List of Acronyms769

This section serves as a reference for all acronyms770

used throughout the paper.771

Table A.1: Overview of all acronyms used, in alphabeti-
cal order.

Acronym Description

AM Augmentation Model
BERT Bidirectional Encoder Representa-

tions from Transformers (Devlin
et al., 2019)

DAWSON Data Augmentation using Weak
Supervision On Natural Language

EDA Easy Data Augmentation (Wei and
Zou, 2019)

GLUE General Language Understand-
ing Evaluation benchmark (Wang
et al., 2018)

GPU Graphics Processing Unit
LAMB Layer-wise Adaptive Moments

(You et al., 2020)
LB Lower Bound
MCC Matthews Correlation Coefficient

(Matthews, 1975)
MLM Masked Language Modeling
QNLI Question-Answering Natural Lan-

guage Inference (Rajpurkar et al.,
2016)

QQP Quora Question Pairs (Iyer et al.,
2017)

SBO Span Boundary Objective (Joshi
et al., 2020)

SE Span Extraction
SQuAD Stanford Queston Answering

Dataset (Rajpurkar et al., 2016)
SST Stanford Sentiment Treebank

(Socher et al., 2013)
UB Upper Bound
WS Weak Supervision

B Implementation Details772

The starting point for the augmentation model is773

a BERT-Base uncased, with L = 12 transformer774

blocks, H = 768 hidden size, and A = 12 atten-775

tion heads, resulting in 110M parameters. This776

configuration is chosen as it is the most commonly777

used in the field, mainly because the larger version778

of BERT does not fit on most GPUs and smaller779

versions have only been recently introduced. We780

make use of the implementation from Hugging- 781

face2, a library providing a common interface for 782

all transformer-based models. We use the origi- 783

nal model by Devlin et al. (2019), pre-trained on 784

the BookCorpus dataset and the English version 785

of Wikipedia. Our implementation is in Tensor- 786

Flow. We make use of layerwise learning rates by 787

using Layer-wise Adaptive Moments (LAMB) as 788

optimizer. Proposed by You et al. (2020), LAMB 789

is originally intended to speed up pre-training by 790

allowing for larger batch sizes without loss in 791

performance. However, You et al. (2020) found 792

that LAMB also yields excellent performance for 793

smaller batch sizes and is typically more consis- 794

tent than the often used Adam with Weight Decay 795

(Loshchilov and Hutter, 2018). 796

During training, we make use of smart batch- 797

ing. Attention is computed for every token in re- 798

lation to every other token. Thus, including more 799

tokens increases the number of relations exponen- 800

tially. Within a batch, all sequences need to be 801

padded to the same length such that they can be 802

fitted into an non-ragged tensor. However, batches 803

do not have to be the same shape. By first sorting 804

the dataset based on string length, and shuffling 805

locally within a range of 3-6 batch sizes as a rolling 806

window to maintain randomness, the maximum 807

sequence length per batch is optimized and com- 808

putation time is decreased. After the batches have 809

been created, they are shuffled for the training order. 810

Smart batching is especially useful in a dataset with 811

strongly heterogeneous sequence lengths, such as 812

movie reviews, where one can leave a single word 813

or an extensive essay. Decreasing the overall maxi- 814

mum sequence length results in a loss of informa- 815

tion, while keeping the maximum sequence length 816

larger results in many unnecessary computation for 817

short reviews. 818

C End-to-End Example 819

For the step-by-step example, the methodology is 820

applied to two movie reviews. The first review - 821

the running example - is a negative review taken 822

from the expert-labeled dataset: 823

“one relentlessly depressing situation" 824

The second review is taken from the large unlabeled 825

dataset: 826

“even if you’ve never heard of chaplin, you’ll still 827

be glued to the screen" 828

2https://huggingface.co/transformers/
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STEP 1: SpanBERT829

First, a BERT model, pre-trained by Devlin et al.830

(2019), is initialized with a SpanBERT head on top.831

No labels are required, wherefore all available data832

can be used. Suppose that for the examples, span833

lengths of l = 1 and l = 2 are drawn respectively.834

The starting point of the spans is random. In the835

example, the masks are placed as:836

“one [MASK] depressing situation"837

“even if you’ve never heard of [MASK] [MASK] still838

be glued to the screen"839

The dataset is repeated 10 times, such that masks840

are placed at different places in a sentence. The841

masks are predicted both using the full sequence842

and just the boundary tokens, as explained in Sec-843

tion 3.1. In this manner, the model is trained for a844

predefined number of epochs. The SpanBERT pre-845

training both fits the model to the domain-specific846

data and improves augmentation.847

STEP 2: Span-Extractive Pre-Training848

Next, the model is trained on the unlabeled data849

only, using weak labels. Suppose that the weak850

supervision method estimates there is a probability851

of 60% that the unlabeled example is positive, that852

is Pr(ỹ = positive) = 0.6. Both textual labels853

are prepended and the model is trained using span854

extraction. The sentence, with probabilistic labels,855

looks as follows:856

“positive
0.6

negative
0.4

even
0

if
0

you’ve
0

never
0

heard
0

of
0

857

chaplin,
0

you’ll
0

still
0

be
0

glued
0

to
0

the
0

screen
0

"858

The model has to both determine the sentiment of859

the sentence, and select the token-label with the860

corresponding sentiment.861

STEP 3.1: Target Analysis862

In the previous step, a classifier is trained, that has863

not yet seen the sentiment of the expert-labeled re-864

view. As such, first the classifier is used to make a865

prediction for the sentence, which can be compared866

to the true label as analysis of the complexity. Sup-867

pose the classifier makes the following prediction:868

“positive
0.3

negative
0.6

one
0

relentlessly
0.1

depressing
0

869

situation
0

"870

The predicted probabilities to select a token are871

shown below the corresponding token. For illus-872

tration purposes, the classifier has also incorrectly873

assigned some probability to the non-label token874

“relentlessly". It is known that the correct label875

is negative, and the model has predicted the nega- 876

tive token is to be selected with 60% probability. 877

Therefore the error - or complexity - is 40%, that 878

is e = 0.4. 879

Not only the prediction, but also the attention to 880

the tokens is saved. The label tokens are removed, 881

and the remaining probabilities re-weighted such 882

that again, their sum is equal to 100%. For the ex- 883

ample, the attention probabilities for the remaining 884

tokens are: 885

“one
0.1

relentlessly
0.2

depressing
0.4

situation
0.3

" 886

STEP 3.2: Span-Extractive Fine-Tuning 887

After the target analysis, the model is trained fur- 888

ther on the expert-labeled data. The fine-tuning 889

procedure is identical to the pre-training, except 890

that, instead of weak labels, the ground truth labels 891

are used: 892

“positive
0

negative
1

one
0

relentlessly
0

depressing
0

893

situation
0

" 894

Note that the span-extractive pre-training step al- 895

ready trained the classifier to only select the label 896

tokens and generalize beyond the noisy labels as 897

much as possible. During the fine-tuning step, only 898

the relationship between the token-label and corre- 899

sponding sentiment has to be strengthened further. 900

STEP 4: Augmentation Training 901

The final training step is the conditional augmen- 902

tation task. Only high-quality textual labels may 903

be prepended, therefore the model is trained on the 904

expert-labeled data only. The tokens are masked 905

randomly: 906

“negative one relentlessly depressing [MASK]" 907

Because of the pre-training steps, the augmentation 908

model will allocate more attention to the textual 909

label, and make use of the sentiment of the sentence 910

when predicting for the masked token. Like in the 911

SpanBERT step, the dataset is repeated 10 times 912

with different masks. 913

STEP 5: Heterogeneous Augmentation 914

The last step is the actual augmentation that is used 915

to create the augmented dataset. Different than in 916

the augmentation training, the dataset is not neces- 917

sarily repeated, therefore the tokens are not masked 918

using a uniform distribution, but with the atten- 919

tion probabilities from the target analysis, in order 920

to increase the probability that relevant words are 921

masked. In this case, the token “depressing", with 922

the largest probability, is drawn: 923
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“negative one relentlessly [MASK] situation"924

When selecting a replacement token, a lower, and925

upper bound are used. We empirically set the gen-926

eral upper bound (UB) to 0.95 and lower bound927

(LB) to 0.8. Recall the error from the target anal-928

ysis is 0.4. The observation-specific lower bound929

is:930

LBs = 0.8 + (0.95− 0.8) ∗ 0.4 = 0.86931

When predicting a masked token, for each token in932

the vocabulary, a probability is estimated. We sort933

the tokens based on their respective probabilities,934

and calculate the cumulative probability up to each935

token. The tokens are only considered candidates936

if the associated cumulative probability is within937

the bounds of UB and LBs. In the table below, the938

probabilities for all tokens in the vocabulary are939

given. Only the tokens in between the dotted lines940

are within bounds.941

Token Probability Cumulative

Horrible 0.05 1.00
Bad 0.04 0.95
Sad 0.03 0.91

Boring 0.02 0.88
Lame 0.02 0.86

Mediocre 0.01 0.84
...

...
...

Parachute 0.00 0.00
Catalogue 0.00 0.00

Table C.1: Candidate tokens for the masked token in the
example.

For the remaining tokens, their probabilities are re-942

scaled to again sum up to 100%. In the case of this943

example, there are 4 candidate tokens. The final944

token is sampled using the re-scaled probabilities.945

In this case, the augmented sample is:946

“one relentlessly boring situation"947

where the token “boring" is selected as replace-948

ment. As the number of masked tokens and the949

probability of the replacements are known, a prob-950

abilistic label is calculated to account for the added951

uncertainty in the data. The total number of tokens952

is N = 4, the number of replaced tokens is K = 1,953

and the probability of “boring" is 0.02. Thus, the954

probability of the augmented review’s label is: 955

Pr(y∗ = negative) =

max

(
4− 1 + 0.02

4
, 0.50

)
= 0.755

956

If the probabilistic labels were to be omitted, 957

Pr(y∗ = negative) would be equal to 1. The 958

augmented review is added to a new dataset of aug- 959

mented observations. After all expert-labeled data 960

is augmented, both datasets are combined. Finally, 961

a new classifier - of any kind - may be trained on 962

the combined dataset, using a normal classification 963

formulation. 964

D Weak Supervision Simulation 965

In Figure D.1, a histrogram of draws for a simu- 966

lated weak supervision confidence distribution are 967

shown. The random draws have fat tails, such that 968

a lot of noise is present during pre-training. 969
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Figure D.1: Histogram of random draws of a Beta dis-
tribution with µ = 0.57 and σ2 = 0.05, for the weak
supervision simulation. The draws are task-independent.
In the histogram, the distribution of 10,000 draws is
shown.
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