
Published as a conference paper at ICLR 2024

THEORETICAL ANALYSIS OF ROBUST OVERFITTING
FOR WIDE DNNS: AN NTK APPROACH

Shaopeng Fu & Di Wang
Provable Responsible AI and Data Analytics (PRADA) Lab
King Abdullah University of Science and Technology, Saudi Arabia
{shaopeng.fu, di.wang}@kaust.edu.sa

ABSTRACT

Adversarial training (AT) is a canonical method for enhancing the robustness of
deep neural networks (DNNs). However, recent studies empirically demonstrated
that it suffers from robust overfitting, i.e., a long time AT can be detrimental to
the robustness of DNNs. This paper presents a theoretical explanation of robust
overfitting for DNNs. Specifically, we non-trivially extend the neural tangent ker-
nel (NTK) theory to AT and prove that an adversarially trained wide DNN can
be well approximated by a linearized DNN. Moreover, for squared loss, closed-
form AT dynamics for the linearized DNN can be derived, which reveals a new
AT degeneration phenomenon: a long-term AT will result in a wide DNN degen-
erates to that obtained without AT and thus cause robust overfitting. Based on
our theoretical results, we further design a method namely Adv-NTK, the first AT
algorithm for infinite-width DNNs. Experiments on real-world datasets show that
Adv-NTK can help infinite-width DNNs enhance comparable robustness to that
of their finite-width counterparts, which in turn justifies our theoretical findings.
The code is available at https://github.com/fshp971/adv-ntk.

1 INTRODUCTION

Despite the advancements of deep neural networks (DNNs) in real-world applications, they are
found to be vulnerable to adversarial attacks. By adding specially designed noises, one can trans-
form clean data to adversarial examples to fool a DNN to behave in unexpected ways (Szegedy
et al., 2013; Goodfellow et al., 2015). To tackle the risk, one of the most effective defenses is adver-
sarial training (AT), which enhances the robustness of DNNs against attacks via training them on
adversarial examples (Madry et al., 2018). However, recent study shows that AT suffers from robust
overfitting: after a certain point in AT, further training will continue to degrade the robust general-
ization ability of DNNs (Rice et al., 2020). This breaks the common belief of “training long and
generalize well” in deep learning and raises security concerns on real-world deep learning systems.

While a line of methods has been developed to mitigate robust overfitting in practice (Yu et al., 2022;
Chen et al., 2021; Wu et al., 2020; Li & Spratling, 2023), recent studies attempt to theoretically
understand the mechanism behind robust overfitting. However, existing theoretical results mainly
focus on analyzing the robustness of machine learning models that have already been trained to
converge but overlook the changes of robustness during AT (Min et al., 2021; Bombari et al., 2023;
Zhang & Li, 2023; Clarysse et al., 2023). More recently, a work by Li & Li (2023) has started to
incorporate the training process into the study of robust overfitting. However, their analysis currently
only applies to two-layer neural networks. Thus, we still cannot answer the question: Why a DNN
would gradually lose its robustness gained from the early stage of AT during continuous training?

Motivated by the recent success of neural tangent kernel (NTK) theory (Jacot et al., 2018) in approx-
imating wide DNNs in standard training with closed-form training dynamics (Lee et al., 2019), this
paper makes the first attempt to address the raised question by non-trivially extending NTK to theo-
retically analyze the AT dynamics of wide DNNs. Our main result is that for an adversarially trained
multilayer perceptron (MLP) with any (finite) number of layers, as the widths of layers approach in-
finity, the network can be approximated by its linearized counterpart derived from Taylor expansion.
When the squared loss is used, we further derive closed-form AT dynamics for the linearized MLP.

1

https://github.com/fshp971/adv-ntk

Published as a conference paper at ICLR 2024

The key challenge of our theory arises from the process of searching adversarial examples in AT. In
the vanilla AT, the strength of adversarial examples used for training is controlled by searching them
within constrained spaces. But such a constrained-spaces condition prevents one from conducting
continuous gradient flow-based NTK analysis on that search process. We propose a general strategy
to remove this condition from AT by introducing an additional learning rate term into the search
process to control the strength of adversarial examples. With our solution, one can now characterize
the behavior of DNNs in AT by directly studying the gradient flow descent in AT with NTK.

Our theory then reveals a new AT degeneration phenomenon that we believe is the main cause of
robust overfitting in DNNs. In detail, our theory suggests that the effect of AT on a DNN can be
characterized by a regularization matrix introduced into the linearized closed-form AT dynamics,
which however will gradually fade away in long-term AT. In other words, a long-term AT will result
in an adversarially trained DNN degenerate to that obtained without AT, which thus explains why
the DNN will lose its previously gained robustness. Based on our analysis, we further propose Adv-
NTK, the first AT algorithm for infinite-width DNNs which improves network robustness by directly
optimizing the introduced regularization matrix. Experiments on real-world datasets demonstrate
that Adv-NTK can help infinite-width DNNs gain robustness that is comparable with finite-width
ones, which in turn justifies our theoretical findings.

In summary, our work has three main contributions: (1) We proved that a wide DNN in AT can be
strictly approximated by a linearized DNN with closed-form AT dynamics. (2) Our theory reveals
a novel AT degeneration phenomenon that theoretically explains robust overfitting of DNNs for the
first time. (3) We designed Adv-NTK, the first AT algorithm for infinite-width DNNs.

2 RELATED WORKS

Robust overfitting. Rice et al. (2020) first find this phenomenon in adversarially trained DNNs.
A series of works then design various regularization techniques to mitigate it in practice (Zhang
et al., 2021; Yu et al., 2022; Wu et al., 2020; Li & Spratling, 2023; Chen et al., 2021). Recent
studies attempt to theoretically explain robust overfitting. Donhauser et al. (2021) and Hassani
& Javanmard (2022) show that the robust generalizability follows a double descent phenomenon
concerning the model scale. Wang et al. (2022) show that a two-layer neural network that is closed
to the initialization and with frozen second-layer parameter is provably vulnerable to adversarial
attacks. However, this result requires the inputs coming from the unit sphere, which is not realistic
in the real world. Other advances include Zhu et al. (2022), Bombari et al. (2023), Bubeck et al.
(2021), Zhang & Li (2023) and Clarysse et al. (2023). Since these works only focus on analyzing
converged models, it remains unclear how robustness of DNN occurs and degrades during AT.

Li & Li (2023) are the first that consider the AT evolution process in studying robust overfitting.
Based on the feature learning theory, they find a two-layer CNN in AT will gradually memorize
data-wise random noise in adversarial training data, which makes it difficult to generalize well on
unseen adversarial data. However, their theory currently is only applicable to shallow networks, and
could not explain why networks will lose previously acquired robustness with further AT.

Neural tangent kernel (NTK). Jacot et al. (2018) show that for a wide neural network, its gradient
descent dynamics can be described by a kernel, named neural tangent kernel (NTK). Based on NTK,
the learning process of neural networks can be simplified as a linear kernel regression (Jacot et al.,
2018; Lee et al., 2019), which makes NTK a suitable theoretical tool to analyze overparameterized
models (Li & Liang, 2018; Zou et al., 2020; Allen-Zhu et al., 2019). Recent studies have extended
NTK to various model architectures (Arora et al., 2019; Hron et al., 2020; Du et al., 2019a; Lee
et al., 2022), and the theory itself helps understand deep learning from various aspects such as
convergence (Du et al., 2019b; Cao & Gu, 2019), generalization (Lai et al., 2023; Huang et al.,
2020; Chen et al., 2020; Barzilai et al., 2023; Hu et al., 2020), and trainability (Xiao et al., 2020).

NTK has also been used to analyze AT on overparameterized models. Gao et al. (2019) and Zhang
et al. (2020) study the convergence of overparameterized networks in AT and prove upper bounds on
the time required for AT. More recent works empirically study robust overfitting with NTK. Tsilivis
& Kempe (2022) use eigenspectrums of NTKs to identify robust or non-robust features. Loo et al.
(2022) empirically show that a finite-width NTK in AT will rapidly converge to a kernel encodes
robust features. But none of them provide theoretical explanations of robust overfitting.

2

Published as a conference paper at ICLR 2024

3 PRELIMINARIES

Notations. Let ⊗ denotes Kronecker product, Diag(·) denotes a diagonal matrix constructed from
a given input, ∂(·)(·) denotes the Jacobian of a given function, λmax(·) denotes the maximum eigen-
value of a given matrix, and In (n ∈ N+) denotes an n × n identity matrix. For a set of random
variables Xn indexed by n and an additional random variable X , we use Xn

P−→ X to denote that
Xn converges in probability to X . See Appendices A.2 and A.3 for a full list of notations and
definitions of convergence in probability and Lipschitz continuity/smoothness.

Let D = {(x1, y1), · · · (xM , yM)} be a dataset consists of M samples, where xi ∈ X ⊆ Rd is the
i-th input feature vector and yi ∈ Y ⊆ Rc is its label. A parameterized DNN is denoted as f(θ, ·) :
X → Y , where θ is the model parameter. For simplicity, we let x := ⊕M

i=1xi ∈ RMd denotes the
concatenation of inputs and y := ⊕M

i=1yi ∈ RMc denotes the concatenation of labels. Thereby, the
concatenation of f(θ, x1), · · · f(θ, xM) can be further denoted as f(θ,x) := ⊕M

i=1f(xi) ∈ RMc.

Adversarial training (AT). Suppose L : Rc × Rc → R+ is a loss function. Then, a standard AT
improves the robustness of DNNs against adversarial attacks by training them on most adversarial
examples. Specifically, it aims to solve the following minimax problem (Madry et al., 2018),

min
θ

1

|D|
∑

(xi,yi)∈D

max
∥x′

i−xi∥≤ρ
L(f(θ, x′

i), yi), (1)

where ρ ∈ R is the adversarial perturbation radius and x′
i is the most adversarial example within the

ball sphere centered at xi. Intuitively, a large perturbation radius ρ would result in the final model
achieving strong adversarial robustness.

Neural tangent kernel (NTK). For a DNN f that is trained according to some iterative algorithm,
let ft := f(θt, ·) where θt is the DNN parameter obtained at the training time t. Then, the empirical
NTK of the DNN at time t is defined as below (Jacot et al., 2018),

Θ̂θ,t(x, x
′) := ∂θft(x) · ∂T

θ ft(x
′) ∈ Rc×c, ∀x, x′ ∈ X . (2)

In the rest of the paper, we will also use the notations Θ̂θ,t(x,x) := ∂θft(x) · ∂T
θ ft(x) ∈ Rc×Mc

and Θ̂θ,t(x,x) := ∂θft(x) · ∂T
θ ft(x) ∈ RMc×Mc.

When ft is trained via minimizing the empirical squared loss
∑

(xi,yi)∈D
1
2∥f(xi)− yi∥22, Lee et al.

(2019) show that it can be approximated by the linearized DNN f lin
t : X → Y defined as follows,

f lin
t (x) := f0(x)− Θ̂θ,0(x,x) · Θ̂−1

θ,0(x,x) ·
(
I − e−Θ̂θ,0(x,x)·t

)
· (f0(x)− y), ∀x ∈ X . (3)

Although the kernel function Θ̂θ,t depends on both the initial parameter θ0 and the time t, Jacot et al.

(2018) prove that Θ̂θ,t
P−→ Θθ as the network widths go to infinity, where Θθ is a kernel function

that is independent of θ0 and t. Based on it, Lee et al. (2019) show that with infinite training time,
the average output of infinite-width DNNs over random initialization will converge as follows,

lim
widths→∞

lim
t→∞

Eθ0 [ft(x)]
P−→ Θθ(x,x) ·Θ−1

θ (x,x) · y, ∀x ∈ X , (4)

where Θθ(x,x) ∈ Rc×Mc is an 1 ×M block matrix that the i-th column block is Θθ(x, xi), and
Θθ(x,x) ∈ RMc×Mc is an M ×M block matrix that the i-th row j-th column block is Θθ(xi, xj).

4 ADVERSARIAL TRAINING OF WIDE DNNS

In this section, we present our main theoretical results that characterize AT dynamics of wide DNNs.
We first introduce the DNN architectures that we are going to analyze.

Suppose f(θ, ·) is a DNN consisting of L + 1 fully connected layers, in which the width of the
l-th hidden layer (1 ≤ l ≤ L) is nl. Additionally, the input dimension and the output dimension
are denoted as n0 := d and nL+1 := c for simplicity. Then, the forward propagation in the l-th
fully-connected layer (1 ≤ l ≤ L+ 1) is calculated as follows,

h(l)(x) =
1

√
nl−1

W (l) · x(l−1)(x) + b(l), x(l)(x) = ϕ(h(l)(x)), (5)

3

Published as a conference paper at ICLR 2024

where h(l) and x(l) are the pre-activated and post-activated functions at the l-th layer, W (l) ∈
Rnl×nl−1 is the l-th weight matrix, b(l) ∈ Rnl is the l-th bias vector, and ϕ is a point-wise
activation function. The final DNN function is f(θ, ·) := h(L+1)(·), with model parameter
θ := (W (1), · · · ,W (L+1), b(1), · · · , b(L+1)), and we use ft := f(θt, ·) denote the DNN at the
training time t. Finally, for the initialization of θ0, we draw each entry of weight matrices from a
Gaussian N (0, σ2

W) and each entry of bias vectors from a Gaussian N (0, σ2
b).

Similar to existing NTK literatures (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019), we are
also interested in the linearized DNN f lin

t defined as follows,

f lin
t (x) = f0(x) + ∂θf0(x) · (θlint − θ0), ∀x ∈ X , (6)

where θ0 is the initial parameter same as that of the non-linear DNN ft and θlint is the parameter of
the linearized DNN at the training time t.

4.1 GRADIENT FLOW-BASED ADVERSARIAL EXAMPLE SEARCH

To characterize the training dynamics of AT, the key step is to analyze the process of searching
adversarial examples that will be used to calculate AT optimization directions. Recall Eq. (1), stan-
dard minimax AT will search adversarial examples within constrained spaces. However, analyzing
such a process with continuous gradient flows is challenging due to the need to explicitly model the
boundaries of those constrained spaces.

To tackle the challenge, we notice that the main role of the constrained-spaces condition is to control
the adversarial strength (i.e., the strength of the ability to make models misbehave) of searched data.
As a solution, we suggest replacing the constrained-spaces condition (controlled by ρ in Eq. (1))
with an additional learning rate term (i.e., ηi(t) in Eq. (7)) to control the strength of adversarial
examples. This modification will then enable a more convenient continuous gradient flow analysis.

Specifically, for the DNN ft at the training time t, to find the corresponding adversarial example of
the i-th training data point (xi, yi) where 1 ≤ i ≤ M , we will start from xi and perform gradient
flow ascent for a total of time S > 0, with an introduced learning rate ηi(t) : R → R to control the
adversarial strength of searched example at the current training time t, as below,

∂sxi,t,s = ηi(t) · ∂T
x ft(xi,t,s) · ∂T

f(x)L(ft(xi,t,s), yi) s.t. xi,t,0 = xi. (7)

Then, the final adversarial example is xi,t,S . The learning rate ηi(t) plays a similar role with the
constrained-spaces condition in Eq. (1). Intuitively, a larger ηi(t) at the training time t corresponds
to a more adversarial example xi,t,S .

Besides, running the gradient flow defined in Eq. (7) also depends on the DNN output of which the
evolution of ft(xi,t,s) concerning s can be formalized based on Eq. (7) as follows,

∂sft(xi,t,s) = ∂xft(xi,t,s) · ∂sxi,t,s = ηi(t) · Θ̂x,t(xi,t,s, xi,t,s) · ∂T
f(x)L(ft(xi,t,s), yi), (8)

where Θ̂x,t : X × X → Rc×c is a new kernel function named Adversarial Regularization Kernel
(ARK) and defined as below,

Θ̂x,t(x, x
′) := ∂xft(x) · ∂T

x ft(x
′), ∀x, x′ ∈ X . (9)

The ARK Θ̂x,t shares similar structure with the NTK Θ̂θ,t defined in Eq. (2). The difference is that
the kernel matrix Θ̂x,t is calculated from Jacobians of DNN ft concerning input, while the NTK
Θ̂θ,t is calculated from Jacobians concerning the model parameter.

4.2 ADVERSARIAL TRAINING DYNAMICS

With the gradient flow-based adversarial example search in the previous section, we now formalize
the gradient flow-based AT dynamics for the wide DNN ft and the linearized DNN f lin

t respectively.

AT dynamics of wide DNN ft. Suppose ft is trained via continuous gradient flow descent. Then,
the evolution of model parameter θt and model output ft(x) are formalized as follows,

∂tθt = −∂T
θ ft(xt,S) · ∂T

f(x)L(ft(xt,S),y), (10)

∂tft(x) = ∂θft(x) · ∂tθt = −Θ̂θ,t(x,xt,S) · ∂T
f(x)L(ft(xt,S),y), ∀x ∈ X , (11)

4

Published as a conference paper at ICLR 2024

where xt,S := ⊕M
i=1xi,t,S is the concatenation of adversarial examples found at the current training

time t, and Θ̂θ,t is the empirical NTK defined in Eq. (2).

Meanwhile, based on the method proposed in Section 4.1, the gradient flow-based search process
for the concatenation of adversarial examples xt,S is formalized as below,

∂sxt,s = ∂T
x ft(xt,s) · η(t) · ∂T

f(x)L(ft(xt,s),y) s.t. xt,0 = x, (12)

∂sft(xt,s) = ∂xft(xt,s) · ∂sxt,s = Θ̂x,t(xt,s,xt,s) · η(t) · ∂T
f(x)L(ft(xt,s),y), (13)

where xt,s := ⊕M
i=1xi,t,s is the concatenation of intermediate adversarial training examples found at

the search time s, η(t) := Diag(η1(t), · · · , ηM (t))⊗Ic ∈ RMc×Mc is a block diagonal learning rate
matrix, and Θ̂x,t(xt,s,xt,s) := Diag(Θ̂x,t(x1,t,s, x1,t,s), · · · , Θ̂x,t(xM,t,s, xM,t,s)) ∈ RMc×Mc is
a block diagonal matrix consists of ARKs.

AT dynamics of linearized wide DNN f lin
t . Suppose f lin

t is also trained via continuous gradient
flow descent. Then, according to the definition of linearized DNN in Eq. (6), we have ∂θf

lin
t :=

∂θf0. Therefore, the evolution of parameter θlint and output f lin
t (x) are formalized as follows,

∂tθ
lin
t = −∂T

θ f0(x) · ∂T
f(x)L(f

lin
t (xlin

t,S),y), (14)

∂tf
lin
t (x) = ∂θf0(x) · ∂tθlint = −Θ̂θ,0(x,x) · ∂T

f(x)L(f
lin
t (xlin

t,S),y), ∀x ∈ X , (15)

where xlin
t,S := ⊕M

i=1x
lin
i,t,S is concatenation of the adversarial examples found for the linearized

DNN f lin
t , and Θ̂θ,0 is the empirical NTK (see Eq. (2)) at initialization.

The search of xlin
t,S is slightly different from the gradient flow-based method in Section 4.1.

When following Eqs. (7) and (8) to search xlin
i,t,s, one needs to calculate an intractable Jacobian

∂xf
lin
t (xlin

i,t,s) = ∂xf0(x
lin
i,t,s) + ∂x(∂θf0(x

lin
i,t,s)(θt − θ0)). To further simplify our analysis, we note

that in standard training, a wide DNN is approximately linear concerning model parameters, thus
it is also reasonable to deduce that a wide DNN in AT is approximately linear concerning slightly
perturbed adversarial inputs. In other words, we deduce that ∂xf lin

t (xlin
i,t,s) ≈ ∂xf0(x

lin
i,t,s) + 0 ≈

∂xf0(xi). Thus, we propose to replace ∂xf
lin
t (xlin

i,t,s) with ∂xf0(xi) in the search of xlin
i,t,s.

Then, by replacing ∂xf
lin
t (xlin

i,t,s) with ∂xf0(xi) in Eqs.(7) and (8), the overall search process for
xlin
t,s in the linearized AT dynamics is formalized as below,

∂sx
lin
t,s = ∂T

x f0(x) · η(t) · ∂T
f(x)L(ft(x

lin
t,s),y) s.t. xlin

t,0 = x, (16)

∂sf
lin
t (xlin

t,s) = ∂xf0(x) · ∂sxlin
t,s = Θ̂x,0(x,x) · η(t) · ∂T

f(x)L(f
lin
t (xlin

t,s),y), (17)

where xlin
t,s := ⊕M

i=1x
lin
i,t,s is the concatenation of intermediate adversarial examples for the linearized

DNN f lin
t , the learning rate matrix η(t) is same as that in the AT dynamics of ft, and Θ̂x,0(x,x) :=

Diag(Θ̂x,0(x1, x1), · · · , Θ̂x,0(xM , xM)) is a block matrix consists of ARKs at initialization.

4.3 ADVERSARIAL TRAINING IN INFINITE-WIDTH

This section theoretically characterizes the AT dynamics of the DNN ft when the network widths
approach the infinite limit. We first prove the kernel limits at initialization as Theorem 1.
Theorem 1 (Kernels limits at initialization; Informal version of Theorem B.1). Suppose f0 is an
MLP defined and initialized as in Section 4. Then, for any x, x′ ∈ X we have

lim
nL→∞

· · · lim
n0→∞

Θ̂θ,0(x, x
′) = Θθ(x, x

′) := Θ∞
θ (x, x′) · InL+1

,

lim
nL→∞

· · · lim
n0→∞

Θ̂x,0(x, x
′) = Θx(x, x

′) := Θ∞
x (x, x′) · InL+1

,

where Θ∞
θ : X × X → R and Θ∞

x : X × X → R are two deterministic kernel functions.

The proof is given in Appendix B.

Remark 1. The convergence of NTK Θ̂θ,0 is first proved in Jacot et al. (2018). We restate it for the
sake of completeness. Note that the limit of NTK Θ̂θ,0 in AT is the same as that in standard training.

5

Published as a conference paper at ICLR 2024

We then prove that a wide DNN ft can be approximated by its linearized counterpart f lin
t , as shown

in Theorem 2. It relies on the following Assumptions 1-4.
Assumption 1. The activation function ϕ : R→ R is twice-differentiable, K-Lipschitz continuous,
K-Lipschitz smooth, and satisfies |ϕ(0)| < +∞.

Assumption 2. For any fixed T > 0, we have that
∫ T

0
∥∂f(x)L(f(xt,S ,y)∥2dt = Op(1),

supt∈[0,T]

∫ S

0
∥∂f(x)L(f(xt,s),y)∥2ds = Op(1), and supt∈[0,T]

∫ S

0
∥∂t∂f(x)L(f(xt,s),y)∥2ds =

Op(1) as min{n0, · · · , nL} → ∞.
Assumption 3. η(t) and ∂tη(t) are continuous on [0,+∞).
Assumption 4. The loss function L : Y × Y → R is K-Lipschitz smooth.

Assumptions 1 and 4 are commonly used in existing NTK literatures (Jacot et al., 2018; Lee et al.,
2019; 2022). Assumption 3 is mild. Assumption 2 assumes that the cumulated perturbation loss
directions as well as AT loss directions are stochastically bounded. Similar assumptions are also
widely adopted in NTK studies for standard training.
Theorem 2 (Equivalence between wide DNN and linearized DNN). Suppose Assumptions 1-4 hold,
and ft and f lin

t are trained following the AT dynamics formalized in Section 4.2. Then, if there exists
ñ ∈ N+ such that min{n0, · · · , nL} ≥ ñ always holds, we have for any x ∈ X , as ñ→∞,{

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥ft(x)− f lin
t (x)∥2

}
P−→ 0.

The overall proof is presented in Appendix C.
Remark 2. Although our AT dynamics is formed based on the intuition that wide DNNs could be
linear concerning slightly perturbed inputs, Theorem 2 does not depend on this intuition. It mainly
depends on the large-width condition and also holds when large perturbations present.

Finally, we calculate the closed-form AT dynamics for the linearized DNN f lin
t (Theorem 3) as well

as the infinite-width DNN ft (Corollary 1) when squared loss L(f(x), y) := 1
2∥f(x)− y∥22 is used.

Theorem 3 (Close-form AT-dynamics of f lin
t under squared loss). Suppose Assumption 3 holds and

the linearized DNN f lin
t is trained following the AT dynamics formalized in Section 4.2 with squared

loss L(f(x), y) := 1
2∥f(x)− y∥22. Then, for any x ∈ X , we have

f lin
t (x) = f0(x)− Θ̂θ,0(x,x) · Θ̂−1

θ,0(x,x) ·
(
I − e−Θ̂θ,0(x,x)·Ξ̂(t)

)
· (f0(x)− y), (18)

where Ξ̂(t) := Diag({
∫ t

0
exp(Θ̂x,0(xi, xi)·ηi(τ)·S)dτ}Mi=1) ∈ RMc×Mc is a regularization matrix.

The proof is given in Appendix D.
Corollary 1. Suppose all conditions in Theorems 1, 2, 3 hold. Then, if there exists ñ ∈ N+

such that min{n0, · · · , nL} ≥ ñ always holds, we have for any x ∈ X , as ñ → ∞,{
limnL→∞ · · · limn0→∞{ft(x), f lin

t (x)}
} P−→ f∞

t (x), and

Eθ0 [f
∞
t (x)] = Θθ(x,x) ·Θ−1

θ (x,x) ·
(
I − e−Θθ(x,x)·Ξ(t)

)
· y, (19)

where Ξ(t) := Diag({
∫ t

0
exp (Θx(xi, xi) · ηi(τ) · S) dτ}Mi=1) ∈ RMc×Mc is a diagonal regulariza-

tion matrix, and Θθ and Θx are kernel functions in the infinite-width limit.

Proof. The proof is completed by adopting Theorems 1, 2 and Lemma B.1 into Theorem 3.

Remark 3. Recall Remark 1, the infinite-width NTK function Θθ in AT is exactly the same as that in
standard training. As a result, in practice Θθ can be calculated by using the Neural-Tangents
Python Library (Novak et al., 2020) and the JAX autograd system (Bradbury et al., 2018).

5 ROBUST OVERFITTING IN WIDE DNNS

So far, we have shown that a wide DNN that is adversarially trained with squared loss can be approx-
imated by its linearized counterpart which admits a closed-form AT dynamics. Now, we leverage
our theory to theoretically understand and mitigate robust overfitting in wide DNNs. Throughout
this section, the loss function is assumed to be the squared loss L(f(x), y) := 1

2∥f(x)− y∥22.

6

Published as a conference paper at ICLR 2024

5.1 AT DEGENERATION LEADS TO ROBUST OVERFITTING

This section reveals a novel AT degeneration phenomenon that theoretically explains the mecha-
nism behind deep robust overfitting. Compared with existing theoretical studies on robust overfit-
ting (Donhauser et al., 2021; Bombari et al., 2023; Zhang & Li, 2023; Clarysse et al., 2023; Li & Li,
2023), our result has two significant advantages: (1) it can explain why the gained robustness will
gradually lose in long-term AT, and (2) it applies to general deep neural network models.

We propose to study the AT dynamics of the linearized DNN instead of the original DNN since it is
proved in Theorem 2 that a wide DNN can be approximated by the linearized one. Comparing the
closed-form dynamics of the linearized DNN in AT (Eq. (18) in Theorem 3) with that in standard
training (Eq. (3)), one can find that the difference is AT introduces a time-dependent regularization
matrix Ξ̂(t) (Theorem 3) into the closed-form dynamics of standard training. Thus, it can be deduced
that the introduced matrix Ξ̂(t) fully captures the adversarial robustness of DNNs brought by AT.

To answer why the robustness captured by Ξ̂(t) will gradually degrade in long-term AT, without
loss of generality, we first assume that the ARK Θ̂x,0(x,x) is positive definite. Thereby, it can be
decomposed as Θ̂x,0(x,x) := QDQT , where Q is a block diagonal matrix consists of orthogonal
blocks and D is a diagonal matrix consists of positive diagonal entries. Since η(t) is commutative
with Θ̂x,0(x,x) and thus also with Q, the matrix Ξ̂(t) can be further decomposed as follows,

Ξ̂(t) =

∫ t

0

exp(QDQT · η(τ) · S)dτ =

∫ t

0

Q exp(Dη(τ)S)QTdτ = QA(t)QT · a(t), (20)

where a(t) := λmax{
∫ t

0
exp(Dη(τ)S)dτ} is a strictly increasing scale function and A(t) :=

1
a(t)

∫ t

0
exp(Dη(τ)S)dτ is a matrix that supt≥0 ∥QA(t)QT ∥2 ≤ 1. The here is to decouple the

unbounded a(t) from Ξ̂(t) and remain others being bounded, which can simplify our analysis.

Then, for the exponential term in the AT dynamics in Eq. (18), substituting Ξ̂(t) and we have

e−Θ̂θ,0(x,x)·Ξ̂(t) = QA(t)−
1
2 · exp(−A(t)

1
2QT · Θ̂θ,0(x,x) ·QA(t)

1
2 · a(t)) ·A(t)

1
2QT , (21)

where the calculation details is given in Appendix E.1. We further assume that: (1) the adver-
sarial perturbation scale is small enough such that the symmetric A(∞)

1
2QT Θ̂θ,0(x,x)QA(∞)

1
2

stays positive definite, and (2) a(t) → ∞ as t → ∞. Under the first assumption, we have
A(∞)

1
2QT Θ̂θ,0(x,x)QA(∞)

1
2 := Q′D′Q′T where Q′ is an orthogonal matrix and D′ is a di-

agonal matrix consisting of positive diagonal entries. Combined with the second one, we have

exp(−A(∞)
1
2QT · Θ̂θ,0(x,x) ·QA(∞)

1
2 · a(∞)) = Q′e−D′a(∞)Q′T = 0, (22)

where the calculation is presented in Appendix E.1. As a result,

lim
t→∞

e−Θ̂θ,0(x,x)·Ξ̂(t) = QA(∞)−
1
2 · 0 ·A(∞)

1
2QT = 0. (23)

Eq. (23) indicates that in a long-term AT, the regularization matrix Ξ̂(t) which captures robustness
brought by AT will gradually fade away. Moreover, when at the infinite training time limit, the AT
dynamics will converge to f0(x)− Θ̂θ,0(x,x) · Θ̂−1

θ,0(x,x) · (f0(x)− y), which is exactly the same
limit as that of the standard training dynamics given in Eq. (3). Notice that the analysis up to now
relies on that the adversarial perturbation is small such that the matrix in Eq. (21) is positive definite
when t =∞. Please refer to Appendix E.2 for further discussion when the perturbation is large.

In conclusion, the analysis in this section suggests a novel AT degeneration phenomenon that in a
long-term AT, the impact brought by AT will graduate disappear and the adversarially trained DNN
will eventually degenerate to that obtained without AT. The AT degeneration phenomenon clearly
illustrates the mechanism behind robust overfitting in DNNs. It can also explain the empirical finding
in Rice et al. (2020) that early-stop can significantly mitigate robust overfitting: it is because early-
stop can effectively preserve the regularization matrix Ξ̂(t) brought by AT.

5.2 INFINITE WIDTH ADVERSARIAL TRAINING

We have known that the robustness brought by AT can be characterized by Ξ̂(t) defined in Theo-
rem 3. Then, it is natural to ask if one can directly optimize Ξ̂(t) to mitigate robust overfitting. Since

7

Published as a conference paper at ICLR 2024

Algorithm 1 Adv-NTK (Solving Eq. (25) with SGD and GradNorm)

Input: Training set D, validation set size Mval, learning rate ζ, training iteration T , PGD function
for finding adversarial validation data.

Output: An infinite-width adversarially robust DNN.
1: Randomly separate D into subsets Dopt and Dval such that |Dval| = Mval.
2: Initialize trainable parameter ϖ0 ∈ R|Dval|·c with zeros.
3: for t in 1, · · · , T do
4: Sample a minibatch (x, y) ∼ Dval.
5: x′ ← PGD(x, y, fϖt−1) ▷ Finding adversarial validation examples.
6: gt ← ∂ϖ

1
2∥fϖt−1(x

′)− y∥22
7: ϖt ← ϖt−1 − ζ · gt

∥gt∥2
▷ Update model parameter via SGD and ℓ2-GardNorm.

8: end for
9: return fϖT

Ξ̂(t) is a Mc ×Mc block diagonal matrix, optimizing it requires maintaining Mc2 variables and
is computationally costly. Fortunately, Corollary 1 indicates that in the infinite-width limit, matrix
Ξ̂(t) will converge to a diagonal matrix Ξ(t) where only Mc variables need to be maintained. Based
on the observation, we propose Adv-NTK, the first AT algorithm for infinite-width DNNs.

Specifically, for a given training set D, we separate it into two disjoint subsets Dopt and Dval, in
which Dopt is for constructing the infinite width DNN while Dval is a validation set for model
selection. Then, the infinite-width DNN that will be trained in Adv-NTK is constructed as follows
based on the infinite-width DNN defined as Eq. (4) in Corollary 1,

fϖ(x) = Θθ(x,xopt) ·Θ−1
θ (xopt,xopt) ·

(
I − e−Θθ(xopt,xopt)·Diag(ϖ)

)
· yopt, ∀x ∈ X , (24)

where ϖ ∈ R|Dopt|·c is the trainable parameter in Adv-NTK, Θθ is the NTK function at the infinite-
width limit (see Theorem 1), and xopt and yopt are concatenations of features and labels in the subset
Dopt. Note that the parameter ϖ consists exactly of the diagonal entries of the diagonal matrix Ξ(t).
Then, the Adv-NTK algorithm aims to enhance the adversarial robustness of the infinite-width DNN
fϖ via solving the following minimax optimization problem,

min
ϖ

1

|Dval|
∑

(x,y)∈Dval

max
∥x′−x∥≤ρ

1

2
∥fϖ(x′)− y∥22, (25)

where ρ > 0 is the same adversarial perturbation radius as that in the standard AT (see Eq. (1)),
and the inner maximization problem can be solved via projected gradient descent (PGD) (Madry
et al., 2018). The above Eq. (25) shares similar idea with the early stop method (Rice et al., 2020):
they both use a validation set for model selection. The difference is that early stop uses model ro-
bust accuracy on the validation set as an indicator to select the model parameter indirectly, while
Eq. (25) directly optimizes the model parameter with the validation set. Finally, to further improve
the training stability, Adv-NTK leverages stochastic gradient descent (SGD) and gradient normal-
ization (GradNorm) to solve Eq. (25). The overall procedures are presented as Algorithm 1.

6 EMPIRICAL ANALYSIS OF ADV-NTK

This section empirically verifies the effectiveness of Adv-NTK on the CIFAR-10 (Krizhevsky et al.,
2009) dataset. We briefly introduce the experiment and leave details in Appendix F. Please also refer
to Appendix F.4 for analogous experiments on SVHN (Netzer et al., 2011) dataset.

Loss & Dataset & adversarial perturbation. Squared loss L(f(x), y) := 1
2∥f(x) − y∥22 is used

in all experiments. In every experiment, we randomly draw 12, 000 samples from the trainset for
model training and use the whole test set to evaluate the robust generalization ability of the model.
Projected gradient descent (PGD; Madry et al. (2018)) is used to perform adversarial perturbations
in both training and evaluation. We adopt ℓ∞-perturbation with radius ρ ∈ {4/255, 8/255}.
Baseline methods. We adopt two existing methods for comparison. They are: (1) AT, which aims
to enhance the robustness of finite-width DNNs via solving the minimax problem in Eq. (1), and
(2) NTK, which directly obtains closed-form infinite-width DNNs from Eq. (4) without training.

8

Published as a conference paper at ICLR 2024

Table 1: Robust test accuracy (%) of models trained with different methods on CIFAR-10. Every
experiment is repeated 3 times. A high robust test accuracy suggests a strong robust generalizability.

Depth Adv. Acc. (ℓ∞; ρ = 4/255) (%) Adv. Acc. (ℓ∞; ρ = 8/255) (%)

AT NTK Adv-NTK (Ours) AT NTK Adv-NTK (Ours)

MLP-x
+

CIFAR-10
(Subset 12K)

3 30.64±0.42 9.93±0.19 27.35±0.66 26.93±0.07 2.81±0.27 23.45±0.80
4 30.35±0.09 13.67±0.20 28.47±0.62 26.44±0.39 3.61±0.09 23.01±0.24
5 28.70±0.45 16.24±0.26 29.04±0.38 21.05±0.21 4.74±0.43 21.90±0.60
8 10.00±0.00 22.44±0.27 30.56±0.48 10.00±0.00 8.23±0.15 20.91±0.72
10 10.00±0.00 24.43±0.37 30.91±0.12 10.00±0.00 10.04±0.25 20.21±0.21

CNN-x
+

CIFAR-10
(Subset 12K)

3 18.29±0.40 5.01±0.54 29.31±0.61 12.62±1.78 1.31±0.03 26.79±2.25
4 19.30±0.26 6.23±0.69 31.04±0.55 10.39±0.20 1.68±0.14 25.57±0.56
5 20.10±1.32 7.99±0.37 30.46±0.59 11.12±0.14 1.65±0.07 23.48±0.48
8 12.68±4.64 13.07±0.26 28.26±0.54 10.00±0.00 2.55±0.18 16.14±0.83
10 10.00±0.00 16.02±0.50 26.61±0.41 10.00±0.00 3.50±0.09 13.13±0.28

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

MLP-5 + CIFAR-10 (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

MLP-5 + CIFAR-10 (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

CNN-5 + CIFAR-10 (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

CNN-5 + CIFAR-10 (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

Figure 1: The robust test accuracy curves of finite-width MLP-5/CNN-5 along AT on CIFAR-10.
The robust test accuracy of infinite width DNNs learned by NTK and Adv-NTK are also plotted.

Model architectures. We study two types of multi-layer DNNs, MLPs and CNNs. Although our
theory is originally for MLPs, it can be generalized for CNNs. We use “MLP-x” and “CNN-x” to
denote an MLP consisting of x fully-connected (FC) layers and CNN consists x convolutional layers
and one FC layer, respectively. The architecture depth x is choosen from the set {3, 4, 5, 8, 10}.
Model training. For Adv-NTK, we use 10, 000 data to construct the infinite-width DNN defined in
Eq. (24) and 2, 000 data as the validation data for model training. For AT, we use the overall 12, 000
data to train the model following Eq. (1). For NTK, there is no need for model training and we use
the overall 12, 000 data to construct the closed-form infinite-width DNN defined in Eq. (4).

Results. The robust test accuracy of models trained with different methods on CIFAR-10 is reported
in Table 1. We have two observations: Firstly, Adv-NTK achieves significantly higher robust test
accuracy than NTK in almost every experiment, which suggests that Adv-NTK can improve the
robustness of infinite-width DNNs and Ξ(t) indeed captures robustness brought by AT. Secondly, in
some experiments, Adv-NTK achieves higher performance than AT, which suggests that Adv-NTK
has the potential to be used as an empirical tool to study adversarial robustness. In summary, these
results not only indicate the effectiveness of our algorithm but also justify our theoretical findings.

We further plot the curves of robust test accuracy of finite-width DNNs along AT, as shown in Fig. 1.
We have two observations: Firstly, in most of the cases, the robust test accuracy will first rapidly
increase and then slowly decrease, which illustrates a clear robust overfitting phenomenon. Similar
results with larger models and longer AT can also be found in Rice et al. (2020). Secondly, although
Adv-NTK can achieve comparable or higher performance than the final model obtained by AT, it
could not beat the best model during AT. we deduce that it is because the non-linearity of finite-width
DNNs in AT can capture additional robustness, which will be left for future studies.

7 CONCLUSIONS

This paper presents a novel theoretical analysis of the robust overfitting of DNNs. By extending the
NTK theory, we proved that a wide DNN in AT can be strictly approximated by its linearized coun-
terpart, and also calculated the closed-form AT dynamics of the linearized DNN when the squared
loss is used. Based on our theory, we suggested analyzing robust overfitting of DNNs with the
closed-form AT dynamics of linearized DNNs and revealed a novel AT degeneration phenomenon
that a DNN in long-term AT will gradually degenerate to that obtained without AT. Further, we de-
signed the first AT algorithm for infinite-width DNNs, named Adv-NTK, by directly optimizing the
regularization brought by AT. Empirical studies verified the effectiveness of our proposed method.

9

Published as a conference paper at ICLR 2024

ACKNOWLEDGEMENTS

Di Wang and Shaopeng Fu are supported in part by the baseline funding BAS/1/1689-01-01, funding
from the CRG grand URF/1/4663-01-01, FCC/1/1976-49-01 from CBRC, and funding from the
AI Initiative REI/1/4811-10-01 of King Abdullah University of Science and Technology (KAUST).
They are also supported by the funding of the SDAIA-KAUST Center of Excellence in Data Science
and Artificial Intelligence (SDAIA-KAUST AI).

REFERENCES

Zeyuan Allen-Zhu, Yuanzhi Li, and Zhao Song. A convergence theory for deep learning via over-
parameterization. In International Conference on Machine Learning, pp. 242–252. PMLR, 2019.

Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Russ R Salakhutdinov, and Ruosong Wang. On
exact computation with an infinitely wide neural net. Advances in Neural Information Processing
Systems, 32, 2019.

Daniel Barzilai, Amnon Geifman, Meirav Galun, and Ronen Basri. A kernel perspective of skip
connections in convolutional networks. In International Conference on Learning Representations,
2023.

Richard Bellman. The stability of solutions of linear differential equations. Duke Math. J., 10(1):
643–647, 1943.

Simone Bombari, Shayan Kiyani, and Marco Mondelli. Beyond the universal law of robustness:
Sharper laws for random features and neural tangent kernels. In International Conference on
Machine Learning, volume 202, pp. 2738–2776. PMLR, 2023.

James Bradbury, Roy Frostig, Peter Hawkins, Matthew James Johnson, Chris Leary, Dougal
Maclaurin, George Necula, Adam Paszke, Jake VanderPlas, Skye Wanderman-Milne, and Qiao
Zhang. JAX: Composable transformations of Python+NumPy programs, 2018. URL http:
//github.com/google/jax.

Sebastien Bubeck, Yuanzhi Li, and Dheeraj M Nagaraj. A law of robustness for two-layers neural
networks. In Conference on Learning Theory, volume 134 of Proceedings of Machine Learning
Research, pp. 804–820. PMLR, 2021.

Yuan Cao and Quanquan Gu. Generalization bounds of stochastic gradient descent for wide and
deep neural networks. Advances in Neural Information Processing Systems, 32, 2019.

Tianlong Chen, Zhenyu Zhang, Sijia Liu, Shiyu Chang, and Zhangyang Wang. Robust overfitting
may be mitigated by properly learned smoothening. In International Conference on Learning
Representations, 2021.

Zixiang Chen, Yuan Cao, Quanquan Gu, and Tong Zhang. A generalized neural tangent kernel
analysis for two-layer neural networks. Advances in Neural Information Processing Systems, 33:
13363–13373, 2020.

Jacob Clarysse, Julia Hörrmann, and Fanny Yang. Why adversarial training can hurt robust accuracy.
In International Conference on Learning Representations, 2023.

Konstantin Donhauser, Alexandru Tifrea, Michael Aerni, Reinhard Heckel, and Fanny Yang. Inter-
polation can hurt robust generalization even when there is no noise. Advances in Neural Informa-
tion Processing Systems, 34:23465–23477, 2021.

Simon S Du, Kangcheng Hou, Russ R Salakhutdinov, Barnabas Poczos, Ruosong Wang, and Keyulu
Xu. Graph neural tangent kernel: Fusing graph neural networks with graph kernels. Advances in
Neural Information Processing Systems, 32, 2019a.

Simon S Du, Xiyu Zhai, Barnabas Poczos, and Aarti Singh. Gradient descent provably optimizes
over-parameterized neural networks. In International Conference on Learning Representations,
2019b.

10

http://github.com/google/jax
http://github.com/google/jax

Published as a conference paper at ICLR 2024

Ruiqi Gao, Tianle Cai, Haochuan Li, Cho-Jui Hsieh, Liwei Wang, and Jason D Lee. Convergence
of adversarial training in overparametrized neural networks. Advances in Neural Information
Processing Systems, 32, 2019.

Ian Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
examples. In International Conference on Learning Representations, 2015.

Thomas Hakon Gronwall. Note on the derivatives with respect to a parameter of the solutions of a
system of differential equations. Annals of Mathematics, pp. 292–296, 1919.

Insu Han, Amir Zandieh, Jaehoon Lee, Roman Novak, Lechao Xiao, and Amin Karbasi. Fast
neural kernel embeddings for general activations. In Advances in Neural Information Processing
Systems, 2022.

Hamed Hassani and Adel Javanmard. The curse of overparametrization in adversarial train-
ing: Precise analysis of robust generalization for random features regression. arXiv preprint
arXiv:2201.05149, 2022.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In Proceedings of the IEEE conference on computer vision and pattern recognition, pp.
770–778, 2016.

Roger A. Horn and Charles R. Johnson. Topics in Matrix Analysis. Cambridge University Press,
1991. ISBN 9780511840371. doi: 10.1017/CBO9780511840371.

Jiri Hron, Yasaman Bahri, Jascha Sohl-Dickstein, and Roman Novak. Infinite attention: NNGP and
NTK for deep attention networks. In International Conference on Machine Learning, volume 119
of Proceedings of Machine Learning Research, pp. 4376–4386. PMLR, 13–18 Jul 2020.

Wei Hu, Zhiyuan Li, and Dingli Yu. Simple and effective regularization methods for training on
noisily labeled data with generalization guarantee. In International Conference on Learning Rep-
resentations, 2020.

Kaixuan Huang, Yuqing Wang, Molei Tao, and Tuo Zhao. Why do deep residual networks gener-
alize better than deep feedforward networks?—A neural tangent kernel perspective. Advances in
Neural Information Processing Systems, 33:2698–2709, 2020.

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and gener-
alization in neural networks. In Advances in Neural Information Processing Systems, volume 31.
Curran Associates, Inc., 2018.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Jianfa Lai, Zixiong Yu, Songtao Tian, and Qian Lin. Generalization ability of wide residual net-
works. arXiv preprint arXiv:2305.18506, 2023.

J LaSalle. Uniqueness theorems and successive approximations. Annals of Mathematics, pp. 722–
730, 1949.

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-
Dickstein, and Jeffrey Pennington. Wide neural networks of any depth evolve as linear models
under gradient descent. In Advances in Neural Information Processing Systems, volume 32, 2019.

Jongmin Lee, Joo Young Choi, Ernest K Ryu, and Albert No. Neural tangent kernel analysis of
deep narrow neural networks. In International Conference on Machine Learning, volume 162 of
Proceedings of Machine Learning Research, pp. 12282–12351. PMLR, 2022.

Binghui Li and Yuanzhi Li. Why clean generalization and robust overfitting both happen in adver-
sarial training. arXiv preprint arXiv:2306.01271, 2023.

Lin Li and Michael W. Spratling. Data augmentation alone can improve adversarial training. In
International Conference on Learning Representations, 2023.

11

Published as a conference paper at ICLR 2024

Yuanzhi Li and Yingyu Liang. Learning overparameterized neural networks via stochastic gradient
descent on structured data. Advances in Neural Information Processing Systems, 31, 2018.

Noel Loo, Ramin Hasani, Alexander Amini, and Daniela Rus. Evolution of neural tangent kernels
under benign and adversarial training. In Advances in Neural Information Processing Systems,
2022.

Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
Towards deep learning models resistant to adversarial attacks. In International Conference on
Learning Representations, 2018.

Yifei Min, Lin Chen, and Amin Karbasi. The curious case of adversarially robust models: More
data can help, double descend, or hurt generalization. In Conference on Uncertainty in Artificial
Intelligence, volume 161, pp. 129–139. PMLR, 2021.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading
digits in natural images with unsupervised feature learning. In Proceedings of the NIPS Workshop
on Deep Learning and Unsupervised Feature Learning, 2011.

Roman Novak, Lechao Xiao, Yasaman Bahri, Jaehoon Lee, Greg Yang, Daniel A. Abolafia, Jeffrey
Pennington, and Jascha Sohl-dickstein. Bayesian deep convolutional networks with many chan-
nels are Gaussian processes. In International Conference on Learning Representations, 2019.

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein,
and Samuel S. Schoenholz. Neural Tangents: Fast and easy infinite neural networks in Python. In
International Conference on Learning Representations, 2020. URL https://github.com/
google/neural-tangents.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Kopf, Edward
Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An imperative style, high-performance
deep learning library. In Advances in Neural Information Processing Systems, volume 32, 2019.

Leslie Rice, Eric Wong, and Zico Kolter. Overfitting in adversarially robust deep learning. In
International Conference on Machine Learning, pp. 8093–8104. PMLR, 2020.

Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
recognition. arXiv preprint arXiv:1409.1556, 2014.

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
and Rob Fergus. Intriguing properties of neural networks. arXiv preprint arXiv:1312.6199, 2013.

Nikolaos Tsilivis and Julia Kempe. What can the neural tangent kernel tell us about adversarial
robustness? In Advances in Neural Information Processing Systems, 2022.

Roman Vershynin. Introduction to the non-asymptotic analysis of random matrices. arXiv preprint
arXiv:1011.3027, 2010.

Yunjuan Wang, Enayat Ullah, Poorya Mianjy, and Raman Arora. Adversarial robustness is at odds
with lazy training. Advances in Neural Information Processing Systems, 35:6505–6516, 2022.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. Adversarial weight perturbation helps robust gener-
alization. Advances in Neural Information Processing Systems, 33:2958–2969, 2020.

Lechao Xiao, Jeffrey Pennington, and Samuel Schoenholz. Disentangling trainability and general-
ization in deep neural networks. In International Conference on Machine Learning, pp. 10462–
10472. PMLR, 2020.

Chaojian Yu, Bo Han, Li Shen, Jun Yu, Chen Gong, Mingming Gong, and Tongliang Liu. Under-
standing robust overfitting of adversarial training and beyond. In International Conference on
Machine Learning, pp. 25595–25610. PMLR, 2022.

12

https://github.com/google/neural-tangents
https://github.com/google/neural-tangents

Published as a conference paper at ICLR 2024

Jingfeng Zhang, Jianing Zhu, Gang Niu, Bo Han, Masashi Sugiyama, and Mohan Kankanhalli.
Geometry-aware instance-reweighted adversarial training. In International Conference on Learn-
ing Representations, 2021.

Teng Zhang and Kang Li. Understanding overfitting in adversarial training in kernel regression.
arXiv preprint arXiv:2304.06326, 2023.

Yi Zhang, Orestis Plevrakis, Simon S Du, Xingguo Li, Zhao Song, and Sanjeev Arora. Over-
parameterized adversarial training: An analysis overcoming the curse of dimensionality. Ad-
vances in Neural Information Processing Systems, 33:679–688, 2020.

Zhenyu Zhu, Fanghui Liu, Grigorios Chrysos, and Volkan Cevher. Robustness in deep learning: The
good (width), the bad (depth), and the ugly (initialization). In Advances in Neural Information
Processing Systems, 2022.

Difan Zou, Yuan Cao, Dongruo Zhou, and Quanquan Gu. Gradient descent optimizes over-
parameterized deep ReLU networks. Machine Learning, 109:467–492, 2020.

13

Published as a conference paper at ICLR 2024

A PRELIMINARIES

A.1 ADDITIONAL ASSUMPTIONS AND NOTATIONS

To avoid technicalities, we assume that all functions are differentiable throughout this paper. Fur-
thermore, the order of differentiation and integration is assumed to be interchangeable.

A.2 NOTATIONS

This section presents the full list of notations.

Table 2: List of notations.

Notations Descriptions

⊕ Concatenation.
⊗ Kronecker product.

Diag(·) A diagonal matrix constructed from a given input.
Vec(·) Vectorization function.
∂xf(x) A m× n Jacobian matrix of the function, f : Rn → Rm.
λmax(·) The maximum eigenvalue of a given matrix.

P−→ Convergence in probability. See Definition A.3
Op(·) Big O notation in probability. See Definition A.4.

In An n× n identity matrix.
0n An n-dimensional all-zero vector.
1n An n-dimensional all-one vector.
[n] An integer set {1, 2, · · · , n}.

[l : r] An integer set {l, l + 1, · · · , r}.
T The overall training time.
S The overall time usage for searching adversarial examples in each training step.

W
(l)
t Weight matrix in the l-th layer at the training time t.
b
(l)
t bias vector in the l-th layer at the training time t.

h
(l)
t Pre-activated output function in the l-th layer at the training time t.

x
(l)
t Post-activated output function in the l-th layer at the training time t.

Θ̂θ,t Empirical NTK at the training time t.
Θ̂x,t Empirical ARK at the training time t.
Θθ Converged NTK in the infinite width limit.
Θx Converged ARK in the infinite width limit.

A.3 DEFINITIONS

This section collects definitions that are omitted from the main text.

Definition A.1 (Lipschitz continuity). A function f : R → R is called K-Lipschitz continuous if
|f(x)− f(x′)| ≤ K · |x−x′| holds for any x and x′ from the domain of f . When f is differentiable,
we further have |∂xf(x)| ≤ K holds for any x from the domain of f .

Definition A.2 (Lipschitz smoothness). A differentiable function f : R → R is called K-Lipschitz
smooth if |∂xf(x)− ∂xf(x

′)| ≤ K · |x− x′| holds for any x and x′ from the domain of f . When f
is twice-differentiable, we further have |∂2

xf(x)| ≤ K holds for any x from the domain of f .

Definition A.3 (Convergence in probability). For a set of random variables Xn indexed by n and
an additional random variable X , we say Xn converges in probability to X , written by Xn

P−→ X ,
if limn→∞ P(|Xn −X| > ϵ) = 0 for any ϵ > 0.

14

Published as a conference paper at ICLR 2024

Definition A.4 (Op(·); Big O notation in probability). For two sets of random variables Xn and Yn

indexed by n, we say Xn = Op(Yn) as n → ∞ if for any δ > 0, there exists a finite ε > 0 and a
finite N ∈ N+ such that P(|Xn/Yn| > ε) < δ, ∀n > N .

A.4 TECHNICAL LEMMAS

This section presents several technical lemmas that will be used in our proofs.

We first present a result that enables the efficient calculation of Kronecker products.
Lemma A.1 (c.f. Lemma 4.2.15 in Horn & Johnson (1991)). Suppose real matrices A and B
have singular value decompositions A = U1Σ1V

T
1 and B = U2Σ2V

T
2 . Let r1 := Rank(A) and

r2 := Rank(B). Then, A⊗B = (U1 ⊗U2) · (Σ1 ⊗Σ2) · (V1 ⊗ V2)
T . The nonzero singular values

of A ⊗ B are the r1r2 positive numbers {λi(A)λj(B) : 1 ≤ i ≤ r1, 1 ≤ j ≤ r2}, where λi(·)
denotes the i-th largest singular value (including multiplicities) of a given matrix.

Corollary A.1 (ℓ2-Norm of Kronecker Product). For any real matrices A and B, we have that
∥A⊗B∥2 = ∥A∥2 · ∥B∥2.

Proof. According to Lemma A.1, we have ∥A⊗B∥2 = λmax(A) · λmax(B) = ∥A∥2 · ∥B∥2.

We then introduce two Grönwall-type inequalities.
Lemma A.2 (Grönwall’s Inequality (Gronwall, 1919; Bellman, 1943)). Let u(t) and f(t) be non-
negative continuous functions defined on the interval [a, b] that satisfies

u(t) ≤ A+

∫ t

a

u(s)f(s)ds, ∀t ∈ [a, b],

then

u(t) ≤ A exp

(∫ t

a

f(s)ds

)
, ∀t ∈ [a, b].

Lemma A.3 (Adapted from Lemma 1 in LaSalle (1949)). Suppose that

1. g(x) is a non-negative function defined on the interval [0, a],

2. u(x) is a function such that
∫ x

0
u(t)dt exists for all x ∈ [0, a].

3. f(x) is a positive, non-decreasing continuous function defined on [0,+∞), and the integral
F (x) :=

∫ x

0
dt
f(t) exists for any x ∈ [0,+∞),

4. The inequality g(x) ≤
∫ x

0
u(t)f(g(t))dt holds for all x ∈ [0, a].

Then we have

F (g(x)) ≤
∫ x

0

u(t)dt, ∀x ∈ [0, a].

Also, we need the following Lemma to bound the norms of Gaussian random matrices.
Lemma A.4 (c.f. Corollary 5.35, Vershynin (2010)). Let A be an N × n matrix whose entries are
independent standard normal random variables. Then for every t ≥ 0, with probability at least
1− 2 exp(−t2/2) one has

√
N −

√
n− t ≤ λmin(A) ≤ λmax(A) ≤

√
N +

√
n+ t,

where λmin(A) is the minimal eigenvalue of A and λmax(A) is the maximal eigenvalue of A.

Finally, we prove the following convergence in probability result for centered Gaussian variables.

Lemma A.5. Suppose Yn = max{|Xn,1|, |Xn,2|, · · · , |Xn,n|}, where Xn,i ∼ N (0,
σ2
n

nν) and σ > 0

and ν > 0 are constants. Then, we have Yn
P−→ 0.

15

Published as a conference paper at ICLR 2024

Proof. For any Xn,i and ϵ > 0, we have

P(|Xn,i| > ϵ) = 2 ·
∫ +∞

ϵ

√
nν

σ
√
2π
· exp

(
−nνx2

2σ2

)
dx

≤ 2 ·
∫ +∞

ϵ

x

ϵ
·
√
nν

σ
√
2π
· exp

(
−nνx2

2σ2

)
dx

=
−
√
2σ√

nνπϵ
·
[
exp

(
−nνx2

2σ2

)]+∞

ϵ

=

√
2σ√

nνπϵ
· exp

(
−nνϵ2

2σ2

)
,

which means

P(|Xn,i| ≤ ϵ) = 1− P(|Xn,i| > ϵ) ≥ 1−
√
2σ√

nνπϵ
· exp

(
−nνϵ2

2σ2

)
.

Therefore,

P(Yn ≤ ϵ|σ) = P(|Xn,i| ≤ ϵ, ∀i ∈ [n]) ≥

(
1−

√
2σ√

nνπϵ
· exp

(
−nνϵ2

2σ2

))n

.

Since limn→∞
√
2σ√

nνπϵ
· exp

(
−nνϵ2

2σ2

)
= 0, we thus have

lim
n→∞

P(Yn > ϵ) = 1− lim
n→∞

(
1−

√
2σ√

nνπϵ
· exp

(
−nνϵ2

2σ2

))n

= 1− lim
n→∞

(
1

e

) √
2σ√

nνπϵ
·exp

(
−nνϵ2

2σ2

)
·n

= 1−
(
1

e

)0

= 0,

which indicates Yn
P−→ 0.

The proof is completed.

B PROOF OF THEOREM 1

This section presents the proof of Theorem 1.

We first introduce the following Lemma B.1.

Lemma B.1 (Proposition 1 in Jacot et al. (2018)). As the network widths n0, · · · , nL → ∞ se-
quentially, the output functions h

(l)
0,i for i = 1, · · · , nl at the l-th layer tend to centered Gaussian

processes of covariance Σ(l), where Σ(l) is defined recursively by:

Σ(1)(x, x′) = lim
n0→∞

σ2
W

n0
xTx′ + σ2

b ,

Σ(l+1)(x, x′) = σ2
WEf∼GP(0,Σ(l))[ϕ(f(x))ϕ(f(x

′))] + σ2
b ,

where GP(0,Σ(l)) denotes a centered Gaussian process with covariance Σ(l).

Then, Theorem 1 is proved as the following Theorem B.1.

Theorem B.1 (Kernels limits at initialization; Formal version of Theorem 1). Let Θ̂(l)
t,0 and Θ̂

(l)
x,0

denote the empirical NTK and ARK in the l-th layer. Then, for any x, x′ ∈ X , we have that:

16

Published as a conference paper at ICLR 2024

1. (Theorem 1 in Jacot et al. (2018)) For any 1 ≤ l ≤ L+ 1,

lim
nl−1→∞

· · · lim
n0→∞

Θ̂
(l)
θ,0(x, x

′) = Θ
(l)
θ (x, x′) := Θ

∞,(l)
θ (x, x′) · Inl

,

where Θ
∞,(l)
θ : X × X → R is a deterministic kernel function that can be defined recur-

sively as follows,

Θ
∞,(1)
θ (x, x′) = lim

n0→∞

1

n0
xTx′ + 1,

Θ
∞,(l+1)
θ (x, x′) = σ2

W ·Θ
∞,(l)
θ (x, x′) · Ef∼GP(0,Σ(l))[ϕ

′(f(x))ϕ′(f(x′))]

+ Ef∼GP(0,Σ(l))[ϕ(f(x))ϕ(f(x
′))] + 1.

2. For any 1 ≤ l ≤ L+ 1,

lim
nl−1→∞

· · · lim
n0→∞

Θ̂
(l)
x,0(x, x

′) = Θ(l)
x (x, x′) := Θ∞,(l)

x (x, x′) · Inl
,

where Θ
∞,(l)
x : X × X → R is a deterministic kernel function that can be defined recur-

sively as follows,

Θ∞,(1)
x (x, x′) = σ2

W ,

Θ∞,(l+1)
x (x, x′) = σ2

W ·Θ∞,(l)
x (x, x′) · Ef∼GP(0,Σ(l))[ϕ

′(f(x))ϕ′(f(x′))].

Proof. The first proposition, i.e., the NTK limit at initialization, has been proved by Jacot et al.
(2018). Thus the remaining task is to prove the ARK limit at initialization, which is done through
mathematical induction.

Specifically, for the base case where l = 1, for the i-th row and i′-th column entry of the ARK
matrix Θ̂

(1)
x,0(x, x

′), we have that

Θ̂
(1)
x,0(x, x

′)i,i′ =
1

n0

n0∑
j=1

W
(1)
i,j,0W

(1)
i′,j,0.

Since each W
(1)
i,j,0 is drawn from the Gaussian N (0, σ2

W), we have

lim
n0→∞

Θ̂
(1)
x,0(x, x

′)i,i′ = 1[i=i′] · σ2
W = 1[i=i′] ·Θ∞,(1)

x (x, x′)

which indicates

lim
n0→∞

Θ̂
(1)
x,0(x, x

′) = σ2
W · In1

= Θ∞,(1)
x (x, x′) · In1

.

For the induction step, suppose the lemma already holds for the l-th layer and we aim to prove it
also holds for the (l + 1)-th layer. For the ARK matrix Θ̂

(l+1)
x,0 (x, x′), we have that

lim
nl→∞

· · · lim
n0→∞

Θ̂
(l+1)
x,0 (x, x′)i,i′

= lim
nl→∞

1

nl

∑
1≤j,j′≤nl

(
lim

nl−1→∞
· · · lim

n0→∞
Θ̂

(l)
x,0(x, x

′)j,j′

)
· ∂h(l)(x)jh

(l+1)
0 (x)i · ∂h(l)(x)j′

h
(l+1)
0 (x′)i′

= lim
nl→∞

1

nl

∑
1≤j,j′≤nl

1[j=j′] ·Θ∞,(l)
x (x, x′)︸ ︷︷ ︸

Induction hypothesis

·W (l)
i,j,0 · ϕ

′(h
(l)
0 (x)j) ·W (l)

i′,j′,0 · ϕ
′(h

(l)
0 (x′)j′)

= lim
nl→∞

1

nl

∑
1≤j≤nl

Θ∞,(l)
x (x, x′) ·W (l)

i,j,0 · ϕ
′(h

(l)
0 (x)j) ·W (l)

i′,j,0 · ϕ
′(h

(l)
0 (x′)j)

17

Published as a conference paper at ICLR 2024

By Lemma B.1, h(l)
0 (·)k converges to the centered Gaussian process GP(0,Σ(l)), which further

indicates

lim
nl→∞

· · · lim
n0→∞

Θ̂
(l+1)
x,0 (x, x′)i,i′

= lim
nl→∞

1

nl

∑
1≤j≤nl

Θ∞,(l)
x (x, x′) · ϕ′(h

(l)
0 (x)j) ·W (l+1)

0,i,j ·W
(l+1)
0,i′,j · ϕ

′(h
(l)
0 (x′)j)

= 1[i=i′] · σ2
W ·Θ∞,(l)

x (x) · Ef∼GP(0,Σ(l))[ϕ
′(f(x))ϕ′(f(x′))]

= 1[i=i′] ·Θ∞,(l+1)
x (x, x′).

As a result,

lim
nl→∞

· · · lim
n0→∞

Θ̂
(l+1)
x,0 (x, x′) = Θ∞,(l+1)

x (x, x′) · Inl
,

which justifies the induction step.

The proof is completed.

C PROOF OF THEOREM 2

This section presents the proof of Theorem 2.

C.1 PROOF SKELETON

The Proof idea of Theorem 2 is inspired by that in Jacot et al. (2018). Specifically, we will first
extend the result of Theorem B.1 and show that the empirical NTK Θ̂θ,t and empirical ARK Θ̂x,t

during AT also converge to the same deterministic kernels as that in Theorem B.1. These results are
stated as Theorems C.1, C.2 and presented as follows:
Theorem C.1. Suppose Assumptions 1, 2, 3 hold. Then, if there exists ñ ∈ N+ such that
min{n0, · · · , nL} ≥ ñ, we have as ñ→∞,

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂θ,t(xt,s,xt,s)−Θθ(x,x)∥2
P−→ 0,

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂x,t(xt,s,xt,s)−Θx(x,x)∥2
P−→ 0,

where

Θθ(x,x) := Θ∞
θ (x,x)⊗ InL+1

,

Θx(x,x) := Diag(Θ∞
x (x1, x1), · · · ,Θ∞

x (xM , xM))⊗ InL+1
.

Theorem C.2. Suppose Assumptions 1, 2, 3 hold. Then, if there exists ñ ∈ N+ such that
{n0, · · · , nL} ≥ ñ, we have for any x ∈ X , as ñ→∞,

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂θ,t(x,xt,s)−Θθ(x,x)∥2
P−→ 0,

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂x,t(x,xt,s)−Θx(x,x)∥2
P−→ 0,

where

Θθ(x,x) := Θ∞
θ (x,x)⊗ InL+1

Θx(x,x) := Diag(Θ∞
x (x, x1), · · · ,Θ∞

x (x, xM))⊗ InL+1
.

Based on the kernels convergences during AT, we then prove the final Theorem 2 which show that
the adversarially trained DNN ft is equivalent to the linearized DNN f lin

t . Compared with Jacot
et al. (2018), the main technical challenge in our proof arises from bounding terms that involve
adversarial examples such as xt,s, ∂txt,s, ∂th

(l)
t (xt,s).

The rest of this section is organized as follows:

18

Published as a conference paper at ICLR 2024

1. In Appendix C.2, we prove that as the widths of ft become infinite, its parameters and
outputs will converge to those at the initial of AT by properly rescaling.

2. In Appendix C.3, we prove Theorems C.1 and C.2 that in the infinite-widths limit, the NTK
and ARK in AT will converge to deterministic kernel functions. The proofs are based on
the results in Appendix C.2.

3. Finally, in Appendix C.4 we prove Theorem 2 that in the infinite-widths limit, ft is equiv-
alent to f lin

t . The proof is based on Theorems C.1 and C.2.

C.2 CONVERGENCES OF PARAMETERS AND OUTPUTS UNDER RESCALING

The goal of this section is to prove Lemma C.5, which indicates that by properly rescaling, for the
wide DNN ft, its parameter W (l)

t , pre-activation x
(l)
t (xt,S), and post-activation h

(l)
t (xt,S) in each

layer can converge to those at the initialization of AT.

Firstly, we let

Polyt := Poly

(
1

√
nl−1

∥W (l)
t ∥2,

1
√
nl
∥h(l)

t (xt,S)∥2,
1
√
nl
∥x(l)

t (xt,S)∥2
)

denote any deterministic polynomial with finite degree and finite positive constant coefficients,
and depends only on terms 1√

nl−1
∥W (l)

t ∥2 (where l ∈ [1 : L + 1]), 1√
nl
∥h(l)

t (xt,S)∥2 (where

l ∈ [1 : L]), and 1√
nl
∥x(l)

t (xt,S)∥2 (where (l ∈ [0 : L]).

From the definition of Polyt, the following properties worth highlighting:

• The sum of any two (different) such type polynomials is also such type polynomial:
Polyt + Polyt = Polyt.

• The product of any two (different) such type polynomials is also such type polynomial:
Polyt · Polyt = Polyt.

With the definition of Polyt, we then bound ∥∂tW (l)
t ∥2, ∥∂th(l)

t (xt,S)∥2, and ∥∂tx(l)
t (xt,S)∥2, as

shown in the following Lemmas C.1, C.2, C.3, C.4.
Lemma C.1. Suppose Assumption 1 holds. Then for every 1 ≤ l ≤ L+ 1 and t ∈ [0, T], we have

∥∂tW (l)
t ∥2, ∥∂tW

(l)
t ∥F , ∥∂tb

(l)
t ∥2 ≤ Polyt · ∥∂f(x)L(ft(xt,S , y⃗)∥2.

Proof. By the fact that ∥ · ∥2 ≤ ∥ · ∥F , we have

∥∂tW (l)
t ∥2 ≤ ∥∂tW

(l)
t ∥F = ∥ − ∂T

Vec(W (l))h
(L+1)
t (xt,S) · ∂T

f(x)L(ft(xt,S),y)∥2

≤ ∥∂Vec(W (l))h
(L+1)
t (xt,S)∥2 · ∥∂f(x)L(ft(xt,S),y)∥2.

By applying Lipschitz activation Assumption 1 and Corollary A.1,

∥∂Vec(W (l))h
(L+1)
t (xt,S)∥2

≤

(
L∏

l′=l

∥∂x(l′)(x)h
(l′+1)
t (xt,S)∥2 · ∥∂h(l′)(x)x

(l′)
t (xt,S)∥2

)
· ∥∂Vec(W (l))h

(l)
t (xt,S)∥2

≤

(
L∏

l′=l

∥∥∥∥IM ⊗ 1
√
nl′

W
(l′+1)
t

∥∥∥∥
2

·K

)
·
√

1

nl

∥∥∥(x(l)(xi,t,S)
T
x(l)(xj,t,S)

)
⊗ Inl

∥∥∥
2

≤ KL−l+1 ·
L∏

l′=l

1
√
nl′
∥W (l′+1)

t ∥2 ·
1
√
nl

∥∥∥(x(l)
t (x1,t,S), · · · , x(l)

t (xM,t,S)
)∥∥∥

2

≤ Polyt ·
1
√
nl

∥∥∥(x(l)
t (x1,t,S), · · · , x(l)

t (xM,t,S)
)∥∥∥

F

= Polyt ·
1
√
nl
∥x(l)

t (xt,S)∥2 = Polyt,

19

Published as a conference paper at ICLR 2024

where
(
x(l)(xi,t,S)

T
x(l)(xj,t,S)

)
is a M ×M matrix such that its i-th row and j-th column entry

is x(l)(xi,t,S)
T
x(l)(xj,t,S). Combining the above results, we therefore have

∥∂tW (l)
t ∥2 ≤ Polyt · ∥∂f(x)L(ft(xt,S ,y)∥2.

For ∥∂tbt∥2, we similarly have that

∥∂tb(l)t ∥2 = ∥∂T
b(l)h

(L+1)
t (xt,S) · ∂T

f(x)L(ft(xt,S),y)∥2

≤ ∥∂b(l)h
(l)
t (xt,S)∥2 · ∥∂h(l)(x)h

(L+1)
t (xt,S)∥2 · ∥∂f(x)L(ft(xt,S),y)∥2

= ∥1M ⊗ Inl
∥2 · ∥∂h(l)(x)h

(L+1)
t (xt,S)∥2 · ∥∂f(x)L(ft(xt,S),y)∥2

≤
√
M · Polyt · ∥∂f(x)L(ft(xt,S),y)∥2

= Polyt · ∥∂f(x)L(ft(xt,S),y)∥2.

The proof is completed.

Lemma C.2. Suppose Assumptions 1, 2, 3 hold. Then for any t ∈ [0, T], as minl′∈[0:L]{nl′} → ∞,
we have that

sup
s1,s2∈[0,S]

∥x(l)
t (xt,s1)− x

(l)
t (xt,s2)∥2 ≤ Op(1) · Polyt,

where 0 ≤ l ≤ L.

Proof. By Assumption 3, η(t) is continuous on the closed interval [0, T], which indicates there
exists a constant C such that supt∈[0,T] ∥η(t)∥2 ≤ C.

Then, when l = 0, according to definition, we have

sup
s1,s2∈[0,S]

∥xt,s1 − xt,s2∥2 = sup
s1,s2∈[0,S]

∥∥∥∥∫ s1

s2

∂τx
(l)
t (xt,τ)dτ

∥∥∥∥
2

≤
∫ S

0

∥∂τx(l)
t (xt,τ)∥2dτ

≤ ∥η(t)∥2 ·
∫ S

0

∥∂xh(L+1)
t (xt,τ)∥2 · ∥∂f(x)L(ft(xt,τ),y)∥2dτ

≤ C ·
∫ S

0

∥∂xh(L+1)
t (xt,τ)∥2 · ∥∂f(x)L(ft(xt,τ),y)∥2dτ.

By applying Lipschitz activation Assumption 1,

sup
τ∈[0,S]

∥∂xh(L+1)
t (xt,τ)∥2

≤ sup
τ∈[0,S]

{(
L∏

l′=1

∥∂x(l′)(x)h
(l′+1)
t (xt,τ)∥2 · ∥∂h(l′)(x)x

(l′)
t (xt,τ)∥2

)
· ∥∂xh(1)

t (xt,τ)∥2

}

≤

(
L∏

l′=1

1
√
nl′
∥W (l′+1)

t ∥2 ·K

)
· 1
√
n0
∥W (1)

t ∥2 = Polyt. (C.1)

Combining with Assumption 2,

sup
s1,s2∈[0,S]

∥xt,s1 − xt,s2∥2 ≤ C · Polyt · sup
t∈[0,T]

∫ S

0

∥∂f(x)L(ft(xt,τ),y)∥2dτ

= Polyt ·Op(1). (C.2)

20

Published as a conference paper at ICLR 2024

On the other hand, for any 1 ≤ l ≤ L, by again using Assumption 1,

sup
s1,s2∈[0,S]

∥x(l)
t (xt,s1)− x

(l)
t (xt,s2)∥2 = sup

s1,s2∈[0,S]

∥ϕ(h(l)
t (xt,s1))− ϕ(h

(l)
t (xt,s2))∥2

≤ K · sup
s1,s2∈[0,S]

∥h(l)
t (xt,s1)− h

(l)
t (xt,s2)∥2

≤ K · 1
√
nl−1

∥W (l)
t ∥2 · sup

s1,s2∈[0,S]

∥x(l−1)
t (xt,s1)− x

(l−1)
t (xt,s2)∥2

= Polyt · sup
s1,s2∈[0,S]

∥x(l−1)
t (xt,s1)− x

(l−1)
t (xt,s2)∥2

≤ · · · ≤ Polyt · sup
s1,s2∈[0,S]

∥x(0)
t (xt,s1)− x

(0)
t (xt,s2)∥2

≤ Polyt · Polyt ·Op(1) = Op(1) · Polyt.

The proof is completed.

Lemma C.3. Suppose Assumptions 1, 2, 3 hold. Then, as minl∈[0:L]{nl} → ∞, for any t ∈ [0, T],
we uniformly have that

sup
s∈[0,S]

∥∂tx⃗t,s∥2 ≤ exp(Op(1) · Polyt) ·Op(1) · Polyt · (∥∂f(x)L(ft(xt,S),y)∥2 + 1).

Proof. By Assumption 3, both η(t) and ∂tη(t) are continuous on the closed interval [0, T], which
indicates there exists a constant C such that supt∈[0,T]{∥η(t)∥2, ∥∂tη(t)∥2} ≤ C.

Then, by assuming differentiation and integration to be interchangeable, for any s ∈ [0, S], we have

∥∂txt,s∥2 =

∥∥∥∥∂t ∫ s

0

∂T
x h

(L+1)
t (xt,τ) · η(t) · ∂T

f(x)L(ft(xt,τ),y)dτ

∥∥∥∥
2

≤
∫ s

0

∥∥∥∂t (∂T
x h

(L+1)
t (xt,τ) · η(t) · ∂T

f(x)L(ft(xt,τ),y)
)∥∥∥

2
dτ

≤ sup
τ∈[0,S]

∥∥∥∥∥∑
i

∂[θ]i∂xh
(L+1)
t (xt,τ) · ∂t[θt]i

∥∥∥∥∥
2︸ ︷︷ ︸

It

·C ·
∫ S

0

∥∂f(x)L(ft(xt,τ),y)∥2dτ

+ C ·
∫ s

0

∥∥∥∥∥∑
i

∂[xt,τ]i∂xh
(L+1)
t (xt,τ) · ∂t[xt,τ]i

∥∥∥∥∥
2︸ ︷︷ ︸

IIt,τ

·∥∂f(x)L(ft(xt,τ),y)∥2dτ

+ sup
τ∈[0,S]

∥∂xh(L+1)
t (xt,τ)∥2︸ ︷︷ ︸

IIIt, bounded by Eq. (C.1)

·C ·
∫ S

0

∥∂f(x)L(ft(xt,τ ,y)∥2dτ

+ sup
τ∈[0,S]

∥∂xh(L+1)
t (xt,τ)∥2︸ ︷︷ ︸

IIIt, bounded by Eq. (C.1)

·C ·
∫ S

0

∥∂t∂f(x)L(ft(xt,τ),y)∥2dτ, (C.3)

where [·]i denotes the i-th entry of a given vector. In the above Eq. (C.3), the term IIIt can be
bounded by Eq. (C.1) from the proof of Lemma C.2. Thereby, the remaining task is to first bound
terms It and IIt,τ respectively, and then bound the overall sups∈[0,S] ∥∂txt,s∥2.

Stage 1: Bounding term It in Eq. (C.3).

21

Published as a conference paper at ICLR 2024

By Assumption 1, we have

It = sup
τ∈[0,S]

∥∥∥∥∥∑
i

∂[θ]i∂xh
(L+1)
t (xt,τ) · ∂t[θt]i

∥∥∥∥∥
2

= sup
τ∈[0,S]

∥∥∥∥∥
L+1∑
l=1

∂Vec(W (l)),b(l)

(
1∏

l′=L

∂h(l′)(x)h
(l′+1)
t (xt,τ) · ∂xh(1)

t (xt,τ)

)
· ∂t(Vec(W (l)

t), b
(l)
t)

∥∥∥∥∥
2

≤ sup
τ∈[0,S]

{
1∏

l′=L

∥∂h(l′)(x)h
(l′+1)
t (xt,τ)∥2 · ∥∂Vec(W (1)),b(1)∂xh

(1)
t (xt,τ) · ∂t(Vec(W (1)

t), b
(1)
t)∥2

}

+ Polyt · sup
τ∈[0,S]

 ∑
l≤l′+1

∏
l′′ ̸=l′

∥∂h(l′′)(x)h
(l′′+1)
t (xt,τ)∥2 · ∥∂Vec(W (l)),b(l)∂h(l′)(x)h

(l′+1)
t (xt,τ) · ∂t(Vec(W (l)

t), b
(l)
t)∥2


≤ Polyt ·

L+1∑
l=1

1
√
nl−1

∥∂Vec(W (l))W
(l)
t · ∂tVec(W

(l)
t)∥2︸ ︷︷ ︸

I
(1)
t,l

+ Polyt ·
L∑

l=1

L∑
l′=l

sup
τ∈[0,S]

∥∂Vec(W (l)),b(l)Diag(ϕ′(h
(l′)
t (xt,τ))) · ∂t(Vec(W (l)

t), b
(l)
t)∥2︸ ︷︷ ︸

I
(2)

t,l,l′

. (C.4)

For the term I
(1)
t,l , according to Lemma C.1, for 1 ≤ l ≤ L+ 1,

I
(1)
t,l = ∥W (l)

t ∥2 ≤ Polyt · ∥∂f(x)L(ft(xt,S),y)∥2. (C.5)

Besides, the term I
(2)
t,l,l′ can be expanded as below,

I
(2)
t,l,l′ = sup

τ∈[0,S]

∥∂Vec(W (l)),b(l)Diag(ϕ′(h
(l′)
t (xt,τ))) · ∂t(Vec(W (l)

t), b
(l)
t)∥2

≤ sup
τ∈[0,S]

∥∂Vec(W (l)),b(l)ϕ
′(h

(l′)
t (xt,τ)) · ∂t(Vec(W (l)

t), b
(l)
t)∥2

≤ sup
τ∈[0,S]

∥∂h(l)(x)ϕ
′(h

(l′)
t (xt,τ))∥2 · ∥∂Vec(W (l)),b(l)h

(l)
t (xt,τ) · ∂t(Vec(W (l)

t), b
(l)
t)∥2

≤ sup
τ∈[0,S]

∥ϕ′′(h
(l′)
t (xt,τ))∥∞ · ∥∂h(l)(x)h

(l′)
t (xt,τ)∥2 ·

(
∥∂Vec(W (l))h

(l)
t (xt,τ) · ∂tVec(W (l)

t)∥2 + ∥∂b(l)h
(l)
t (xt,τ) · ∂tb(l)t ∥2

)
≤ K · Polyt · sup

τ∈[0,S]

(√
1

nl−1
∥(x(l−1)

t (xi,t,τ)T · x(l−1)
t (xj,t,τ))⊗ Inl

∥2 · ∥∂tVec(W (l)
t)∥2 + ∥1M ⊗ Inl

∥ · ∥∂tb(l)t ∥2

)

≤ Polyt · sup
τ∈[0,S]

 1
√
nl−1

∥x(l−1)
t (xt,τ)∥2 · Polyt · ∥∂f(x)L(ft(xt,S),y)∥2︸ ︷︷ ︸

Lemma C.1

+
√
M · Polyt · ∥∂f(x)L(ft(xt,S),y)∥2︸ ︷︷ ︸

Lemma C.1


≤ Polyt · ∥∂f(x)L(ft(xt,S), y⃗)∥2 · sup

τ∈[0,S]

(
1

√
nl−1

∥x(l−1)
t (xt,τ)∥2 + 1

)
, (C.6)

22

Published as a conference paper at ICLR 2024

where (x
(l−1)
t (xi,t,τ)

T · x(l−1)
t (xj,t,τ)) denotes a M ×M matrix that its i-th row and j-th column

entry is x(l−1)
t (xi,t,τ)

T · x(l−1)
t (xj,t,τ). By Lemma C.2, we further have

sup
τ∈[0,S]

(
1

√
nl−1

∥x(l−1)
t (xt,τ)∥2 + 1

)
≤ sup

τ∈[0,S]

(
1

√
nl−1

(
∥x(l−1)

t (xt,S)∥2 + ∥x(l−1)
t (xt,τ)− x

(l−1)
t (xt,S)∥2

)
+ 1

)
= Polyt +

1
√
nl−1

sup
τ∈[0,S]

∥x(l−1)
t (xt,τ)− x

(l−1)
t (xt,S)∥2

≤ Polyt +
1

√
nl−1

·Op(1) · Polyt︸ ︷︷ ︸
Lemma C.2

=

(
1 +

Op(1)√
nl−1

)
· Polyt. (C.7)

Combining, Eqs. (C.6) and (C.7), the term I
(2)
t,l,l′ can then be bounded as follows,

I
(2)
t,l,l′ ≤

(
1 +

Op(1)√
minl′′∈[0:L]{nl′′}

)
· Polyt · ∥∂f(x)L(ft(xt,S),y)∥2

≤ Op(1) · Polyt · ∥∂f(x)L(ft(xt,S),y)∥2. (C.8)

Finally, by inserting Eqs. (C.5) and (C.8) into Eq. (C.4), we have

It ≤ Op(1) · Polyt · ∥∂f(x)L(ft(xt,S),y)∥2. (C.9)

Stage 2: Bounding term IIt,τ in Eq. (C.3).

We expand the term as follows,

IIt,τ =

∥∥∥∥∥∑
i

∂[xt,τ]i∂xh
(L+1)
t (xt,τ) · ∂t[xt,τ]i

∥∥∥∥∥
2

=

∥∥∥∥∥∑
i

∂[xt,τ]i

(
1∏

l=L

∂
h
(l)
t (x)

h
(l+1)
t (xt,τ) · ∂xh(1)

t (xt,τ)

)
· ∂t[xt,τ]i

∥∥∥∥∥
2

≤ ∥∂xh(1)
t (xt,τ)∥2 ·

L∑
l=1

∏
1≤l′≤L,l′ ̸=l

∥∂
h
(l′)
t (x)

h
(l′+1)
t (xt,τ)∥2 · ∥∂xt,τ

(∂
h
(l)
t (x)

h
(l+1)
t (xt,τ)) · ∂txt,τ∥2

≤ Polyt · ∥∂xt,τ
Diag(ϕ′(h

(l)
t (xt,τ))) · ∂txt,τ∥2.

Since

∥∂xt,τDiag(ϕ′(h
(l)
t (xt,τ))) · ∂txt,τ∥2

≤ ∥∂xt,τ
ϕ′(h

(l)
t (xt,τ)) · ∂txt,τ∥2

≤ ∥ϕ′′(h
(l)
t (xt,τ))∥2 ·

l−1∏
l′=1

∥∂h(l′)(x)h
(l′+1)
t (xt,τ)∥2 · ∥∂xt,τ

h
(1)
t (xt,τ) · ∂txt,τ∥2

≤ Polyt · ∥∂xt,τh
(1)
t (xt,τ)∥2 · ∥∂txt,τ∥2 = Polyt · ∥∂txt,τ∥2,

therefore, IIt,τ is eventually bounded as below,

IIt,τ ≤ Polyt · Polyt · ∥∂txt,τ∥2 = Polyt · ∥∂txt,τ∥2. (C.10)

Stage 3: Bounding the original ∥∂txt,s∥2 via the Grönwall’s inequality (see Lemma A.2).

23

Published as a conference paper at ICLR 2024

By inserting Eqs. (C.1), (C.9) and (C.10) into Eq. (C.3) and applying Assumption 2, we have that
for every s ∈ [0, S],

∥∂txt,s∥2
≤ Op(1) · Polyt · ∥∂f(x)L(ft(xt,S),y)∥2 · C ·Op(1)

+ Polyt · C ·
∫ s

0

∥∂txt,τ∥2 · ∥∂f(x)L(ft(xt,τ),y)∥2dτ + Polyt · C ·Op(1) + Polyt · C ·Op(1)

≤ Polyt ·
∫ s

0

∥∂txt,τ∥2 · ∥∂f(x)L(ft(xt,τ),y)∥2dτ +Op(1) · Polyt · (∥∂f(x)L(ft(xt,S),y)∥2 + 1).

Note that both ∥∂txt,s∥2 and ∥∂f(x)L(ft(xt,s),y)∥2 are non-negative functions with respect to s on
the interval [0, S]. Therefore, by applying Grönwall’s inequality (Lemma A.2), we have

∥∂txt,s∥2

≤ exp

(
Polyt ·

∫ s

0

∥∂f(x)L(ft(xt,s),y)∥2dτ
)
·Op(1) · Polyt · (∥∂f(x)L(ft(xt,S),y)∥2 + 1)

= exp(Op(1) · Polyt) ·Op(1) · Polyt · (∥∂f(x)L(ft(xt,S),y)∥2 + 1).

The proof is completed.

Lemma C.4. Suppose Assumptions 1 and 2 hold. Then, for every t ∈ [0, T], we have that

∥∂th(l1)
t (xt,S)∥2, ∥∂tx(l2)

t (xt,S)∥2 ≤ Polyt ·
(
∥∂f(x)L(ft(xt,S),y)∥2 + ∥∂txt,S∥2

)
,

where l1 ∈ [1 : L+ 1] and l2 ∈ [1 : L].

Proof. For ∥∂th(l1)
t (xt,S)∥2, when l1 = 1, by applying Assumption 1 and Lemma C.1, we have that

∥∂th(1)
t (xt,S)∥2 =

1
√
n0
∥∂t(W (1)

t · xt,S)∥2

≤ 1
√
n0
·
(
∥∂tW (1)

t ∥2 · ∥xt,S∥2 + ∥W (1)
t ∥2 · ∥∂txt,S∥2

)
= Polyt · ∥∂f(x)L(ft(xt,S),y)∥2 + Polyt · ∥∂txt,S∥2. (C.11)

Meanwhile, when l1 ≥ 2,

∥∂th(l1)
t (xt,S)∥2 =

1
√
nl1−1

∥∂t(W (l1)
t x

(l1−1)
t (xt,S))∥2

≤ 1
√
nl1−1

·
(
∥∂tW (l1)

t ∥2 · ∥x(l1−1)
t (xt,S)∥2 + ∥W (l1)

t ∥2 · ∥∂tx(l1−1)
t (xt,S)∥2

)
≤ Polyt · ∥∂tW

(l)
t ∥2 + Polyt · ∥∂tx

(l−1)
t (xt,S)∥2

≤ Polyt · ∥∂f(x)L(ft(xt,S),y)∥2︸ ︷︷ ︸
Lemma C.1

+Polyt ·K · ∥∂th
(l−1)
t (xt,S)∥2︸ ︷︷ ︸

Assumption 1

≤ · · · ≤ Polyt · ∥∂f(x)L(ft(xt,S),y)∥2 + Polyt · ∥∂txt,S∥2. (C.12)

Combining Eqs.(C.11) and (C.12), we thus have for every l1 ∈ [1 : L+ 1],

∥∂th(l1)
t (xt,S)∥2 ≤ Polyt ·

(
∥∂f(x)L(ft(xt,S),y)∥2 + ∥∂txt,S∥2

)
.

On the other hand, by applying Assumption 1, for every l2 ∈ [1 : L],

∥∂tx(l2)
t (xt,S)∥2 ≤ ∥∂h(l2)

t (x)
x
(l2)
t (xt,S)∥2 · ∥∂th(l2)

t (xt,S)∥2

≤ K · ∥∂th(l2)
t (xt,S)∥2

≤ Polyt ·
(
∥∂f(x)L(ft(xt,S),y)∥2 + ∥∂txt,S∥2

)
.

The proof is completed.

24

Published as a conference paper at ICLR 2024

Based on Lemmas C.1-C.4, we are now able to prove the following Lemma C.5.
Lemma C.5. Suppose Assumptions 1, 2, 3 hold. Then as minl∈[0:L]{nl} → ∞, we have

sup
t∈[0,T]

max
1≤l≤L+1

{
1

√
nl−1

∥W (l)
t −W

(l)
0 ∥2,

1
√
nl−1

∥W (l)
t −W

(l)
0 ∥F

}
P−→ 0,

sup
t∈[0,T]

max
1≤l≤L

{
1
√
nl
∥h(l)

t (xt,S)− h
(l)
0 (x0,S)∥2

}
P−→ 0,

sup
t∈[0,T]

max
0≤l≤L

{
1
√
nl
∥x(l)

t (xt,S)− x
(l)
0 (x0,S)∥2

}
P−→ 0.

Proof. Suppose At denotes

At :=

L+1∑
l=1

1
√
nl−1

(
∥W (l)

0 ∥F + ∥W (l)
t −W

(l)
0 ∥F

)
+

L∑
l=0

1
√
nl

(
∥x(l)

0 (x0,S)∥2 + ∥x(l)
t (xt,S)− x

(l)
0 (x0,S)∥2

)
+

L∑
l=1

1
√
nl

(
∥h(l)

0 (x0,S)∥2 + ∥h(l)
t (xt,S)− h

(l)
0 (x0,S)∥2

)
.

Then, by applying Lemmas C.1, C.4 and the fact that ∂t∥ · ∥2 ≤ ∥∂t · ∥2 holds for any given vector,
we have the following,

∂tAt ≤
L+1∑
l=1

1
√
nl−1

∥∂tW (l)
t ∥F +

L∑
l=0

1
√
nl
∥∂tx(l)

t (xt,S)∥2 +
L∑

l=1

1
√
nl
∥∂th(l)

t (xt,S)∥2

≤ L+ 1√
minl∈[0:L]{nl}

· Polyt · ∥∂f(x)L(ft(xt,S),y)∥2︸ ︷︷ ︸
Lemma C.1

+
(L+ 1) + L√
minl∈[0:L]{nl}

· Polyt ·
(
∥∂f(x)L(ft(xt,S),y)∥2 + ∥∂txt,S∥2

)︸ ︷︷ ︸
Lemma C.4

≤ 1√
minl∈[0:L]{nl}

·
(
Polyt · ∥∂f(x)L(ft(xt,S),y)∥2 + ∥∂txt,S∥2

)
. (C.13)

By further applying Lemma C.3 into Eq. (C.13), we have that for every t ∈ [0, T],

∂tAt

≤
Polyt · ∥∂f(x)L(ft(xt,S),y)∥2 + exp(Op(1) · Polyt) ·Op(1) · Polyt · (∥∂f(x)L(ft(xt,S),y)∥2 + 1)√

minl∈[0:L]{nl}

≤ 1√
minl∈[0:L]{nl}

·
(
1 + eOp(1)·Polyt

)
·Op(1) · Polyt ·

(
1 + ∥∂f(x)L(ft(xt,S),y)∥2

)
.

(C.14)

According to the definition, the polynomial Polyt in the above Eq. (C.14) is a deterministic combi-
nation of ∥W (l)

t ∥F , ∥x(l)
t (xt,S)∥2, and ∥h(l)

t (xt,S)∥2. Therefore, given the fact that
∥W (l)

t ∥F ≤ ∥W
(l)
0 ∥F + ∥W (l)

t −W
(l)
0 ∥F

∥x(l)
t (xt,S)∥2 ≤ ∥x(l)

0 (x0,S)∥2 + ∥x(l)
t (xt,S)− x

(l)
0 (x0,S)∥2

∥h(l)
t (xt,S)∥2 ≤ ∥h(l)

0 (x0,S)∥2 + ∥h(l)
t (xt,S)− h

(l)
0 (x0,S)∥2

,

for the polynomial Polyt in Eq. (C.14), one can find a polynomial function P (·) with finite degree
and finite positive coefficients such that

Polyt ≤ P (At)

25

Published as a conference paper at ICLR 2024

holds for every t ∈ [0, T]. As a result, ∂tAt can be further bounded as below,

∂tAt ≤
1√

minl∈[0:L]{nl}
·
(
1 + eOp(1)·P (At)

)
·Op(1) · P (At) ·

(
1 + ∥∂f(x)L(ft(xt,S),y)∥2

)
.

which means for every t ∈ [0, T],

At −A0 ≤
∫ t

0

∂τAτdτ ≤
1√

minl∈[0:L]{nl}
·
∫ t

0

g(Aτ , Op(1)) ·
(
1 + ∥∂f(x)L(fτ (xτ,S),y)∥2

)
dτ,

where g(x, y) is defined as

g(x, y) := y · P (x) ·
(
1 + ey·P (x)

)
.

By the definition of Op(1), we have that for any δ > 0, there exists a finite C > 0 and a finite
N ∈ N+ such that P(Op(1) ≤ C) ≥ 1 − δ as long as minl∈[0:L]{nl} > N . Notice that g(x, y) is
increasing concerning y, thus when minl∈[0:L]{nl} > N , with probability at least 1− δ, we have

At −A0 ≤
1√

minl∈[0:L]{nl}
·
∫ t

0

g(Aτ , C) ·
(
1 + ∥∂f(x)L(fτ (xτ,S),y)∥2

)
dτ.

Furthermore, notice that (1) (At − A0) is non-negative on [0, T] by definition, (2) (1 +
∥∂f(x)L(ft(xt,S),y)∥2) is integrable on any sub-interval [0, a] ⊂ [0, T], and (3) g(x,C) is con-
tinuous and positive on [0,+∞) concerning x and thus 1/g(x,C) is also integerable on any interval
[0, a]. Therefore, we can apply a nonlinear form of the Grönwall’s inequality, i.e., Lemma A.3, as
well as Assumption 2, and have that

sup
t∈[0,T]

GC(At −A0) ≤
1√

minl∈[0:L]{nl}

∫ t

0

(
1 + ∥∂f(x)L(fτ (xτ,S),y)∥2

)
dτ

≤ Op(1)√
minl∈[0:L]{nl}

≤ C√
minl∈[0:L]{nl}

,

where GC(x) :=
∫ x

0
dτ

g(τ,C) is a continuous increasing function on [0,+∞) and thus the inverse
function G−1

C also exists and is continuous on [0, GC(+∞)).

Thus, as minl∈[0:L]{nl} → ∞, we have that supt∈[0:T] GC(At−A0)→ 0. Combining with the fact
that GC(x) = 0 in the range [0,+∞) if and only if x = 0 and the continuity of G−1

C on [0,+∞),
we further have that with probability at least 1− δ, supt∈[0,T](At −A0) can be arbitrarily small for
sufficiently large minl∈[0:L]{nl}.

The above justification suggests that as minl∈[0:L]{nl} → ∞,

sup
t∈[0,T]

{
∥W (l)

t −W
(l)
0 ∥F√

nl−1
,
∥h(l)

t (xt,S)− h
(l)
0 (x0,S)∥2√

nl
,
∥x(l)

t (xt,S)− x
(l)
0 (x0,S)∥2√

nl

}
≤ sup

t∈[0,T]

(At −A0)
P−→ 0.

The proof is completed.

C.3 CONVERGENCES OF KERNELS DURING AT

This section aims to prove Theorems C.1 and C.2, which show that as network widths n0, · · · , nL

approach infinite limits, the empirical NTK Θ̂θ,t and the empirical ARK Θ̂x,t will converge to the
deterministic kernels Θθ and Θx defined in Theorem B.1 respectively.

26

Published as a conference paper at ICLR 2024

C.3.1 PREPARATIONS

We first show that rescaled network parameters 1√
nl−1

W
(l)
t are bounded during AT (Lem-

mas C.6, C.7), which thus indicates the optimization directions (Lemma C.8) as well as network
outputs (Lemmas C.9, C.10, C.11) in each layer are also bounded. The proofs relies on the key
Lemma C.5 presented in the previous section.
Lemma C.6. Suppose there exists ñ ∈ N+ such that {n0, · · · , nL} ≥ ñ. For a given l ∈ [1 : L+1],
suppose nl

nl−1
= Op(1) as ñ→∞. Then, we have that as ñ→∞,

1
√
nl−1

∥W (l)
0 ∥2 = Op(1).

Proof. By definition, each entry of the matrix 1
σW

W
(l)
0 ∈ Rnl×nl−1 is drawn from the standard

Gaussian N (0, 1). Therefore, by applying Lemma A.4, we have for any δ > 0, when ñ ≥ 2 ln 2
δ ,

with probability at least 1− δ,∥∥∥∥ 1

σW
W

(l)
0

∥∥∥∥
2

≤
√
nl +

√
nl−1 +

√
2 ln

2

δ
≤
√
nl +

√
nl−1 +

√
ñ ≤
√
nl +

√
nl−1 +

√
nl,

which means

1
√
nl−1

∥W (l)
0 ∥2 ≤ σW ·

(
2 +

√
nl

nl−1

)
= 2σW +Op(1) = Op(1)

as ñ→∞. Therefore,

1
√
nl−1

∥W (l)
0 ∥2 = Op(1)

as ñ→∞, which completes the proof.

Lemma C.7. Suppose Assumptions 1, 2 and 3 hold, and there exists ñ ∈ N+ such that
{n0, · · · , nL} ≥ ñ. For a given l ∈ [1 : L + 1], suppose nl

nl−1
= Op(1) as ñ → ∞. Then,

we have that as ñ→∞,

sup
t∈[0,T]

{
1

√
nl−1

∥W (l)
t ∥2

}
= Op(1).

Proof. We have that

sup
t∈[0,T]

{
1

√
nl−1

∥W (l)
t ∥2

}
≤ ∥W

(l)
0 ∥2√
nl−1︸ ︷︷ ︸
Υ1

+ sup
t∈[0,T]

∥W (l)
t −W

(l)
0 ∥2√

nl−1︸ ︷︷ ︸
Υ2

.

By Lemma C.6, we have Υ1 = Op(1) as ñ → ∞. By Lemma C.5, we have Υ2
P−→ 0 as ñ → ∞,

which further indicates Υ2 = Op(1). As a result,

sup
t∈[0,T]

{
1

√
nl−1

∥W (l)
t ∥2

}
≤ Op(1) +Op(1) = Op(1),

which demostrates that supt∈[0,T]

{
1√
nl−1
∥W (l)

t ∥2
}
= Op(1) as ñ→∞.

The proof is completed.

Lemma C.8. Suppose Assumptions 1, 2 and 3 hold, and there exists ñ ∈ N+ such that
{n0, · · · , nL} ≥ ñ. For a given l ∈ [1 : L + 1], suppose nl′+1

n′
l

= Op(1) as ñ → ∞ holds for
any l ≤ l′ ≤ L+ 1. Then, as ñ→∞, we have that

sup
t∈[0,T],s∈[0,S]

∥∂h(l)(x)h
(L+1)
t (xt,s)∥2 = Op(1).

27

Published as a conference paper at ICLR 2024

Proof. Since

sup
t∈[0,T],s∈[0,S]

∥∂h(l)(x)h
(L+1)
t (xt,s)∥2 ≤

L∏
l′=l

sup
t∈[0,T],s∈[0,S]

∥∂h(l′)(x)h
(l′+1)
t (xt,s)∥2

≤
L∏

l′=l

sup
t∈[0,T]

K︸︷︷︸
Assumption 1

· ∥W
(l′+1)
t ∥2√
nl′

≤
L∏

l′=l

K · Op(1)︸ ︷︷ ︸
Lemma C.7

= Op(1),

thus supt∈[0,T],s∈[0,S] ∥∂h(l)(x)h
(L+1)
t (xt,s)∥2 = Op(1) as ñ→∞.

The proof is completed.

Lemma C.9. Suppose Assumptions 1, 2 and 3 hold, and there exists ñ ∈ N+ such that
{n0, · · · , nL} ≥ ñ. Suppose for any l ∈ [0 : L], we have nl+1

nl
= Op(1) as ñ → ∞. Then, as

ñ→∞,

max
l∈[0:L]

sup
t∈[0,T]

sup
s1,s2∈[0,S]

∥x(l)
t (xt,s1)− x

(l)
t (xt,s2)∥2 = Op(1),

max
l∈[1:L+1]

sup
t∈[0,T]

sup
s1,s2∈[0,S]

∥h(l)
t (xt,s1)− h

(l)
t (xt,s2)∥2 = Op(1).

Proof. The proof is completed by applying Lemma C.8 to the proof of Lemma C.2.

Lemma C.10. Suppose Assumptions 1, 2 and 3 hold, and there exists ñ ∈ N+ such that
{n0, · · · , nL} ≥ ñ. For a given l ∈ [1 : L + 1], suppose nl′+1

nl′
= Op(1) as ñ → ∞ holds for

any l ≤ l′ ≤ L. Then, as ñ→∞,

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

1
√
nl
∥h(l)

t (xt,s)∥2 = Op(1),

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥h(l)
t (xt,s)− h

(l)
0 (x)∥2 = Op(1).

Proof. The proof is based on mathematical induction. For the base case where l = 1, as ñ→∞,

lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥h(1)
t (xt,s)− h

(1)
0 (x)∥2 = lim

n0→∞
sup

t∈[0,T]

∥h(1)
t (x)− h

(1)
0 (x)∥2 +Op(1)︸ ︷︷ ︸

Lemma C.9

≤ Op(1) + lim
n0→∞

sup
t∈[0,T]

∫ t

0

∥∂τW (1)
τ ∥2 ·

∥x∥2√
n0

dτ

≤ Op(1) + lim
n0→∞

∥x∥2√
n0
· lim
n0→∞

sup
t∈[0,T]

∥∂Vec(W (1))h
(1)
t (xt,S)∥2

√
n0

· ∥∂h(1)(x) · h(L+1)(xt,S)∥2 ·
∫ T

0

∥∂f(x)L(fτ (x),y)∥2dτ

= Op(1) +Op(1) · lim
n0→∞

sup
t∈[0,T]

∥xt,S∥2√
n0

Op(1)︸ ︷︷ ︸
Lemma C.8

· Op(1)︸ ︷︷ ︸
Assumption 2

≤ Op(1) + lim
n0→∞

∥x∥2 +Op(1)√
n0︸ ︷︷ ︸

Lemma C.9

·Op(1) = Op(1),

which indicates limn0→∞ supt∈[0,T],s∈[0,S] ∥h
(1)
t (xt,s)− h

(1)
0 (x)∥2 = Op(1).

As a result,

lim
n0→∞

sup
t∈[0,T],s∈[0,S]

1
√
n1
∥h(1)

t (xt,s)∥2 ≤ lim
n0→∞

1
√
n1
∥h(1)

0 (x)∥2 +
Op(1)√

n1

≤
M∑

m=1

√
Σ(1)(xm, xm)︸ ︷︷ ︸

Lemma B.1

+Op(1) = Op(1),

28

Published as a conference paper at ICLR 2024

which indicates limn0→∞ supt∈[0,T],s∈[0,S]
1√
n1
∥h(1)

t (xt,s)∥2 = Op(1).

Then, for the induction step, suppose the lemma already holds for the l-th case and we aim to show
it also holds for the (l + 1)-th case. Following the same derivation as that in the proof of base case,
we have as ñ→∞,

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥h(l+1)
t (xt,s)− h

(l+1)
0 (x)∥2

≤ Op(1) + lim
nl−1→∞

· · · lim
n0→∞

∥x(l)
0 (x)∥2√

nl
· lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥x(l)
t (xt,S)∥2√

nl
·Op(1)

≤ Op(1) +

M∑
i=1

√
Ef∼GP(0,Σ(l))[ϕ(f(xm))2]︸ ︷︷ ︸

Lemma B.1

· lim
nl−1

· · · lim
n0→∞

∥x(l)
0 (x)∥2 +Op(1)√

nl︸ ︷︷ ︸
Induction hypothesis

·Op(1)

≤ Op(1) +Op(1) ·
M∑
i=1

√
Ef∼GP(0,Σ(l))[ϕ(f(xm))2]︸ ︷︷ ︸

Lemma B.1

·Op(1) = Op(1).

Therefore,

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

1
√
nl
∥h(l)

t (xt,s)∥2

≤ lim
nl−1→∞

· · · lim
n0→∞

1
√
nl
∥h(l)

0 (x)∥2 +
Op(1)√

nl

=

M∑
m=1

√
Σ(l)(xm, xm)︸ ︷︷ ︸

Lemma B.1

+Op(1) = Op(1).

The proof is completed.

Lemma C.11. Suppose Assumptions 1, 2 and 3 hold, and there exists ñ ∈ N+ such that
{n0, · · · , nL} ≥ ñ. For a given l ∈ [1 : L + 1], suppose nl′+1

nl′
= Op(1) as ñ → ∞ holds for

any l ≤ l′ ≤ L. Then, for any x ∈ X , as ñ→∞,

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T]

1
√
nl
∥h(l)

t (x)∥2 = Op(1),

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥h(l)
t (x)− h

(l)
0 (x)∥2 = Op(1).

Proof. The proof is completed by following the proof of Lemma C.10 and also applying
Lemma C.10 itself.

C.3.2 PROOF OF THEOREM C.1

Based on Lemmas C.6-C.11, we are now able to prove Theorem C.1 as follows.

Proof of Theorem C.1. To prove Theorem C.1, it is enough to prove the following Claim C.1.

Claim C.1. For a given l ∈ [L+1], suppose nl+1

nl
, · · · , nL+1

nL
= Op(1), Then, for any m,m′ ∈ [M],

as ñ→∞,

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂(l)
θ,t(xm,t,s, xm′,t,s)−Θ

(l)
θ (xm, xm′)∥2

P−→ 0,

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂(l)
x,t(xm,t,s, xm,t,s)−Θ(l)

x (xm, xm)∥2
P−→ 0.

29

Published as a conference paper at ICLR 2024

Theorem C.1 can be directly obtained by setting l = L+1 in Claim C.1. Therefore, we now turn to
prove this claim.

Proof. The proof is based on mathematical induction. For the base case where l = 1, for Θ̂(1)
θ,t , as

ñ→∞,

sup
t∈[0,T],s∈[0,S]

∥Θ̂(1)
θ,t (xm,t,s, xm′,t,s)− Θ̂

(1)
θ,0(xm, xm′)∥2 = sup

t∈[0,T],s∈[0,S]

∥xT
m,t,sxm′,t,s − xT

mxm′∥2
n0

.

By Lemma C.10 and Assumption 1, we have

lim
n0→∞

∥xm,t,s − xm∥2√
n0

= lim
n0→∞

Op(1)√
n0

P−→ 0,

which thus indicates

lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂(1)
θ,t (xm,t,s, xm′,t,s)− Θ̂

(1)
θ,0(xm, xm′)∥2

P−→ 0.

Besides, for Θ̂(1)
x,t , we have

sup
t∈[0,T],s∈[0,S]

∥Θ̂(1)
x,t(xm,t,s, xm,t,s)−Θ(1)

x (xm, xm)∥2 = sup
t∈[0,T],s∈[0,S]

∥W (1)
t W

(1)
t

T
−W

(1)
0 W

(1)
0

T
∥2

n0
.

By Lemma C.5, we have limn0→∞
∥W (1)

t −W
(1)
0 ∥2√

n0

P−→ 0 as ñ→∞, which further demonstrates

lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂(1)
x,t(xm,t,s, xm,t,s)−Θ(1)

x (xm, xm)∥2
P−→ 0

and thereby completes the proof for the base case.

For the induction step, suppose Claim C.1 already holds for the l-th case and we want to prove it
also holds for the case (l + 1) in which nl+2

nl+1
, · · · , nL+1

nL
= Op(1) holds.

To do so, we first prove technical Claims C.2 and C.3.

Claim C.2. As ñ→∞,

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥h(l)
t (xm)− h

(l)
0 (xm)∥∞

P−→ 0.

Proof. As ñ→∞, for every j ∈ [nl], we uniformly have that

sup
t∈[0,T]

∥h(l)
t (xm)− h

(l)
0 (xm)∥∞

≤ K · sup
t∈[0,T]

max
j∈[nl]

∫ t

0

|∂τh(l)
τ (xm)j |dτ ≤ K · max

j∈[nl]

∫ T

0

|∂θh(l)
τ (xm)j · ∂τθt|dτ

= K · max
j∈[nl]

∫ T

0

|∂θh(l)
τ (xm)j · ∂T

θ h
(l)
τ (xt,S) · ∂T

h(l)(x)h
(l+1)
t (xt,S) · ∂T

h(l+1)(x)h
(L+1)
τ (xt,S) · ∂T

f(x)L(fτ (xt,S),y)|dτ

≤ K · max
j∈[nl]

∫ T

0

∥Θ̂(l)
θ,τ (xm,xτ,S)j,: · ∂T

h(l)(x)h
(l+1)
τ (xτ,S)∥2 · ∥∂h(l+1)(x)h

(L+1)
τ (xτ,S)∥2 · ∥∂f(x)L(fτ (xτ,S),y)∥2dτ

≤ K · sup
τ∈[0,T]

max
j∈[nl]

1
√
nl
∥Θ̂(l)

θ,τ (xm,xτ,S)j,: ·Diag((W (l+1)
τ , · · · ,W (l+1)

τ)︸ ︷︷ ︸
M matrices W (l+1)

τ at all

)T ∥2 · Op(1)︸ ︷︷ ︸
Lemma C.8

· Op(1)︸ ︷︷ ︸
Assumption 2

≤ K · max
m′∈[M]

sup
τ∈[0,T]

max
j∈[nl]

1
√
nl
∥Θ̂(l)

θ,τ (xm, xm′,τ,S)j,: ·W (l+1)
τ

T
∥2 ·Op(1), (C.15)

where Θ̂
(l)
θ,τ (·, ·)j,: denotes the j-th row of Θ̂(l)

θ,τ (·, ·) and W
(l+1)
i,:,τ denotes the i-th row of W (l+1)

τ .

30

Published as a conference paper at ICLR 2024

Then, by the induction hypothesis and Lemma C.5, we have

lim
nl→∞

· · · lim
n0→∞

max
m′∈[M]

sup
τ∈[0,T]

max
j∈[nl]

∥Θ̂(l)
θ,τ (xm, xm′,τ,S)j,: −Θ

(l)
θ (xm, xm′)j,:∥2

P−→ 0,

lim
nl→∞

· · · lim
n0→∞

max
m′∈[M]

sup
τ∈[0,T]

max
j∈[nl]

∥W (l+1)
t −W

(l+1)
0 ∥2√

nl

P−→ 0,

which indicates

lim
nl→∞

· · · lim
n0→∞

max
m′∈[M]

sup
τ∈[0,T]

max
j∈[nl]

1
√
nl
∥Θ̂(l)

θ,τ (xm, xm′,τ,S)j,: ·W (l+1)
τ

T
∥2

P−→ lim
nl→∞

max
m′∈[M]

max
j∈[nl]

1
√
nl
∥Θ(l)

θ (xm, xm′)j,: ·W (l+1)
0

T
∥2

≤ lim
nl→∞

max
m′∈[M]

max
i∈[nl+1],j∈[nl]

√
nl+1 · |Θ∞,(l)

θ (xm, xm′)| · |W (l+1)
i,j,0 |√

nl

=
√
nl+1 · max

m′∈[M]
|Θ∞,(l)

θ (xm, xm′)| · max
i∈[nl+1]

lim
nl→∞

maxj∈[nl] |W
(l+1)
i,j,0 |√

nl

=
√
nl+1 · max

m′∈[M]
|Θ∞,(l)

θ (xm, xm′)| · 0︸︷︷︸
Lemma A.5

= 0. (C.16)

Combining Eqs. (C.15) and (C.16), we finally have

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥h(l)
t (xm)− h

(l)
0 (xm)∥∞

P−→ 0.

The proof is completed.

Claim C.3. As ñ→∞,

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥h(l)
t (xm,t,s)− h

(l)
0 (xm)∥∞

P−→ 0.

Proof. We first bound ∥h(l)
t (xm,t,s)− h

(l)
t (xm)∥∞. As ñ→∞, have that

sup
t∈[0,T],s∈[0,S]

∥h(l)
t (xm,t,s)− h

(l)
t (xm)∥∞

≤ K · sup
t∈[0,T],s∈[0,S]

max
j∈[nl]

∫ s

0

|∂τh(l)
t (xm,t,τ)j |dτ ≤ K · sup

t∈[0,T]

max
j∈[nl]

∫ S

0

|∂xh(l)
t (xm,t,τ)j · ∂τxm,t,τ |dτ

≤ K · sup
t∈[0,T],τ∈[0,S]

max
j∈[nl]

∥Θ̂(l)
x,t(xm,t,τ , xm,t,τ)j,: · ∂T

h(l)(x)h
(l+1)
t (xm,t,τ)∥2

· sup
t∈[0,T],τ∈[0,S]

∥∂h(l+1)(x)h
(L+1)
t (xm,t,τ)∥2 · sup

t∈[0,T]

∥η(t)∥2 ·
∫ S

0

∥∂f(x)L(ft(xm,t,s), ym)∥2dτ

≤ sup
t∈[0,T],τ∈[0,S]

max
j∈[nl]

1
√
nl
∥Θ̂(l)

x,t(xm,t,τ , xm,t,τ)j,: ·W (l+1)
t

T
∥2 · Op(1)︸ ︷︷ ︸

Lemma C.8

· Op(1)︸ ︷︷ ︸
Assumption 3

· Op(1)︸ ︷︷ ︸
Assumption 2

,

(C.17)

where Θ̂
(l)
x,t(xm,t,τ , xm,t,τ)j,: is the j-th row of Θ̂(l)

x,t(xm,t,τ , xm,t,τ).

Similar to that in the proof of Claim C.2, by the induction hypothesis and Lemma C.5, we have

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],τ∈[0,S]

max
j∈[nl]

∥Θ̂(l)
x,t(xm,t,τ , xm,t,τ)j,: −Θ(l)

x (xm, xm′)j,:∥2
P−→ 0,

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥W (l+1)
t −W

(l+1)
0 ∥2√

nl

P−→ 0,

31

Published as a conference paper at ICLR 2024

which leads to

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],τ∈[0,S]

max
j∈[nl]

1
√
nl
∥Θ̂(l)

x,t(xm,t,τ , xm,t,τ)j,: ·W (l+1)
t

T
∥2

P−→ lim
nl→∞

· · · lim
n0→∞

max
j∈[nl]

1
√
nl
∥Θ(l)

x (xm, xm)j,: ·W (l+1)
0

T
∥2

= lim
nl→∞

max
j∈[nl]

1
√
nl
|Θ∞,(l)

x (xm, xm)| · ∥W (l+1)
:,j,0 ∥2

≤ √nl+1 · |Θ∞,(l)
x (xm, xm)| · max

i∈[nl+1]
lim

nl→∞

maxj∈[nl] |W
(l+1)
i,j,0 |√

nl

≤ √nl+1 · |Θ∞,(l)
x (xm, xm)| · 0︸︷︷︸

Lemma A.5

= 0. (C.18)

Combining Eqs.(C.17) and (C.18), we thus have that as ñ→∞,

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥h(l)
t (xm,t,s)− h

(l)
t (xm)∥∞

P−→ 0.

As a result, by further applying Claim C.2,

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥h(l)
t (xm,t,s)− h

(l)
0 (xm)∥∞

≤ lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

(
∥h(l)

t (hm,t,s)− x
(l)
t (xm)∥∞ + ∥h(l)

t (xm)− h
(l)
0 (xm)∥∞

)
P−→ 0 + 0 = 0.

The proof is completed.

Based on Claims C.2 and C.3, we are now able to prove the induction step. Specifically, for the
NTK Θ̂

(l+1)
θ,t , we have

∥Θ̂(l+1)
θ,t (xm,t,s, xm′,t,s)− Θ̂

(l+1)
θ,0 (xm, xm′)∥2

≤ ∥D(l+1)
t (xm,t,s) · Θ̂(l)

θ,t(xm,t,s, xm′,t,s) ·D(l+1)
t (xm′,t,s)

T −D
(l+1)
0 (xm) · Θ̂(l)

θ,0(xm, xm′) ·D(l+1)
0 (xm′)T ∥2︸ ︷︷ ︸

It,s

+
|x(l)

t (xm,t,s)
Tx

(l)
t (xm′,t,s)− x

(l)
t (xm)Tx

(l)
t (xm′)|

nl︸ ︷︷ ︸
IIt,s

where D
(l+1)
t (x) :=

W
(l+1)
t ·Diag(ϕ′(h

(l)
t (x)))√

nl
.

For Diag(ϕ′(h
(l)
t (xm,t,s))) in D

(l+1)
t (xm,t,s), by Claim C.3,

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Diag(ϕ′(h
(l)
t (xm,t,s)))−Diag(ϕ′(h

(l)
0 (xm)))∥2

= lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥ϕ′(h
(l)
t (xm,t,s))− ϕ′(h

(l)
0 (xm))∥∞

≤ lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

K · ∥h(l)
t (xm,t,s)− h

(l)
0 (xm)∥∞

P−→ 0.

Combining with Lemma C.5 which shows that limnl→∞ · · · limn0→∞ supt∈[0,T]
∥W (l+1)

t −W
(l+1)
0 ∥2√

nl

P−→
0 as ñ→∞, we thus have

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥D(l+1)
t (xm,t,s)−D

(l+1)
0 (xm)∥2

P−→ 0.

32

Published as a conference paper at ICLR 2024

Further applying the induction hypothesis that limnl→∞ · · · limn0→∞ supt∈[0,T],s∈[0,S] ∥Θ̂
(l)
θ,t(xm,t,s, xm′,t,s)−

Θ̂
(l)
θ,0(xm, xm′)∥2

P−→ 0, we finally have

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

It,s
P−→ 0.

Besides, for term IIt,s, by Lemma C.10 and Assumption 1, we have

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥x(l)
t (xm,t,s)− x

(l)
0 (xm)∥2√

nl

≤ lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

K · ∥h(l)
t (xm,t,s)− h

(l)
0 (xm)∥2√

nl

≤ lim
nl→∞

· · · lim
n0→∞

K ·Op(1)√
nl

P−→ 0,

which leads to

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

IIt,s
P−→ 0.

Finally, Based on the convergences of It,s and IIt,s, we have that as ñ→∞,

lim
nl→∞

· · · lim
n0→∞

∥Θ̂(l+1)
θ,t (xm,t,s, xm′,t,s)− Θ̂

(l+1)
θ,0 (xm, xm′)∥2

P−→ 0.

According to Theorem B.1, limnl→∞ · · · limn0→∞ Θ̂
(l+1)
θ,0 (xm, xm′) = Θ

(l+1)
θ (xm, xm′), which

thus indicates

lim
nl→∞

· · · lim
n0→∞

∥Θ̂(l+1)
θ,t (xm,t,s, xm′,t,s)−Θ

(l+1)
θ (xm, xm′)∥2

P−→ 0.

Then, for the ARK Θ̂
(l+1)
x,t , we have

∥Θ̂(l+1)
x,t (xm,t,s, xm′,t,s)− Θ̂

(l+1)
x,0 (xm, xm′)∥2

≤ ∥D(l+1)
t (xm,t,s) · Θ̂(l)

x,t(xm,t,s, xm′,t,s) ·D(l+1)
t (xm′,t,s)

T −D
(l+1)
0 (xm) · Θ̂(l)

x,0(xm, xm′) ·D(l+1)
0 (xm′)T ∥2.

Therefore, following similar derivation as that for Θ̂(l+1)
θ,t , we will have

lim
nl→∞

· · · lim
n0→∞

∥Θ̂(l+1)
x,t (xm,t,s, xm′,t,s)−Θ(l+1)

x (xm, xm′)∥2
P−→ 0

as ñ→∞, which justifies the induction step and also completes the proof of Claim C.1.

The proof is completed.

C.3.3 PROOF OF THEOREM C.2

Theorem C.2 is similarly proved as follows.

Proof of Theorem C.2. The proof is similar to that of Theorem C.1. Specifically, to prove Theo-
rem C.2, it is enough to prove the following Claim C.4.

Claim C.4. For a given l ∈ [L+ 1], suppose nl+1

nl
, · · · , nL+1

nL
= Op(1), Then, for any m ∈ [M], as

ñ→∞, we have that

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂(l)
θ,t(x, xm,t,s)−Θ

(l)
θ (x, xm)∥2

P−→ 0,

lim
nl−1→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥Θ̂(l)
x,t(x, xm,t,s)−Θ(l)

x (x, xm)∥2
P−→ 0.

33

Published as a conference paper at ICLR 2024

Then, Theorem C.2 can be directly obtained by setting l = L+ 1 in Claim C.4.

The proof of Claim C.4 basically follows that of Claim C.1. The only difference is that Claim C.4
requires one to further prove that

lim
nl→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥h(l)
t (x)− h

(l)
0 (x)∥∞

P−→ 0

for any x ∈ X as ñ→∞ in the (l+ 1)-th induction step, which can be done by using Lemma C.11
and following the derivation in Claim C.2.

C.4 EQUIVALENCE BETWEEN WIDE DNN AND LINEARIZED DNN

With the kernel convergences proved in Appendix C.3, we are now able to prove Theorem 2.

We will first prove the following Lemma C.12, and then prove Theorem 2.

Lemma C.12. Suppose Assumptions 1, 2, 3, and 4 hold, and there exists ñ ∈ N+ such that
{n0, · · · , nL} ≥ ñ. Then, as ñ→∞, we have that

lim
nL→∞

· · · lim
n0→∞

{
sup

t∈[0,T],s∈[0,S]

∥∂f(x)L(ft(xt,s),y)− ∂f(x)L(f lin
t (xlin

t,s),y)∥2

}
P−→ 0,

lim
nL→∞

· · · lim
n0→∞

{
sup

t∈[0,T],s∈[0,S]

∥ft(xt,s)− f lin
t (xlin

t,s)∥2

}
P−→ 0.

Proof. By Assumption 4, we have that

∥∂f(x)L(ft(xt,s),y)− ∂f(x)L(f lin
t (xlin

t,s),y)∥2 ≤ K · ∥ft(xt,s)− f lin
t (xlin

t,s)∥2.

Thus, to prove Lemma C.12, it is enough to only show the convergence of ∥ft(xt,s)− f lin
t (xlin

t,s)∥2.

Then, following the AT dynamics formalized in Section 4.2, as ñ → ∞, for any t ∈ [0, T] and
s ∈ [0, S], we uniformly have

∥ft(xt,s)− f lin
t (xlin

t,s)∥2

=

∥∥∥∥ft(x)− f lin
t (x) +

∫ s

0

(
Θ̂x,t(xt,τ ,xt,τ) · η(t) · ∂T

f(x)L(ft(xt,τ),y)− Θ̂x,0(x,x) · η(t) · ∂T
f(x)L(f

lin
t (xlin

t,τ),y)
)
dτ

∥∥∥∥
2

≤ ∥ft(x)− f lin
t (x)∥2 +

∫ S

0

∥Θ̂x,t(xt,τ ,xt,τ)− Θ̂x,0(x,x)∥2 · ∥η(t)∥2 · ∥∂f(x)L(ft(xt,τ),y)∥2dτ

+

∫ s

0

∥Θ̂x,0(x,x)∥2 · ∥η(t)∥2 · ∥∂f(x)L(ft(xt,τ),y)− ∂f(x)L(f lin
t (xlin

t,τ),y)∥2dτ

≤ ∥ft(x)− f lin
t (x)∥2 + sup

τ∈[0,S]

∥Θ̂x,t(xt,τ ,xt,τ)− Θ̂x,0(x,x)∥2 · Op(1)︸ ︷︷ ︸
Assumption 3

· Op(1)︸ ︷︷ ︸
Assumption 2

+ ∥Θ̂x,0(x,x)∥2 · Op(1)︸ ︷︷ ︸
Assumption 3

·
∫ s

0

∥ft(xt,τ)− f lin
t (xlin

t,τ)∥2︸ ︷︷ ︸
Assumption 4

dτ.

By applying Grönwall’s inequality (Lemma A.2), we further have

∥ft(xt,s)− f lin
t (xlin

t,s)∥2

≤

(
∥ft(x)− f lin

t (x)∥2 + sup
τ∈[0,S]

∥Θ̂x,t(xt,τ ,xt,τ)− Θ̂x,0(x,x)∥2 ·Op(1)

)
· exp

(
∥Θ̂x,0(x,x)∥2 ·Op(1)

)
,

(C.19)

34

Published as a conference paper at ICLR 2024

which indicates

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥ft(xt,s)− f lin
t (xlin

t,s)∥2

≤ lim
nL→∞

· · · lim
n0→∞

(
sup

t∈[0,T]

∥ft(x)− f lin
t (x)∥2 + sup

t∈[0,T],τ∈[0,S]

∥Θ̂x,t(xt,τ ,xt,τ)− Θ̂x,0(x,x)∥2 ·Op(1)

)
· exp

(
∥Θ̂x,0(x,x)∥2 ·Op(1)

)
P−→

 lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥ft(x)− f lin
t (x)∥2 + Op(ξ)︸ ︷︷ ︸

Theorem C.1

 · exp
∥Θx(x,x)∥2︸ ︷︷ ︸

Theorem B.1

·Op(1)


=

(
lim

nL→∞
· · · lim

n0→∞
sup

t∈[0,T]

∥ft(x)− f lin
t (x)∥2 +Op(ξ)

)
· exp(Op(1)) (C.20)

as ñ→∞, where ξ denotes any term such that ξ → 0 as ñ→∞.

For ∥ft(x)− f lin
t (x)∥2 in the above Eq. (C.20), we similarly have

∥ft(x)− f lin
t (x)∥2 ≤

∥∥∥∥∫ t

0

(
Θ̂θ,τ (x,xτ,S) · ∂T

f(x)L(fτ (xτ,S),y)− Θ̂θ,0(x,x) · ∂T
f(x)L(f

lin
τ (xτ,S),y)

)
dτ

∥∥∥∥
2

≤
∫ T

0

∥Θ̂θ,τ (x,xτ,S)− Θ̂θ,0(x,x)∥2 · ∥∂f(x)L(fτ (xτ,S),y)∥2dτ

+

∫ t

0

∥Θ̂θ,0(x,x)∥2 · ∥∂f(x)L(fτ (xτ,S),y)− ∂f(x)L(f lin
τ (xlin

τ,S),y)∥2dτ

≤ sup
τ∈[0,T]

∥Θ̂θ,τ (x,xτ,S)− Θ̂θ,0(x,x)∥2 · Op(1)︸ ︷︷ ︸
Assumption 2

+

∫ t

0

∥Θ̂θ,0(x,x)∥2 · ∥fτ (xτ,S)− f lin
τ (xlin

τ,S)∥2︸ ︷︷ ︸
Assumption 4

dτ.

Adopting Eq. (C.19) into the above inequality and again using Grönwall’s Lemma A.2 lead to

∥ft(x)− f lin
t (x)∥2

≤

(
sup

τ∈[0,T]

∥Θ̂θ,τ (x,xτ,S)− Θ̂θ,0(x,x)∥2

+∥Θ̂θ,0(x,x)∥2 · sup
τ∈[0,S]

∥Θ̂x,t(xt,τ ,xt,τ)− Θ̂x,0(x,x)∥2 · exp
(
∥Θ̂x,0(x,x)∥2 ·Op(1)

))
·Op(1) · exp

(
∥Θ̂θ,0(x,x)∥2 · eT ·∥Θ̂x,0(x,x)∥2·Op(1)

)
,

which indicates

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥ft(x)− f lin
t (x)∥2

≤ lim
nL→∞

· · · lim
n0→∞

{
Upper Bound of sup

t∈[0,T]

∥ft(x)− f lin
t (x)∥2

}

P−→

 Op(ξ)︸ ︷︷ ︸
Theorem C.1

+ ∥Θθ(x,x)∥2︸ ︷︷ ︸
Theorem B.1

· Op(ξ)︸ ︷︷ ︸
Theorem C.1

· exp

∥Θx(x,x)∥2︸ ︷︷ ︸
Theorem B.1

·Op(1)


·Op(1) · exp

∥Θθ(x,x)∥2 · e∥Θx(x,x)∥2·Op(1)︸ ︷︷ ︸
Theorem B.1


=
(
Op(ξ) +Op(1) ·Op(ξ) · eOp(1)

)
·Op(1) · exp

(
Op(1) · eOp(1)·Op(1)

)
= Op(ξ)

P−→ 0.

35

Published as a conference paper at ICLR 2024

as ñ→∞, where ξ denotes any term such that ξ → 0 as ñ→∞. Thus,

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥ft(x)− f lin
t (x)∥2

P−→ 0 (C.21)

as ñ→∞.

Finally, inserting Eq. (C.21) into Eq. (C.20) and we have

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥ft(xt,s)− f lin
t (xlin

t,s)∥2

≤ lim
nL→∞

· · · lim
n0→∞

{
Upper Bound of sup

t∈[0,T],s∈[0,S]

∥ft(xt,s)− f lin
t (xt,s)∥2

}
P−→ (Op(ξ) +Op(ξ)) · eOp(1)

P−→ (0 + 0) · eOp(1) = 0,

which means as ñ→∞,

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T],s∈[0,S]

∥ft(xt,s)− f lin
t (xlin

t,s)∥2
P−→ 0.

The proof is completed.

Based on Lemma C.12, we now prove Theorem 2 as follows.

Proof of Theorem 2. For any x ∈ X as ñ→∞, we uniformly have that for any t ∈ [0, T],

∥ft(x)− f lin
t (x)∥2

=

∥∥∥∥∫ t

0

(
Θ̂θ,τ (x,xτ,S) · ∂T

f(x)L(fτ (xτ,S), y⃗)− Θ̂θ,0(x,x) · ∂T
f(x)L(f

lin
τ (xlin

τ,S),y)
)
dτ

∥∥∥∥
2

≤
∫ T

0

∥Θ̂θ,τ (x,xτ,S)− Θ̂θ,0(x,x)∥2 · ∥∂f(x)L(fτ (xτ,S),y)∥2dτ +

∫ t

0

∥Θ̂θ,0(x,x)∥2 · ∥fτ (xτ,S)− f lin
τ (xlin

τ,S)∥2dτ

≤ sup
τ∈[0,T]

∥Θ̂θ,τ (x,xτ,S)− Θ̂θ,0(x,x)∥2 · Op(1)︸ ︷︷ ︸
Assumption 2

+∥Θ̂θ,0(x,x)∥2 · T · sup
τ∈[0,T]

∥fτ (xτ,S)− f lin
τ (xlin

τ,S)∥2.

Therefore, by applying Lemma C.12,

lim
nL→∞

· · · lim
n0→∞

sup
t∈[0,T]

∥ft(x)− f lin
t (x)∥2

≤ lim
nL→∞

· · · lim
n0→∞

{
Upper Bound of sup

t∈[0,T]

∥ft(x)− f lin
t (x)∥2

}
P−→ Op(ξ)︸ ︷︷ ︸

Theorem C.2

·Op(1) + ∥Θθ(x,x)∥2︸ ︷︷ ︸
Theorem B.1

·T · Op(ξ)︸ ︷︷ ︸
Lemma C.12

= Op(ξ) ·Op(1) + ·Op(1) ·Op(ξ) = Op(ξ)
P−→ 0,

where ξ denotes any term such that ξ → 0 as ñ→∞. This means that as ñ→∞,

lim
nL→∞

· · · lim
n0→∞

∥ft(x)− f lin
t (x)∥2

P−→ 0.

The proof is completed.

D PROOF OF THEOREM 3

This section presents the proof of Theorem 3.

36

Published as a conference paper at ICLR 2024

D.1 PROOF SKELETON

To calculate the closed-form solution of the linearized DNN f lin
t with squared loss in AT, the main

technical challenge is that the learning rate matrix η(t) is non-linear on [0, T], which results in f lin
t

also being non-linear on [0, T] and thus is difficult to calculate a closed-form solution for it. To tackle
the challenge, we propose to first use a surrogate piecewise linear function f sur

t to approximate f lin
t

and then directly calculate the closed-form solution of f sur
t when the squared loss is used.

Specifically, for a given t ∈ [0, T], the piecewise linear function f sur
v on the interval [0, t] (note that

v ∈ [0, t]) is constructed in the following three steps:

1. Choose a D ∈ N+, and divide the interval [0, t] into D equal-width sub-intervals, where
the d-th (d ∈ [D]) interval is [ad−1, ad] and ad := td

D .

2. Construct a surrogate learning rate matrix ηsur(v) such that ηsur(v) := η(ad−1) when
v ∈ [ad−1, ad) for every d ∈ [D].

3. Initialize f sur
v with parameter θ0 and train it following the same AT dynamics as that of f lin

v
except using the ηsur(v) as the learning rate matrix for searching adversarial examples.

After finishing the training on [0, t], we will obtained the eventual surrogate DNN f sur
t .

In the rest of this section, we will show that: (1) in Appendix D.2, the designed surrogate f sur
t can

well approximate the original f lin
t as D →∞, and (2) in Appendix D.3, the closed-form solution of

the surrogate f sur
t can be easily calculated, which then leads to the closed-form solution of f lin

t .

D.2 APPROXIMATING LINEARIZED DNN WITH PIECEWISE LINEAR MODEL

Lemma D.1. Suppose Assumptions 3 and 4 hold. For any t ∈ [0, T], we construct f sur
v on [0, t] as

that introduced in Appendix D. Then, as D → ∞, for any v ∈ [0, t] and s ∈ [0, S], we uniformly
have that

∥f lin
v (xlin

v,s)− f sur
v (xsur

v,s)∥2 → 0.

Proof. We first upper bound the difference between f lin
v (xlin

v,s) and f sur
v (xsur

v,s) on the d-th interval.
Specifically, for any v ∈ [ad−1, ad] and s ∈ [0, S], we uniformly have that

∥f sur
v (xsur

v,s)− f lin
v (xlin

v,s)∥2

≤ ∥f sur
v (x)− f lin

v (x)∥2 +
∫ s

0

∥Θ̂x,0(x,x)∥2︸ ︷︷ ︸
Constant

·∥ηsur(v) · ∂T
f(x)L(f

sur
v (xsur

v,τ),y)− η(v) · ∂T
f(x)L(f

lin
v (xlin

v,τ),y)∥2dτ

≤ ∥f sur
v (x)− f lin

v (x)∥2

+

∫ s

0

C · ∥ηsur(v)∥2 · ∥∂f(x)L(f sur
v (xsur

v,τ),y)− ∂f(x)L(f lin
v (xlin

v,τ),y)∥2dτ

+

∫ s

0

C · ∥ηsur(v)− η(v)∥2 · ∥∂f(x)L(f lin
v (xlin

v,τ),y)∥2dτ

≤ ∥f sur
v (x)− f lin

v (x)∥2

+ C · sup
v∈[0,T]

∥ηsur(v)∥2︸ ︷︷ ︸
Constant by Assumption 3

·
∫ s

0

∥∂f(x)L(f sur
v (xsur

v,τ),y)− ∂f(x)L(f lin
v (xlin

v,τ),y)∥2dτ

+ C · sup
v∈[ad−1,ad]

∥η(ad−1)− η(v)∥2 ·
∫ s

0

∥∂f(x)L(f lin
v (xlin

v,τ),y)∥2dτ︸ ︷︷ ︸
Constant

≤ ∥f sur
v (x)− f lin

v (x)∥2 + C ·
∫ s

0

K · ∥f sur
v (xsur

v,τ)− f lin
v (xlin

v,τ)∥2︸ ︷︷ ︸
Assumption 4

dτ + C · sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2,

37

Published as a conference paper at ICLR 2024

where C denotes any non-negative constant. Therefore, by Grönwall’s Lemma A.2, we uniformly
have that for any v ∈ [ad−1, ad] and s ∈ [0, S],

∥f sur
v (xsur

v,s)− f lin
v (xlin

v,s)∥2

≤

(
∥f sur

v (x)− f lin
v (x)∥2 + C · sup

v1,v2∈[0,T], |v1−v2|≤ t
D

∥η(v1)− η(v2)∥2

)
· exp(C · S ·K)

≤ C · ∥f sur
v (x)− f lin

v (x)∥2 + C · sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2, (D.1)

where C denotes any non-negative constant.

For ∥f sur
v (xsur

v,s)− f lin
v (xlin

v,s)∥2 in Eq. (D.1), we bound it on the interval [ad−1, ad] as follows,

∥f sur
v (x)− f lin

v (x)∥2

≤ ∥f sur
ad−1

(x)− f lin
ad−1

(x)∥2 +
∫ v

ad−1

∥Θ̂θ,0(x,x)∥2︸ ︷︷ ︸
Constant

·∥∂f(x)L(f sur
τ (xsur

τ,S),y)− ∂f(x)L(f lin
τ (xlin

τ,S),y)∥2dτ

≤ ∥f sur
ad−1

(x)− f lin
ad−1

(x)∥2 + C ·
∫ v

ad−1

K · ∥f sur
τ (xsur

τ,S)− f lin
τ (xlin

τ,S)∥2︸ ︷︷ ︸
Assumption 4

dτ

≤ ∥f sur
ad−1

(x)− f lin
ad−1

(x)∥2 + C ·
∫ v

ad−1

(
C · ∥f sur

τ (x)− f lin
τ (x)∥2 + C · sup

v1,v2∈[0,T], |v1−v2|≤ t
D

∥η(v1)− η(v2)∥2

)
︸ ︷︷ ︸

Eq. (D.1)

dτ

≤ ∥f sur
ad−1

(x)− f lin
ad−1

(x)∥2 +
Ct

D
· sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2 + C ·
∫ v

ad−1

∥f sur
τ (x)− f lin

τ (x)∥2dτ,

where C denotes any non-negative constant. As a result, by again using Grönwall’s Lemma A.2, we
uniformly have that for any v ∈ [ad−1, ad],

∥f sur
v (x)− f lin

v (x)∥2

≤

(
∥f sur

ad−1
(x)− f lin

ad−1
(x)∥2 +

Ct

D
· sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2

)
· exp

(
C ·
∫ v

ad−1

dτ

)

≤

(
∥f sur

ad−1
(x)− f lin

ad−1
(x)∥2 +

C

D
· sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2

)
· exp

(
C

D

)
,

(D.2)

where C denotes any non-negative constant.

Therefore, for any ad where d ∈ [D], by recursively applying Eq. (D.2), we will have that

∥f sur
ad

(x)− f lin
ad

(x)∥2

≤

(
∥f sur

ad−1
(x)− f lin

ad−1
(x)∥2 +

C

D
· sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2

)
· exp

(
C

D

)

≤ · · · ≤ ∥f sur
0 (x)− f lin

0 (x)∥2 · exp
(
Cd

D

)
+

d∑
d′=1

(
C

D
· sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2

)
· exp

(
Cd′

D

)
≤ 0 · exp(C) +

Cd

D
· sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2 · exp(C)

≤ C · sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2, (D.3)

where C denotes any non-negative constant.

38

Published as a conference paper at ICLR 2024

Combining Eqs. (D.1), (D.2), (D.3) leads to

∥f sur
v (xsur

v,s)− f lin
v (xlin

v,s)∥2

≤ C ·
(
exp

(
C

D

)
·
(
C +

C

D

)
+ 1

)
· sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2

≤ C · sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2,

where C denotes any non-negative constant.

Finally, according to Assumption 3, we know that η(t) is continuous on the closed interval [0, T],
which indicates it is also uniformly continuous on [0, T]. Therefore, as D → ∞, we will have
t
D →∞, which indicates for any v ∈ [0, t] and s ∈ [0, S] uniformly,

sup
v1,v2∈[0,T], |v1−v2|≤ t

D

∥η(v1)− η(v2)∥2 → 0.

Combining the above results and we finally get

∥f sur
v (xsur

v,s)− f lin
v (xlin

v,s)∥2 → 0

uniformly for any v ∈ [0, t] and s ∈ [0, S] as D →∞.

The proof is completed.

Lemma D.2. Suppose Assumptions 3 and 4 hold. For any t ∈ [0, T], we construct f sur
v on [0, t] as

that introduced in Appendix D. Then, for any x ∈ [0, x], as D →∞,

∥f lin
t (x)− f sur

t (x)∥2 → 0.

Proof. The difference between f sur
t (x) and f lin

t (x) can be bounded as follows,

∥f sur
t (x)− f lin

t (x)∥2

≤ ∥f sur
0 (x)− f lin

0 (x)∥2 +
∫ t

0

∥Θ̂θ,0(x,x)∥2︸ ︷︷ ︸
Constant

·∥∂f(x)L(f sur
v (xv,S),y)− ∂f(x)L(f lin

v (x)v,S ,y)∥2dv

≤ 0 + C ·
∫ t

0

K · ∥f sur
v (x)− ∂f(x)f

lin
v (x)∥2︸ ︷︷ ︸

Assumption 4

dv

≤ C · T · sup
v∈[0,t]

∥f sur
v (x)− ∂f(x)f

lin
v (x)∥2 = C · sup

v∈[0,t]

∥f sur
v (x)− ∂f(x)f

lin
v (x)∥2,

where C denotes any non-negative constant. Then, by applying Lemma D.1, we have that

sup
v∈[0,t]

∥f sur
v (x)− ∂f(x)f

lin
v (x)∥2 → 0

as D →∞, which thus leads to

∥f sur
t (x)− f lin

t (x)∥2 → 0.

The proof is completed.

D.3 CLOSED-FORM SOLUTIONS OF LINEARIZED AND PIECEWISE LINEAR DNNS

Lemma D.3. Suppose Assumption 3 holds and the loss function used in AT is squared loss
L(f(x), y) := 1

2∥f(x) − y∥22. For any t ∈ [0, T], we construct f sur
v on [0, t] as that introduced

in Appendix D. Then, for any x ∈ [0, x], we have

lim
D→∞

f sur
t (x) = f0(x)− Θ̂θ,0(x,x) · Θ̂−1

θ,0(x,x) ·
(
I − e−Θ̂θ,0(x,x)·Ξ̂(t)

)
· (f0(x)− y),

where Ξ̂(t) :=
∫ t

0
exp

(
Θ̂x,0(x,x) · η(v) · S

)
dv.

39

Published as a conference paper at ICLR 2024

Proof. We first calculate the closed-form solution of f sur
v on each sub-interval. Specifically, for the

d-th sub-interval [ad−1, ad] and any v ∈ [ad−1, ad], the dynamics of searching adversarial examples
can be formalized following Eqs. (16) and (17) in Section 4.2 as below,

∂sf
sur
v (xsur

v,s) = Θ̂x,0(x,x) · ηsur(v) · (f sur
v (xsur

v,s)− y)

= Θ̂x,0(x,x) · η(ad−1) · (f sur
v (xsur

v,s)− y),

where

f sur
v (xsur

v,0) = f sur
v (x).

Solving the above ordinary equation and we have

(f sur
v (xsur

v,s)− y) = exp
(
Θ̂x,0(x,x) · η(ad−1) · s

)
· (f sur

v (x)− y). (D.4)

Then, for the AT dynamics of f sur
v on [ad−1, ad], it can be formalized following Eqs. (14) and (15)

in Section 4.2 as below,

∂vθ
sur
v = −∂T

θ f0(x) · (f sur
v (xsur

v,S)− y),

∂vf
sur
v (x) = −Θ̂θ,0(x,x) · (f sur

v (xsur
v,S)− y).

Inserting Eq. (D.4) into the above ordinary equations, we further have

∂vθ
sur
v = −∂T

θ f0(x) · exp
(
Θ̂x,0(x,x) · η(ad−1) · S

)
· (f sur

v (x)− y), (D.5)

∂vf
sur
v (x) = −Θ̂θ,0(x,x) · exp

(
Θ̂x,0(x,x) · η(ad−1) · S

)
· (f sur

v (x)− y). (D.6)

Solving Eq. (D.6) and we have for any v ∈ [ad−1, ad],

(f sur
v (x)− y) = exp

(
−Θ̂θ,0(x,x) · eΘ̂x,0(x,x)·η(ad−1)·S · (v − ad−1)

)
· (f sur

ad−1
(x)− y), (D.7)

which indicates

(f sur
t (x)− y) = (f sur

aD
(x)− y)

=

(
1∏

d=D

exp
(
−Θ̂θ,0(x,x) · eΘ̂x,0(x,x)·η(ad−1)·S · (ad − ad−1)

))
· (f sur

a0
(x)− y)

= exp

(
−Θ̂θ,0(x,x) ·

t

D

D∑
d=1

eΘ̂x,0(x,x)·η(ad−1)·S

)
· (f0(x)− y). (D.8)

Besides, by combining Eqs. (D.5) and (D.7), the closed-form solution of the difference between θsurad

and θsurad−1
is calculated as follows,

θsurad
− θsurad−1

=

∫ ad

ad−1

−∂T
θ f0(x) · exp

(
Θ̂x,0(x,x) · η(ad−1) · S

)
· (f sur

v (x)− y)︸ ︷︷ ︸
Eq. (D.5)

dv

=

∫ ad

ad−1

−∂T
θ f0(x) · eΘ̂x,0(x,x)·η(ad−1)·S · exp

(
−Θ̂θ,0(x,x) · eΘ̂x,0(x,x)·η(ad−1)·S · (v − ad−1)

)
· (f sur

ad−1
(x)− y)︸ ︷︷ ︸

Eq. (D.7)

dv

=
[
∂T
θ f0(x) · Θ̂−1

θ,0(x,x) · exp
(
−Θ̂θ,0(x,x) · eΘ̂x,0(x,x)·η(ad−1)·S · (v − ad−1)

)
· (f sur

ad−1
(x)− y)

]ad

ad−1

= ∂T
θ f0(x) · Θ̂−1

θ,0(x,x) ·
(
exp

(
−Θ̂θ,0(x,x) · eΘ̂x,0(x,x)·η(ad−1)·S · t

D

)
− I

)
· (f sur

ad−1
(x)− y)

= ∂T
θ f0(x) · Θ̂−1

θ,0(x,x) · (f
sur
ad

(x)︸ ︷︷ ︸
Eq. (D.7)

−f sur
ad−1

(x)).

40

Published as a conference paper at ICLR 2024

The above equation illustrates that the model parameter θsurt of f sur
v at the eventual training time t

can be calculated as below,

θsurt − θ0 = θsuraD
− θsura0

=

D∑
d=1

(θsurad
− θsurad−1

)

=

D∑
d=1

∂T
θ f0(x) · Θ̂−1

θ,0(x,x) · (f
sur
ad

(x)− f sur
ad−1

(x))

= ∂T
θ f0(x) · Θ̂−1

θ,0(x,x) · (f
sur
aD

(x)− f0(x))

= ∂T
θ f0(x) · Θ̂−1

θ,0(x,x) ·

(
exp

(
−Θ̂θ,0(x,x) ·

t

D

D∑
d=1

eΘ̂x,0(x,x)·η(ad−1)·S

)
− I

)
· (f0(x)− y).

As a result, for any x ∈ X ,

lim
D→∞

f sur
t (x) = lim

D→∞
(f0(x) + ∂θf0(x) · (θsurt − θ0))

= f0(x) + lim
D→∞

∂θf0(x) · ∂T
θ f0(x) · Θ̂−1

θ,0(x,x) ·

(
exp

(
−Θ̂θ,0(x,x) ·

t

D

D∑
d=1

eΘ̂x,0(x,x)·η(ad−1)·S

)
− I

)
· (f0(x)− y)

= f0(x) + Θ̂θ,0(x,x) · Θ̂−1
θ,0(x,x) ·

(
exp

(
−Θ̂θ,0(x,x) · lim

D→∞

{
t

D

D∑
d=1

eΘ̂x,0(x,x)·η(ad−1)·S

})
− I

)
· (f0(x)− y)

By the Darboux integral, when D →∞, we have

lim
D→∞

{
t

D

D∑
d=1

eΘ̂x,0(x,x)·η(ad−1)·S

}
=

∫ t

0

exp
(
Θ̂x,0(x,x) · η(v) · S

)
dv,

which means

lim
D→∞

f sur
t (x) = f0(x) + Θ̂θ,0(x,x) · Θ̂−1

θ,0(x,x) ·
(
exp

(
−Θ̂θ,0(x,x) · Ξ̂(t)

)
− I
)
· (f0(x)− y)

= f0(x)− Θ̂θ,0(x,x) · Θ̂−1
θ,0(x,x) ·

(
I − e−Θ̂θ,0(x,x)·Ξ̂(t)

)
· (f0(x)− y),

where Ξ̂(t) :=
∫ t

0
exp

(
Θ̂x,0(x,x) · η(v) · S

)
dv.

The proof is completed.

Proof of Theorem 3. For any t ∈ [0, T], suppose f sur
v is constructed on the interval [0, t] following

that introduced in Appendix D and the loss function is squared loss L(f(x), y) := 1
2∥f(x)− y∥22.

Notice that the squared loss is 1-smooth and thus satisfies Assumption 4, one can apply Lemma D.2
and have that

f lin
t (x) = lim

D→∞
f sur
t (x).

Then, by further applying Lemma D.3, we obtain the closed-form solution of f lin
t for any x ∈ X as

follows,

f lin
t (x) = lim

D→∞
f sur
t (x)

= f0(x)− Θ̂θ,0(x,x) · Θ̂−1
θ,0(x,x) ·

(
I − e−Θ̂θ,0(x,x)·Ξ̂(t)

)
· (f0(x)− y),

where Ξ̂(t) :=
∫ t

0
exp

(
Θ̂x,0(x,x) · η(τ) · S

)
dτ .

The proof is completed.

41

Published as a conference paper at ICLR 2024

E ADDITIONAL DETAILS IN SECTION 5.1

E.1 MISSING CALCULATIONS

This section presented calculation details omitted in Section 5.1.

Calculation of e−Θ̂θ,0(x,x)·Ξ̂(t).

By the decomposition Ξ̂(t) = QA(t)QT · a(t), we have

e−Θ̂θ,0(x,x)·Ξ̂(t) =

∞∑
i=0

(−1)i

i!
·
(
Θ̂θ,0(x,x)Ξ̂(t)

)i
=

∞∑
i=0

(−a(t))i

i!
·
(
Θ̂θ,0(x,x)QA(t)QT

)i
.

For
(
Θ̂θ,0(x,x)QA(t)QT

)i
, it can be rewritten as(

Θ̂θ,0(x,x)QA(t)QT
)i

= Θ̂θ,0(x,x)QA(t)QT · · · Θ̂θ,0(x,x)QA(t)QT︸ ︷︷ ︸
i number of Θ̂θ,0(x,x)QA(t)QT

= Θ̂θ,0(x,x)QA(t)
1
2 ·A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2 · · ·A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2︸ ︷︷ ︸

(i − 1) number of A(t)
1
2 QT Θ̂θ,0(x,x)QA(t)

1
2

·A(t)
1
2QT

= QA(t)−
1
2 ·A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2 ·
(
A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2

)i−1

·A(t)
1
2QT

= QA(t)−
1
2 ·
(
A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2

)i
·A(t)

1
2QT .

Combining the above results, we thus have

e−Θ̂θ,0(x,x)·Ξ̂(t)

=

∞∑
i=0

(−a(t))i

i!
QA(t)−

1
2 ·
(
A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2

)i
·A(t)

1
2QT

= QA(t)−
1
2 ·

(∞∑
i=0

(−a(t))i

i!

(
A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2

)i)
·A(t)

1
2QT

= QA(t)−
1
2 · exp

(
−A(t)

1
2QT Θ̂θ,0(x,x)QA(t)

1
2 · a(t)

)
·A(t)

1
2QT .

Calculation of exp
(
−A(∞)

1
2QT · Θ̂θ,0(x,x) ·QA(∞)

1
2 · a(∞)

)
.

By the decomposition A(∞)
1
2QT Θ̂θ,0(x,x)QA(∞)

1
2 = Q′D′Q′T , we have

exp
(
−A(∞)

1
2QT · Θ̂θ,0(x,x) ·QA(∞)

1
2 · a(∞)

)
= exp(−Q′D′Q′T · a(∞))

=

∞∑
i=0

(−a(∞))i

i!
(Q′D′Q′T)i

=

∞∑
i=0

(−a(∞))i

i!
Q′ ·D′i ·Q′T︸ ︷︷ ︸

By Q′Q′T = I

= Q′ · e−D′·a(∞) ·Q′T

(∗)
= Q′ ·Diag(−∞) ·Q′T = 0,

where (∗) is by: (1) a(∞) =∞, and (2) every diagonal entry of D′ is positive.

42

Published as a conference paper at ICLR 2024

E.2 DNNS BEHAVIOR UNDER LARGE ADVERSARIAL PERTURBATION

In Section 5.1, we have assumed that when the adversarial perturbation scale is small enough, the
symmetric matrix

H := A(∞)
1
2QT Θ̂θ,0(x,x)QA(∞)

1
2

stays positive definite, which combines with the assumption limt→∞ a(t) = ∞ leads to the AT de-
generation phenomenon. However, theoretically we can only prove that H is positive semi-definite
based on facts that (1) A(∞) is a diagonal matrix, and (2) Θ̂θ,0(x,x) is positive definite.

Further, when the adversarial perturbation scale is large where η1(t)S, · · · , ηM (t)S are large, the
symmetric matrix is likely not be positive definite. This is because in this case the elements in
the matrix A(∞) := 1

a(∞)

∫∞
0

exp(Dη(t)S)dt may vary greatly, which thus erode the positive

definiteness of QT Θ̂θ,0(x,x)Q and results in H not being a positive definite matrix. Therefore, we
now analyze the remaining cases where λmin(H) = 0.

When λmin(H) = 0, following similar derivations as that in Section 5.1 and Appendix E.1, we will
have that the exponential term in the AT dynamics in Eq. (18) not converging to zero matrix, i.e.,

lim
t→∞

e−Θ̂θ,0(x,x)·Ξ̂(t) = QA(∞)−
1
2 · eH·a(∞) ·A(∞)

1
2QT ̸= 0, where λmin(H) = 0.

In this case, AT degeneration would not occur in long-term AT, and the adversarially trained wide
DNN will eventually converge to a model that is different from that obtained in standard training.
However, we also notice that a large adversarial perturbation could add strong noise that can destroy
meaningful features within training data, which barriers DNN to effectively learning knowledge.
Therefore, it would be interesting to study how to construct NTK models with large adversarial
perturbations to achieve strong robustness in practice.

F EXPERIMENT DETAILS

This section collects experiment details that are omitted from Section 6.

F.1 PROJECTED GRADIENT DESCENT

We leverage projected gradient descent (PGD) (Madry et al., 2018) to find adversarial examples
within constraint spaces in our experiments.

Formally, given a machine learning model f : X → Y , a loss function L : Y × Y → R+, and a
perturbation radius ρ > 0, PGD aims to find the adversarial example xadv for a given input data
point (x, y) via solving the following maximization problem,

xadv = argmax
∥x′−x∥≤ρ

L(f(x′), y).

PGD will perform K iterations of projection update to find optimal adversarial examples. In the
k-th iteration, the update is as follows,

x(k) =
∏

∥x′−x∥≤ρ

[
x(k−1) + α · Sign

(
∂x(k−1)L(f(x(k−1)), y)

)]
,

where x(k) is the intermediate adversarial example found in the k-th iteration, α > 0 is the step
size, and

∏
∥x′−x∥≤ρ means the projection is calculated in a ball sphere centered at x, i.e., {x′ :

∥x′ − x∥ ≤ ρ}. The eventual adversarial example is xadv := x(K).

F.2 NETWORK ARCHITECTURES

Our experiments adopt two types of multi-layer DNNs, “MLP-x” and “CNN-x”. The detailed archi-
tectures of MLP-x and CNN-x are presented in Table 3, where “Conv-x(c)” denotes a convolutional
layer with kernel shape x×x and c output channels, and “Dense(c)” denotes a fully-connected layer

43

Published as a conference paper at ICLR 2024

Table 3: The detailed architectures of MLP-x and CNN-x, where w is the network width.

MLP-x CNN-x[
Dense1(w)
ReLU

] [
Conv-31(w)

ReLU

]
...

...[
Densex−1(w)

ReLU

] [
Conv-3x(w)

ReLU

]
Dense(10) Flatten

Dense(10)

with c output channels. Also note that there is a network width hyperparameter w for the architec-
tures in Table 3. For vanilla neural networks, w is a finite value, while for NTK-based models, w is
infinite.

We then introduce the detailed model implementations of Adv-NTK and baselines NTK and AT.

Adv-NTK & NTK. We use the Neural-Tangents Python Library (Novak et al., 2020) which
is developed based on the JAX autograd system (Bradbury et al., 2018) to implement NTK-based
models in our experiments. The Adv-NTK model is constructed following Eq. (24), while the NTK
model is constructed following Eq. (4). For every Adv-NTK and NTK models, the netowrk width is
set as w =∞, and the weight and bias standard deviations are set as 1.76 and 0.18, respectively.

AT. We use PyTorch (Paszke et al., 2019) to implement the finite-width neural networks in vanilla
AT. The network width for the MLP-x architecture is set as w = 512, while that for the CNN-x
architecture is set as w = 256. Other model hyperparameters follow the default settings of PyTorch.

F.3 TRAINING AND EVALUATION

General settings. The loss function used in all experiments is the squared loss L(f(x), y) :=
1
2∥f(x) − y∥22. Whenever performing PGD to find adversarial examples, we always use l∞-
perturbation. For a given perturbation radius ρ, the iteration number and the step size are always set
as K = 10 and α = 2ρ/K, respectively. For both CIFAR-10 and SVHN experiments, we randomly
draw 12, 000 samples from the original trainset to train/construct models, and use the overall testset
to assess model performances. No data augmentation is used. Every experiment is repeated 3 times.

Adv-NTK. We follow Algorithm 1 to train Adv-NTK models. 2, 000 training samples are used as
the validation data, while the remaining 10, 000 ones are used to construct Adv-NTK models. In
experiments on SVHN, each model is trained for 50 iterations, in which the batch size is set as 128
and learning rate is fixed to 1. In experiments on CIFAR-10, each model is trained for 50 iterations,
in which the batch size is set as 128 and learning rate is fixed to 0.1. All other settings follow general
settings.

NTK. Every NTK model is constructed following Eq. (4) with the overall 12, 000 training data.
There is no need to train NTK models. All other settings follow general settings.

AT. We use SGD to train neural networks in AT following Eq.(1) via SGD for 20, 000, where the
momentum factor is set as 0.9, the batch size is set as 128, and the weight decay factor is set as
0.0005. In experiments on SVHN, the learning rate is initialized as 0.01 and decay by a factor 0.1
every 8, 000 iterations. In experiments on CIFAR-10, the learning rate is initialized as 0.1 and decay
by a factor 0.1 every 8, 000 iterations. All other settings follow general settings.

F.4 EXPERIMENT RESULTS ON SVHN

This section presents the additional experiment results on the SVHN dataset.

From Table 4, we have similar observations as that from the results of CIFAR-10, which show that
Adv-NTK can improve the robustness of infinite-width DNNs and sometimes achieve comparable

44

Published as a conference paper at ICLR 2024

Table 4: Robust test accuracy (%) of models trained with different methods on SVHN. Every exper-
iment is repeated 3 times. A high robust test accuracy suggests a strong robust generalization ability.

Depth Adv. Acc. (ℓ∞; ρ = 4/255) (%) Adv. Acc. (ℓ∞; ρ = 8/255) (%)

AT NTK Adv-NTK (Ours) AT NTK Adv-NTK (Ours)

MLP-x
+

SVHN
(Subset 12K)

3 19.59±0.00 18.43±0.53 24.64±0.59 19.59±0.00 9.32±0.15 21.68±1.91
4 19.59±0.00 21.47±0.26 34.93±1.17 19.59±0.00 9.00±0.17 29.49±0.43
5 19.59±0.00 24.65±0.87 36.38±0.45 19.59±0.00 9.30±0.28 25.38±1.42
8 19.59±0.00 28.63±0.18 32.35±0.66 19.59±0.00 10.74±0.37 16.22±0.35
10 19.59±0.00 30.48±0.25 30.15±0.25 19.59±0.00 11.62±0.52 13.10±0.30

CNN-x
+

SVHN
(Subset 12K)

3 57.07±0.41 7.17±0.52 22.83±0.76 34.92±0.88 2.87±0.22 20.20±1.05
4 58.50±0.09 9.74±0.48 31.74±1.44 21.26±2.80 3.74±0.36 25.14±0.86
5 54.48±0.97 11.60±0.27 32.68±0.86 19.59±0.00 3.85±0.23 20.75±2.38
8 19.59±0.00 17.56±0.11 23.96±0.96 19.59±0.00 5.15±0.12 9.37±0.16
10 19.59±0.00 21.61±0.51 21.98±0.49 19.59±0.00 5.94±0.37 7.08±0.18

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

MLP-5 + SVHN (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

MLP-5 + SVHN (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

CNN-5 + SVHN (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

CNN-5 + SVHN (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

Figure 2: The robust test accuracy curves of finite-width MLP-5/CNN-5 along AT on SVHN. The
robust test accuracy of infinite width DNNs learned by NTK and Adv-NTK are also plotted.

robust test accuracy as that of AT. However, we also notice that in the case “CNN-x + SVHN”, AT is
significantly better than Adv-NTK. We believe it is because the non-linearity of finite-width DNNs
in AT can capture additional robustness, which will be left for future studies.

Besides, from Fig. 2, we find that in most of the cases, the finite-width DNN is not trainable in AT.
However, in the case of CNN-5 with radius ρ = 4/255, the finite-width DNN does not suffer from
robust overfitting and its robust test accuracy continuously increases along AT. We deduce that this
is because the number of training iterations (which is 20, 000) is too short for this experiment that
it almost acts like an early-stop regularization, which is shown to be effective in mitigating robust
overfitting (Rice et al., 2020). Furthermore, it is worth noting that the robust overfitting phenomenon
on the SVHN dataset has already been observed by Rice et al. (2020) (see Figure 9 in their paper).

G APPLYING ADV-NTK TO LARGE DNNS

This section discusses practical challenges and our preliminary results in applying Adv-NTK to
common large DNNs.

G.1 PRACTICAL CHALLENGES TOWARD LARGE DNNS

Our experiments in Section 6 only adopted MLPs and CNNs but not common larger DNNs like
VGGs (Simonyan & Zisserman, 2014) and ResNets (He et al., 2016). The reason is that large DNNs
usually adopt global average pooling (GAP) layers in their architectures. Although it is confirmed
that GAP layers can effectively improve the generalization ability of NTK models, accurately cal-
culating NTK matrices that involve GAP layers would consume an extremely large amount of GPU
memory and also lead to an unbearable time usage (Arora et al., 2019; Han et al., 2022).

To improve the calculation efficiency of GAP layers, existing NTK literature has adopted Monte
Carlo-based techniques to estimate the output of GAP layers (Novak et al., 2019) and made it af-
fordable for vanilla NTK experiments. However, adapting these Monte Carlo-based techniques into
our AT setting is not trivial since our setting needs to further analyze the process of adversarial
perturbation, and a series of mathematical and engineering challenges would arise during this adap-
tation. Therefore, we will leave the practicality problem of Adv-NTK in future research.

45

Published as a conference paper at ICLR 2024

Table 5: Robust test accuracy (%) of different ResNet models. Every experiment is repeated 3 times.
A high robust test accuracy suggests a strong robust generalizability.

Dataset Architecture Adv. Acc. (ℓ∞; ρ = 4/255) (%) Adv. Acc. (ℓ∞; ρ = 8/255) (%)

AT NTK Adv-NTK (Ours) AT NTK Adv-NTK (Ours)

CIFAR-10
(Subset 12K)

ResNet-18 28.01±0.79 17.09±0.25 28.43±0.27 15.11±0.65 4.07±0.13 21.46±0.47
ResNet-34 26.61±1.08 25.42±0.31 29.19±0.64 16.11±0.55 9.64±0.12 21.00±0.82

SVHN
(Subset 12K)

ResNet-18 48.10±1.08 24.18±0.34 32.70±0.26 30.36±1.92 10.05±0.30 13.96±0.16
ResNet-34 48.04±0.99 32.69±0.43 34.08±0.29 26.94±2.33 13.01±0.19 15.19±0.26

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN18 + CIFAR-10 (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN18 + CIFAR-10 (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN34 + CIFAR-10 (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

5

10

15

20

25

30

35

40

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN34 + CIFAR-10 (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

(a) Results on CIFAR-10.

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN18 + SVHN (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN18 + SVHN (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN34 + SVHN (Subset 12K), = 4/255
AT
NTK
Adv-NTK (Ours)

0 5000 10000 15000 20000
AT Training Iteration

0

10

20

30

40

50

60

Ro
bu

st
 Te

st
 A

cc
ur

ac
y

(%
)

RN34 + SVHN (Subset 12K), = 8/255
AT
NTK
Adv-NTK (Ours)

(b) Results on SVHN.

Figure 3: The robust test accuracy curves of ResNet models along AT. The robust test accuracy of
infinite width DNNs learned by NTK and Adv-NTK are also plotted.

G.2 EXPERIMENTS ON RESNETS

Although we still could not address the practical challenges induced by GAP layers, in this section
we present the experiments for ResNets that are not using GAP layers.

Models. We adopt two types of ResNet (He et al., 2016), ResNet-18 and ResNet-34, in our exper-
iments. For finite-width models, GAP layers are adopted as that in standard ResNet architectures.
For NTK models, we replace all GAP layers with flattening layers to reduce GPU memory usage.

Experiment setup. (1) For Adv-NTK, the learning rate is set as: 5 × 10−5 for ResNet-18 on
SVHN, 10−6 for ResNet-18 on CIFAR-10, 10−8 for ResNet-34 on SVHN, and 10−10 for ResNet-
34 on CIFAR-10. Other settings follow that in Appendix F.3. (2) For NTK, all settings follow
Appendix F.3. (3) For AT, the learning rate for both ResNet-18 and ResNet-34 on CIFAR-10 is set
as 0.01. Other settings follow that in Appendix F.3.

Results. The robust test accuracies of ResNet models trained with different methods are reported
in Table 5. The curves of robust test accuracy of finite-width ResNet models along AT are plotted
in Fig. 3. From the results, one can find that Adv-NTK can effectively improve the robustness
of infinite-width ResNet models. Meanwhile, on the SVHN dataset, finite-width ResNet models
achieved stronger robustness than infinite-width ones. We think this is due to the use of GAP layers
in finite-width ResNet models, and will leave the application of GAP layers in large-scale Adv-NTK
for future studies.

46

	1 Introduction
	2 Related Works
	3 Preliminaries
	4 Adversarial Training of Wide DNNs
	4.1 Gradient Flow-based Adversarial Example Search
	4.2 Adversarial Training Dynamics
	4.3 Adversarial Training in Infinite-Width

	5 Robust Overfitting in Wide DNNs
	5.1 AT Degeneration Leads to Robust Overfitting
	5.2 Infinite Width Adversarial Training

	6 Empirical Analysis of Adv-NTK
	7 Conclusions
	A Preliminaries
	A.1 Additional Assumptions and Notations
	A.2 Notations
	A.3 Definitions
	A.4 Technical Lemmas

	B Proof of Theorem 1
	C Proof of Theorem 2
	C.1 Proof Skeleton
	C.2 Convergences of Parameters and Outputs Under Rescaling
	C.3 Convergences of Kernels During AT
	C.3.1 Preparations
	C.3.2 Proof of Theorem C.1
	C.3.3 Proof of Theorem C.2

	C.4 Equivalence between wide DNN and linearized DNN

	D Proof of Theorem 3
	D.1 Proof Skeleton
	D.2 Approximating Linearized DNN with Piecewise Linear Model
	D.3 Closed-form Solutions of Linearized and Piecewise Linear DNNs

	E Additional Details in Section 5.1
	E.1 Missing Calculations
	E.2 DNNs Behavior Under Large Adversarial Perturbation

	F Experiment Details
	F.1 Projected Gradient Descent
	F.2 Network Architectures
	F.3 Training and Evaluation
	F.4 Experiment Results on SVHN

	G Applying Adv-NTK to Large DNNs
	G.1 Practical Challenges Toward Large DNNs
	G.2 Experiments on ResNets

