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ABSTRACT

Standard infinite-width limits of neural networks sacrifice the ability for inter-
mediate layers to learn representations from data. Recent work (“A theory of
representation learning gives a deep generalisation of kernel methods”, Yang et al.
2023) modified the Neural Network Gaussian Process (NNGP) limit of Bayesian
neural networks so that representation learning is retained. Furthermore, they
found that applying this modified limit to a deep Gaussian process gives a practical
learning algorithm which they dubbed the “deep kernel machine” (DKM). How-
ever, they only considered the simplest possible setting: regression in small, fully
connected networks with e.g. 10 input features. Here, we introduce convolutional
deep kernel machines. This required us to develop a novel inter-domain inducing
point approximation, as well as introducing and experimentally assessing a number
of techniques not previously seen in DKMs, including analogues to batch normali-
sation, different likelihoods, and different types of top-layer. The resulting model
trains in roughly 77 GPU hours, achieving around 99% test accuracy on MNIST,
72% on CIFAR-100, and 92.7% on CIFAR-10, which is SOTA for kernel methods.

1 INTRODUCTION

A key theoretical approach to studying neural networks is taking the infinite-width limit of a randomly
initialised network. In this limit, the outputs become Gaussian process (GP) distributed, and the
resulting GP is known as an NNGP (Neal, 1995; Lee et al., 2017; Matthews et al., 2018). However,
despite a large body of work attempting to improve the predictive performance of NNGPs (Novak
et al., 2018; Garriga-Alonso et al., 2018; Arora et al., 2019; Lee et al., 2020; Li et al., 2019; Shankar
et al., 2020; Adlam et al., 2023), they still empirically underperform finite NNs. Understanding why
this gap exists will improve our understanding of neural networks. One hypothesis (Aitchison, 2020;
MacKay, 1998) is that the NNGP lacks representation learning, as the NNGP kernel is a fixed and
deterministic function of the inputs, while the top-layer representation in a finite neural network is
learned; representation learning is believed to be critical to the success of modern deep learning
(Bengio et al., 2013; LeCun et al., 2015). One way to confirm this hypothesis would be to find
an NNGP-like approach that somehow incorporates representation learning, and gives improved
performance over the plain NNGP. While some theoretical approaches to representation learning
have been developed (Antognini, 2019; Dyer & Gur-Ari, 2019; Hanin & Nica, 2019; Aitchison, 2020;
Li & Sompolinsky, 2020; Yaida, 2020; Naveh et al., 2020; Zavatone-Veth et al., 2021; Zavatone-Veth
& Pehlevan, 2021; Roberts et al., 2021; Naveh & Ringel, 2021; Halverson et al., 2021; Seroussi et al.,
2023), they are not scalable enough to apply to many common datasets (e.g. Seroussi et al., 2023
could only consider a subset of 2048 points from CIFAR-10). Here, we develop the convolutional
deep kernel machine (DKM), an NNGP-like theoretical approach which captures representation
learning and can be scaled to datasets like CIFAR-10. Convolutional DKMs reduce (but still do not
fully close) the gap between theoretical approaches and real neural networks, giving further evidence
that representation learning is the critical component missing from approaches like the NNGP.
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Our theoretical approach is based on DKMs (Yang et al., 2023). DKMs are fundamentally a deep
Gaussian process (DGP), where the infinite-width limit has been taken carefully, to ensure that
representation learning is retained. While a DGP is not a NN, they are very similar: both DGPs
and NNs are deep, nonlinear function approximators that admit representation learning, and many
formal connections between NNs and DGPs have been drawn in the literature (Dutordoir et al., 2021;
Agrawal et al., 2020; Pleiss & Cunningham, 2021). Furthermore, DGP-based theoretical approaches
(i.e. DKMs) offer considerable simplifications over NN-based approaches. These mostly arise from
the fact that the posterior over features in an infinite-width DGP is exactly multivariate Gaussian,
even when that infinite-width limit retains representation learning. This is an important factor in the
scalability of DKMs.

Additionally, Yang et al. (2023) developed inducing-point methods for DKMs inspired by the DGP
literature, making them particularly scalable. Naive, full-rank DKMs have cubic time-complexity
in the number of training points, which is intractable in all but the smallest datasets. By contrast,
inducing-point DKMs require linear compute in the number of datapoints (and cubic compute in
the far smaller number of inducing points). However, Yang et al. (2023) only considered regression
in small fully-connected architectures with e.g. 10 input features. To compare the performance of
DKMs to CNNs on datasets such as CIFAR-10, we must develop convolutional DKMs.

However, developing an efficient, scalable DKM inducing point scheme for the convolutional setting
is highly non-trivial. Naively applying the inducing point inference scheme from Yang et al. (2023)
implies taking images as inducing points, resulting in prohibitive O(P 3

i W
3H3) operations, where Pi

is the number of inducing points, and W,H are the width and height of the images. One alternative
is inducing patch schemes from the GP literature (van der Wilk et al., 2017; Blomqvist et al., 2018;
Dutordoir et al., 2020); however they cannot be applied to DKMs, as they rely on intermediate
features, whereas DKMs only propagate kernel/Gram matrices through the layers, not features. We
were thus forced to develop an entirely new inter-domain (Lázaro-Gredilla & Figueiras-Vidal, 2009;
Hensman et al., 2017; Rudner et al., 2020) convolutional inducing point scheme, designed specifically
for the DKM setting. To summarise, our contributions are:

• Introducing convolutional DKMs, which achieve SOTA performance for kernel methods on
CIFAR-10 with an accuracy of 92.7%.

• Introducing an efficient inter-domain inducing point scheme for convolutional DKMs, which
allows our largest model to train in 77 GPU hours, 1–2 orders of magnitude faster than full
NNGP / NTK / Myrtle kernels.

• Developing a number of different model variants, empirically investigating their perfor-
mance, including various normalisation schemes (Appendix C), two likelihoods (Ap-
pendix D.2) and two different top-layers (Appendix F.3).

2 RELATED WORK

DKMs were developed in Yang et al. (2023), using a modified NNGP limit that retains representation
learning. However, they only considered regression in small fully-connected networks.

The NTK setting (Jacot et al., 2018) is a theoretical approach to understanding neural networks that is
also based on infinite-width limits. However, the NTK deals with very different phenomena from the
NNGP/DKM setting, in that it describes the dynamics of gradient descent applied to a loss function.
By contrast, the NNGP/DKM (Yang et al., 2023) describes Bayesian networks under the posterior,
which does not, in principle, involve any dynamics. A problem arises in the NTK setting, whereby
the NTK, describing the dynamics of gradient descent, is constant through training in particular
infinite-width limits. Recent work on the mu-P scaling has resolved this issue, by finding alternative
limits in which the NTK is able to evolve through training (Yang & Hu, 2021; Yang et al., 2022).

There is a body of literature on infinite-width convolutional neural networks (CNNs) (Novak et al.,
2018; Garriga-Alonso et al., 2018), specifically in the NNGP setting (Neal, 1995; Lee et al., 2017;
Matthews et al., 2018). As mentioned before, NNGPs have a kernel that is a fixed, deterministic
function of the inputs, and therefore do not allow for flexibility in the learned kernels/representations,
unlike real, finite CNNs and unlike our convolutional DKMs (Aitchison, 2020; Yang et al., 2023).

Convolutional DGPs use inducing patches for scalability (van der Wilk et al., 2017; Blomqvist et al.,
2018; Dutordoir et al., 2020). However, we cannot use their scheme here, as it requires features
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at each layer, while we work solely with Gram matrices. Therefore we were forced to develop a
new scheme. Our DKM inducing point scheme is inter-domain (Lázaro-Gredilla & Figueiras-Vidal,
2009; Hensman et al., 2017; Rudner et al., 2020), in the sense that the inducing points do not mirror
datapoints (images), but instead store information about the function in a different domain. Existing
work on inter-domain inducing points does not address the DKM or convolutional settings.

An alternative approach to getting a flexible kernel is to take the inputs, transform them through a
NN (e.g. 10–40 layer CNN), then to use the outputs of the NN as inputs to a standard kernel. This
approach is known as deep kernel learning (DKL; Calandra et al., 2016; Wilson et al., 2016b;a;
Bradshaw et al., 2017; Bohn et al., 2019; Ober et al., 2021). DKMs are very different to DKL in that
there is no underlying neural network. Instead the DKM directly transforms and allows flexibility in
the kernels.

There are a small number of other “deep kernel” approaches such as convolutional kernel machines,
(Mairal et al., 2014; Mairal, 2016; Suykens, 2017; Chen et al., 2019; Tonin et al., 2023; Achten et al.,
2023). These differ from our approach in that they lack the theoretical connection to representation
learning in NNGPs, and thus cannot answer the questions raised in the Introduction. Moreover, many
of these methods use a neural-network like architecture to give a flexible, feature-based approximation
to an underlying fixed kernel, whereas our approach fundamentally allows for flexibility in the
underlying kernel/representation; we believe this explains our performance advantage (Table 3).
Nonetheless, there are fruitful connections to be drawn between NNGPs, physics-based theory (e.g.
Seroussi et al., 2023) and e.g. convolutional kernel networks (Mairal et al., 2014; Mairal, 2016), and
we hope that our work contributes to fostering a dialogue between these areas.

3 BACKGROUND

Deep Kernel Machines. A detailed derivation of DKMs can be found in Appendix A or Yang
et al. (2023). In a nutshell, DKMs are derived from deep Gaussian processes where the intermediate
layers Fℓ ∈ RP×Nℓ , with P datapoints and Nℓ features, have been made infinitely wide (Nℓ → ∞).
However, in the traditional infinite-width limit, representations become fixed (e.g. Aitchison, 2020;
Yang et al., 2023). The DKM (Yang et al., 2023) modifies the likelihood function so that, in the
infinite limit, representations remain flexible and adapt to data. While the full derivation is somewhat
involved, the key idea of the resulting algorithm is to consider the Gram matrices (which are P × P
matrices like kernels) at each layer of the model as parameters, and optimise them according to an
objective. Here we give a short, practical introduction to DKMs.

As DKMs are ultimately infinite-width DGPs, and we cannot practically work with infinite-width
features, we must instead work in terms of Gram matrices:

Gℓ = 1
Nℓ

Fℓ(Fℓ)T ∈ RP×P . (1)

Note that from this point on we will always refer to Gℓ in Eq. (1) as a “Gram matrix”, whilst the
term “kernel matrix” will carry the usual meaning of a matrix of similarities computed using a kernel
function. Ordinarily, at each layer, a DGP computes the kernel matrix Kfeatures(F

ℓ−1) ∈ RP×P from
the previous layer’s features. Since we no longer have access to Fℓ−1, but instead propagate Gℓ−1,
computing Kfeatures(F

ℓ−1) is not possible in general. However, it turns out that for many kernels
of interest, we can compute K from Gℓ−1. For example, isotropic kernels (such as the squared
exponential) only depend on F through the normalised squared distance Rij between points, which
can be computed from the Gram matrices,

Rij =
1
Nℓ

∑Nℓ

λ=1(Fiλ − Fjλ)
2 = 1

Nℓ

∑Nℓ

λ=1

(
F 2
iλ − 2FiλFjλ + F 2

jλ

)
= Gℓ

ii − 2Gℓ
ij +Gℓ

jj , (2)

and hence we can instead compute the kernel matrix as

K(Gℓ−1) = Kfeatures(F
ℓ−1). (3)

Here, K(·) and Kfeatures(·) are functions that compute the same kernel, but K(·) takes a Gram matrix
as input, whereas Kfeatures(·) takes features as input. Notice that K(Gℓ−1) ∈ RP×P has the same
shape as Gℓ−1, and so it is possible to recursively apply the kernel function in this parametrisation,
taking G0 = 1

N0
XXT where X ∈ RP×N0 is the input data:

Gℓ = K(Gℓ−1) = K(K(· · ·K︸ ︷︷ ︸
ℓ times

(G0))). (4)
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It turns out Eq. (4) exactly describes the traditional infinite-width limit of a DGP (i.e. the NNGP limit).
Notice that Gℓ is a fixed function of G0 and thus cannot adapt to data (perhaps with the exception of
a small number of tunable kernel hyperparameters). This is a major disadvantage compared to finite
NNs and DGPs, which flexibly learn representations at each layer from the data.

The DKM solves this problem by taking a modified limit, the “Bayesian representation learning
limit” (Yang et al., 2023). Under this alternative limit, the Gram matrices have some flexibility, and
are no longer fixed and equal to those given by Eq. (4). Instead, the L Gram matrices, G1, . . . ,GL,
become parameters which are optimised by maximising the DKM objective,

L(G1, . . . ,GL) = log P
(
Y|GL

)
−
∑L

ℓ=1νℓ DKL
(
N
(
0,Gℓ

)∥∥N (
0,K(Gℓ−1)

))
. (5)

The first term encourages good predictions by maximising the log-likelihood of the training data Y,
whilst the other KL-divergence terms form a regulariser that encourages Gℓ to be close to K(Gℓ−1).
The model reduces to the standard infinite-width limit (Eq. 4) when no data is observed, since the KL-
divergence is minimised by setting Gℓ = K(Gℓ−1). Formally, the DKM objective is the evidence
lower bound (ELBO) for an infinite-width DGP in the Bayesian representation learning limit. After
optimising the training Gram matrices, prediction of unseen test points (which requires us to predict
the test-test and test-train Gram matrix blocks for each layer progressively before predicting the final
layer output) proceeds using an algorithm inspired by DGPs (see Yang et al. 2023 for details).

Sparse DKMs. As with all naive kernel methods, directly computing the DKM objective for all
data is O(P 3

t ), where Pt is the number of datapoints, which is typically infeasible. As a DKM is
ultimately an infinite-width DGP parameterised by Gram matrices rather than features, Yang et al.
(2023) developed an inducing point scheme inspired by the DGP literature.

In the GP context, inducing point schemes reduce computational complexity by using variational
inference with an approximate posterior that replaces the training set (of size Pt) with a set of Pi
pseudo-inputs, called inducing points, where Pi is usually much smaller than Pt. The inducing points
can be learned as variational parameters. In DGPs, each layer is a GP, so we learn one set of inducing
points for each layer. When using inducing points, the features at each layer are partitioned into
inducing points Fℓ

i and training points Fℓ
t . Likewise, the kernel matrix is partitioned into blocks

corresponding to inducing and training points. In a DKM, we partition Gℓ similarly,

Gℓ =

(
Gℓ

ii Gℓ
it

Gℓ
ti Gℓ

tt

)
K(Gℓ) =

(
Kii(G

ℓ
ii) Kit(G

ℓ)
Kti(G

ℓ) Ktt(G
ℓ
tt)

)
, (6)

with Gℓ
ii ∈ RPi×Pi , Gℓ

ti ∈ RPt×Pi , and Gℓ
tt ∈ RPt×Pt . At each layer ℓ, Gℓ

ii is learnt, whilst Gℓ
ti and

Gℓ
tt are predicted using Gℓ

ii and K(Gℓ−1) (see Yang et al., 2023). The sparse DKM objective is

Lind(G
1
ii, . . . ,G

L
ii )=GP-ELBO

(
Yt;G

L
ii ,G

L
ti ,G

L
tt

)
−

L∑
ℓ=1

νℓ DKL
(
N
(
0,Gℓ

ii

)∥∥N (
0,K(Gℓ−1

ii )
))
.

(7)
where GP-ELBO

(
Yt;G

L
ii ,G

L
ti ,G

L
tt

)
is the ELBO for a sparse GP with data Yt and kernel K(GL),

and contains a likelihood term which measures the performance of the model on training data. We
consider two different likelihoods: categorical and Gaussian (see Appendix D for further details).
This scheme is efficient, with time complexity O(L(P 3

i + P 2
i Pt)), both because the KL terms in

the sparse DKM objective depend only on Gii, and because obtaining predictions and computing
the performance term in the DKM objective requires only the diagonal of Gℓ

tt (which mirrors the
requirements for the GP ELBO; see Yang et al., 2023 for details).

4 METHODS

The overall approach to defining a convolutional DKM is to build convolutional structure into our
kernel, K(·), by taking inspiration from the infinite-width convolutional neural network literature
(Novak et al., 2018; Garriga-Alonso et al., 2018). Specifically, we will define the kernel to be the
covariance between features induced by a single convolutional BNN layer.

Take a convolutional BNN layer, with inputs Hℓ−1 ∈ RPSℓ−1×Nℓ−1 and outputs Fℓ ∈ RPSℓ×Nℓ .
Here, P is the number of images, Nℓ is the number of output channels at layer ℓ, and Sℓ is the number
of output spatial locations in the feature map (e.g. Sℓ =Wℓ ×Hℓ for a 2D image). The convolutional
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weights are Wℓ ∈ RD×Nℓ−1×Nℓ , and D is the number of spatial locations in a filter (e.g. a 3 × 3
convolutional patch would have D = 9). The BNN convolution operation (i.e. Conv2d in PyTorch)
can be written as

F ℓ
ir,λ =

∑
d∈D

∑Nℓ−1

µ=1 H
ℓ−1
i(r+d),µW

ℓ
dµλ. (8)

Here, i indexes the image, r the spatial location in the image, d the location in the patch, and µ and λ
the input and output channels, respectively. This is natural for 1D convolutions, e.g. r ∈ {1, . . . , Sℓ}
and d ∈ D = {−1, 0, 1} (with D = 3 in this example), but also generalises to higher dimensions,
e.g. using vectors. In a typical CNN, we would apply a nonlinearity ϕ, e.g. relu, to the output of the
previous layer to obtain the input to the next layer, i.e. Hℓ−1 = ϕ(Fℓ−1).

We will define the kernel as the covariance between the outputs of the convolutional layer (Eq. 8),
Γir,js = E

[
F ℓ
ir,λF

ℓ
js,λ|Hℓ−1

]
, where we have placed an IID Gaussian prior on the weights:

P
(
W ℓ

dµλ

)
= N

(
W ℓ

dµλ; 0,
1

DNℓ−1

)
. (9)

Note that this implies all features (indexed by λ) are IID, so we consider an arbitrary feature λ. This
is valid even if Nℓ → ∞. Since the weights have zero mean, the distribution over features (Eq. 8)
has zero mean, so Γir,js is just the conditional covariance of the output features. To compute this
covariance it will be useful to define a Gram-like matrix Ωℓ−1 ∈ RPSℓ−1×PSℓ−1 from the input Hℓ,

Ωℓ−1 = 1
Nℓ−1

Hℓ−1
(
Hℓ−1

)T ∈ RPSℓ−1×PSℓ−1 , Ωℓ−1
ir,js =

1
Nℓ−1

∑Nℓ−1

µ=1 H
ℓ−1
ir,µH

ℓ−1
js,µ (10)

For the matrix multiplication to make sense, we have interpreted Hℓ−1 ∈ RPSℓ−1×Nℓ−1 as a matrix
with PSℓ−1 rows and Nℓ−1 columns. The covariance Γir,js can be computed (Appendix B.3) as,

Γir,js(Ω
ℓ−1) = E

[
F ℓ
ir,λF

ℓ
js,λ|Hℓ−1

]
= 1

D

∑
d∈DΩ

ℓ−1
i(r+d),j(s+d). (11)

This is not yet a complete kernel function for our convolutional DKM since it does not take the
previous layer Gram matrix Gℓ−1 (Eq. 1) as input. To complete the kernel, recall that Hℓ−1 is
defined by applying e.g. a ReLU nonlinearity to Fℓ−1. Taking inspiration from infinite NNs, that
would suggest we can compute Ωℓ−1 from Gℓ−1 using an arccos kernel (Cho & Saul, 2009),

Ωℓ−1 = Ω(Gℓ−1). (12)

Here, Ω(·) is a function that applies e.g. an arccos kernel to a Gram matrix, while Ωℓ−1 is the specific
value at this layer. Combining this with Eq. (11), we obtain the full convolutional DKM kernel,

KConv(G
ℓ−1) = E

[
f ℓλ
(
f ℓλ
)T |Hℓ−1

]
= Γ(Ω(Gℓ−1)) ∈ RPSℓ×PSℓ , (13)

where in Eq. (13) we have written the equation for the entire matrix instead of a specific element as
in Eq. (11). Here, f ℓλ ∈ RPSℓ denotes a single feature vector, i.e. the λth column of Fℓ. From this
perspective, Γ(·) (Eq. 11) can be viewed as the kernelised version of the convolution operation.

Sparse convolutional DKMs. Computing the full kernel for all training images is intractable in the
full-rank case. For example, CIFAR-10 has 50 000 training images of size 32 × 32, so we would
need to invert a kernel matrix with 50 000 · 32 · 32 = 51 200 000 rows and columns. Hence, we need
a more efficient scheme. Following Yang et al. (2023), we consider a sparse inducing point DKM.
However, inducing points usually live in the same space as datapoints. If we take inducing points
as images, we end up with Gℓ

ii ∈ RSℓPi×SℓPi . This is still intractable, even for a small number of
images. For CIFAR-10, S = 32 · 32 = 1024, so with as few as Pi = 10 inducing points, Gℓ

ii is a
10, 240× 10, 240 matrix, which is impractical to invert. Hence we resort to inter-domain inducing
points. However, we cannot use the usual inducing patch scheme (van der Wilk et al., 2017), as it
requires access to test/train feature patches at intermediate layers, but we only have Gram matrices.

Therefore we propose a new scheme where the inducing points do not have image-like spatial
structure. In particular, the Gram matrix blocks have sizes Gℓ

ii ∈ RP ℓ
i ×P ℓ

i , Gℓ
it ∈ RP ℓ

i ×SℓPt and Gℓ
tt ∈

RSℓPt×SℓPt , so that the full Gram matrices are Gℓ ∈ R(P ℓ
i +SℓPt)×(P ℓ

i +SℓPt), with one row/column for
each inducing point, and an additional row/column for each location in each of the train/test images.
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Note that P ℓ
i will be able to vary by layer in our inducing-point scheme. All kernel/Gram matrix like

objects (specifically, the outputs of Γ(·) and Ω(·)) have this same structure.

We now show how we define these inducing points and compute the relevant covariances, forming
the primary technical contribution of this paper. Previously, we considered only spatially structured
Hℓ−1 and Fℓ. Now, we consider Hℓ−1 ∈ R(P ℓ−1

i +Sℓ−1Pt)×Nℓ−1 , formed by concatenating non-
spatial Hℓ−1

i ∈ RP ℓ−1
i ×Nℓ−1 (subscript “i” for inducing points) with spatially structured Hℓ−1

t ∈
RSℓ−1Pt×Nℓ−1 (subscript “t” for test/train points). Likewise, we have Fℓ ∈ R(P ℓ

i +SℓPt)×Nℓ formed
by combining non-spatial Fℓ

i ∈ RP ℓ
i ×Nℓ with spatially structured Fℓ

t ∈ RSℓPt×Nℓ ,

Hℓ−1 =

(
Hℓ−1

i
Hℓ−1

t

)
Fℓ =

(
Fℓ

i
Fℓ

t

)
. (14)

As in Eq. 10, we define Ωℓ−1 as the normalised product of the activations with themselves. Breaking
this expression into blocks (with the bottom right block Ωℓ−1

tt matching Eq. (10), this is(
Ωℓ−1

ii Ωℓ−1
it

Ωℓ−1
ti Ωℓ−1

tt

)
= 1

Nℓ−1

(
Hℓ−1

i

(
Hℓ−1

i

)T
Hℓ−1

i

(
Hℓ−1

t
)T

Hℓ−1
t
(
Hℓ−1

i

)T
Hℓ−1

t
(
Hℓ−1

t
)T
)
. (15)

Note that while the features in Eq. 14 can only be realised for finite Nℓ, Eq. 15 is valid as Nℓ → ∞.
As in Eq. 13, the kernel matrix KConv(G

ℓ−1) is formed as the covariance of features, with f ℓλ ∈
R(P ℓ

i +SℓPt) a single feature vector / column of Fℓ. Broken into the inducing and test/train blocks,(
KConv

ii KConv
it

KConv
ti KConv

tt

)
=

(
Γii(Ω

ℓ−1
ii ) Γit(Ω

ℓ−1
it )

Γti(Ω
ℓ−1
ti ) Γtt(Ω

ℓ−1
tt )

)
= E


f i;ℓ

λ

(
f i;ℓ
λ

)T
f i;ℓ
λ

(
f ℓλ
)T

f ℓλ

(
f i;ℓ
λ

)T
f ℓλ
(
f ℓλ
)T

∣∣∣∣∣∣∣Hℓ−1

 .
(16)

At a high-level, this approach is a natural extension of the sparse DKM procedure (Yang et al.,
2023). In particular, the test/train block Γtt(Ω

ℓ−1
tt ) remains the same as Eq. (13). However, to get

concrete forms for Γit and Γii we need to choose f i;ℓ
λ . For this f i;ℓ

λ to work well, it needs to have
useful, informative correlations with f t;ℓ

λ . One way to achieve this is to define Fℓ
i in terms of the same

weights Wℓ as Fℓ
t (from Eq. 8), thereby making them correlated. However, it is not obvious how

to do this, as Wℓ in Eq. (8) is a convolutional filter, with spatially-structured inputs and outputs,
while Fℓ

i ∈ RP ℓ
i ×N has no spatial structure. Our solution is to create artificial patches from linear

combinations of the inducing points using a new learned parameter, Cℓ ∈ RDP ℓ
i ×P ℓ−1

i ,

F i;ℓ
i,λ =

∑
d∈D

N∑
µ=1

W ℓ
dµ,λ

∑
i′

Cℓ
di,i′H

i;ℓ−1
i′,µ . (17)

Intuitively,
∑

i′ C
ℓ
di,i′H

i;ℓ−1
i′,µ takes non-spatial inducing inputs, H i;ℓ−1

i′,µ , and converts them into a
tensor with shape DP ℓ

i × Nℓ−1, which can be understood as patches. Those patches can then be
convolved with Wℓ to get a single output for each patch, F i;ℓ

i,λ. As a neat side effect, note that

changing P ℓ
i in Cℓ ∈ RDP ℓ

i ×P ℓ−1
i lets us vary the number of inducing points at each layer. The

parameters Cℓ are learned by optimising Eq. (7). Using Fℓ
i , we can then compute the covariances

(Appendix B) to obtain Γit(Ω
ℓ−1
it ) and Γii(Ω

ℓ−1
ii ) (we again emphasise that all features are IID, so

the covariance is defined for an arbitrary feature λ):

Γii
i,j(Ω

ℓ−1
ii ) = E

[
F i;ℓ
i,λ

(
F i;ℓ
j,λ

)
|Hℓ−1

]
= 1

D

∑
d∈D

P ℓ−1
i∑

i′=1

P ℓ−1
i∑

j′=1

Cℓ
di,i′C

ℓ
dj,j′Ω

ii;ℓ−1
i′j′ (18)

Γit
i,js(Ω

ℓ−1
it ) = E

[
F i;ℓ
i,λ

(
F t;ℓ
js,λ

)
|Hℓ−1

]
= 1

D

∑
d∈D

P ℓ−1
i∑

i′=1

Cℓ
di,i′Ω

it;ℓ−1
i′,j(s+d). (19)

This fully defines our inducing point scheme. At the final layer, we collapse the spatial dimension
(either using a linear layer or global average pooling, see Appendix E) and then perform classification
using the final Gram matrix GL as the covariance of a GP. For efficiency, we only store the diagonal
of the test/train “tt” block at all layers, which is sufficient for IID likelihoods (Appendix E.2).
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Table 1: Test accuracies (%) for model selection experiments. Base model used νℓ = 1, Batch / Batch
normalisation, Batch / Batch rescaling, Global Average Pooling, and a categorical likelihood. Bold
shows values statistically similar to the maximum in each category, according to a one-tailed Welch
test.

Category Setting MNIST CIFAR-10 CIFAR-100

Regularisation
Strength νℓ

∞ (inducing NNGP) 72.19 ± 0.11 53.74 ± 0.38 30.94 ± 0.54
104 80.79 ± 0.49 52.26 ± 0.27 28.54 ± 0.11
102 96.96 ± 0.10 71.06 ± 0.11 48.23 ± 0.11
100 99.20 ± 0.02 87.86 ± 0.09 64.08 ± 0.24
10−2 99.16 ± 0.05 89.48 ± 0.15 65.64 ± 0.20
10−4 99.14 ± 0.05 89.68 ± 0.03 65.91 ± 0.20

0 99.16 ± 0.05 89.75 ± 0.09 65.93 ± 0.19

Normalisation
(Inducing /
Train-Test)

Batch / Batch 99.20 ± 0.02 87.86 ± 0.09 64.08 ± 0.24
Batch / Location 99.05 ± 0.03 87.91 ± 0.17 64.05 ± 0.27

Local / Image 99.14 ± 0.01 87.73 ± 0.12 64.37 ± 0.28
Local / Local 99.13 ± 0.05 87.54 ± 0.09 63.75 ± 0.11
None / None 99.16 ± 0.04 87.50 ± 0.19 64.23 ± 0.08

Rescaling
(Inducing /
Train-Test)

Batch / Batch 99.20 ± 0.02 87.86 ± 0.09 64.08 ± 0.24
Batch / Location 99.07 ± 0.02 87.98 ± 0.16 62.72 ± 0.15

Local / Batch 99.19 ± 0.02 87.56 ± 0.05 63.92 ± 0.13
Local / Location 99.03 ± 0.03 87.80 ± 0.04 63.30 ± 0.43

Local / None 99.13 ± 0.04 87.75 ± 0.04 63.88 ± 0.20
None / None 99.13 ± 0.04 87.77 ± 0.11 64.05 ± 0.14

Top Layer

Global Average Pooling 99.20 ± 0.02 87.86 ± 0.09 64.08 ± 0.24
Linear 99.13 ± 0.03 87.89 ± 0.15 64.06 ± 0.19

GAP + Mixup 99.15 ± 0.01 87.69 ± 0.10 64.42 ± 0.34
Linear + Mixup 99.12 ± 0.02 87.66 ± 0.05 63.01 ± 0.08

Likelihood Gaussian 99.05 ± 0.01 85.96 ± 0.29 26.93 ± 0.69
Categorical 99.20 ± 0.02 87.86 ± 0.09 64.08 ± 0.24

Table 2: Test accuracies (%) using different numbers of inducing points in the ResNet blocks,
selecting the best hyperparameters from Table 1. Bold shows values statistically similar to the
maximum in each category, according to a one-tailed Welch test. Also included is walltime per epoch.

Ind. Points MNIST CIFAR-10 CIFAR-100 Time per epoch (s)

16 / 32 / 64 98.99 ± 0.06 83.15 ± 0.26 53.89 ± 0.25 45
32 / 64 / 128 99.09 ± 0.05 86.75 ± 0.14 61.10 ± 0.22 54
64 / 128 / 256 99.12 ± 0.01 88.99 ± 0.05 64.31 ± 0.19 82

128 / 256 / 512 99.10 ± 0.04 91.00 ± 0.16 67.14 ± 0.16 155
256 / 512 / 1024 99.16 ± 0.03 92.17 ± 0.10 70.33 ± 0.23 420
512 / 1024 / 2048 99.26 ± 0.02 92.69 ± 0.06 72.05 ± 0.23 1380

5 EXPERIMENTS

Model variants To fully evaluate our algorithm, it was necessary to introduce and test a variety
of model variants and new techniques. In particular, we consider 5 hyperparameters/architectural
choices: the regularisation strength constant ν in the objective function (Eq. 7), the normalisation and
rescaling schemes (Appendix C), the top layer, i.e. linear (Appendix E.1) vs. global average pooling
(Appendix E.3), and the likelihood (Appendix D.2). We vary each hyperparameter in turn, starting
from a reasonable “default” model, which uses ν = 1 (we use the same νℓ for all layers), “Batch /
Batch” normalisation and “Batch / Batch” scaling (we can apply different variants to the inducing and
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Table 3: Comparison of test accuracy against other kernel methods with and without learned parame-
ters.

Paper Method CIFAR-10

This paper DKM-DA-GAP 92.69%

Kernel
methods
without

parameters

Novak et al. (2018) NNGP-GAP 77.43%
Arora et al. (2019) NNGP-GAP 83.75%
Lee et al. (2020) NNGP-GAP-DA 84.8%
Li et al. (2019) NNGP-LAP-flip 88.92%
Shankar et al. (2020) Myrtle10 89.80%
Adlam et al. (2023) Tuned Myrtle10 DA CG 91.2%

Kernel
methods with

parameters

(Shi et al., 2020) SOVI Conv GP 68.19%
(Blomqvist et al., 2018) Conv DGP 75.89%
(Dutordoir et al., 2020) Conv DGP 76.17%
(Mairal et al., 2014) CKN 82.18%
(Mairal, 2016) Sup CKN 89.8%

test-train blocks of the Gram matrices, see Appendix C), global average pooling, and a categorical
likelihood.

We used a model architecture that mirrors the ResNet20 architecture (He et al., 2016), meaning
we use the the same number of convolution layers with the same strides, we use normalisation in
the same places, and we use skip connections, which compute a convex combination of the Gram
matrix outputted by a block with the inputted Gram matrix, thereby allowing information to “skip”
over blocks. To mirror the ReLU, we used a first-order arccos kernel (Cho & Saul, 2009) for Ω(·)
everywhere. Where the original ResNet20 architecture uses {16,32,64} channels in its blocks, we
initially used {128,256,512} inducing points (i.e. we set P ℓ

i = 128 for layers ℓ contained in the first
block, P ℓ

i = 256 in the second block, and P ℓ
i = 512 in the third block). This is only possible since

our inducing point scheme allows P ℓ
i to vary across layers, which is not true of the original sparse

DKM. {128,256,512} was chosen to balance model capacity and computational resources for the
model selection experiments. The model was implemented2 in PyTorch (Paszke et al., 2019), using
double precision floating points. We optimised all parameters using Adam, with β1 = 0.8, β2 = 0.9,
training for 100 epochs and dividing the learning rate by 10 at epochs 40 and 80, with an initial
learning rate of 0.013. More careful optimisation (e.g. more epochs and less aggressive scheduling)
could potentially give better results, but in the interest of total experiment time we chose this heuristic.
We used data augmentation (random cropping and horizontal flips), and a batch size of 256. We also
used ZCA (zero-phase component analysis) whitening, which is commonly used in kernel methods
(e.g. Shankar et al., 2020; Lee et al., 2020) (for the ZCA regularisation parameter, ϵ, we used 0.1).

We initialise the inducing inputs by randomly selecting patches from the training set, and then
initialise the inducing Gram blocks Gℓ

ii at the NNGP case by propagating the inducing inputs through
the model and setting Gℓ

ii at each layer equal to the incoming kernel matrix block Kℓ
ii. The inducing

output parameters µ and A are initialised randomly from a Gaussian distribution (for A we initialise
L as Gaussian and then compute A = LLT to ensure A is positive-definite). We initialise the mixup
parameters Cℓ randomly.

We tested on the MNIST4 (LeCun et al., 1998), CIFAR-10, and CIFAR-1005 (Krizhevsky & Hinton,
2009) image classification datasets. We report mean test accuracy with standard errors (over 4 random
seeds) in Table 1; see Appendix F for other metrics. For each hyperparameter and dataset, we bold
all settings whose performance was statistically similar to the best, using a one-tailed Welch’s t-test
at a 5% significance level. For the normalisation and rescaling schemes, we test certain combinations
for the inducing and test-train blocks that we feel are natural; see Appendix F.2 for more details.

2Code: https://github.com/edwardmilsom/convdkmpaper
3The νℓ = ∞ runs for MNIST used an initial learning rate of 0.001 due to numerical issues caused by 0.01.
4https://yann.lecun.com/exdb/mnist/ Licence: CC BY-SA 3.0
5https://cs.toronto.edu/˜kriz/cifar.html Licence: Unknown
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Setting ν = ∞ causes the KL term in the objective to dominate, and forces Gℓ = K(Gℓ−1), as in
a standard infinite-width CNN (Novak et al., 2018; Garriga-Alonso et al., 2018). As ν controls the
strength of the regularisation, performance decreases for larger values, as this causes the model to
underfit. On the other hand, we expect the model to overfit if we set ν too small, and we indeed
observe a degradation in test LL (Table 4) though not accuracy when we set ν = 0. We find
ν=10−2 is the strongest regularisation statistically indistinguishable from optimal accuracy. We did
not observe meaningful differences in test accuracy between any of the normalisation or rescaling
schemes, though not using any normalisation or rescaling can negatively impact train performance
(see Table 5). Hence we selected the next simplest scheme, “Batch / Batch”, for the benchmark
experiments later on. This scheme divides the Gram matrix by the mean of its diagonal elements
for the normalisation, and multiplies each block by a learned scalar for the rescaling. We saw little
difference between the top layers, so we settled on global average pooling for later experiments,
reflecting common practice in deep learning and NNGPs (e.g. Novak et al., 2018). We also tried
adding inducing point “mixups” similar to the mechanism in our convolutional layers, but this seemed
to have no benefit. Using a categorical likelihood provides moderate advantages for CIFAR-10 and
MNIST, which have 10 classes, and dramatic improvements for CIFAR-100, which has 100 classes.

Benchmark performance. Using what we learned from the model selection experiments, we ran
a set of experiments with νℓ = 10−2, “Batch / Batch” normalisation and rescaling, global average
pooling, and a categorical likelihood. In these experiments, we varied the number of inducing points
in each block from {16, 32, 64} (in the first, middle, and last blocks) up to {512, 1024, 2048}. We
trained for 200 epochs, reducing the learning rate by a factor of 10 at epochs 80 and 160, starting
from an initial learning rate of 0.01. Mean test accuracies are given in Table 2 with other metrics in
Appendix F. As expected, increasing the number of inducing points increases observed test accuracy,
with diminishing returns for MNIST, moderate improvements for CIFAR-10, and considerable
improvements for CIFAR-100. Our largest model, with 2048 inducing points in the last block,
achieved 99.3% test accuracy on MNIST, 92.7% on CIFAR-10, and 72% on CIFAR-100. Training
this model on CIFAR-10/100 took around 77 hours on a single NVIDIA A100, but we emphasise that
we used double precision floating points for simplicity of implementation, and with some care taken
to preserve numerical stability, this could be dramatically sped up using single precision arithmetic.

Comparisons against other models. In Table 3, we compare our best model against other pure
kernel methods, including those without parameters like NNGP and NTK, and those with parameters
like convolutional kernel networks. Our model outperforms even the best pure kernel methods (Adlam
et al., 2023; Shankar et al., 2020; Li et al., 2019; Mairal, 2016). These models are not directly compa-
rable to ours, as we developed an efficient inducing point scheme, whereas NNGP/NTK methods
usually compute the full training kernel matrix. Benchmarks from Google’s Neural Tangents library6

found that the most efficient Myrtle-5/7/10 kernels from Shankar et al. (2020) took 316/330/508
GPU hours for the full 60 000 CIFAR-10 dataset on an Nvidia V100, which is around one order of
magnitude more than our training time. Overall, we have narrowed (but not entirely eliminated) the
gap to NNs by improving the performance of kernel methods.

6 CONCLUSION AND LIMITATIONS

We have developed convolutional DKMs, and an efficient inter-domain inducing point approximation
scheme. We performed a comprehensive set of experiments to investigate the effect of different
architectural choices, before selecting the final architecture to compare against existing methods. Our
best models obtained 99% test accuracy on MNIST, 92.7% on CIFAR-10 and 72% on CIFAR-100.
This is state-of-the-art for kernel-methods / infinite NNs, bringing theoretical approaches closer in
performance to neural networks, and there is considerable room for development to close the gap
even further. One limitation of our work is that we did not use high resolution image datasets like
ImageNet (Deng et al., 2009) as we have not yet developed the efficient tricks (such as lower/mixed
precision floating point arithmetic, more efficient memory utilization, and numerical methods for e.g.
inverting matrices) to enable these larger datasets. It may be possible to adapt existing ideas from
the kernel literature (Adlam et al. (2023) and Maddox et al. (2022), for example) to address some of
these issues, in addition to leveraging multi-GPU setups, but we leave this to future work.

6github.com/google/neural-tangents
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A DEEP KERNEL MACHINES

In this appendix we provide a more detailed introduction to deep kernel machines. Deep kernel
machines (DKMs) are a deep generalisation of kernel methods that arise when considering a particular
infinite limit of deep Gaussian processes (DGPs), called the Bayesian representation learning limit
Yang et al. (2023). The original motivation for this limit was to study representation learning in deep
models e.g. neural networks, but it turned out that when applied to DGPs, the resulting posteriors
are exactly multivariate Gaussians, and hence we obtain a practical algorithm that can be used for
supervised learning. It is a deep generalisation of kernel methods in the sense that the model has
Gram matrices rather than features at the intermediate layers. These Gram matrices are optimised
by maximising the DKM objective; the derivation of the objective and reasoning behind needing to
optimise Gram matrices will be elucidated in the rest of this appendix.

The simplest way to explain DKMs is to walk through the steps Yang et al. (2023) took that led to
the Bayesian representation learning limit, and more specifically how it applies to deep Gaussian
processes.

A.1 DEEP GAUSSIAN PROCESSES

We start by defining a deep Gaussian process (DGP). A DGP maps inputs X ∈ RP×N0 to outputs
Y ∈ RP×NL+1 using L intermediate layers of features Fℓ ∈ RP×Nℓ . Here P is the number of input
points, and Nℓ is the number of features at layer ℓ, so that N0 is the number of input features, and
NL+1 is the number of output features. Writing Fℓ and Y as stacks of vectors

Fℓ = (f ℓ1 f ℓ2 · · · f ℓNℓ
) (20a)

Y = (y1 y2 · · · yνL+1
), (20b)
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where f ℓλ ∈ RP gives the values of a particular feature for all P input points and yλ ∈ RP gives
the value of a particular output for all P input points. The features F1, . . . ,FL are sampled from a
Gaussian process whose covariance depends on the previous layer’s features,

P
(
Fℓ|Fℓ−1

)
=
∏νℓ

λ=1N
(
f ℓλ;0,K(G(Fℓ−1))

)
. (21)

Here, we compute the kernel by first computing the Gram matrix,

Gℓ = G(Fℓ) = 1
Nℓ

∑Nℓ

λ=1f
ℓ
λ(f

ℓ
λ)

T = 1
Nℓ

Fℓ(Fℓ)T . (22)

then use a kernel that can be computed directly from the Gram matrix (Eq. (3); also see Aitchison
et al. 2021). To see why this works for isotropic kernels that depend only on distance, see Eq. (2).
For regression the outputs are also sampled from a Gaussian process,

P
(
Y|FL

)
=
∏νL+1

λ=1 N
(
yλ;0,K(G(FL)) + σ2I

)
. (23)

Other likelihoods could be used. For example, in this paper we do classification using a categorical
likelihood with softmax probabilities.

A.2 DGPS WRITTEN IN TERMS OF GRAM MATRICES

We wish to consider the DGP analogue of the standard neural network Gaussian process (NNGP)
limit, which takes the intermediate layers ℓ ∈ {1, . . . , L} to have infinitely-many features (number of
features here is an analogue of layer width in a neural network). Of course, we cannot work with
matrices Fℓ ∈ RP×Nℓ with Nℓ → ∞, so we will instead work with Gram matrices that represent the
inner product between features (Eq. 22). We can then rewrite the DGP as

P
(
Fℓ|Gℓ−1

)
=
∏Nℓ

λ=1N
(
f ℓλ;0,K(Gℓ−1)

)
(24a)

P
(
Gℓ|Fℓ

)
= δ

(
Gℓ −G(Fℓ)

)
(24b)

P
(
Y|GL

)
=
∏νL+1

λ=1 N
(
yλ;0,K(GL) + σ2I

)
. (24c)

We consider a regression likelihood for concreteness, but, again, other likelihoods can be used. Here,
we have written P

(
Gℓ|Fℓ

)
using the Dirac-delta, as Gℓ is a deterministic function of Fℓ (Eq. 22).

All that remains to prepare the model for taking the infinite limit is to integrate out Fℓ from the
intermediate layers (note that the likelihood already depends on GL alone):

P
(
Gℓ|Gℓ−1

)
=

∫
P
(
Gℓ|Fℓ

)
P
(
Fℓ|Gℓ−1

)
dFℓ. (25)

It turns out that in the case of the DGP model, Eq. 25 is actually a Wishart distribution (one can see
this by noting that 22 is the outer product of IID multivariate Gaussian vectors, which matches the
definition of the Wishart),

P
(
Gℓ|Gℓ−1

)
= Wishart

(
Gℓ; 1

Nℓ
K(Gℓ−1), Nℓ

)
(26a)

log P
(
Gℓ|Gℓ−1

)
= Nℓ−P−1

2 log
∣∣Gℓ

∣∣− Nℓ

2 log
∣∣K(Gℓ−1)

∣∣− Nℓ

2 Tr
(
K−1(Gℓ−1)Gℓ

)
+ αℓ

(26b)

where,

αℓ = −NℓP
2 log 2 + NℓP

2 logNℓ − log ΓP

(
Nl

2

)
, (27)

is constant w.r.t. all Gℓ and ΓP is the multivariate Gamma function. Note that the distribution
(Eq. 26a) is valid for any Nℓ ≥ 1, but the log density in Eq. (26b) is valid only in the full-rank case
where Nℓ ≥ P (though this restriction does not cause problems because we will take Nℓ → ∞).

A.3 STANDARD INFINITE-WIDTH LIMIT

We now consider the DGP analogue of the standard NNGP infinite limit, that is we will take the
intermediate layers to have infinite width / infinitely-many features:

Nℓ = Nνℓ for ℓ ∈ {1, . . . , L} with N → ∞. (28)
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The log-posterior for the DGP written in terms of Gram matrices is

log P
(
G1, . . . ,GL|X,Y

)
= log P

(
Y|GL

)
+
∑L

ℓ=1 log P
(
Gℓ|Gℓ−1

)
+ const, (29)

where we emphasise that G1, . . . ,GL are P × P matrix arguments chosen by us to specify where
we wish to evaluate the log-posterior, and so are not affected by any infinite-width limits we take.
That said, the actual value of log P

(
Gℓ|Gℓ−1

)
is affected by the limit. In particular, in the infinite

limit specified in Eq. (28), the log-prior term log P
(
Gℓ|Gℓ−1

)
(Eq. 26) scales with Nℓ and therefore

N , so we must divide by N to obtain a finite limit:

lim
N→∞

1
N log P

(
Gℓ|Gℓ−1

)
= νℓ

2

(
log
∣∣K−1(Gℓ−1)Gℓ

∣∣− Tr
(
K−1(Gℓ−1)Gℓ

))
+ lim

N→∞
αℓ

N

= −νℓ DKL
(
N
(
0,Gℓ

)∥∥N (
0,K(Gℓ−1)

))
+ const. (30)

where limN→∞ αℓ/N is given in Yang et al. (2023). Note that this limit has been written as a
KL-divergence between two Gaussians. By contrast, the log-likelihood term log P

(
Y|GL

)
(Eq.

24c) is constant w.r.t. N , so will vanish if we divide by N in the limit. Putting this all together, the
limiting log-posterior (divided by N to remain finite) is

lim
N→∞

1
N log P

(
G1, . . . ,GL|X,Y

)
= −

∑L
ℓ=1νℓ DKL

(
N
(
0,Gℓ

)∥∥N (
0,K(Gℓ−1)

))
+ const.

(31)
Now, as this log-posterior scales with N , the posterior itself converges to a point distribution at its
global maximum (G1)∗, . . . , (GL)∗ (see Yang et al. (2023) for a more rigorous discussion of weak
convergence)

lim
N→∞

P
(
G1, . . . ,GL|X,Y

)
=
∏L

ℓ=1δ
(
Gℓ − (Gℓ)∗

)
. (32)

From Eq. (31), it is clear that the unique global maximum is obtained when (Gℓ)∗ = K((Gℓ−1)∗),
since this minimises the KL divergence. In other words, we can compute the maximum recursively by
applying the kernel repeatedly. Importantly, this means that the limiting posterior has no dependence
on Y, our training targets, and so it is not possible for representation learning to occur. This is a
big problem, since the success of modern deep learning hinges on its ability to flexibly learn good
representations from data.

A.4 THE BAYESIAN REPRESENTATION LEARNING LIMIT AND DKMS

Representation learning was lost because the likelihood term in the normalised posterior vanished
in the infinite limit, whilst the prior term did not. The Bayesian representation learning limit (Yang
et al., 2023) retains representation learning by sending the number of output features to infinity, in
addition to the intermediate features:

Nℓ = Nνℓ for ℓ ∈ {1, . . . , L+ 1} with N → ∞. (33)

Note that the only difference between this limit and Eq. 33 is that we include layer L+ 1 (the output
layer) in our limit. This defines a valid probabilistic model with a well-defined posterior using the
same prior as before (Eq. 25), and a likelihood assuming each output channel is IID:

P
(
Ỹ|GL

)
=
∏NL+1

λ=1 N
(
ỹλ;0,K(GL) + σ2I

)
. (34)

where, to distinguish from the usual likelihood (Eq. 24c) Ỹ ∈ RP×NL+1 is infinite width (Eq. 33)
whereas the usual DGP data, Y ∈ RP×νL+1 , is finite width.

In practice, infinite-width data does not usually exist. To apply the DKM to finite-width data
Y ∈ RP×νL+1 , we let Ỹ be formed from N copies of Y concatenated together, i.e.

Ỹ = (Y · · · Y) . (35)

Since we assumed the output channels to be IID (Eq. 34), the log-likelihood now scales with N :

log P
(
Ỹ|GL

)
= N log P

(
Y|GL

)
. (36)
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Computing the log-posterior as before, we therefore find that the likelihood no longer vanishes in the
infinite limit, thus allowing representation learning:

L(G1, . . . ,GL) = lim
N→∞

1
N log P

(
G1, . . . ,GL|X, Ỹ

)
+ const,

= log P
(
Y|GL

)
−
∑L

ℓ=1νℓ DKL
(
N
(
0,Gℓ

)∥∥N (
0,K(Gℓ−1)

))
. (37)

The limiting normalised log-posterior, L(G1, . . . ,GL), forms the “DKM objective”. As before,
assuming the global maximum of this expression is unique, then the posterior is a point distribution
around that maximum (Eq. 32). However, unlike before, we cannot simply compute the maximum by
recursively applying the kernel function to our data, since the maximum now also depends on the
likelihood term. Instead, we must optimise the Gram matrices using e.g. gradient ascent, and there is
no guarantee anymore that the maximum is unique.

Yang et al. (2023) use the DKM objective in practice in fully-connected settings, and call the resulting
approach a “deep kernel machine”. As already mentioned, the limiting log-posterior of the Gram
matrices in this context is dubbed the “DKM objective” as we maximise it to fit the Gram matrices in
our model. Once the Gram matrices have been optimised according to the DKM objective using the
training data, one can perform prediction on new test points using a method similar to that in DGPs
(see Yang et al. 2023 for details).

B FULL DERIVATIONS FOR THE KERNEL CONVOLUTION

Here we give the full derivations for the covariances used to define the kernel convolution in the main
text. For the full-rank (no sparse inducing point scheme) case, the reader can skip straight to Section
B.3. Sections B.1 and B.2 only concern the inducing point scheme.

B.1 INDUCING BLOCK

For the inducing ii’th component,

Γii;ℓ
ij (Ωℓ−1

ii ) = E
[
F i;ℓ
i,λF

i;ℓ
j,λ

]
. (38)

Substituting the definition of F i;ℓ
i,λ (Eq. 17),

= E

∑
µdi′

W ℓ
dµ,λC

ℓ
di,i′H

i;ℓ−1
i′,µ

∑
νd′j′

W ℓ
d′ν,λC

ℓ
d′j,j′H

i;ℓ−1
j′,ν

 . (39)

The only random variables are the weights,

=
∑

µν,dd′,i′j′

Cℓ
di,i′H

i;ℓ−1
i′,µ Cℓ

d′j,j′H
i;ℓ−1
j′,ν E

[
W ℓ

dµ,λW
ℓ
d′ν,λ

]
(40)

As the weights are IID with zero mean and variance 1/DNℓ−1 (Eq. 9),

=
∑

µν,dd′,i′j′

Cℓ
di,i′H

i;ℓ−1
i′,µ Cℓ

d′j,j′H
i;ℓ−1
j′,ν

1
DNℓ−1

δµ,νδd,d′ , (41)

where δµ,ν is the Kronecker-delta which is 1 when µ = ν and zero otherwise. The Kronecker-deltas
pick out elements of the sum,

= 1
DNℓ−1

∑
µ,d,i′j′

Cℓ
di,i′H

i;ℓ−1
i′,µ Cℓ

dj,j′H
i;ℓ−1
j′,µ . (42)

Rearrange to bring together the multiplication of previous-layer activations, Hℓ−1,

= 1
D

∑
d,i′j′

Cℓ
di,i′C

ℓ
dj,j′

1
Nℓ−1

∑
µ

H i;ℓ−1
i′,µ H i;ℓ−1

j′,µ . (43)
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And remembering the definition of Ωii;ℓ−1
i′j′ (Eq. 10),

= 1
D

∑
d,i′j′

Cℓ
di,i′C

ℓ
dj,j′Ω

ii;ℓ−1
i′j′ (44)

In practice, we implement this by averaging the result of D batched matrix multiplications,

Γℓ
ii(Ω

ℓ−1
ii ) = 1

D

∑
d

Cℓ
dΩ

ℓ−1
ii

(
Cℓ

d

)T
(45)

B.2 INDUCING-TEST/TRAIN BLOCK

We follow the same process for the inducing-test/train it’th component,

Γit;ℓ
ij (Ωℓ−1

it ) = E
[
F i;ℓ
i,λF

t;ℓ
js,λ

]
(46)

= E

∑
dµi′

W ℓ
dµ,λC

ℓ
di,i′H

i;ℓ−1
i′,µ

∑
νd′

Hℓ−1
j,(s+d′)νW

ℓ
d′ν,λ

 (47)

=
∑

dd′,µν,i′

Cℓ
di,i′H

i;ℓ−1
i′,µ H t;ℓ−1

j,(s+d′)ν E
[
W ℓ

dµ,λW
ℓ
d′ν,λ

]
(48)

=
∑

dd′,µν,i′

Cℓ
di,i′H

i;ℓ−1
i′,µ H t;ℓ−1

j,(s+d′)ν
1

DNℓ−1
δµ,νδd,d′ (49)

= 1
DNℓ−1

∑
d,µ,i′

Cℓ
di,i′H

i;ℓ−1
i′,µ H t;ℓ−1

j,(s+d)µ (50)

= 1
D

∑
d,i′

Cℓ
di,i′Ω

it;ℓ−1
i′,j(s+d) (51)

In practice, this can implemented by a standard convolution operation, treating Cdi,i′ as the “weights”,
and Ωit;ℓ−1

i′,j(s+d) as the “inputs”.

B.3 TEST/TRAIN BLOCK

Again, we follow the same process for the test/train tt’th component. Note that Γ does not require a
superscript ℓ here since the function is the same no matter what layer it is operating on, as there are
no weights C when we are dealing with just test/train points.

Γtt
ir,js(Ω

ℓ−1
tt ) = E

[
F t;ℓ
i,rλF

t;ℓ
j,sλ

]
. (52)

= E

∑
dµ

H t;ℓ−1
i,(r+d)µW

ℓ
dµ,λ

∑
d′ν

H t;ℓ−1
j,(s+d′)νW

ℓ
dν,λ

 (53)

=
∑

dd′,µν

H t;ℓ−1
i,r′µH

t;ℓ−1
j,s′ν E

[
W ℓ

dµ,λW
ℓ
d′ν,λ

]
(54)

=
∑

dd′,µν

H t;ℓ−1
i,(r+d)µH

t;ℓ−1
j,(s+d′)ν

1
DNℓ−1

δµ,νδd,d′ (55)

= 1
DNℓ−1

∑
dµ

H t;ℓ−1
i,(r+d)µH

t;ℓ−1
j,(s+d)µ (56)

= 1
D

∑
d

Ωtt;ℓ−1
i(r+d),j(s+d). (57)

Remember that we end up only needing the diagonal,

Γtt
ir,ir(Ω

ℓ−1
tt ) = 1

D

∑
d

Ωtt;ℓ−1
i(r+d),i(r+d), (58)

and this operation can be implemented efficiently as average-pooling.
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C NORMALISATION AND SCALING FOR GRAM MATRICES

We develop various analogues to batch/layer normalisation (using the terms to loosely describe any
technique for normalising activations) that can be used on Gram matrices in order to improve the
performance of our model. Since we do not have explicit features, there is some flexibility in how to
do this. Here we describe the variants we tested and comment on them.

We think of batchnorm as consisting of two components: normalisation and scaling. Normalisation is
parameter-free, and is analogous to dividing by feature variances in standard batchnorm. Scaling has
parameters, and is analogous to multiplying the features by a learned scalar in standard batchnorm.
In our setting, we can apply different normalisation and scaling schemes to the inducing and test/train
points: so we end up with four choices: inducing normalisation, test/train normalisation, inducing
scaling and test/train scaling.

All of our batchnorm-like schemes have the following form,

N ii
ij(G) = Gii

ij

ψ2
i

ai(Gii)aj(Gii)
(59)

N it
i,js(G) = Git

i,js

ψiΨs

ai(Gii)Ajs(Gtt)
(60)

N tt
ir,ir(G) = Gtt

ir,ir

Ψ2
r

A2
ir(Gtt)

(61)

where N(G) is our normalized Gram matrix. Here, ψi is the learned parameter that represents the
inducing scale and Ψr is the learned, potentially location-dependent parameter that represents the
test/train scaling. Likewise, ai(Gii) and Air(Gtt) represent the normalisation terms for inducing and
test/train points respectively. In the subsequent sections, we explore potential choices for ai(Gii) and
Air(Gtt) corresponding to different normalisation schemes, and choices for ψi and Ψr corresponding
to different scaling schemes.

C.1 INDUCING NORMALISATION

No inducing normalisation. We can turn off inducing normalisation by choosing,

ai(Gii) = 1. (62a)

Kernel Batch inducing normalisation is,

ai(Gii) = anorm(Gii) =
√

1
Pi

∑Pi
j=1G

ii
jj . (62b)

Kernel Local inducing normalisation is,

ai(Gii) = anorm
i (Gii) =

√
Gii

ii. (62c)

C.2 TEST/TRAIN NORMALISATION

There are a much richer set of choices for how to normalize the test/train points, as they are spatially
structured.

No test/train normalisation. We can turn off normalisation by choosing,

Air(Gtt) = 1. (63a)

Kernel Batch normalisation averages the diagonal of Gtt over all spatial locations in all images to
get a single scalar normalizer,

Air(Gtt) = Abatch(Gtt) =
√

1
SPt

∑Pt
j=1

∑S
s=1G

tt
js,js. (63b)

Kernel Image normalisation averages the diagonal of Gtt over all spatial locations for separate
images to get a different normalizer for each image,

Air(Gtt) = Aimage
i (Gtt) =

√
1
S

∑S
s=1G

tt
is,is. (63c)
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Kernel Location normalisation, averages the diagonal of Gtt over all images for separate spatial
locations to get a different normalizer for each spatial location,

Air(Gtt) = Alocation
r (Gtt) =

√
1
Pt

∑Pt
j=1G

tt
jr,jr. (63d)

Kernel Local normalisation does not average at all, so the normalizer is just the square root of the
diagonal of Gtt,

Air(Gtt) =
√
Gtt

ir,ir. (63e)

C.3 INDUCING SCALING

Now, there are three choices for the inducing scaling.

No inducing scaling. We can turn off inducing scaling by choosing,

ψi = 1. (64a)

Kernel Batch inducing scaling, in which there is a single scale applied to all inducing points,

ψi = ψconst. (64b)

Kernel Local inducing scaling, in which there is a different scale applied to each inducing point,

ψi = ψind
i (64c)

C.4 TEST/TRAIN SCALING

There are three choices for the test/train scaling.

No test/train scaling. We can turn off test/train scaling by choosing,

Ψr = 1. (65a)

Kernel Batch test/train scaling We can choose the test/train scaling to be a constant across spatial
locations,

Ψr = Ψconst. (65b)

Kernel Location scaling We can choose the test/train scaling to be different across spatial locations,
in which case we have,

Ψr = Ψlocation
r . (65c)

Note that we never apply scaling image-wise, since the batch changes every iteration, so this would
be nonsensical. On the other hand, spatial location carries meaning across all images, so scaling by
location makes sense.

D COMPUTING THE GP-ELBO TERM

D.1 AMENDED DKM OBJECTIVE

In the original deep kernel machine paper (Yang et al., 2023), the authors proposed a sparse variational
inducing point scheme for DKMs, roughly based on similar work in the DGP literature by Salimbeni
et al. (2018). However, rather than taking the usual approach of defining an approximate posterior
over the inducing outputs FL+1, they simply treat them as variational parameters. In this paper, we
take the more usual approach of defining an approximate posterior over our inducing outputs, which
we take to be Gaussian:

Q(FL+1
i ) =

NL+1∏
λ=1

N (f i;L+1
λ ;µλ,Aλ). (66)

Here, NL+1 is the (finite) dimension of the top layer, and µλ,Aλ are variational parameters for each
channel λ of the output. This modifies the resulting objective function slightly, but we believe the
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resulting formula is actually more natural. Following the derivation of the inducing point scheme
exactly as in Appendix I of Yang et al. (2023), we find that the new sparse objective is

Lind(F
L+1
i ,G1

ii, . . . ,G
L
ii )

= lim
N→∞

1
N ELBO(FL+1

i ,G1
ii, . . . ,G

L
ii )

=EQ

[
log P

(
Yt|FL+1

t

)]
−

NL+1∑
λ=1

DKL
(
N (µλ,Aλ)

∥∥N (
0,K(GL

ii )
))

︸ ︷︷ ︸
Sparse GP-ELBO

−
L∑

ℓ=1

νℓ DKL
(
N
(
0,Gℓ

ii

)∥∥N (
0,K(Gℓ−1

ii )
))

︸ ︷︷ ︸
DKM Regularisation Terms

. (67)

We can see that with the full approximate posterior over the inducing outputs, the inducing objec-
tive can be neatly split up into the ELBO for a sparse shallow GP (the top layer) and a chain of
regularisation terms for the hidden layers of the DKM.

In practice, we use the same Aλ = A for all output features λ to save memory and computational
cost. We also use minibatching, so we normalise the objective by the total number of datapoints,
meaning that computing our objective value on the minibatch provides an estimate for the fullbatch
update.

Therefore, the mean minibatch objective we actually use in our implementation is

Lbatch
ind (FL+1

i ,G1
ii, . . . ,G

L
ii )

=
1

Batch size

∑
p∈batch

EQ

[
log P

(
yp|FL+1

t

)]

− 1

Trainset Size

NL+1∑
λ=1

DKL
(
N (µλ,A)

∥∥N (
0,K(Gℓ−1

ii )
))

+

L∑
ℓ=1

νℓ DKL
(
N
(
0,Gℓ

ii

)∥∥N (
0,K(Gℓ−1

ii )
)) .

(68)

D.2 LIKELIHOOD FUNCTIONS

We considered 2 different approaches to the likelihood: Gaussian (mirroring the approach in the early
NNGP work, including Lee et al. 2017 and Matthews et al. 2018), and a Monte-Carlo estimate of a
categorical likelihood, which is more natural for classification tasks.

Computing the GP-ELBO with these different likelihoods is not trivial, especially with inducing points.
In this section, we detail precisely how these 2 different likelihood functions can be incorporated into
the GP-ELBO, including showing that the GP-ELBO with a Gaussian likelihood has a closed form,
and that the categorical likelihood can be approximated using Monte-Carlo estimation. Before we do
this, recall that the inducing DKM objective in Eq. 67 contains the term

EQ

[
log P

(
Yt|FL+1

t

)]
(69)

which is the expected log-likelihood under our variational joint distribution
Q = Q(FL+1

t |FL+1
i ,GL)Q(FL+1

i ) over top-layer features FL+1, given the previous layer GL.
Concretely, we choose Q(FL+1

i ) as in Eq. 66, and Q(FL+1
t |FL+1

i ,GL) = P (FL+1
t |FL+1

i ,GL),
i.e. we use the same conditional Gaussian formula for test points given the inducing points as the true
distribution.

We need only consider the predictive term (Eq. 69) since no other terms in the objective (Eq. 67)
depend on our choice of likelihood function P (Yt|Ft). With this in mind, we now derive the expected
log-likelihood term for the two likelihood functions we consider.
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D.2.1 GAUSSIAN LIKELIHOOD

This is the same likelihood function used in the original DKM paper Yang et al. (2023), though they
did not provide a detailed derivation of the closed-form expressions used to compute it. Since some
readers will find this useful, we provide one here. In order to compute the DKM objective function,
we must compute the predictive term

EQ(FL+1
t |FL+1

i ,GL)Q(FL+1
i )

[
logP (Yt|FL+1

t )
]

(70)

where, for a Gaussian likelihood,

P (Yt|FL+1
t ) =

NL+1∏
λ=1

N (yλ; f
t;L+1
λ , σ2I). (71)

Substituting the definition of the multivariate normal log probability density and ignoring additive
constants, we have

EQ(FL+1
t |FL+1

i ,GL)Q(FL+1
i )

[
logP (Yt|FL+1

t )
]

(72)

= −0.5NL+1P log σ2 − 1

2σ2

NL+1∑
λ=1

{
yT
λyλ − 2yT

λEQ [fλ] + EQ

[
fTλ fλ

]}
(73)

where we use EQ to mean EQ(FL+1
t |FL+1

i ,GL)Q(FL+1
i ), and to avoid unruly notation we drop the layer

and train/test labels from f t;L+1
λ to just write fλ. This sum can be further decomposed into separate

terms for each data point (which allows minibatching):

− 0.5NL+1P log σ2 − 1

2σ2

P∑
j=1

NL+1∑
λ=1

{
y2jλ − 2ytλEQ [fjλ] + EQ

[
f2jλ
]}

(74)

= −0.5NL+1P log σ2 − 1

2σ2

P∑
j=1

NL+1∑
λ=1

{
y2jλ − 2yjλEQ [fjλ] + VarQ [fjλ] + EQ [fjλ]

2
}

(75)

= −0.5NL+1P log σ2 − 1

2σ2

P∑
j=1

NL+1∑
λ=1

{
(yjλ − EQ [fjλ])

2
+ VarQ [fjλ]

}
. (76)

Hence to compute the predictive term we will need to know the mean and variance of fjλ (the test
points f t;L+1

jλ ) under the joint distribution Q (joint over both training and inducing). We assumed
earlier that our inducing outputs f i

λ have variational distribution

Q(f i
λ) = N (f i

λ;µλ,Aλ). (77)

Since the conditional mean and covariance of f t
λ given the inducing f iλ are just the conditional

Gaussian formulae, this is very simple to compute via the laws of total expectation and total variance:

EQ[f
t
λ] = E

[
E[f t

λ|f i
λ]
]

= E[KtiK
−1
ii f i

λ]

= KtiK
−1
ii µλ (78)

Var[f t
λ] = E

[
Var[f t

λ|f i
λ]
]
+ Var

[
E[f t

λ|f i
λ]
]

= Ktt −KtiK
−1
ii Kit + Var

[
KtiK

−1
ii f i

λ

]
= Ktt −KtiK

−1
ii Kit +KtiK

−1
ii Var

[
f i
λ

]
K−1

ii Kit

= Ktt −KtiK
−1
ii Kit +KtiK

−1
ii AλK

−1
ii Kit (79)

Combining this with Eq. 76 gives us our concrete formula. Alternatively, one can use these quantities
to generate samples of f t;L+1

λ , which is multivariate Gaussian, and then compute the Gaussian
likelihood via Monte-Carlo estimation. We used the latter strategy in our experiments using Gaussian
likelihoods, since we are forced to sample for the categorical likelihood anyway.
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D.2.2 CATEGORICAL LIKELIHOOD

We want to use a categorical distribution as our likelihood function, where the probabilities for each
class are given by the softmax of our final layer features:

P
(
Yt|FL+1

t

)
=

P∏
j=1

σyj
(f t;L+1

j: ) (80)

=

P∏
j=1

exp f t;L+1
j,yj∑NL+1

λ=1 exp f t;L+1
j,λ

(81)

Hence the expected log-likelihood would be

EQ

[
log P

(
Y|FL+1

t

)]
=

P∑
j=1

EQ

[
f t;L+1
j,yj

]
− EQ

logNL+1∑
λ=1

exp f t;L+1
j,λ

 (82)

The log-exp term is problematic, since we cannot compute its expectation in closed-form. However,
since f t;L+1

λ is just multivariate Gaussian distributed, with mean and covariance given by Eq. 78 and
Eq. 79 respectively, we can easily generate samples and just compute a Monte-Carlo estimate of Eq.
82.

E FLATTENING THE SPATIAL DIMENSION AT THE FINAL LAYER

E.1 LINEAR

As in neural networks, we must collapse the spatial structure at the final layer, converting a SLPt ×
SLPt matrix to Pt × Pt, so that we may perform the final classification. Convolution with zero-
padding, and D = SL is equivalent to a linear top-layer. It returns a feature map with only a single
spatial location. Hence we obtain similar expressions to our usual convolutional kernel. The tt’th part
of these expressions was known to (Novak et al., 2018; Garriga-Alonso et al., 2018), but the inducing
components (specifically Λii and Λit) are specific to our scheme.

Ξii
i,j(G

L) = E
[
F i;L+1
i,λ F i;L+1

j,λ |HL
]
= 1

SL

∑
s∈D

PL
i∑

i′=1

PL
i∑

j′=1

CL+1
si,i′ C

L+1
sj,j′G

ii;L
i′j′ . (83)

Ξit
i,j(G

L) = E
[
F i;L+1
i,λ F t;L+1

j,λ |HL
]
= 1

SL

∑
s

PL
i∑

i′=1

CL+1
si,i′ G

it;L
i′,js (84)

Ξtt
i,j(G

L) = E
[
F t;L+1
i,λ F t;L+1

j,λ |HL
]
=

1

SL

∑
s

Gtt;L
is,js (85)

E.2 ONLY DIAGONALS OF TEST/TRAIN BLOCKS ARE NEEDED

Naively applying these equations is very expensive, as we still need to work with PtSℓ × PtSℓ

covariance matrices in the tt’th block. The key trick is that we only need to represent the diagonal of
the tt’th matrices. In particular, note that Eq. (85) indicates that we only need the P 2

t SL elements
Gtt

is,js corresponding to the covariance across images at the same spatial locations. Furthermore, the
standard DKM derivations imply that (for IID likelihoods) we only need the diagonal of Gtt, meaning
that in this case we only need the PtSL elements Gtt

is,is corresponding to the variance of each image
at each spatial location. This is only at the output layer, but as in infinite CNNs (Novak et al., 2018;
Garriga-Alonso et al., 2018), it propagates backwards: if we only need Gtt;ℓ

is,is at one layer, then we
only need Gtt;ℓ−1

is,is at the previous layer.

Γis,is(Ωt) =
1

D

∑
d∈D

Ωt
i(s+d),i(s+d) (86)
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E.3 GLOBAL AVERAGE POOLING

It is common practice in convolutional neural network top-layers to use global average pooling, where
we take the mean over the spatial dimension, and only learn weights on the channels (in contrast to a
linear final layer where we would have a separate weight for each pixel). In this section we explain
how this can be done for the convolutional DKM. Note that here we use FL

i,rµ to denote the input
to the global average pooling operation, which would usually be the result of a convolution layer,
but the reader should focus on the operation of global average pooling rather the specific letters we
choose to use here. For notational convenience, we let S = SL in the following derivations.

E.3.1 FULL-RANK

For features, we define global average pooling as

FGAP
i,λ = 1

S

∑
rµ

FL
i,rµW

GAP
µ,λ . (87)

where, WGAP ∈ RNL×NL+1 are IID Gaussian such that

E
[
WGAP

µ,λ W
GAP
ν,λ

]
= 1

NL
δµν . (88)

Now, computing the covariance Ξij (again, do not attribute too much meaning to the choice of letters),
we have

Ξij = E
[
FGAP
i,λ FGAP

j,λ

]
(89)

= 1
S2 E

[(∑
rµ

FL
i,rµW

GAP
µ,λ

)(∑
sν

FL
j,sνW

GAP
ν,λ

)]
. (90)

Rearranging the sums, we obtain

Ξij =
1
S2

∑
rµ,sν

FL
i,rµF

L
j,sν E

[
WGAP

µ,λ W
GAP
ν,λ

]
(91)

which, by substituting the covariance of the weights (Eq. 88) becomes

Ξij =
1
S2

∑
rµ,sν

FL
i,rµF

L
j,sν

1
NL
δµν . (92)

Finally, combining the delta-function and sum, we obtain

Ξij =
1

S2NL

∑
rs,µ

FL
i,rµF

L
j,sµ (93)

= 1
S2

∑
rs

GL
ir,js (94)

i.e. we simply take the mean over both spatial indices (remember there are two because our covariance
is comparing pixels to pixels).

E.3.2 INDUCING

Since global average pooling eliminates the spatial dimensions (or equivalently shares the same
weights across all spatial locations within the same image), the inducing points can be directly
multiplied by the weights, and we do not need any C weights to “map” them up to a spatial structure:

F i;GAP
i,λ =

∑
µ

WGAP
µ,λ F

i;L
i,µ . (95)
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The inducing-inducing block Λii is straightforward:

Ξii
ij = E

[
F i;GAP
i,λ F i;GAP

j,λ

]
(96)

= E

[∑
µ

WGAP
µ,λ F
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∑
ν
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ν,λ F i;L

i,ν

]
(97)

=
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F i;L
i,µF

i;L
i,ν E

[
WGAP
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GAP
ν,λ

]
(98)

=
∑
µν

F i;L
i,µF

i;L
i,ν

1
NL
δµν (99)

= Gii;L
ij , (100)

i.e. it is just the same as the input. Since our inducing points have no spatial structure, it makes sense
that global average pooling would do nothing to them.

The inducing-test/train block Λit just averages over the single spatial index:

Ξit
i,j = E

[
F i;GAP
i,λ F t;GAP

j,λ

]
(101)

= E

[∑
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∑
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(102)
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(103)

= 1
SNL

E
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F i;L
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(104)

= 1
S

∑
s

Git;L
i,js (105)

And the diagonal of Λtt (recall we need only store the diagonal for IID likelihoods) averages over
both inputted spatial indices:

Ξtt
i,i = E

[
F t;GAP
i,λ F t;GAP

i,λ

]
(106)

= 1
S2 E

[∑
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GAP
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(108)
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S2Nℓ

E

[∑
srµ

F t;L
i,sµF
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]
(109)

= 1
S2

∑
sr

Gtt;L
is,ir (110)

However, there is a problem. This does not depend only on the Pt × S diagonal of the input, but also
on the covariance of all pixels within a test image, which means we actually require an object of size
Pt × S × S versus the full matrix Gtt of size Pi × Pt × S × S which is still bad since S is usually
much larger than either Pt or Pi.

To solve this problem, we use a corrected Nyström approximation on the input:

Gtt ≈ GT
it G

−1
ii Git +D. (111)

where D is a diagonal matrix that corrects the diagonal to match the true diagonal of Gtt, which we
know.
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However, this still seems like somewhat of a problem, since the Nyström approximation of Gtt is still
of size Pi × Pt × S × S. Luckily, it turns out that, since we only need the diagonal of Ktt, we don’t
need to compute the entire Nyström approximation:

Ξtt
i,j =

1
S2

∑
sr

Gtt;L
is,jr (112)

Apply the Nyström approximation:
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=
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And because we only need the diagonal,

Ξtt
i,i =

∑
i′j′

Ξit
i′,i

[
GL

ii

]−1

i′,j′
Ξit
i,j′ +

1
S2

∑
s

Dis,is. (117)

With that problem solved, we can now practically apply global average pooling to our Gram matrices
at the top-layer.

F EXPERIMENTAL RESULTS - FURTHER METRICS

In this appendix we give further metrics (test log-likelihood, train accuracy, and train log-likelihood)
for the experiments in the main text. All experiments were run for 4 different random seeds, and we
report the means with standard errors. See Section 5 for further details of these experiments.

As in the main text, for all tables and for each dataset, we identify the best configuration, and then bold
all those configurations whose performance was statistically similar to the best, using a one-tailed
Welch’s t-test with confidence level 5%.

F.1 REGULARISATION STRENGTH

Test accuracy for regularisation strength were already given in the main text (Table 1). We give the
remaining metrics in Table 4.

As we can see from the performance metrics, test log-likelihoods are maximised by using ν = 1,
though this comes at a slight performance hit to test accuracy (Table 1). For smaller values, higher
train performance over test performance suggests overfitting is occurring (though this seems to only
negatively affect the log-likelihoods and not the accuracies). It may be an interesting future direction
to investigate alternative formulations for the regularisation term to see if this can be improved upon.

F.2 BATCH NORMALISATION TYPE

The test metrics for normalisation and rescaling were already given in the main text (Table 1). We
give the remaining metrics for normalisation in Table 5 and for rescaling in Table 6.

We chose the combinations of variants by requiring that the inducing blocks and test-train blocks
used the same type of normalisation and scaling. In cases where we are using image specific variants
of normalisation on the test-train blocks that don’t exist for the inducing blocks, we use the following
mapping: “image” normalisation in the test-train block corresponds to “local” normalisation in
the inducing block, since it doesn’t average across the datapoints in the batch, whilst “location”
normalisation corresponds to “Batch” normalisation in the inducing block since it does average across
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Table 4: Train accuracies (%) and log-likelihoods using different regularisation strengths.

Metric ν MNIST CIFAR-10 CIFAR-100

Test LL

∞ -0.9026 ± 0.0039 -1.3546 ± 0.0055 -2.8909 ± 0.0105
104 -0.6393 ± 0.0158 -1.3830 ± 0.0063 -2.9914 ± 0.0030
103 -0.2488 ± 0.0014 -1.1972 ± 0.0018 -2.6351 ± 0.0206
102 -0.0942 ± 0.0029 -0.8322 ± 0.0003 -2.0077 ± 0.0058
101 -0.0380 ± 0.0013 -0.5070 ± 0.0058 -1.5307 ± 0.0133
100 -0.0263 ± 0.0006 -0.3885 ± 0.0022 -1.4638 ± 0.0093
10−1 -0.0294 ± 0.0011 -0.4652 ± 0.0051 -1.7877 ± 0.0309
10−2 -0.0344 ± 0.0013 -0.5048 ± 0.0102 -1.9923 ± 0.0310
10−3 -0.0356 ± 0.0011 -0.5295 ± 0.0049 -2.0162 ± 0.0144
10−4 -0.0371 ± 0.0012 -0.5279 ± 0.0017 -2.0468 ± 0.0107

0 -0.0359 ± 0.0010 -0.5280 ± 0.0072 -2.0552 ± 0.0122

Train Acc.

∞ 73.10 ± 0.09 52.99 ± 0.22 30.19 ± 0.25
104 82.03 ± 0.55 51.30 ± 0.31 27.75 ± 0.13
103 92.76 ± 0.04 58.24 ± 0.06 34.72 ± 0.41
102 96.82 ± 0.09 70.66 ± 0.07 50.09 ± 0.18
101 98.78 ± 0.03 83.84 ± 0.23 65.20 ± 0.57
100 99.48 ± 0.02 93.22 ± 0.02 82.48 ± 0.51
10−1 99.77 ± 0.00 97.45 ± 0.07 91.07 ± 0.34
10−2 99.87 ± 0.01 98.38 ± 0.08 93.72 ± 0.37
10−3 99.90 ± 0.01 98.65 ± 0.04 94.18 ± 0.28
10−4 99.90 ± 0.01 98.67 ± 0.06 94.34 ± 0.26

0 99.91 ± 0.00 98.70 ± 0.05 94.41 ± 0.25

Train LL

∞ -0.8735 ± 0.0021 -1.3939 ± 0.0036 -2.9417 ± 0.0073
104 -0.6149 ± 0.0169 -1.4230 ± 0.0067 -3.0430 ± 0.0032
103 -0.2589 ± 0.0006 -1.2351 ± 0.0012 -2.6898 ± 0.0188
102 -0.1084 ± 0.0027 -0.8547 ± 0.0003 -1.9135 ± 0.0096
101 -0.0382 ± 0.0008 -0.4651 ± 0.0053 -1.2463 ± 0.0212
100 -0.0164 ± 0.0005 -0.1944 ± 0.0012 -0.5835 ± 0.0171
10−1 -0.0072 ± 0.0001 -0.0729 ± 0.0018 -0.2833 ± 0.0102
10−2 -0.0041 ± 0.0001 -0.0462 ± 0.0019 -0.1980 ± 0.0100
10−3 -0.0033 ± 0.0000 -0.0387 ± 0.0012 -0.1814 ± 0.0083
10−4 -0.0032 ± 0.0001 -0.0377 ± 0.0013 -0.1758 ± 0.0081

0 -0.0029 ± 0.0001 -0.0365 ± 0.0011 -0.1736 ± 0.0079

the batch. For rescaling, the are no longer “local” or “image” variants for the test-train block, since
it does not make sense to have a scalar for individual datapoints in a batch that will persist across
arbitrary batches. Hence, when we are using “local” on the inducing block, we test all possible
variants for the test-train block.

Our batchnorm schemes were originally introduced to provide smoother training dynamics, but the
story the results tell is mixed. Sometimes using no normalisation or scaling results in worse training
performance, like on CIFAR-100, so we decided that it seemed sensible to use the simplest “Batch”
variants for the final experiments (Table 2 in the main text, and Table 9 for other metrics), which
seemed to perform well across all the datasets.

F.3 FINAL LAYER AFTER CONVOLUTIONS

Test accuracies for the final layer type were given in the main text (Table 1). We give the rest of the
metrics in Table 7.

Our global average pooling layer requires the use of a Nyström approximation. To ensure this was
not adversely affecting performance, we also test a final layer that performs a convolution with kernel
size equal to the feature map size (analogous to flattening and using a linear layer in a CNN) which
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Table 5: Train accuracies (%) and log-likelihoods using different types of normalisation (Inducing /
Train-Test).

Metric Ind. / Train-Test MNIST CIFAR-10 CIFAR-100

Test LL

Batch / Batch -0.0263 ± 0.0006 -0.3885 ± 0.0022 -1.4638 ± 0.0093
Batch / Location -0.0284 ± 0.0009 -0.3850 ± 0.0027 -1.4708 ± 0.0129

Local / Image -0.0277 ± 0.0008 -0.3863 ± 0.0011 -1.4868 ± 0.0195
Local / Local -0.0270 ± 0.0009 -0.3952 ± 0.0034 -1.5365 ± 0.0118
None / None -0.0276 ± 0.0008 -0.4025 ± 0.0046 -1.4316 ± 0.0007

Train Acc.

Batch / Batch 99.48 ± 0.02 93.22 ± 0.02 82.48 ± 0.51
Batch / Location 99.44 ± 0.01 92.94 ± 0.17 82.42 ± 0.61

Local / Image 99.51 ± 0.01 93.06 ± 0.17 83.88 ± 0.27
Local / Local 99.41 ± 0.01 92.99 ± 0.17 83.69 ± 0.20
None / None 99.49 ± 0.01 92.48 ± 0.13 79.68 ± 0.16

Train LL

Batch / Batch -0.0164 ± 0.0005 -0.1944 ± 0.0012 -0.5835 ± 0.0171
Batch / Location -0.0175 ± 0.0001 -0.2037 ± 0.0047 -0.5855 ± 0.0205

Local / Image -0.0158 ± 0.0004 -0.1998 ± 0.0050 -0.5302 ± 0.0088
Local / Local -0.0185 ± 0.0002 -0.1995 ± 0.0054 -0.5395 ± 0.0071
None / None -0.0157 ± 0.0002 -0.2162 ± 0.0036 -0.6821 ± 0.0067

Table 6: Train accuracies (%) and log-likelihoods using different types of rescaling after normalisa-
tion.

Metric Ind. / Train-Test MNIST CIFAR-10 CIFAR-100

Test LL

Batch / Batch -0.0263 ± 0.0006 -0.3885 ± 0.0022 -1.4638 ± 0.0093
Batch / Location -0.0276 ± 0.0008 -0.3892 ± 0.0045 -1.5375 ± 0.0149

Local / Batch -0.0257 ± 0.0005 -0.3930 ± 0.0025 -1.4708 ± 0.0126
Local / Location -0.0287 ± 0.0007 -0.3894 ± 0.0030 -1.5050 ± 0.0176

Local / None -0.0261 ± 0.0010 -0.3894 ± 0.0023 -1.4298 ± 0.0076
None / None -0.0275 ± 0.0008 -0.3904 ± 0.0039 -1.3514 ± 0.0017

Train Acc.

Batch / Batch 99.48 ± 0.02 93.22 ± 0.02 82.48 ± 0.51
Batch / Location 99.43 ± 0.01 93.43 ± 0.09 81.69 ± 0.68

Local / Batch 99.48 ± 0.01 92.63 ± 0.12 81.90 ± 0.15
Local / Location 99.41 ± 0.02 92.82 ± 0.24 81.83 ± 0.24

Local / None 99.44 ± 0.01 93.26 ± 0.08 81.31 ± 0.59
None / None 99.46 ± 0.02 93.07 ± 0.07 78.99 ± 0.34

Train LL

Batch / Batch -0.0164 ± 0.0005 -0.1944 ± 0.0012 -0.5835 ± 0.0171
Batch / Location -0.0179 ± 0.0002 -0.1874 ± 0.0035 -0.6116 ± 0.0246

Local / Batch -0.0163 ± 0.0005 -0.2099 ± 0.0036 -0.5993 ± 0.0051
Local / Location -0.0185 ± 0.0003 -0.2042 ± 0.0067 -0.6101 ± 0.0080

Local / None -0.0178 ± 0.0005 -0.1950 ± 0.0011 -0.6251 ± 0.0212
None / None -0.0174 ± 0.0002 -0.1953 ± 0.0027 -0.7135 ± 0.0135

does not require any extra approximations. We found that global average pooling either matched or
outperformed this method across the board, in line with common deep learning practice, despite the
use of the Nyström approximation.

We also experimented with learning weights to “mix up” the inducing points as in our convolutional
layers, but results were mixed, and it sometimes even made the model worse (presumably due to the
increased complexity introduced to the optimisation problem by these extra weights).
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Table 7: Train accuracies (%) and log-likelihoods using different final layers.

Metric Final Layer Type MNIST CIFAR-10 CIFAR-100

Test LL

Global Average Pooling -0.0263 ± 0.0006 -0.3885 ± 0.0022 -1.4638 ± 0.0093
Linear -0.0275 ± 0.0006 -0.3751 ± 0.0040 -1.4053 ± 0.0087

GAP + Mixup -0.0275 ± 0.0004 -0.3836 ± 0.0008 -1.4861 ± 0.0107
Linear + Mixup -0.0280 ± 0.0007 -0.3875 ± 0.0032 -1.3734 ± 0.0065

Train Acc

Global Average Pooling 99.48 ± 0.02 93.22 ± 0.02 82.48 ± 0.51
Linear 99.46 ± 0.02 92.39 ± 0.11 79.93 ± 0.30

GAP + Mixup 99.49 ± 0.01 92.77 ± 0.23 83.41 ± 0.19
Linear + Mixup 99.47 ± 0.01 92.07 ± 0.35 74.26 ± 0.21

Train LL

Global Average Pooling -0.0164 ± 0.0005 -0.1944 ± 0.0012 -0.5835 ± 0.0171
Linear -0.0173 ± 0.0007 -0.2197 ± 0.0035 -0.6682 ± 0.0111

GAP + Mixup -0.0160 ± 0.0003 -0.2075 ± 0.0072 -0.5533 ± 0.0063
Linear + Mixup -0.0169 ± 0.0004 -0.2276 ± 0.0108 -0.8785 ± 0.0048

Table 8: Train accuracies (%) for different likelihood functions. (log-likelihoods are not comparable).
Bold shows values statistically similar to the maximum.

Metric Likelihood MNIST CIFAR-10 CIFAR-100

Train Acc. Gaussian 99.12 ± 0.01 88.85 ± 0.59 27.17 ± 0.67
Categorical 99.48 ± 0.02 93.22 ± 0.02 82.48 ± 0.51

F.4 LIKELIHOOD FUNCTION

Test accuracies for the choice of likelihood function were given in the main text (Table 1). We give
the train accuracies in Table 8. Since we are modifying the likelihood function, it does not make
sense to compare the log-likelihoods between these methods.

We tested two different likelihood functions: the Gaussian likelihood and the categorical likelihood
with softmax probabilities. We estimated both the categorical likelihood and Gaussian likelihood via
Monte-Carlo, though the Gaussian likelihood does permit a closed-form objective function. Details
of both likelihood functions can be found in Appendix D.2. For the Monte-Carlo approximation, we
used 1000 samples from the top layer features.

As expected for classification, the categorical likelihoods performed better than the Gaussian likeli-
hood. In the case of CIFAR-100, which has 100 classes compared to CIFAR-10 and MNIST which
have 10 classes, the Gaussian likelihood resulted in catastrophically bad training performance, which
then carried over into test performance.

F.5 FINAL EXPERIMENTS - NUMBER OF INDUCING POINTS

For the final experiments, using hyperparameters selected using the results from the previous experi-
ments, test accuracies for different numbers of inducing points were given in the main text (Table 2).
We give the other metrics in Table 9. Interestingly, whilst we observe good test accuracy on the
largest models, the test log-likelihood actually degrades past a certain size of model. Since DKMs
are not considered truly Bayesian due to the model mismatch introduced by the modified likelihood
layer (Yang et al., 2023), we hypothesise that this is the model overfitting on the train log-likelihood
and causing poor calibration.
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Table 9: Train accuracies (%) and log-likelihoods using different numbers of inducing points.

Metric Ind. Points MNIST CIFAR-10 CIFAR-100

Test LL

16 / 32 / 64 -0.0312 ± 0.0008 -0.4960 ± 0.0047 -1.7118 ± 0.0073
32 / 64 / 128 -0.0365 ± 0.0025 -0.4548 ± 0.0049 -1.5182 ± 0.0085

64 / 128 / 256 -0.0443 ± 0.0007 -0.6446 ± 0.0146 -2.3413 ± 0.0656
128 / 256 / 512 -0.0603 ± 0.0019 -0.7593 ± 0.0214 -3.1398 ± 0.0491

256 / 512 / 1024 -0.0659 ± 0.0016 -0.6939 ± 0.0154 -2.4611 ± 0.0196
512 / 1024 / 2048 -0.0676 ± 0.0036 -0.6502 ± 0.0125 -2.0553 ± 0.0207

Train Acc.

16 / 32 / 64 99.45 ± 0.02 86.27 ± 0.21 58.22 ± 0.27
32 / 64 / 128 99.76 ± 0.00 93.75 ± 0.04 75.15 ± 0.41

64 / 128 / 256 99.94 ± 0.00 98.83 ± 0.11 94.76 ± 0.38
128 / 256 / 512 99.99 ± 0.00 99.90 ± 0.01 99.83 ± 0.02
256 / 512 / 1024 100.00 ± 0.00 99.98 ± 0.00 99.98 ± 0.00

512 / 1024 / 2048 100.00 ± 0.00 99.99 ± 0.00 99.98 ± 0.00

Train LL

16 / 32 / 64 -0.0166 ± 0.0005 -0.3907 ± 0.0061 -1.4938 ± 0.0098
32 / 64 / 128 -0.0075 ± 0.0003 -0.1743 ± 0.0012 -0.8324 ± 0.0144

64 / 128 / 256 -0.0020 ± 0.0001 -0.0328 ± 0.0028 -0.1631 ± 0.0114
128 / 256 / 512 -0.0004 ± 0.0000 -0.0033 ± 0.0002 -0.0104 ± 0.0007

256 / 512 / 1024 -0.0002 ± 0.0000 -0.0010 ± 0.0000 -0.0026 ± 0.0001
512 / 1024 / 2048 -0.0001 ± 0.0000 -0.0005 ± 0.0001 -0.0015 ± 0.0000
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