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ABSTRACT

Independent learning is a straightforward solution for fully decentralized learning in
cooperative multi-agent reinforcement learning (MARL). The study of independent
learning has a history of decades, and the representatives, such as independent Q-
learning and independent PPO, can obtain good performance in some benchmarks.
However, most independent learning algorithms lack convergence guarantees or
theoretical support. In this paper, we propose a general formulation of independent
policy optimization, f -divergence policy optimization. We show the generality
of this formulation and analyze its limitations. Based on this formulation, we
further propose a novel independent learning algorithm, TVPO, which theoretically
guarantees convergence. Empirically, we show that TVPO outperforms state-of-
the-art fully decentralized learning methods on three popular cooperative MARL
benchmarks, which verifies the efficacy of TVPO.

1 INTRODUCTION

Cooperative multi-agent reinforcement learning (MARL) has shown great potential in many areas
including power control (Zhang & Liang, 2020), autonomous vehicle (Han et al., 2022), and robot
control (Sartoretti et al., 2019). The main framework for cooperative MARL is centralized training
with decentralized execution (CTDE) (Kraemer & Banerjee, 2016), while the MARL community pays
less attention to fully decentralized learning, also known as decentralized training with decentralized
execution (DTDE). Fully decentralized learning is still significant in cooperative MARL due to
its simplicity. From the perspective of applications, fully decentralized learning is useful in many
industrial applications where agents may belong to different parties, e.g., autonomous vehicles or
robots. From the perspective of theory, fully decentralized algorithms rely on less information during
training and hence are more general and worth further study.

For DTDE or fully decentralized settings, independent learning is a straightforward but effective
way that enables agents to directly execute a single-agent RL algorithm. The representatives are
independent Q-learning (IQL) (Tan, 1993) and independent actor-critic (IAC) (Foerster et al., 2018;
Papoudakis et al., 2021). Recently, independent PPO (IPPO) (de Witt et al., 2020) extended PPO
(Schulman et al., 2017) to MARL and shows good performance on several benchmarks. However,
these independent learning algorithms are still troubled by the non-stationarity problem and lack
convergence guarantees or theoretical support.

In this paper, we propose a general formulation of independent policy optimization, f -divergence
policy optimization. We show the generality of such a formulation for independent learning in
cooperative MARL. We also analyze the policy iteration of this formulation and discuss its limitation
by a two-player matrix game. Based on this formulation, we further propose a novel independent
learning algorithm, total variation policy optimization (TVPO). To theoretically study the property
of TVPO and prove its convergence, we introduce a new set of value functions and policy iteration
specifically for fully decentralized learning and prove the monotonicity of this policy iteration. The
practical algorithm of TVPO can be effectively realized by an adaptive coefficient, similar to PPO
(Schulman et al., 2017).

Empirically, we verify our discussion about the limitation of f -divergence policy optimization in the
two-player matrix game and show the joint policy may converge to the sub-optimum with different
f -divergences. Moreover, we evaluate the performance of TVPO in three popular benchmarks of
cooperative MARL including SMAC (Samvelyan et al., 2019), multi-agent MuJoCo (Peng et al., 2021)
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and SMACv2 (Ellis et al., 2023). We compare TVPO with four representative fully decentralized
learning methods: IQL (Tan, 1993), IPPO (de Witt et al., 2020), I2Q (Jiang & Lu, 2022), and DPO
(Su & Lu, 2022b). The empirical results show that TVPO outperforms these baselines in all evaluated
tasks, which verifies the effectiveness of TVPO in fully decentralized cooperative MARL.

2 RELATED WORK

CTDE. The popular framework to address cooperative multi-agent reinforcement learning (MARL)
problems is centralized training with decentralized execution (CTDE) (Lowe et al., 2017; Foerster
et al., 2018; Sunehag et al., 2018; Rashid et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021a; Zhang
et al., 2021; Su & Lu, 2022a; Wang et al., 2023a). CTDE successfully mitigates the challenge of
non-stationarity via centralized training. This line of research can be categorized into two types: value
decomposition algorithms (Sunehag et al., 2018; Rashid et al., 2018; Son et al., 2019; Yang et al.,
2020; Wang et al., 2021a), where the centralized Q-function’s optimum aligns with the decentralized
Q-functions’ optima, allowing the learning of the centralized Q-function to be factorized into the
learning process of the decentralized Q-functions; and multi-agent actor-critic algorithms (Foerster
et al., 2018; Iqbal & Sha, 2019; Wang et al., 2021b; Zhang et al., 2021; Su & Lu, 2022a; Wang et al.,
2023a; Wen et al., 2022; Liu et al., 2023), which leverage a centralized Q-function to facilitate the
learning of decentralized stochastic policies. HAPPO (Kuba et al., 2021) and MAPPO (Yu et al.,
2021) extend the applicability of TRPO (Schulman et al., 2015) and PPO (Schulman et al., 2017),
respectively, to the MARL setting through a centralized state value function. HASAC (Liu et al., 2023)
combines the heterougeneous-agent decomposition with the entropy regularization in SAC. MAT
(Wen et al., 2022) introduce Transformer and sequencial modeling into the heterougeneous-agent
decomposition. Nevertheless, it is important to note that these approaches remain constrained by
the CTDE paradigm and are therefore unsuitable for fully decentralized learning.

Fully Decentralized Learning. There have recently been several different views about fully decen-
tralized learning or decentralized learning. Some works study decentralized learning specifically
with communication (Zhang et al., 2018; Li et al., 2020) or parameter sharing (Terry et al., 2020).
Both communication and parameter sharing exchange information among agents (Terry et al., 2020).
However, in this paper, we consider fully decentralized learning in the strictest sense – with each
agent independently learning its policy while being not allowed to communicate or share param-
eters as in Tampuu et al. (2015); Mao et al. (2022b); Wang et al. (2023c). Additionally, there are
several studies (Zhan et al., 2023; Wang et al., 2023b; Mao & Başar, 2023) considering general-sum
games in decentralized MARL, these studies focus on episodic Markov game(Jin et al., 2021), which
is non-cooperative and assumes the reward function, transition probability, and policy are related
to the time step. The objective of finding an equilibrium in this setting is different from the fully
decentralized learning in this paper. Independent learning (OroojlooyJadid & Hajinezhad, 2019) has
been extensively studied in the field of cooperative multi-agent reinforcement learning (MARL) as a
straightforward approach for fully decentralized learning. Representatives of this approach include
independent Q-learning (IQL) (Tan, 1993; Tampuu et al., 2015), independent actor-critic (IAC)
(Foerster et al., 2018; Papoudakis et al., 2021), and independent proximal policy optimization (IPPO)
(de Witt et al., 2020). It should be noted that all these independent learning algorithms deviate from
the stationary condition of the Markov decision process (MDP) and lack convergence guarantees,
even though IQL and IPPO perform well in various benchmarks (Papoudakis et al., 2021). Recent
studies have emerged with convergence guarantees in fully decentralized MARL, namely I2Q (Jiang
& Lu, 2022) and DPO (Su & Lu, 2022b). I2Q introduces the concept of QSS-value (Edwards et al.,
2020) into independent Q-learning, achieving convergence guarantees. However, its applicability is
restricted to deterministic environments. On the other hand, a novel decentralized surrogate of the
joint TRPO objective is proposed by DPO to ensure convergence. In terms of empirical performance,
I2Q demonstrates superior performance compared to IQL, while DPO outperforms IPPO. Thus,
in our empirical studies, we comprehensively compare our TVPO with the two state-of-the-art
methods.

Mirror Descent in RL. Recently, mirror descent (Blair, 1985) or similar ideas have been applied
in single-agent RL (Wang et al., 2019; Lan, 2023; Tomar et al., 2020; Yang et al., 2022; Vaswani
et al., 2021) or CTDE algorithms in MARL (Su & Lu, 2022a; Kuba et al., 2022; Liu et al., 2023) for
theoretical guarantees. Mirror descent is a method related to Bregman divergence (Bregman, 1967).
Although Bregman divergence is a general divergence class, KL-divergence is most frequently used

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

in previous mirror descent studies (Wang et al., 2019; Lan, 2023; Tomar et al., 2020; Yang et al., 2022;
Vaswani et al., 2021). On the other hand, KL-divergence is at the intersection of Bregman divergence
and f -divergence and our analysis of KL-divergence shows it is trapped in the sub-optimum even in
a simple matrix game. Moreover, Bregman divergence in mirror descent and f -divergence are two
different divergence classes, and the latter can provide us with more useful properties for theoretical
guarantees in fully decentralized learning. Extending mirror descent in fully decentralized learning
with theoretical guarantees is still open and beyond the scope of the discussion in this paper.

3 PRELIMINARIES

Cooperative Markov Game. The cooperative Markov Game serves as a general model for
cooperative multi-agent reinforcement learning (MARL). It is a special case of Markov Game
(Littman, 1994) where the reward functions of all agents are the same. It is represented by the
tuple G = {S,A, P, I,N, r, γ}, where N denotes the number of agents, and I = {1, 2 · · ·N} refers
to the set of all agents. The state space is denoted as S, and the joint action space is denoted
as A = A1 × A2 × · · · × AN , where Ai represents the individual action space for agent i. The
transition function P (s′|s,a) : S × A × S → [0, 1] defines the probability of transitioning from
state s to s′ given joint action a. The discount factor is denoted as γ ∈ [0, 1), and the reward
function r(s,a) : S × A → [−rmax, rmax] assigns reward to state s and joint action a, with
rmax serving as the reward function’s upper bound. The objective of Dec-POMDP is to maximize
J(π) = Eπ [

∑
t=0 γ

tr(st,at)]. Thus, the optimal joint policy π∗ = argmaxπ J(π) needs to be
determined. In fully decentralized learning, each agent independently learns an individual policy
denoted as πi(ai|s). The joint policy π of all agents can be represented as the product of each
individual policy πi.

Additionally, the V-function and Q-function of the joint policy π can be defined as follows:

V π(s) = Ea∼π [Qπ(s,a)] , (1)

Qπ(s,a) = r(s,a) + γEs′∼P (·|s,a) [V
π(s′)] . (2)

Fully Decentralized Critic. The concept of the critic in fully decentralized learning has been
explored in previous studies (Peshkin et al., 2000; Lyu & Xiao, 2021; Su & Lu, 2022b). To facilitate
further discussion, we provide some formulations and deductions regarding the fully decentralized
critic.

In fully decentralized learning, each agent learns independently through its own interactions with
the environment. Consequently, the Q-function for each agent i can be described by the following
formula:

Qπi

π−i(s, ai) = rπ−i(s, ai) + γEπ−i [Qπi

π−i(s′, a′i)], (3)

where rπ−i(s, ai) = Eπ−i [r(s, ai, a−i)], and π−i and a−i respectively denote the joint policy and
joint action of all agents expect agent i. It can be shown that Qπi

π−i(s, ai) = Eπ−i [Qπ(s, ai, a−i)].
For simplicity, in the following, we use Qπ

i to denote Qπi

π−i given a joint policy π, if there is no
confusion.

Independent Learning. Independent learning is a straightforward method to solve cooperative
MARL problems, which makes each agent learn through the same single-agent RL algorithm, such
IQL (Tan, 1993), IAC (Foerster et al., 2018), and IPPO (de Witt et al., 2020). Though independent
learning faces the non-stationarity problem, it still has the advantage of absorbing the benefit of
single-agent RL. Policy iteration πnew = argmaxπ

∑
a π(a|s)Qπold(s, a) is fundamental in single-

agent RL, which ensures that πnew improves monotonically over πold and guarantees the convergence.
We draw inspiration from policy iteration in single-agent RL, introduce a general formulation of
independent policy optimization, and try to find an independent learning algorithm that can guarantee
convergence in cooperative MARL.

4 A GENERAL FORMULATION FOR INDEPENDENT POLICY OPTIMIZATION
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u0
B u1

B

Alice
Bob

qt 1− qt

u0
A pt a b

u1
A 1− pt c d

Table 1: The two-player matrix game for
Alice and Bob with policies after the num-
ber t of policy iterations. Alice will take
action u0

A with probability pt and take ac-
tion u1

A with probability 1 − pt; Bob will
take action u0

B with probability qt and take
action u1

B with probability 1− qt.

Given the condition of fully decentralized learning in
cooperative MARL, we first propose a general formu-
lation of independent policy optimization, f -divergence
policy optimization, and discuss its generality and lim-
itation. Then, based on this formulation, we propose
total variation policy optimization (TVPO), prove the
convergence of TVPO in fully decentralized learning,
and provide a practical algorithm.

Before diving into the discussion, we need to introduce
a simple two-player matrix game for later use. In this
matrix game, the two agents, Alice and Bob, both have
two actions and we denote them as {u0

A, u
1
A} for Alice

and {u0
B , u

1
B} for Bob. Each episode of this matrix

game has only one step. The rewards for the joint actions (u0
A, u

0
B), (u

0
A, u

1
B), (u

1
A, u

0
B) and

(u1
A, u

1
B) are a, b, c, and d respectively. The policies of Alice and Bob can be described with pt and

qt as that Alice will take action u0
A with probability pt and Bob will take action u0

B with probability
qt, where t represents the number of policy iterations. The full information of this matrix game is
illustrated in Table 1.

4.1 f -DIVERGENCE POLICY OPTIMIZATION

The f -divergence policy optimization is formulated as follows,

πi
new = argmax

πi

∑
ai

πi(ai|s)Qπold
i (s, ai)− ωDf

(
πi(·|s)∥πi

old(·|s)
)
, (4)

where Df (p∥q) ≜
∑

i qif
(

pi

qi

)
is f -divergence (Ali & Silvey, 1966) and according to the definition

of f -divergence, f : [0,∞) → (−∞,+∞] is convex and f(1) = 0. This formulation contains an
additional term Df

(
πi(·|s)∥πi

old(·|s)
)
, which describes the distance between πi and πi

old.

There are several studies considering the distance between πold and πnew. The trust region in TRPO
(Schulman et al., 2015) and PPO (Schulman et al., 2017) is actually KL-divergence between πold

and πnew, while Nachum et al. (2017) extend entropy regularization to a more general formulation
with KL-divergence. Unlike these studies that just use KL-divergence as the distance measure, we
would like to discuss a more general formulation. So we use f -divergence, which is widely used
for describing the distance between two distributions. Also, KL-divergence is a special case of
f -divergence with f(x) = x log x and we have many other choices for f -divergence, such as f(x) =
|x−1|

2 corresponding to total variation distance Df (p∥q) = 1
2

∑
i |pi − qi| and f(x) = (1 −

√
x)2

corresponding to Hellinger distance Df (p∥q) =
√∑

i(
√
pi −

√
qi)2.

To further discuss f -divergence policy optimization, we need to find the solution to the optimization
objective (4) and we have the following lemma.

Lemma 4.1. Given a fixed function f and the corresponding f -divergence Df , let g(x) = (f ′)−1(x),
then the solution to Equation (4) is

πi
new(ai|s) = max{πi

old(ai|s)g
(
λs +Qπold

i (s, ai)

ω

)
, 0}, (5)

where λs satisfies ∑
ai

max{πi
old(ai|s)g

(
λs +Qπold

i (s, ai)

ω

)
, 0} = 1.

This proof is included in Appendix A.1 and follows Yang et al. (2019).

We use the two-player matrix game between Alice and Bob (i.e., Table 1) to discuss the limitation
of f -divergence policy optimization. As for the policy iteration in the matrix game, we have the
following proposition.
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Proposition 4.2. Suppose g(x) ≥ 0 and let M = b+ c−a−d, p̂ = c−d
M , and q̂ = b−d

M . If the payoff
matrix of the two-player matrix game satisfies M > 0, and Alice and Bob update their policies with

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Qπt
i (s, ai)− ωDf

(
πi(·|s)∥πi

t(·|s)
)
, (6)

then we have (1) pt ≥ p̂ ⇒ qt+1 ≤ qt; (2) pt ≤ p̂ ⇒ qt+1 ≥ qt; (3) qt ≥ q̂ ⇒ pt+1 ≤
pt; (4) qt ≤ q̂ ⇒ pt+1 ≥ pt.

The proof is included in Appendix A.2. With Proposition 4.2, we can build a case where the joint
policy sequence can only converge to the sub-optimum. We assume the matrix game satisfies the
condition b > c > max{a, d}, then the optimal joint policy is (pt, qt) = (1, 0) corresponding to
the joint action (u0

A, u
1
B) and reward b. Moreover, the condition b > c > max{a, d} also means

p̂ ∈ (0, 1) and q̂ ∈ (0, 1). If at iteration t, the condition qt > q̂, pt < p̂ is satisfied, then qt+1 > qt >
q̂, pt+1 < pt < p̂. By induction, we know that ∀t′ ≥ t, qt′+1 > qt′ > q̂, pt′+1 < pt′ < p̂. As the
sequence {pt} and {qt} are both bounded in the interval [0, 1], we know the sequence {pt} and {qt}
will converge to p∗ and q∗. As for p∗ and q∗, we have the following corollary.
Corollary 4.3. If at iteration t, the condition qt > q̂, pt < p̂ is satisfied, then the sequence {pt} and
{qt} will converge to p∗ = 0 and q∗ = 1 respectively.

The proof is included in Appendix A.3. Corollary 4.3 tells us if once qt > q̂, pt < p̂, then the
joint policy converges to the sub-optimal solution (p∗, q∗) = (0, 1) corresponding to the joint action
(u1

A, u
0
B) and reward c. So if the initial policy p0 and q0 satisfies the condition q0 > q̂, p0 < p̂, then

the joint policy converges to the sub-optimal policy. We further illustrate this in the experiment.

4.2 TOTAL VARIATION POLICY OPTIMIZATION

The f -divergence formulation (4) can be trapped in the sub-optimal joint policy even in a simple
two-player matrix game. This shows the upper bound of f -divergence policy optimization, so we
should not expect such a policy iteration could obtain the optimal joint policy in fully decentralized
learning in all MDPs. Fortunately, we have found an algorithm that accords with the f -divergence
formulation and has the convergence guarantee. This algorithm uses the total variation distance for
f -divergence, so we call it total variation policy optimization (TVPO). The convergence guarantee of
TVPO shows the potential of the f -divergence formulation.

Before we introduce TVPO and prove its convergence, we need some definitions and lemmas. We
use DTV(p∥q) ≜ 1

2

∑
i |pi − qi| to represent the total variation distance. We define a new V-function

V π
ρ (s) and a new Q-function Qπ

ρ (s, ai, a−i) given joint polices π and ρ as follows:

V π
ρ (s) =

1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)Qπ
ρ (s, ai, a−i)− ωDf

(
πi(·|s)||ρi(·|s)

)
, (7)

Qπ
ρ (s, ai, a−i) = r(s, ai, a−i) + γE

[
V π
ρ (s′)

]
. (8)

As the definition (7) is a fixed-point equation, we need to prove that this definition is well-defined. So
we define an operator Γπ

ρ as follows:

Γπ
ρV (s) =

1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)
(
r(s,a) + γE [V (s′)]

)
− ωDf

(
πi(·|s)∥ρi(·|s)

)
.

(9)

Then for any value function V1 and V2, we have∥∥Γπ
ρV1(s)− Γπ

ρV2(s)
∥∥
∞ = γ

∥∥∥ 1

N

∑
i

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)
(
E [V1(s

′)]− E [V2(s
′)]
)∥∥∥

∞

≤ γ∥V1(s)− V2(s)∥∞.

So the operator Γπ
ρ is a γ-contraction, which means V π

ρ (s) is the unique fixed-point of (7) and the
definition (7) is well-defined.

To apply total variation distance to independent policy optimization, we have the following lemma.

5
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Lemma 4.4. Suppose πnew, πold, and π are three joint policies. Let L = 2rmax

1−γ , then for any state s,
we have ∑

a

πnew(a|s)Qπ(s,a) ≥ 1

N

N∑
i=1

∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

− (N − 1)L

N

N∑
i=1

DTV

(
πi
new(·|s)∥πi

old(·|s)
)
. (10)

The proof is included in Appendix A.4. Lemma 4.4 is a critical bridge between normal value function
V π and our new value function V π

ρ , and we can witness its effect in our later discussion. Moreover,
we also know that V π

π = V π and Qπ
π = Qπ .

We can also realize the monotonic improvement with a fully decentralized optimization objective via
the following proposition.
Proposition 4.5. Given a fixed joint policy ρ and an old joint policy πold, if all the agents update
their policies according to

πi
new = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

ρ−i(a−i|s)Qπold
ρ (s,a)− ωDf

(
πi(·|s)∥ρi(·|s)

)
, (11)

then we have V πold
ρ (s) ≤ V πnew

ρ (s), Qπold
ρ (s,a) ≤ Qπnew

ρ (s,a), ∀s ∈ S, a ∈ A.

The proof is included in Appendix A.5. According to (11), by taking πold = ρ = πt and πnew =
πt+1, we can design a policy iteration as follows:

πi
t+1 =argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
t (a−i|s)Qπt(s, ai, a−i)− ωDf

(
πi(·|s)||πi

t(·|s)
)
. (12)

This policy iteration resolves the f -divergence formulation (4). According to Proposition 4.5, we
know the joint policy sequence {πt} has the property V

πt+1
πt (s) ≥ V πt

πt
(s) = V πt(s). By taking

Df = DTV and ω = (N−1)M
N , we can combine these results with Lemma 4.4 to obtain the

convergence guarantee.

Theorem 4.6. Let ω = (N−1)M
N . If all agents update their policies according to

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
t (a−i|s)Qπt(s, ai, a−i)− ωDTV

(
πi(·|s)∥πi

t(·|s)
)

= argmax
πi

∑
ai

πi(ai|s)Qπt
i (s, ai)− ωDTV

(
πi(·|s)∥πi

t(·|s)
)
, (13)

then we have V
πt+1
πt (s) ≥ V πt(s) ≥ V πt

πt−1
(s) ≥ V πt−1(s). Moreover, the sequence {V πt} and

{πt} converge to V ∗ and π∗ respectively, which satisfy the fixed-point equation,

πi
∗ = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
∗ (a−i|s)

(
r(s, ai, a−i) + γE [V ∗(s′)]

)
− ωDTV

(
πi(·|s)||πi

∗(·|s)
)
.

The proof is included in Appendix A.6.

We further discuss the coefficient ω. Intuitively, if ω is too large, then the policy will not be
updated by (13), i.e., (13) only has a trivial solution πi

t+1 = πi
t. A similar conclusion has been

mentioned in Schulman et al. (2015). For the total variation distance case, the threshold value of ω is
M = 2rmax

1−γ = 2∥Q∥∞. For any ω̃ > M , we can show that (13) only has a trivial solution πi
t+1 = πi

t.
From the property of (13), we have〈

πi
t+1, Q

πt
〉
− ω̃

2

∥∥πi
t+1 − πi

t

∥∥
1
≥
〈
πi
t, Q

πt
〉
⇒
〈
πi
t+1 − πi

t, Q
πt
〉
− ω̃

2

∥∥πi
t+1 − πi

t

∥∥
1
≥ 0

⇒
(
∥Qπt∥∞ −

ω̃

2

)∥∥πi
t+1 − πi

t

∥∥
1
≥ 0. (14)
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The step (14) is from the inequality
〈
πi
t+1 − πi

t, Q
πt
〉
≤
∥∥πi

t+1 − πi
t

∥∥
1
∥Qπt∥∞. Thus, the condition

ω̃ > M indicates
∥∥πi

t+1 − πi
t

∥∥
1
= 0 which results in the trivial solution. Our choice of ω = (N−1)M

N
has two critical properties. On the one hand, if N = 1, then ω = 0 and (13) degenerates to a
single-agent policy update. On the other hand, ω < M indicates the possibility of the non-trivial
update πi

t+1 ̸= πi
t. We can show the non-trivial update of (13) in a two-player matrix game in Table 1

with both theoretical and empirical results. Due to space limitations, more details about the non-trivial
update are included in Appendix F.4.

Remark. The policy optimization objective of TVPO is (13). An important property of (13) is that
it can be optimized individually and independently by each agent and the joint policy converges
according to Theorem 4.6. Although (13) is similar to the surrogate of DPO (Su & Lu, 2022b), there
are two main differences between TVPO and DPO. The first difference is that from the property
D2

TV(p∥q) ≤ DKL(p∥q), the bound DTV of TVPO is tighter than
√
DKL in DPO. The second

difference is that TVPO obtains the convergence guarantee through policy iteration while DPO
obtains the convergence guarantee through the surrogate of joint TRPO objective. A tighter bound
means the iteration is less likely to be influenced by the trivial update. More details of the discussion
about the difference between TVPO and DPO are included in Appendix F.5. We also investigate their
empirical performance in the experiments.

4.3 THE PRACTICAL ALGORITHM OF TVPO

Practically, if we use the objective (13) directly, then the large coefficient ω will greatly limit the step
size of the policy update, and the algorithm will not work (Schulman et al., 2015). So we follow
previous studies such as PPO (Schulman et al., 2017) to use an adaptive coefficient βi to replace ω,
then the policy optimization objective can be rewritten as

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Aπt
i (s, ai)− βiDTV

(
πi(·|s)∥πi

t(·|s)
)
, (15)

where Aπt
i (s, ai) = Qπt

i (s, ai)−Eπi
t
[Qπt

i (s, ai)] = Qπt
i (s, ai)−V πt(s). Here we use the baseline

V πt(s) to reduce the variance in training.

The update rule of βi follows the practice of PPO. We can choose a hyperparameter d, which means
we expect the total variation distance should be around d. Then we can update βi according to the
value of DTV

(
πi
t+1(·|s)∥πi

t(·|s)
)

in training as follows:

if DTV

(
πi
t+1(·|s)∥πi

t(·|s)
)
> d ∗ δ, then βi ← βi × α

if DTV

(
πi
t+1(·|s)∥πi

t(·|s)
)
< d/δ, then βi ← βi/α,

(16)

where δ and α are two constants and we choose δ = 1.5 and α = 2 like the choice of PPO.

For the critic, since the policy update needs to calculate Aπt
i (s, ai) = Eπ−i

t
[r(s, ai, a−i)+γV πt(s′)−

V πt(s)], we take an individual state value function V i(s) as the critic for each agent i and approximate
Aπt

i (s, ai) with Âi = r + γV i(s′)− V i(s). The critic is updated as follows:

Li
critic = E

[
(V i(s)− yi)

2
]
, (17)

where yi = r + γV i(s′) or other target values.

When facing continuous action space, we usually use Gaussian distribution as the policy. However,
there is no closed-form solution for total variation distance between two Gaussian distributions, to
the best of our knowledge. To avoid optimization difficulties, we replace total variation distance
with Hellinger distance DH(p∥q) =

√∑
i(
√
pi −

√
qi)2 in the environment with continuous action

space, since there is a closed-form solution for Hellinger distance between two Gaussian distribu-
tions. Moreover, Hellinger distance has a critical property related to total variation distance that
DTV(p∥q) ≤ DH(p∥q) and the proof is included in Appendix A.7.

With this property, we can replace DTV with DH in Lemma 4.4 and Theorem 4.6, while we can still
obtain the same convergence guarantee. Thus, for the continuous action space, we use the following
policy optimization objective:

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Aπt
i (s, ai)− βiDH

(
πi(·|s)∥πi

t(·|s)
)
. (18)

The practical algorithm of TVPO is summarized in Algorithm 1 in Appendix D.
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Figure 1: Learning curves of KL-iteration, TV-iteration, χ2-iteration, and H-iteration over four
different sets of initialization in the matrix game (Table 1).
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Figure 2: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO on the maps 2s3z,
3s5z, 8m, MMM2 and 27m_vs_30m in SMAC.

5 EXPERIMENTS

The experiment contains two main parts. The first part is to verify the limitation of f -divergence
policy optimization as we have discussed in Section 4.1 through the matrix game. The second part is
to evaluate the performance of TVPO in three popular cooperative MARL benchmarks including
SMAC (Samvelyan et al., 2019), multi-agent MuJoCo (Peng et al., 2021) and SMACv2 (Ellis et al.,
2023), compared with state-of-the-art fully decentralized algorithms. All learning curves correspond
to five different random seeds and the shaded area corresponds to the 95% confidence interval. To
ensure reproducibility, our codes are included in the supplementary material and will be open source
upon acceptance. Due to the space limit, additional experiments are included in Appendix E.

5.1 VERIFICATION IN MATRIX GAME

In this section, we choose a = 5, b = 7, c = 6, d = 4 for the matrix game, which satisfies
the condition b > c > max{a, d} as mentioned in Section 4.1. We use four different specific
f -divergences: KL-divergence, total variation distance, χ2-distance, and Hellinger distance to
build four different iterations of (4). We call these four iterations as KL-iteration, TV-iteration,
χ2-iteration, and H-iteration respectively. We test these iterations over four sets of initialization:
init_1 (p0, q0) = (0.4, 0.8); init_2 (p0, q0) = (0.6, 0.6); init_3 (p0, q0) = (0.49, 0.76); init_4
(p0, q0) = (0.51, 0.74). For the matrix game, we can calculate that (p̂, q̂) = (0.5, 0.75) as defined
in Proposition 4.2. From the discussion in Section 4.1 we know that init_1 and init_3 satisfy the
condition p0 < p̂, q0 > q̂, which means the converged policy should be the sub-optimal policy
(p∗, q∗) = (0, 1) with reward c = 6, and init_2 and init_4 satisfy the condition p0 > p̂, q0 < q̂,
which means the converged policy should be the optimal policy (p∗, q∗) = (1, 0) with reward b = 7.
The empirical results are illustrated in Figure 1. We can find that the empirical results agree with our
theoretical derivation for all four iterations over the four sets of initialization. The learning curves of
the policy p and q are included in Figure 7 in Appendix E. These empirical results corroborate our
discussion about the limitation of f -divergence formulation.

5.2 EVALUATION OF TVPO

We compare TVPO with four baselines: IQL (Tan, 1993), IPPO (de Witt et al., 2020), I2Q (Jiang &
Lu, 2022), and DPO (Su & Lu, 2022b). A brief introduction of these baseline algorithms is included
in Appendix F.1. In our experiments, all the algorithms use the independent parameter to agree with
the fully decentralized setting, and parameter sharing is banned. More details about the experiment
settings and hyperparameters are available in Appendix B and C.

SMAC is a popular benchmark in cooperative MARL with high-dimensional features and partial
observability property. We select five maps in SMAC, 2s3z, 8m, 3s5z, MMM2 and 27m_vs_30m for
our experiments. These maps cover all three difficulty levels in SMAC: 2s3z and 8m are easy maps;
3s5z is a hard map; MMM2 and 27m_vs_30m are super-hard maps.
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Figure 3: Learning curves of TVPO compared with IDDPG, IPPO I2Q, and DPO in 3-agent Hopper,
3-agent Walker2d, 3-agent HalfCheetah and 4-agent Ant in multi-agent MuJoCo.
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Figure 4: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO in
5_vs_5_terran,5_vs_5_protoss,5_vs_5_zerg,10_vs_10_terran,10_vs_10_protoss and 10_vs_10_zerg
in SMACv2.

We show the empirical results of these algorithms in Figure 2. In the super-hard maps MMM2 and
27m_vs_30m, all the algorithms can hardly win, so we use episode rewards as the evaluation metric
to show the difference more clearly. As illustrated in Figure 2, TVPO has the best performance in all
five maps. The performance of DPO and TVPO is similar in the map 8m, and the reason may be that
8m is very easy and both of them can obtain nearly 100% win rates within one million steps. In the
other four maps, the differences between TVPO and DPO are more clear.

Multi-Agent MuJoCo is a robotic locomotion control environment designed for multi-agent scenarios
with continuous state and action spaces, based on the single-agent MuJoCo framework (Todorov et al.,
2012). In this environment, each agent controls a different part of a robot to perform various tasks.
We use independent DDPG (Lillicrap et al., 2016) (IDDPG) to replace IQL for continuous action
spaces. As discussed in Section 4.3, we use Hellinger distance to replace total variation distance for
continuous action space in TVPO. We select 4 tasks for our experiments: 3-agent Hopper, 3-agent
HalfCheetah, 3-agent Walker2d, and 4-agent Ant. In all these tasks, we set agent_obsk=2.

The learning curves of the multi-agent MuJoCo tasks are illustrated in Figure 3. We can find that
TVPO substantially outperforms the baselines except in 3-agent HalfCheetah, where DPO obtains
similar performance to TVPO. The difference between the performance of the value-based algorithms
and the policy-based algorithms is larger in multi-agent MuJoCo compared with SMAC. The reason
may be that the continuous action space in fully decentralized learning brings more difficulty in
training for the value-based algorithms.

SMACv2 (Ellis et al., 2023) is a more stochastic and difficult environment based on SMAC, where
each agent will control different units and the initial position will also be randomly determined.
We select two settings, 5_vs_5 and 10_vs_10, among three races, terran, protoss and zerg, a total
of six tasks from SMACv2 in our experiments. The empirical results are illustrated in Figure 4.
These tasks are difficult for fully decentralized learning, so we also use the cumulative reward as the
metric. We find that TVPO performs better than the four baselines, similar to the results in SMAC.
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Figure 5: Learning curves of the TVPO with dif-
ferent hyperparameter d in 10_vs_10_protoss in
SMAC-v2.

In all three environments, TVPO obtains the best
performance in all the evaluated tasks compared
with the four baselines, and the differences be-
tween TVPO and the other baselines are obvious
in most tasks. The performance of TVPO empir-
ically verifies our discussion about the conver-
gence guarantee of TVPO and the effectiveness
of TVPO.

5.3 ABLATION STUDY

We select the 10_vs_10_protoss task in SMAC-v2 for the ablation study of the hyperparameter d, α
and β. All the learning curves correspond to three random seeds and the shaded area corresponds to
95% confidence interval.
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Figure 6: Learning curves of the TVPO with different combinations of hyperparameter α and δ in
10_vs_10_protoss in SMAC-v2.

For the ablation study of d, we compare the performance of TVPO with d ∈
{0.0001, 0.001, 0.01, 0.1, 1.0}. The empirical results are illustrated in Figure 5. Intuitively, d rep-
resents the expected distance of DTV between the old policy and the new policy. If d is small,
corresponding to the learning curves d = 0.0001 and d = 0.001, the step size of the policy update is
limited, which may result in relatively low performance. If d is large, corresponding to the learning
curves d = 1.0, the policy update may exceed the trust region, which is away from the convergence
condition and results in oscillating curves. There is a trade-off for d. Therefore, the appropriate
choices d = 0.01 and d = 0.1 have the best performance in this task.

For the ablation study of the hyperparameter α and δ, we choose α ∈ {1.1, 1.5, 2} and δ ∈ {2, 4, 6}.
The empirical results are shown in Figure 6. In the first line, we control α to be the same in each plot.
In the second line, we control δ to be the same in each plot. Intuitively, α represents the adjustment
strength of the coefficient βi and δ represents the tolerance of the expected distance. A smaller δ
means more frequent adjustments. The empirical results show that α should match δ, i.e., a smaller
adjustment strength (a smaller α) should correspond to more frequent adjustments (a smaller δ) and
vice versa. A good combination of (α, δ) means a good ability to keep the coefficient βi close to the
expected distance d. Specifically, among the values of α and δ we chosen, from the perspective of α,
α = 1.1 and α = 1.5 are small values corresponding to the best value δ = 2; from the perspective of
δ, δ = 4 and δ = 6 are large values corresponding to the best value α = 3.

6 CONCLUSION AND LIMITATIONS

In this paper, we propose f -divergence policy optimization, a general formulation of independent
policy optimization in cooperative multi-agent reinforcement learning, and analyze the policy iteration
of such a formulation. We discuss the limitation of this formulation, i.e., convergence to only
sub-optimal policy, and verify it by the empirical results in a two-player matrix game. Based on
f -divergence policy optimization, we propose a novel independent learning algorithm, TVPO, and
prove its convergence in fully decentralized learning. Empirically, we evaluate TVPO against four
baselines in three environments. The empirical results show that TVPO outperforms all the baselines,
which verifies the effectiveness of TVPO.

The main limitation of our work is the approximations in the practical algorithms which may not
preserve the theoretical properties including the convergence. Additionally, though the learning of
decentralized critic is unbiased, it may be troubled with the variance especially in multi-agent settings.
Moreover, TVPO still requires on-policy updates which is inconvenient especially in multi-agent
settings.
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Appendices
A PROOFS

A.1 PROOF OF LEMMA 4.1

Proof. The Lagrangian function of (4) is as follows:

L =
∑
ai

πi(ai|s)Qπold
i (s, ai)− ω

∑
ai

πi
old(ai|s)f

(
πi(ai|s)
πi
old(ai|s)

)

+ λs

(∑
ai

πi(ai|s)− 1

)
+
∑
ai

βi(ai|s)πi(ai|s),

where λs and β(ai|s) are the Lagrangian multiplier.

Then by the KKT condition we have

∂L

∂πi(ai|s)
= Qπold

i (s, ai)− ωf ′
(

πi(ai|s)
πi
old(ai|s)

)
+ λs + βi(ai|s) = 0,

so we can resolve πi(ai|s) as

πi(ai|s)
πi
old(ai|s)

= g

(
Qπold

i (s, ai) + λs + βi(ai|s)
ω

)
(19)

From the complementary slackness we know that β(ai|s)πi(ai|s) = 0, so we can rewrite (19) as

πi(ai|s)
πi
old(ai|s)

= max

{
g

(
Qπold

i (s, ai) + λs

ω

)
, 0

}
, (20)

πi(ai|s) = max

{
πi
old(ai|s)g

(
Qπold

i (s, ai) + λs

ω

)
, 0

}
. (21)

A.2 PROOF OF PROPOSITION 4.2

Proof. To discuss the monotonicity of the policies pt and qt, let QA
t (0) and QA

t (1) represent the
expected reward Alice will obtain by taking action u0

A and u1
A respectively. Simlilarly, we can also

define QB
t (0) and QB

t (1) for Bob.

From the definition, we have QA
t (0) = qt · a+ (1− qt) · b = b+ (a− b)qt. Similarly we can obtain

that QA
t (1) = d+ (c− d)qt, QB

t (0) = c+ (a− c)pt and QB
t (1) = d+ (b− d)pt.

Combining (21) with the condition g(x) ≥ 0, then we have

pt+1 = ptg

(
(a− b)qt + b+ λA

t

ω

)
, 1− pt+1 = (1− pt)g

(
(c− d)qt + d+ λA

t

ω

)

⇒ 1

pt+1
− 1 = (

1

pt
− 1)

g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) . (22)

From (22) we can find that

pt+1 ≤ pt ⇔
g
(

(c−d)qt+d+λA
t

ω

)
g
(

(a−b)qt+b+λA
t

ω

) ≥ 1

⇔ (c− d)qt + d ≥ (a− b)qt + b (23)
⇔ (b+ c− a− d)qt ≥ b− d

⇔ qt ≥ q̂.
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The critical step (23) is from the combination of the condition g(x) ≥ 0 and the property g(x) is
non-decreasing.

Similarly we can obtain that pt ≥ p̂ ⇒ qt+1 ≤ qt; pt ≤ p̂ ⇒ qt+1 ≥ qt; qt ≥ q̂ ⇒ pt+1 ≤
pt; and qt ≤ q̂ ⇒ pt+1 ≥ pt.

A.3 PROOF OF COROLLARY 4.3

Proof. From the iteration of {pt} we have

pt+1

1− pt+1
=

pt
1− pt

g
(

(a−b)qt+b+λA
t

ω

)
g
(

(c−d)qt+d+λA
t

ω

) . (24)

Let t→∞ in both side of (24), we know that

p∗

1− p∗

 g
(

(a−b)q∗+b+λA
∗

ω

)
g
(

(c−d)q∗+d+λA
∗

ω

) − 1

 = 0. (25)

As q∗ > q̂, we know that
g

(
(a−b)q∗+b+λA

∗
ω

)
g

(
(c−d)q∗+d+λA

∗
ω

) < 1. So we can rewrite (25) as p∗

1−p∗ = 0 and resolve

p∗ = 0.

As for q∗, we can follow a similar idea. From the iteration of {qt} we have

1

qt+1
− 1 = (

1

qt
− 1)

g
(

(b−d)pt+d+λB
t

ω

)
g
(

(a−c)pt+c+λB
t

ω

) . (26)

Let t→∞ in both side of (26) , we know that

1− q∗

q∗

g
(

(b−d)p∗+d+λB
∗

ω

)
g
(

(a−c)p∗+c+λB
∗

ω

) − 1

 = 0. (27)

As p∗ < p̂, we know that
g

(
(b−d)p∗+d+λB

∗
ω

)
g

(
(a−c)p∗+c+λB

∗
ω

) < 1. Then we can rewrite (27) as 1−q∗

q∗ = 0 and obtain

q∗ = 1.
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A.4 PROOF OF LEMMA 4.4

Proof. For any fixed i, consider the following difference∣∣∣∣∣∣
∑
a

πnew(a|s)Qπ(s,a)−
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

∣∣∣∣∣∣
=

∣∣∣∣∣∣
∑
ai

πi
new(ai|s)

∑
a−i

(
π−i
new(a−i|s)− π−i

old(a−i|s)
)
Qπ(s, ai, a−i)

∣∣∣∣∣∣ (28)

≤
∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ |Qπ(s, ai, a−i)| (29)

≤ M

2

∑
ai

πi
new(ai|s)

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (30)

=
M

2

∑
a−i

∣∣π−i
new(a−i|s)− π−i

old(a−i|s)
∣∣ (31)

=
M

2

∑
a−i

∣∣∣∣∣∣
N∑

k=1,k ̸=i

π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)

∣∣∣∣∣∣ (32)

≤ M

2

∑
a−i

N∑
k=1,k ̸=i

∣∣π1:k−1
new (a1:k−1|s)πk:N

old (ak:N |s)− π1:k
new(a1:k|s)πk+1∼N

old (ak+1:N |s)
∣∣ (33)

=
M

2

N∑
k=1,k ̸=i

∑
ak

∣∣πk
new(ak|s)− πk

old(ak|s)
∣∣ (34)

= M

N∑
k=1,k ̸=i

DTV

(
πk
new(·|s)∥πk

old(·|s)
)

(35)

where π1:k−1
new denotes π1

new × π2
new × · · ·πk−1

new and πi
new will be skipped if involved, and a1:k−1 has

similar meanings as a1:k−1 = a1 × a2 × · · · ak−1. In (29) and (33), we use the triangle inequality
of the absolute value. In (30), we use the property Qπ(s,a) ≤ rmax

1−γ = M
2 from the definition of

Q-function. In (32), we insert N − 1 terms between π−i
new(a−i|s) and π−i

old(a−i|s) to make sure the
adjacent two terms are only different in one individual policy.

By rewriting the conclusion above, for any agent i, we have∑
a

πnew(a|s)Qπ(s,a) ≥
∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

−M

N∑
k=1,k ̸=i

DTV

(
πk
new(·|s)∥πk

old(·|s)
)
. (36)

Then, by applying (36) to i = 1, 2, · · · , N and add all these N inequalities together, we have

∑
a

πnew(a|s)Qπ(s,a) ≥ 1

N

N∑
i=1

∑
ai

πi
new(ai|s)

∑
a−i

π−i
old(a−i|s)Qπ(s, ai, a−i)

− (N − 1)M

N

N∑
i=1

DTV

(
πi
new(·|s)∥πi

old(·|s)
)
.
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A.5 PROOF OF PROPOSITION 4.5

Proof. By the definition of V πold
ρ we have

V πold
ρ (s) =

1

N

∑
i

∑
ai

πi
old(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi
old(·|s)∥ρi(·|s)

)
≤ 1

N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)Qπold
ρ (s, ai, a−i)− ω

∑
i

Df

(
πi
new(·|s)∥ρi(·|s)

)
(37)

=
1

N

∑
i

∑
ai

πi
new(ai|s)

∑
a−i

ρ−i(a−i|s)
(
r(s, ai, a−i) + γE

[
V πold
ρ (s′)

])
− ω

∑
i

Df

(
πi
new(·|s)∥ρi(·|s)

)
(38)

≤ · · · (expand V πold
ρ (s′) and repeat replacing πi

old with πi
new ) (39)

≤ V πnew
ρ (s). (40)

In (37), we use the definition of πi
new in (11). (38) is from the definition of Qπold

ρ (s, ai, a−i). In (39),
we repeatedly expand V πold

ρ according to its definition and replace πi
old with πi

new by the optimality
of πi

new like what we have done in (37). After we replace all πi
old with πi

new, then we obtain V πnew
ρ (s)

according to the definition of V πnew
ρ (s) in (40).

With the result V πold
ρ (s) ≤ V πnew

ρ (s), we know Qπold
ρ (s,a) = r(s,a) + γE[V πold

ρ (s′)] ≤ r(s,a) +
γE[V πnew

ρ (s′)] = Qπnew
ρ (s,a).

A.6 PROOF OF THEOREM 4.6

Proof. From the Proposition 4.5, we know V
πt+1
πt (s) ≥ V πt(s). Thus, we just need to prove

V πt(s) ≥ V πt
πt−1

(s).

From the definition of V πt(s) we have

V πt(s) =
∑
a

πt(a|s)Qπt(s,a)

≥ 1

N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s)Qπt(s, ai, a−i)

− ω

N∑
i=1

DTV

(
πi
t(·|s)∥πi

t−1(·|s)
)

(41)

=
1

N

N∑
i=1

∑
ai

πi
t(ai|s)

∑
a−i

π−i
t−1(a−i|s) (r(s, ai, a−i) + γE[V πt(s′)])

− ω

N∑
i=1

DTV

(
πi
t(·|s)∥πi

t−1(·|s)
)

(42)

≥ · · · (expand V πt(s′) and repeat replacing π−i
t with π−i

t−1 ) (43)

≥V πt
πt−1

(s). (44)

(41) is from Lemma 4.4, and (42) is from the definition of Qπt(s, ai, a−i). In (43), we repeatedly
expand V πt and replace the π−i

t with π−i
t−1 by Lemma 4.4 like what we have done in (41). After we

replace all π−i
t with π−i

t−1, then we obtain V πt
πt−1

(s) in (44) according to the definition of V πt
πt−1

(s).

From the inequalities V
πt+1
πt (s) ≥ V πt(s) ≥ V πt

πt−1
(s) ≥ V πt−1(s), we know that the sequence

{V πt} improves monotonically. Combining with the condition that the sequence {V πt} is bounded,
we know that {V πt} will converge to V ∗. According to the definition, the sequence {Qπt} and {πt}
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will also converge to Q∗ and π∗ respectively, where π∗ satisfies the following fixed-point equation:

πi
∗ = argmax

πi

∑
ai

πi(ai|s)
∑
a−i

π−i
∗ (a−i|s)Q∗(s, ai, a−i)− ωDTV

(
πi(·|s)∥πi

∗(·|s)
)
.

A.7 PROOF OF DTV(p∥q) ≤ DH(p∥q)

Proof.

D2
TV(p∥q) =

1

4

(∑
i

|pi − qi|

)2

=
1

4

(∑
i

|√pi −
√
qi| |
√
pi +

√
qi|

)2

≤ 1

4

(∑
i

|√pi −
√
qi|2
)(∑

i

|√pi +
√
qi|2
)

(Cauchy–Schwarz inequality)

=
1

4
D2

H(p∥q)

(
2 + 2

∑
i

√
piqi

)
≤ D2

H(p∥q).

B EXPERIMENTAL SETTINGS

B.1 MPE

The three tasks are based on the original Multi-Agent Particle Environment (MPE) (Lowe et al., 2017)
(MIT license) and were initially used in Agarwal et al. (2020) (MIT license). The objectives of these
tasks are:

• Simple Spread: N agents must occupy the locations of N landmarks.
• Line Control: N agents must line up between two landmarks.
• Circle Control: N agents must form a circle around a landmark.

The reward in these tasks is the distance between all the agents and their target locations. We select
these tasks to maintain consistency with DPO (Su & Lu, 2022b) but set the number of agents N = 10
for these three tasks in our experiment.

B.2 MULTI-AGENT MUJOCO

Multi-agent MuJoCo (Peng et al., 2021) (Apache-2.0 license) is a robotic locomotion task featuring
continuous action space for multi-agent settings. The robot is divided into several parts, each
containing multiple joints. Agents in this environment control different parts of the robot. The type
of robot and the assignment of joints determine the task. For example, the task "HalfCheetah-3×2"
means dividing the robot "HalfCheetah" into three parts, with each part containing two joints. Details
of our experiment settings in multi-agent MuJoCo are listed in Table 2. The configuration specifies
the number of agents and the joints assigned to each agent. "Agent obsk" defines the number of
nearest agents an agent can observe.

B.3 STARCRAFT2

SMAC (Samvelyan et al., 2019) (MIT license) is a widely used environment for multi-agent rein-
forcement learning (MARL). In SMAC, agents receive rewards when they attack or kill an enemy
unit. The rewards for an episode are normalized to a maximum of 20, regardless of the number
of agents, to ensure consistency across tasks. An episode is considered won if the agents kill all
enemy units. The observation space for agents depends on the number of units involved in the task.
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Table 2: The task settings of multi-agent MuJoCo

task configuration agent obsk

HalfCheetah 3×2 2
Hopper 3×1 2

Walker2d 3×2 2
Ant 4×2 2

Typically, the observation is a vector with over 100 dimensions, containing information about all
units. Information about units outside an agent’s field of view is represented as zero in the observation
vector. More details on SMAC can be found in the original paper (Samvelyan et al., 2019). SMACv2
(Ellis et al., 2023) (MIT license) is an advanced version of SMAC. Unlike SMAC, SMACv2 allows
agents to control different types of units in different episodes, where the unit types are determined
by a distribution and a type list. Moreover, the initial positions of agents are randomly selected in
different episodes. With these properties, SMACv2 is more stochastic and difficult than SMAC. We
keep the configuration the same as the original paper (Ellis et al., 2023) among the selected tasks.

C TRAINING DETAILS

Our code of IPPO is based on the open-source code1 of MAPPO (Yu et al., 2021) (MIT license).
The original IPPO and MAPPO is actually implemented as a CTDE method with parameter sharing
and centralized critics. We modify the code for individual parameters and ban the tricks used by
MAPPO for SMAC. The network architectures and base hyperparameters of TVPO, DPO and IPPO
are the same for all the tasks in all the environments. We use 3-layer MLPs for the actor and the
critic and use ReLU as non-linearities. The number of the hidden units of the MLP is 128. We train
all the networks with an Adam optimizer. The learning rates of the actor and critic are both 5e-4.
The number of epochs for every batch of samples is 15 which is the recommended value in Yu et al.
(2021). For IPPO, the clip parameter is 0.2 which is the same as Schulman et al. (2017). For DPO, the
hyperparameter is set as the original paper (Su & Lu, 2022b) recommends. Our code of IQL is based
on the open-source code2 PyMARL (Apache-2.0 license) and we modify the code for individual
parameters. The default architecture in PyMARL is RNN so we just follow it and the number of the
hidden units is 128. The learning rate of IQL is also 5e-4. The architectures of the actor and critic of
IDDPG are 3-layer MLPs. The learning rates of the actor and critic are both 5e-4. Our code of I2Q is
from the open source code3 of the original paper (Jiang & Lu, 2022). We keep the hyperparameter of
I2Q the same as the default value of the open-source code in our experiments.

Table 3: Hyperparameters for all the experiments

hyperparameter value

MLP layers 3
hidden size 128
non-linear ReLU
optimizer Adam
actor_lr 5e-4
critic_lr 5e-4

numbers of epochs 15
initial βi 0.01

δ 1.5
ω 2
d 0.001

clip parameter for IPPO 0.2

1https://github.com/marlbenchmark/on-policy
2https://github.com/oxwhirl/pymarl
3https://github.com/jiechuanjiang/I2Q

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_1
KL_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_1
TV_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_1
Chi_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_1
H_q_init_1

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_2
KL_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_2
TV_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_2
Chi_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_2
H_q_init_2

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_3
KL_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_3
TV_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_3
Chi_q_init_3

0 10 20 30 40 50
0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_3
H_q_init_3

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00

pr
ob

ab
ilit

y

Matrix Game

KL_p_init_4
KL_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

TV_p_init_4
TV_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

Chi_p_init_4
Chi_q_init_4

0 10 20 30 40 50
iterations

0.00

0.25

0.50

0.75

1.00
Matrix Game

H_p_init_4
H_q_init_4

Figure 7: Learning curves of the policy p and q in the matrix game of KL-iteration, TV-iteration,
χ2-iteration, and H-iteration over four different sets of initialization. Each row corresponds to one set
of initialization and each column corresponds to one type of iteration.

The version of the game StarCraft2 in SMAC is 4.10 for our experiments in all the SMAC tasks. We
set the episode length of all the multi-agent MuJoCo tasks as 1000 in all of our multi-agent MuJoCo
experiments. We perform the whole experiment with a total of four NVIDIA A100 GPUs. We have
summarized the hyperparameters in Table 3.

D ALGORITHM

Algorithm 1. The practical algorithm of TVPO

1: for episode = 1 to M do
2: for t = 1 to max_episode_length do
3: select action ai ∼ πi(·|s)
4: execute ai and observe reward r and next state s′

5: collect ⟨s, ai, r, s′⟩
6: end for
7: Update the critic according to (17)
8: Update the policy according to (15) or (18)
9: Update βi according to (16).

10: end for

E ADDITIONAL EMPIRICAL RESULTS

Figure 7 illustrates the learning curve of the policy p and q in the matrix game of KL-iteration,
TV-iteration, χ2-iteration, and H-iteration over four different sets of initialization. We can observe
the policies of all four kinds of iterations converge.

MPE is a popular environment in cooperative MARL. MPE is a 2D environment and the objects are
either agents or landmarks. Landmark is a part of the environment, while agents can move in any
direction. With the relation between agents and landmarks, we can design different tasks. We use the
discrete action space version of MPE and the agents can accelerate or decelerate in the direction of
the x-axis or y-axis. We choose MPE for its partial observability.

The empirical results in MPE are illustrated in Figure 8. We find that TVPO obtains the best
performance in all three tasks. In this environment, the policy-based algorithms, TVPO, DPO, and
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Figure 8: Learning curves of TVPO compared with IQL, IPPO, I2Q, and DPO in 10-agent simple
spread, 10-agent line control, and 10-agent circle control in MPE.

IPPO, outperform the value-based algorithms, IQL and I2Q. I2Q has a better performance than IQL
in all three tasks.

F DISCUSSION

F.1 A BRIEF INTRODUCTION OF BASELINE ALGORITHMS

We select these four baseline algorithms as representatives of fully decentralized algorithms. IQL
(Tan, 1993) is a basic value-based algorithm for decentralized learning. IPPO is a basic policy-
based algorithm for decentralized learning. Both IQL and IPPO (de Witt et al., 2020) do not have
convergence guarantees, to the best of our knowledge. DPO (Su & Lu, 2022b) and I2Q (Jiang & Lu,
2022) are the recent policy-based algorithm and value-based algorithm respectively, and both of them
have been proved to have convergence guarantee.

IQL, IDDPG, and IPPO are relatively simple to understand, where each agent updates its policy
through an independent Q-learning, DDPG, or PPO. These algorithms simply extend the single-agent
RL algorithms into the MARL setting. They are heuristic algorithms without convergence guarantees
in fully decentralized MARL.

The idea of DPO is to find a lower bound of the joint policy improvement objective as a surrogate
which can also be optimized in a decentralized way for each agent. The formulation of DPO is as
follows:

πi
t+1 == argmax

πi

∑
ai

πi(ai|s)Qπt
i (s, ai)−M̂ ·

√
DKL

(
πi(·|s)∥πi

t(·|s)
)
−C·DKL

(
πi(·|s)∥πi

t(·|s)
)
.

DPO has been proven to improve monotonically and converge in fully decentralized MARL.

I2Q uses Q-learning from the perspective of QSS-value Qi(s, s
′). The QSS-value is updated with the

following operator:

ΓQi(s, s
′) = r + γmaxs′′∈N (s′) Qi(s

′, s′′),

where N (s′) is the neighbor set of state s′. In the deterministic environment and with some assump-
tion about the transition probability, Qi(s, s

′) will converge to the same Q-function for each agent i,
so the joint policy of agents will also converge in fully decentralized MARL.

F.2 UNARY FORMULATION

Before proposing the f -divergence formulation, we have studied another formulation. This formu-
lation follows the idea of entropy regularization and the extra term is only related to the policy πi

instead of the divergence between πi and πi
old. We refer to this approach as the unary formulation.

Though we discovered that the unary formulation has more significant drawbacks, the properties of
the unary formulation inspire us in the proof of TVPO. So we would like to provide the properties
and some empirical results of the unary formulation here for discussion.

The unary formulation is

πi
new = argmax

πi

∑
ai

πi(ai|s)Qπold
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
. (45)
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This formulation (45) follows the idea of Yang et al. (2019) which discusses the regularization
algorithm in single-agent RL. From the perspective of regularization, the update rule (45) can be
seen as optimizing the regularized objective J i

ϕ(π) = E
[∑

t γ
t
(
ri(s, ai) + ωϕ

(
πi(ai|s)

))]
, where

ri(s, ai) = Eπ−i [r(s, ai, a−i)]. The choice of ϕ is flexible, e.g., ϕ(x) = − log x corresponds to en-
tropy regularization and independent SAC (Haarnoja et al., 2018); ϕ(x) = 0 means (45) degenerates
to independent Q-learning (Tan, 1993); Moreover, there are many other options for ϕ corresponding
to different regularization (Yang et al., 2019). So we take (45) as the general unary formulation
of independent learning, where the ‘unary’ means the additional terms

∑
ai
πi(ai|s)ϕ

(
πi(ai|s)

)
is

only about one policy πi.

For further discussion of (45) , we can utilize the conclusion in Yang et al. (2019) as the following
lemma.

Lemma F.1. If ϕ(x) in (0, 1] and satisfies the following conditions: (1) ϕ(x) is non-increasing;
(2) ϕ(1) = 0; (3) ϕ(x) is differentiable; (4) fϕ(x) = xϕ(x) is strictly concave, then we have that
gϕ(x) = (f ′

ϕ)
−1(x) exists and gϕ(x) is decreasing. Moreover, the solution to the optimization

objective (45) can be described with gϕ(x) as follows:

πi
new(ai|s) = max{gϕ

(
λs −Qπold

i (s, ai)

ω

)
, 0}, (46)

where λs satisfies
∑

ai
max{gϕ

(
λs−Q

πold
i (s,ai)

ω

)
, 0} = 0.

Though it seems that ϕ(x) needs to satisfy four conditions, actually ϕ(x) = − log x for Shannon
entropy and ϕ(x) = k

q−1 (1− xq−1) for Tsallis entropy are still qualified.

However, unlike the single-agent setting, the update rule in Lemma F.1 may result in the convergence
to sub-optimal policy or even oscillations in policy in fully decentralized MARL.

We further discuss (45) in the two-player matrix game and have the following proposition.

Proposition F.2. Suppose that gϕ(x) ≥ 0 and gϕ(x) is continuously differentiable. If the payoff
matrix of the two-player matrix game satisfies b+ c < a+ d, and two agents Alice and Bob update
their policies with policy iteration as

πi
t+1 = argmax

πi

∑
ai

πi(ai|s)Qπt
i (s, ai) + ω

∑
ai

πi(ai|s)ϕ
(
πi(ai|s)

)
, (47)

then we have (1) pt > pt−1 ⇒ qt+1 > qt; (2) pt < pt−1 ⇒ qt+1 < qt; (3) qt > qt−1 ⇒ pt+1 >
pt; (4) qt < qt−1 ⇒ pt+1 < pt.

Proof. To discuss the monotonicity of the policies pt and qt, we need the solution in Lemma F.1.
Before applying the update rule (46), we need to calculate the decentralized critic given pt and qt.
Let QA

t (0) and QA
t (1) represent the expected reward Alice will obtain by taking action u0

A and u1
A

respectively. We can also define QB
t (0) and QB

t (1) for Bob.

From the definition, we have QA
t (0) = qt · a + (1 − qt) · b = b + (a − b)qt. Similarly we could

obtain that QA
t (1) = d+ (c− d)qt, QB

t (0) = c+ (a− c)pt and QB
t (1) = d+ (b− d)pt.

With (46) and the condition gϕ(x) ≥ 0, we have

pt+1 = gϕ

(
λA
t −QA

t (0)

ω

)
= gϕ

(
(b− a)qt + λA

t − b

ω

)
, 1− pt+1 = gϕ

(
(d− c)qt + λA

t − d

ω

)
gϕ

(
(b− a)qt + λA

t − b

ω

)
+ gϕ

(
(d− c)qt + λA

t − d

ω

)
= 1

qt+1 = gϕ

(
(c− a)pt + λB

t − c

ω

)
, 1− qt+1 = gϕ

(
(d− b)pt + λB

t − d

ω

)
gϕ

(
(c− a)pt + λB

t − c

ω

)
+ gϕ

(
(d− b)pt + λB

t − d

ω

)
= 1.
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We can rewrite these equations with some simplifications as follows,

mA(x) ≜
(b− a)x+ λA(x)− b

ω
, nA(x) ≜

(d− c)x+ λA(x)− d

ω
, hA(x) = gϕ (mA(x))

where λA(x) satisfies gϕ (mA(x)) + gϕ (nA(x)) = 1 (48)

mB(x) ≜
(c− a)pt + λB(x)− c

ω
, nB(x) ≜

(d− b)pt + λB(x)− d

ω
, hB(x) = gϕ (mB(x))

where λB(x) satisfies gϕ (mB(x)) + gϕ (nB(x)) = 1.

With these definitions, we know that pt+1 = hA(qt), qt+1 = hB(pt) and the monotonicity of pt and
qt is determined by the property of function hA(x) and hB(x). By applying the chain rule to (48),
we have:

1

ω
g′ϕ (mA(x)) (b− a+ λ′

A(x)) +
1

ω
g′ϕ (nA(x)) (d− c+ λ′

A(x)) = 0

⇒ λ′
A(x) = −

(b− a)g′ϕ(mA(x)) + (d− c)g′ϕ(nA(x))

g′ϕ(mA(x)) + g′ϕ(nA(x))
. (49)

Then we have:

h′
A(x) =

1

ω
g′ϕ (mA(x)) (b− a+ λ′

A(x)) (Apply chain rule) (50)

=
1

ω
(b+ c− a− d)

g′ϕ(nA(x))g
′
ϕ(mA(x))

g′ϕ(mA(x)) + g′ϕ(nA(x))
(Substitute (49) for λ′

A(x) ). (51)

Let M = b+c−a−d and M ′ = M
ω , then h′

A(x) = M ′ g′
ϕ(nA(x))g′

ϕ(mA(x))

g′
ϕ(mA(x))+g′

ϕ(nA(x)) . From the condition and

Lemma F.1 we know that M ′ < 0 and gϕ(x) is decreasing which means g′ϕ(x) < 0. Combining these
conditions together, we know h′

A(x) > 0 and hA(x) is increasing which means that pt+1 = hA(qt)
is increasing over qt, which means that qt > qt−1 ⇒ pt+1 > pt and qt > qt−1 ⇒ pt+1 > pt.

Similarly, we can obtain that h′
B(x) = M ′ g′

ϕ(nB(x))g′
ϕ(mB(x))

g′
ϕ(mB(x))+g′

ϕ(nB(x)) > 0 which could lead to the result
that pt > pt−1 ⇒ qt+1 > qt and pt < pt−1 ⇒ qt+1 < qt.

Proposition F.2 actually tells us pt+1 = hA(qt) is increasing over qt and qt+1 = hB(pt) is increasing
over pt when M = b+ c− a− d < 0. Intuitively, we can find two typical cases for policy iterations
with Proposition F.2. In the first case, if in a certain iteration t the conditions pt > pt−1 and qt > qt−1

are satisfied, then we know that pt′+1 > pt′ qt′+1 > qt′ ∀t′ ≥ t. As the sequences {pt} and {qt}
are both bounded in the interval [0, 1], we know that {pt} and {qt} will converge to p∗ and q∗ . The
property of p∗ and q∗ is determined by lA(x) ≜ hB(hA(x)) and lB(x) ≜ hA(hB(x)) respectively
as pt+2 = hB(hA(pt)) and qt+2 = hA(hB(qt)) and we have the following corollary.

Corollary F.3. |l′A(x)| ≤M ′2U2
ϕ, |l′B(x)| ≤M ′2U2

ϕ , where Uϕ is a constant determined by ϕ(x).

Proof. As g′ϕ(x) is continuous, let U1
A ≜ maxx∈[0,1] |g′ϕ(mA(x))|, U2

A ≜ maxx∈[0,1] |g′ϕ(nA(x))|,
U1
B ≜ maxx∈[0,1] |g′ϕ(mB(x))| and U2

B ≜ maxx∈[0,1] |g′ϕ(nB(x))|. Moreover, let Uϕ =

max{U1
A, U

2
A, U

1
B , U

2
B}, then apply the chain rule to l′A(x) and we have

|l′A(x)| = |h′
B(hA(x))h

′
A(x)|

= M ′2 |g
′
ϕ(nB(hA(x)))||g′ϕ(mB(hA(x)))|

|g′ϕ(mB(hA(x)))|+ |g′ϕ(nB(hA(x)))|
|g′ϕ(nA(x))||g′ϕ(mA(x))|
|g′ϕ(mA(x))|+ |g′ϕ(nA(x))|

(52)

= M ′2 |g
′
ϕ(nB(y))||g′ϕ(mB(y))|

|g′ϕ(mB(y))|+ |g′ϕ(nB(y))|
|g′ϕ(nA(x))||g′ϕ(mA(x))|
|g′ϕ(mA(x))|+ |g′ϕ(nA(x))|

(Let y = hA(x) ∈ [0, 1])

≤M ′2 |g
′
ϕ(mB(y))|+ |g′ϕ(nB(y))|

2

|g′ϕ(mA(x))|+ |g′ϕ(nA(x))|
2

(53)

≤M ′2U2
ϕ (54)
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Figure 9: Learning curves of the unary formulation in two matrix game cases, where x-axis is iteration
steps. The first and second figures show the performance and the policies p and q in the matrix game
case 2 respectively. The third and fourth figures show the performance and the policies p and q in the
matrix game case 3 respectively.

where (52) is from Proposition F.2, (53) is from the AM-GM inequality ab ≤ (a+b)2

2 , and (54) is
from the definition of Uϕ. Similarly, we can obtain |l′B(x)| ≤M ′2U2

ϕ .

Combining Corollary F.3 and Banach fixed-point theorem, we can find that as Uϕ is a constant, if
|M ′| < 1

Uϕ
, then we can find a constant L such that |l′A(x)| ≤M ′2U2

ϕ ≤ L < 1, which means that
the iteration pt+1 = lA(pt) is a contraction and p∗ is the unique fixed-point of lA. This conclusion can
be seen as that a smaller |M ′| corresponds to a larger probability of convergence. In this convergence
case, the converged policies p∗ and q∗ are usually not the optimal policy as the optimal policy is
deterministic, which can be seen in our empirical results.

In the second case, which may be more general, in iteration t, (pt − pt−1)(qt − qt−1) < 0, which
means pt > pt−1 and qt < qt−1 or pt < pt−1 and qt > qt−1. Without loss of generality, we assume
pt > pt−1 and qt < qt−1, then we know pt+1 < pt and qt+1 < qt from Proposition F.2. By induction
we can find that for any t′ ≥ t, the sequence {pt′} and {qt′} will increase and decrease alternatively,
which means that the policies may not converge but oscillate. We will show this in our experiments.
As the unary formulation may result in policy oscillation, we would like to find other formulations
for fully decentralized MARL.

F.3 VERIFICATION FOR UNARY FORMULATION

In this section, we choose ϕ(x) = − log x corresponding to the entropy regularization as the
representation for the unary formulation. We build two cases to show the convergence to the sub-
optimal policy and the policy oscillation. We choose a = 5, b = 6, c = 3, d = 5 as case 2 and
a = 7, b = 5, c = 4, d = 6 as case 3. Both two cases satisfy the condition b+ c < a+ d as discussed
above. We keep ω = 0.1 for all the experiments on these two matrix games. The empirical results are
illustrated in Figure 9. We can find the policies p and q improve monotonically to the convergence
(p∗, q∗) ≈ (0.773, 0.227) in case 2, which is a sub-optimal joint policy. However, in case 3, the
policies p and q oscillate between 0 and 1 and do not converge. These results verify our discussion
about the limitation of the unary formulation.

F.4 NON-TRIVIAL SOLUTION TO ITERATION (13)

In this section, we will build a two-player matrix game like Table 1 to show the non-trivial solution to
iteration (13). In general, there is no closed-form solution to iteration (13). However, for the matrix
game case, we can show some properties of iteration (13). With the same definitions as previous
discussions, we can rewrite (13) in the matrix game as follows:

pt+1 = argmax
p∈[0,1]

pQA
t (0) + (1− p)QA

t (1)− ω|p− pt|. (55)

Let f(p) = pQA
t (0) + (1− p)QA

t (1)− ω|p− pt|, then pt+1 = argmaxp∈[0,1] f(p).

We know that f(p) is a linear function of p in both intervals [0, pt] and [pt, 1] and the maximums
of linear function are always achieved in the endpoints of one interval. Thus, we have pt+1 =
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Figure 10: Learning curves of the iteration (13) in the matrix game (a, b, c, d) = (−4, 7, 6, 4), where
x-axis is iteration steps. The first and second figures show the expectation J(πt) and the policies p and
q in the matrix game case 4 respectively, where J(πt) is calculated by the joint policy πt = (pt, qt)
and the payoff matrix.
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Figure 11: Learning curves of the iteration (13) and the DPO iteration in the matrix game (a, b, c, d) =
(−4, 7, 6, 4), where x-axis is iteration steps. The first and second figures show the expectation J(πt)
and the policies p and q of two iterations in the matrix game case 4 respectively, where J(πt) is
calculated by the joint policy πt = (pt, qt) and the payoff matrix.

argmaxp∈{0,pt,1} f(p), which means we only need to consider

f(0) = QA
t (1)− ωpt

f(1) = QA
t (0)− ω(1− pt)

f(pt) = QA
t (1) + pt(Q

A
t (0)−QA

t (1)).

Next, we can build a matrix game with the property b = max{a, b, c, d} > c > d > 0 > a. In this
case, M = 2∥Q∥∞ = 2b and ω = (N−1)M

N = b. Then we consider the condition f(0) > f(pt). We
have

f(0)− f(pt) = −pt
(
QA

t (0)−QA
t (1) + ω

)
= −pt (2b− d− (b+ c− a− d)qt)

⇒ f(0) > f(pt) ⇔ qt >
2b− d

b+ c− a− d
≜ q̃.

We need q̃ < 1 to ensure a feasible qt can be found, which means b < c− a.

Thus, for a matrix game satisfying the condition c− a > b = max{a, b, c, d} > c > d > 0 > a, we
can find a non-trivial solution to (13). To empirically verify this conclusion, we choose a matrix game
with (a, b, c, d) = (−4, 7, 6, 4) where q̃ = 10

13 ≈ 0.769.... For simplicity, we call this matrix game
as matrix game case 4. We also choose (p0, q0) = (0.55, 0.8) to ensure the condition qt > q̃. The
empirical results are illustrated in Figure 10. We can find the non-trivial update for the joint policy
which verifies our conclusion discussed before.

F.5 COMPARING TVPO AND DPO

From the discussion in Section 4.2, we have an intuitive idea about the difference between DPO
and TVPO that the bound DTV of TVPO is tighter than

√
DKL in DPO. A tighter bound means

the iteration will be less influenced by the trivial update. We would like to build a matrix game to
show this phenomenon. Fortunately, a previously discussed matrix game (a, b, c, d) = (−4, 7, 6, 4)
satisfies our requirement. The DPO iteration has no closed-form solution and we haven’t found any
useful properties like Section F.4. Thus, we use a numerical method to solve the DPO iteration. First,
we keep the initial policy (p0, q0) = (0.55, 0.8) for two iterations. The empirical results are included
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Figure 12: Learning curves of the DPO iteration with different initial policies in the matrix game
(a, b, c, d) = (−4, 7, 6, 4), where x-axis is iteration steps. The three figures show the expectation
J(πt), the policies p and q of nine different initial policies in the matrix game case 4 respectively,
where J(πt) is calculated by the joint policy πt = (pt, qt) and the payoff matrix.

in Figure 11. We can find that the TVPO iteration has a non-trivial update but the DPO iteration
only has trivial updates. This result can be evidence for our conclusion about the difference between
TVPO and DPO.

Table 4: The policy update types of DPO
iteration with different initial policies in the
matrix game (a, b, c, d) = (−4, 7, 6, 4). T
represents the trivial policy update and NT
represents the non-trivial policy update.

p0

q0
0.2 0.55 0.8

0.2 T T T
0.55 T T T
0.8 T T T

Moreover, we study the influence of the initial policies
on the DPO iteration. We select three candidate val-
ues C = {0.2, 0.55, 0.8} for the initial policies. We
traverse all the values in C for (p0, q0) and conclude
the performances of all 9 combinations in Figure 12
and Table 4. We can find all 9 initial policies fall
into the trap of the trivial update due to the regular-
ization term

√
DKL in DPO. These empirical results

can partially exclude the impact of initial policies on
the performances of the DPO iteration in this matrix
game.

F.6 DISCUSSIONS ABOUT USING GLOBAL STATE s IN THEORETICAL RESULTS.

Using the global state s for theoretical analysis has been a common practice in the study of multi-agent
reinforcement learning, especially in the setting of decentralized learning. There are many previous
works containing theoretical results in decentralized learning, which include both cooperative settings
(Jiang & Lu, 2022) and non-cooperative settings (Arslan & Yüksel, 2016; Mao et al., 2022a; Zhang
et al., 2024). The main reason for this common practice is the difficulty in solving a POMDP, which
has been studied for decades in Papadimitriou & Tsitsiklis (1987); Mundhenk et al. (2000); Vlassis
et al. (2012). Additionally, the theoretical analysis of Dec-POMDP will be even more difficult in the
multi-agent setting. If we include partial observability in the analysis, we may not obtain anything
since the problem may be undecidable in Dec-POMDP (Madani et al., 1999).
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Figure 13: Learning curves of the TVPO and other baselines including IPG and INPG in the three
10_vs_10 SMAC-v2 tasks.
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Figure 14: Learning curves of the TVPO and IPPO with different clip parameters in the 10_vs_10
protoss.

For the comparison with the baseline IPG (Leonardos et al., 2021) and INPG (Fox et al., 2022), we
select three 10_vs_10 SMAC-v2 tasks. The empirical results are illustrated Figure 13. We can find
that IPG’s performance is not stationary and may drop with the progress of training compared with
other policy based algorithms. We think the main reason is that IPG lack the constraints about the
stepsize of policy iteration. We use the adaptive coefficient for INPG, and its performance is similar
to DPO, which is reasonable as their policy objectives are similar except for a square root term.

We also compare the influence of the hyperparameters on IPPO’s performance. We choose clip
parameters with values 0.1, 0.2, 0.3 for ablation study and select the 10_vs_10 protoss task for
experiments. The empirical results are ilustrated in Figure 14. We can see that the impact of this
hyperparameter is not significant.
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