
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

FUSE: FAST SEMI-SUPERVISED NODE EMBEDDING
LEARNING VIA STRUCTURAL AND LABEL-AWARE OP-
TIMIZATION

Anonymous authors
Paper under double-blind review

ABSTRACT

Graph-based learning is a cornerstone for analyzing structured data, with node
classification as a central task. However, in many real-world graphs, nodes lack in-
formative feature vectors, leaving only neighborhood connectivity and class labels
as available signals. In such cases, effective classification hinges on learning node
embeddings that capture structural roles and topological context. We introduce a
fast semi-supervised embedding framework that jointly optimizes three comple-
mentary objectives: (i) unsupervised structure preservation via scalable modular-
ity approximation, (ii) supervised regularization to minimize intra-class variance
among labeled nodes, and (iii) semi-supervised propagation that refines unlabeled
nodes through random-walk-based label spreading with attention-weighted simi-
larity. These components are unified into a single iterative optimization scheme,
yielding high-quality node embeddings. On standard benchmarks, our method
consistently achieves classification accuracy at par with or superior to state-of-
the-art approaches, while requiring significantly less computational cost.

1 INTRODUCTION

Graph-based learning has emerged as a powerful paradigm for analyzing structured data, with ap-
plications in social networks (Li et al., 2023), citation graphs (Luo et al., 2023), knowledge graphs
(Ye et al., 2022), and recommendation systems (Lu et al., 2025; Anand and Maurya, 2024). A cen-
tral task is node classification, where a subset of nodes are labeled and the goal is to predict the
labels of the remaining ones (Luo et al., 2024). This task is typically facilitated by node embeddings
X ∈ R|V |×k that capture graph structure (Xiao et al., 2021).

In practice, node embeddings may not be explicitly available, especially in newly constructed or
rapidly evolving graphs, even when partial labels are known. Existing approaches often rely on
unsupervised (Duong et al., 2023) or self-supervised (Veličković et al., 2019) embedding genera-
tion, or directly employ Graph Neural Networks (GNNs) such as GCN (Kipf and Welling, 2017),
GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017) in a semi-supervised fash-
ion. In addition, there are a few semi-supervised approaches that combine GNNs as encoders and
customized classifiers to solve node classification problems (Lee et al., 2022; Yan et al., 2023). The
given features are enhanced using these semi-supervised node representation algorithms. However,
when embeddings are missing, initializing GNNs with random embeddings is ineffective for down-
stream tasks. A more efficient strategy is to generate structured initial embeddings via unsupervised
or self-supervised approaches, and then refine them with GNNs (Hamilton et al., 2017; Weihua Hu
et al., 2020).

We propose a fast semi-supervised embedding generation framework designed specifically for cases
where node embeddings are unavailable. Our method integrates three complementary optimization
components:

1. Unsupervised structure preservation, capturing global connectivity through a novel scal-
able approximation of graph modularity (Newman, 2006; Yazdanparast et al., 2021).

2. Supervised regularization, aligning labeled nodes within the same class via compactness
constraints.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

3. Semi-supervised propagation, refining unlabeled nodes using random-walk-based label
propagation (Raghavan et al., 2007) combined with attention-driven similarity weight-
ing (Wang et al., 2020).

By unifying these three components into a single iterative gradient ascent framework, our approach
produces high-quality node embeddings quickly and without requiring pre-existing features. The
fast convergence of the optimization procedure can make it well-suited to settings where labels are
introduced incrementally, making it especially relevant in real-world applications such as recom-
mendation (Pei et al., 2020), cybersecurity (Fang et al., 2022), and financial transaction monitoring
(Bukhori and Munir, 2023), where embeddings must be updated on the fly.

We evaluate our approach on standard benchmarks including Cora (McCallum et al., 2000), CiteSeer
(Giles et al., 1998), WikiCS (Mernyei and Cangea, 2020), Amazon Photo (McAuley et al., 2015),
PubMed (Namata et al., 2012) and ArXiV (Hu et al., 2020). We compare against widely used
unsupervised methods such as Node2Vec (Grover and Leskovec, 2016), DeepWalk (Perozzi et al.,
2014), VGAE (Kipf and Welling, 2016), M-NMF (Wang et al., 2017), the self-supervised DGI
(Veličković et al., 2019), two semi supervised baselines GraFN (Lee et al., 2022), ReVAR (Yan
et al., 2023) and precomputed embeddings. Downstream classification performance is assessed
using GCN (Kipf and Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton
et al., 2017).

Contributions. Our main contributions are as follows:

1. We introduce a fast semi-supervised embedding generation algorithm that requires no pre-
defined node embeddings.

2. In particular, we propose a linear time approximation of the graph modularity gradient,
which is fundamental to our fast embedding generation process.

3. Notably, the algorithm uses labels if available, but can be adapted to scenarios where labels
are completely unavailable with some compromise in performance.

4. We design a unified optimization framework that equally integrates unsupervised, super-
vised, and semi-supervised components.

2 RELATED WORK

Our approach connects to several lines of research: unsupervised embedding methods, self-
supervised, semi-supervised embedding methods, graph neural network baselines, and modularity-
driven optimization.

Unsupervised node embedding. Random-walk-based approaches such as DeepWalk (Perozzi et al.,
2014) and Node2Vec (Grover and Leskovec, 2016) learn node representations by applying Skip-
Gram training to sequences generated from biased or unbiased random walks. Variational Graph
Auto-Encoders (VGAE) (Kipf and Welling, 2016) extend autoencoding approaches to graphs by us-
ing a GCN encoder with a latent Gaussian distribution, achieving strong results in unsupervised link
prediction. Another method, M-NMF Wang et al. (2017) learn node embeddings by factorizing the
graph structure without using any label information. It integrates both the network’s local structure
(e.g., adjacency information) and global community structure (e.g., modularity) into a joint factor-
ization framework. These methods demonstrate that structural information alone can be leveraged
to build embeddings, since they are agnostic to label information.

Self-supervised learning. Contrastive frameworks such as Deep Graph Infomax (DGI) (Veličković
et al., 2019) maximize mutual information between local node embeddings and global summaries,
enabling representation learning without labels. Other approaches (e.g., SL-GAT (Wang et al.,
2020)) refine attention-based architectures with self-supervised objectives. These methods reduce
the reliance on labeled data but typically incur significant computational overhead.

Semi-supervised learning. Semi-supervised methods like GraFN (Lee et al., 2022) and ReVAR
(Yan et al., 2023) address the limitations of purely supervised or self-supervised graph learning by
combining a small amount of labeled data with structural information. GraFN aligns class predic-
tions across augmented graph views to improve class-discriminative representations by combining

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

self-supervised and label-guided methods, while ReVAR, which is specifically designed for imbal-
anced scenarios, introduces variance-based regularization to mitigate class imbalance.

Graph neural networks for classification. Semi-supervised GNNs such as GCN (Kipf and
Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017) refine em-
beddings through message passing and neighborhood aggregation, making them effective classifiers
once initial embeddings are provided. Recent surveys highlight their utility across domains includ-
ing social networks (Li et al., 2023), knowledge graphs (Ye et al., 2022), and recommender systems
(Lu et al., 2025; Anand and Maurya, 2024). However, initializing GNNs with random embeddings
is ineffective for downstream tasks (Wang et al., 2025), motivating the need for fast strategies that
generate embeddings from scratch. It is to be noted that throughout the tables provided, we used
“SAGE” to represent GraphSAGE primarily due to space constraints.

Connections of proposed objective to prior works. Our proposed objective unifies three comple-
mentary components, each drawing inspiration from existing lines of research:

1. Unsupervised structural component. Modularity (Newman, 2006) and its scalable vari-
ants (Yazdanparast et al., 2021; Lu et al., 2018) have long been used for identifying com-
munities in graphs. Neural formulations such as DGCLUSTER (Bhowmick et al., 2023)
further relaxed modularity maximization into differentiable objectives. Inspired by this line
of work, we design an unsupervised objective that preserves structural regularities while
avoiding the computational overhead of spectral methods.

2. Supervised label-aware component. Semi-supervised GNNs such as GCN, GAT, and
GraphSAGE (Kipf and Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017) in-
corporate label signals during message passing to improve classification performance. We
adapt this idea directly at the embedding generation stage, encouraging nodes with the same
label to have structurally similar embeddings. This distinguishes our approach from prior
GNN methods, which rely on node features.

3. Semi-supervised propagation component. Label propagation (Raghavan et al., 2007)
and attention-based refinements such as SL-GAT (Wang et al., 2020) have demonstrated
the ability to diffuse label information across the graph in a scalable way. We build on
these insights by incorporating a random-walk-based propagation mechanism that guides
the embeddings of unlabeled nodes toward those of reachable labeled nodes.

This work bridges these strands by proposing a fast semi-supervised algorithm that avoids depen-
dence on node features while combining the strengths of unsupervised structural preservation, su-
pervised label regularization, and semi-supervised propagation.

3 THE FUSE ALGORITHM

Our approach, Fast Unified Semi-supervised Node Embedding Learning from Scratch (FUSE) com-
bines linearized modularity optimization with supervised regularization and semi-supervised label
propagation to generate embeddings that are both structurally coherent and class-discriminative. We
introduce a differentiable formulation of modularity that enables gradient-based optimization and
integrate random walk-based propagation with attention to refine unlabeled node embeddings.

3.1 PROBLEM SETTING

Let G be a simple, undirected graph with nodes V , edges E, and adjacency matrix A. Let the degree
of a node v ∈ V be dv , and let the vector of degrees be d. Also let m = |E| and n = |V |. Consider
the classification task, where each node v ∈ V is associated with a label yv ∈ C.

Let us choose an embedding dimensionality k ∈ N. Consider an arbitrary downstream classification
model f : Rk → C. Our objective is to learn an embedding map p : V → Rk such that the
performance of the downstream task f ◦p is maximized. We will learn p as a continuous embedding
matrix S ∈ Rn×k, where each row Si,: denotes the k ≪ n-dimensional embedding of node i, i.e.,
Si,: = p(i).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

3.2 LINEAR MODULARITY OPTIMIZATION

We want to model modularity-aware embedding generation for graphs with unknown features with
the matrix S. The modularity function can be equivalently written as

Q(S) =
1

2m

∑
i,j

(
Aij −

didj
2m

)
s⊺i sj , (1)

which, in matrix form, reduces to

Q(S) =
1

2m
Tr (S⊺BS) , (2)

where B = A− dd⊺

2m is the modularity matrix (Newman, 2006).

Gradient Approximation. Differentiating w.r.t. S yields

∇SQexact =
1

m

(
AS− 1

2m
d(d⊺S)

)
. (3)

However, for enhanced numerical stability and computational efficiency, we employ the following
gradient approximation:

∇SQprop =
1

2m

(
AS− 1

2m
d(1⊺S)

)
, (4)

where 1⊺S =
∑

i Si,: is the unweighted sum of all node embeddings. We show in Appendix B
that the proposed gradient updates are never too large (i.e., the proposed gradient function has no
singularities).

Interpretation. The proposed gradient has an intuitive interpretation:

• The term AS performs a local aggregation, where each node’s embedding is updated by
summing the embeddings of its neighbors. This pulls nodes towards the center of their
immediate community.

• The term 1
2md(1⊺S) acts as a global correction. It estimates the expected connection

strength under the configuration model but uses the unweighted global average embed-
ding 1

2m1⊺S instead of the degree-weighted average. This pushes nodes away from the
global center of the graph, enhancing the separation between communities.

• The factor 1
2m scales the entire expression to be comparable across graphs of different sizes.

This approximation replaces the degree-weighted mean d⊺S in the exact gradient with the un-
weighted mean 1⊺S. This simplifies the computation and often leads to more stable optimization, as
it reduces the influence of high-degree nodes (hubs) on the global correction term, preventing their
features from overly dominating the global statistics.

Computational Complexity. The main steps of sparse matrix multiplication AS and degree cor-
rections scale as O(|E|k + nk) (|E| being the number of edges), while supervised gradient updates
remain linear in the number of nodes. The additional semi-supervised components add costs of
O(wℓ) for w random walks each of length l, and O(ndmaxk) for attention updates, dmax being the
maximum possible degree of a node. Orthonormalizing the n × k embedding matrix per iteration
incurs a cost of nk2 which is dominated by the sparse matrix multiplication O(|E|k) for moderate
k. Thus, the overall complexity is O(|E|k + nk + ndmaxk + wℓ + nk2), which is more scalable
than spectral methods that require O(n3) for eigen-decomposition.

3.3 SUPERVISED AND SEMI-SUPERVISED COMPONENTS

While modularity optimization preserves structural properties, it does not enforce label consistency.
We therefore introduce supervised and semi-supervised components.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Supervised regularization. Given a set of ground-truth labels y ∈ Rn, we minimize intra-class
embedding variance by defining the loss

Qsup =
∑
c

∑
i∈Cc

∥Si,: − µc∥2, (5)

where µc =
1

|Cc|
∑

i∈Cc
Si,: is the class mean. The gradient is

∇Qsup = S− S̃, S̃i = µc for i ∈ Cc. (6)

This ensures embeddings of labeled nodes in the same class remain clustered.

Semi-supervised label propagation. For unlabeled nodes, we employ biased random walks
(Raghavan et al., 2007) that preferentially visit labeled nodes, allowing labels to diffuse across the
network. At each step, if labeled neighbors exist, they are selected with higher probability; other-
wise, the walk proceeds uniformly. Repeated walks per node accumulate labeled visits, defining a
propagation distribution. We will denote each labeled random walk byW .

To refine this signal, we adopt an attention mechanism (Veličković et al., 2018; Wang et al., 2020),
which weights the contribution of labeled nodes by similarity. For an unlabeled node i with embed-
ding Si,:, the attention weight for node j is

wij =
exp(S⊺

i,:Sj,:)∑
k∈ρ(i) exp(S

⊺
i,:Sk,:)

, (7)

where ρ(i) denotes the set of nodes visited in random walks from i. The corresponding semi-
supervised gradient is

∇SQsemi = Si,: −
∑
j

wijSj,:. (8)

This encourages unlabeled embeddings to shift toward weighted averages of similar labeled neigh-
bors.

3.4 OPTIMIZATION

We integrate modularity, supervised, and semi-supervised objectives into a unified gradient ascent
update:

∇SQtotal = ∇SQprop − λsup∇SQsup − λsemi∇SQsemi. (9)

Embeddings are updated as
S← S+ η∇SQtotal, (10)

where η is the learning rate. To ensure stability, S is orthonormalized after each iteration via QR
decomposition. The overall procedure is represented in Algorithm 1. Further implementation details
can be found in Appendices A and C.

4 EXPERIMENTS

4.1 DATASETS

The evaluation of the proposed semi-supervised modularity-based node embedding method is con-
ducted on six benchmark datasets: Cora (McCallum et al., 2000), CiteSeer (Giles et al., 1998),
WikiCS (Mernyei and Cangea, 2020), Amazon Photo or Photo (McAuley et al., 2015), PubMed
(Namata et al., 2012), and ArXiV (Hu et al., 2020). Each dataset consists of nodes representing en-
tities and edges signifying relationships (Table 4). For experiments, whenever necessary, we mask
labels of subsets of nodes (which are used for testing node classification). The experiments assume
that node features are unavailable, except for the case of a trivial baseline described in Section 4.2.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Algorithm 1 FUSE

Input: Graph G(V,E), Labels y, Label Mask M, Learning Rate η, Regularization λsup, λsemi, Iter-
ations T

Output: Optimized Embeddings S
1: Convert G to adjacency A, compute degrees d, total edges m
2: Initialize S randomly, orthonormalize using QR
3: W ← LABELEDRANDOMWALKS(G,M,y) ▷ From Algorithm ??
4: W← COMPUTEATTENTIONWEIGHTS(S,W) ▷ From Algorithm 3
5: for t = 1 to T do
6: ∇SQprop ← 1

2m

(
AS− 1

2md(1⊺S)
)

▷ Modularity gradient
7: ∇SQsup ← S− S̃ ▷ Supervised gradient
8: ∇SQsemi ← Si,: −

∑
j wijSj,: ▷ Semi-supervised gradient

9: S← S+ η
(
∇SQprop − λsup∇SQsup − λsemi∇SQsemi

)
10: Orthonormalize S using QR-decomposition
11: end for
12: return S

4.2 BASELINES

We evaluate our approach against a range of baselines spanning unsupervised, self-supervised, semi-
supervised and trivial embedding strategies:

• Unsupervised baselines. We use Node2Vec (Grover and Leskovec, 2016) and Deep-
Walk (Perozzi et al., 2014), both random-walk-based methods that employ the Skip-
Gram model for representation learning. In addition, we include Variational Graph Auto-
Encoders (VGAE) (Kipf and Welling, 2016) as a neural network based unsupervised em-
bedding method. For VGAE, we initialized the feature matrix as an identity matrix since
we assumed that features were unavailable, as recommended by Kipf and Welling (2016).
We also implemented M-NMF (Wang et al., 2017) for generating the k dimensional em-
beddings, observing the downstream classification results later.

• Self-supervised baseline. We employ Deep Graph Infomax (DGI) (Veličković et al.,
2019), which maximizes mutual information between node-level and graph-level repre-
sentations. Here we initialized the feature matrix as a random n × k matrix (n = number
of nodes and k = 150) to compare with FUSE, since we assume that features were unavail-
able.

• Semi-supervised baseline. We employ GraFN (Lee et al., 2022) and ReVAR (Yan et al.,
2023) under the non-availability of features setting, using random feature matrices. Both
frameworks combine a GNN encoder with a classifier via customized losses, making em-
bedding generation and classification degenerate or inseparable. Hence, we tested them
with different encoders (GCN, GAT, GraphSAGE). As ReVAR targets imbalanced node
classification, we adapted it to the non-imbalanced case to generate embeddings through
the encoders and evaluate classifier performance. Reported runtime is the sum of embed-
ding generation and classification, as both are degenerate.

• Trivial baselines. Random embeddings serve as a lower-bound baseline, while directly
using the available node features act as an upper-bound benchmark.

Embeddings generated by each method are subsequently used as input to three GNN classifiers:
GCN (Kipf and Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al.,
2017). For all baselines, unless otherwise mentioned, we have assumed the default parameter values
for all experiments. To ensure comparability, we fix the embedding dimension to 150 and maintain
identical neural architectures across datasets: a two-layer vanilla GNN or MLP with no additional
hyperparameter tuning. For our method, the initialization of the embedding matrix S is random,
and dataset-specific parameter values of FUSE are summarized in Table 3 in Appendix A. All ex-
periments, where runtime for embedding generation is reported, were conducted on a workstation
equipped with an 13th Gen Intel(R) Core(TM) i9-13900 CPU, 64 GB of RAM; no GPU acceleration
was used.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4.3 RESULTS

We now present the empirical evaluation of our proposed method across six benchmark datasets. Re-
sults are structured around five key aspects: (1) downstream classification performance and runtime
efficiency, (2) ablation studies analyzing the contributions of unsupervised, semi-supervised compo-
nents of the FUSE objective, (3) FUSE parameter sensitivity analysis, (4) scalability outcomes and
(5) missingness experiments across different masking mechanisms.

4.3.1 DOWNSTREAM CLASSIFICATION PERFORMANCE

Table 1 summarizes the classification accuracy and F1-scores obtained when embeddings from dif-
ferent methods are fed into GCN, GAT, and GraphSAGE under both 70-30 and 30-70 train-test
splits. Several consistent trends emerge:

• FUSE achieves competitive classification accuracy. On both splits, FUSE performs on
par with DeepWalk, Node2Vec and clearly outperforms self supervised algorithms like
DGI along with unsupervised M-NMF and semi-supervised GraFN and ReVAR in nearly
all cases. Similar to Node2Vec and DeepWalk it is robust across classifiers and also matches
or even surpasses the classification performance of the given embedding.

• FUSE facilitates superior learning for GCNs. FUSE-generated embeddings especially
enhance the learning capability of the GCN classifier. This is an important aspect in the
context of speed and scalability since GCN is significantly faster than GAT or GraphSAGE.

Overall, these results confirm that generating embeddings via FUSE leads to strong downstream
classification without requiring precomputed features.

4.3.2 DOWNSTREAM NODE CLUSTERING PERFORMANCE

We conducted node clustering experiments to evaluate the performance of FUSE compared to ex-
isting baselines. We measured one intrinsic metric, the DB Index, as well as two extrinsic metrics,
ARI and the V-Measure score. Dataset-wise results are presented in Tables 26- 37. We plotted these
results for the embeddings learned through GAT using FUSE initialization in Figures 5 and 6. We
observed that FUSE achieves the minimum DB index in most of the cases, indicating superior cluster
separation in the learned embeddings for most datasets. We also observed that the embeddings for
FUSE have the highest V-Measure score for all the datasets, which indicates that FUSE-initialized
classifiers can learn embeddings where the clusters are consistent with class labels.isting baselines.
We measured one intrinsic metric, the DB Index, as well as two extrinsic metrics,

4.3.3 RUNTIME EFFICIENCY

Tables 2 and 5 report embedding generation times across datasets. Although DeepWalk and
Node2Vec achieve downstream classification performance at par with FUSE, our algorithm exhibits
a significant computational advantage, being approximately 5 times faster on average. This advan-
tage is further supported by scalability studies on the ArXiV dataset (Appendix C.4, Tables 19 and
20), where FUSE is more than 7 times faster.

To address the potential concern that the default walk length of 80 for Node2Vec and DeepWalk
might inflate their runtimes, we conducted an additional experiment with a reduced walk length
of 5 for a single seed for these two algorithms only. Interestingly, across datasets, we observed
that, performance remained comparable to that with the longer walk, and runtimes did improve
significantly. Nonetheless, for larger datasets, especially with more edges, like Photos, WikiCS, and
ArXiV (see Appendix C.4, Tables 16, 17 and 18), FUSE maintains its advantage, delivering superior
classification performance while remaining around 3 times faster.

In fact, FUSE is faster than all compared unsupervised and self-supervised embedding algorithms
except DGI, which performs poorly in downstream classification and node clustering under the
assumption of feature unavailability. Semi-supervised algorithms like GraFN and ReVAR, while
computationally feasible, display significantly lower performance than Node2Vec, DeepWalk, and
FUSE (Table 1).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Execution times for our ablation variants are compared in Table 7. The semi-supervised modularity-
based embeddings are only marginally slower than the purely unsupervised versions but are signif-
icantly more effective (see Table 6), confirming that label propagation is an efficient and beneficial
addition.

Classifier Embedding 70-30 Split 30-70 Split
Accuracy F1 Accuracy F1

GAT

Random 0.71± 0.014 0.68± 0.016 0.48± 0.028 0.40± 0.033
DeepWalk 0.82± 0.008 0.80± 0.009 0.79± 0.007 0.77± 0.009
Node2Vec 0.82± 0.007 0.80± 0.007 0.79± 0.007 0.77± 0.008
MNMF 0.55± 0.024 0.52± 0.026 0.34± 0.024 0.29± 0.022
VGAE 0.81± 0.009 0.79± 0.010 0.78± 0.005 0.76± 0.005
DGI 0.59± 0.073 0.51± 0.098 0.54± 0.070 0.45± 0.100
GraFN 0.76± 0.012 0.71± 0.052 0.70± 0.011 0.60± 0.075
ReVAR 0.43± 0.023 0.29± 0.029 0.42± 0.017 0.29± 0.029
FUSE 0.82± 0.009 0.80± 0.009 0.78± 0.006 0.76± 0.008
Given Emb. 0.86± 0.005 0.84± 0.006 0.84± 0.004 0.82± 0.006

GCN

Random 0.49± 0.031 0.45± 0.030 0.37± 0.032 0.33± 0.028
DeepWalk 0.64± 0.039 0.58± 0.050 0.67± 0.027 0.61± 0.039
Node2Vec 0.64± 0.042 0.57± 0.058 0.66± 0.026 0.61± 0.036
MNMF 0.46± 0.044 0.37± 0.051 0.36± 0.032 0.29± 0.026
VGAE 0.71± 0.017 0.68± 0.022 0.69± 0.017 0.66± 0.017
DGI 0.30± 0.026 0.12± 0.049 0.32± 0.048 0.15± 0.081
GraFN 0.74± 0.010 0.72± 0.009 0.66± 0.006 0.64± 0.007
ReVAR 0.35± 0.019 0.18± 0.028 0.35± 0.017 0.18± 0.028
FUSE 0.78± 0.014 0.76± 0.013 0.73± 0.020 0.71± 0.017
Given Emb. 0.58± 0.022 0.49± 0.018 0.56± 0.023 0.47± 0.018

SAGE

Random 0.56± 0.018 0.51± 0.015 0.35± 0.018 0.26± 0.014
DeepWalk 0.81± 0.011 0.79± 0.012 0.78± 0.008 0.76± 0.009
Node2Vec 0.81± 0.010 0.79± 0.009 0.77± 0.007 0.75± 0.008
MNMF 0.52± 0.016 0.47± 0.021 0.33± 0.019 0.27± 0.022
VGAE 0.80± 0.009 0.78± 0.011 0.76± 0.010 0.74± 0.011
DGI 0.57± 0.054 0.48± 0.088 0.54± 0.047 0.46± 0.070
GraFN 0.67± 0.010 0.63± 0.010 0.55± 0.008 0.51± 0.010
ReVAR 0.25± 0.009 0.15± 0.006 0.24± 0.005 0.16± 0.006
FUSE 0.80± 0.012 0.77± 0.013 0.75± 0.008 0.73± 0.010
Given Emb. 0.85± 0.008 0.83± 0.012 0.83± 0.006 0.80± 0.008

Table 1: Classification accuracy and F1-score (mean ± standard deviation) across embedding meth-
ods and three classifiers for all the datasets (except ArXiV). Results are reported for both 70-30 and
30-70 train-test splits. Best and second-best (excluding given embeddings) are highlighted in bold
and underlined, respectively.

4.3.4 ADDITIONAL ANALYSES

To substantiate the effectiveness and robustness of FUSE, we conducted ablation, sensitivity, scala-
bility, and masking studies (details in Appendix C).

Ablation Study. We evaluated the individual contributions of the semi-supervised and unsuper-
vised objectives (Appendix C.2), as well as their combination, under both the 30-70 and 70-30
train-test splits (assumed learning rate 0.05). The unsupervised component of the FUSE objective
alone performs significantly well compared to the only semi-supervised counterpart, especially for
the GraphSAGE classifier (Tables 6 and 8). This indicates that FUSE can also adapt well to sce-
narios where labels are completely unavailable, relying solely on the modularity-driven objective.
The semi-supervised component alone is also at par with the unsupervised component in terms of
classification performance. However, the unsupervised objective alone proves to be faster (Tables 7

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Embedding Cora CiteSeer Amazon Photo WikiCS PubMed Average
70-30 Split

Random 0.01 0.01 0.01 0.03 0.04 0.02
DeepWalk 50.48 51.41 292.30 747.20 490.72 326.422
Node2Vec 47.26 50.32 288.33 745.33 453.74 316.996
MNMF 41.75 56.34 323.31 672.46 1742.94 567.36
VGAE 12.95 14.32 137.28 329.46 235.24 145.850
DGI 6.78 7.96 53.42 134.58 39.43 48.434
FUSE 12.52 13.36 49.47 86.45 95.79 51.518

30-70 Split
Random 0.01 0.01 0.01 0.03 0.04 0.02
DeepWalk 50.99 51.84 292.98 792.11 477.77 333.138
Node2Vec 47.49 50.65 290.95 785.70 448.58 324.674
MNMF 41.75 56.34 323.31 672.46 1742.94 567.36
VGAE 12.97 14.48 136.07 338.10 226.29 145.582
DGI 6.83 7.33 53.37 126.80 36.05 46.076
FUSE 14.42 14.31 64.55 128.92 109.15 66.27

Table 2: Runtime comparison (in seconds) of different embedding methods across datasets (except
ArXiV) under 70-30 and 30-70 train-test splits. Reported values are averages over 5 runs. Best and
second-best (excluding random embeddings) are highlighted in bold and underlined, respectively.

and 9). It is clear from the overall results, however, that incorporating all three components of the
objective is indeed advantageous, especially for large-scale datasets.

Sensitivity Analysis. We analyzed robustness to hyperparameters (Tables 13 (a, b, c)). Learning
rate η and loss weights λsup, λsemi were most sensitive, while structural parameters (r, L,L′) tolerated
wider ranges. Deeper settings sometimes improved accuracy but increased runtime disproportion-
ately, suggesting moderate configurations as optimal (Appendix C.3).

Scalability Experiments. We additionally evaluated FUSE on a large-scale graph ArXiV to assess
its applicability to real-world settings. The results and execution times are reported in Tables 19 and
20 (Appendix C.4). To further examine scalability under more challenging conditions, we conducted
extended experiments on two substantially larger datasets: MAG (∼736K nodes, ∼8M edges) and
ogbn products (∼2.45M nodes, ∼61.9M edges) using a 30-70 split. As detailed in Appendix C.4
(Tables 14 and 15), the unsupervised variant of FUSE remained highly efficient, completing in
25 minutes on MAG and approximately 2.5 hours on the ogbn products graph, while producing
a substantially better F1-Score on ogbn-products, compared to the given embedding baseline. In
contrast, DeepWalk, which is among one of the best performing benchmarks in terms of Accuracy
and F1-Score, even with reduced walk parameters (walk length 5, 10 walks), failed to complete
within 24 hours on ogbn products using a single CPU worker. While FUSE trades off accuracy and
F1-score on these very large graphs, its substantial speed advantage and its compatibility with the
faster GCN classifier, highlights its suitability for feature-agnostic settings where fast embedding
generation is critical.

Label masking Experiments. In real-world datasets, class distributions among unlabeled nodes are
often highly imbalanced. To assess the robustness of FUSE under such imbalance, we evaluated its
performance under three label-masking strategies at 20%, 50%, and 80% missingness on the Cora
and CiteSeer datasets (details in Appendix C.5). FUSE remained consistently competitive across all
settings, showing a particular advantage with the GCN and GAT classifiers under high missingness
rates (80%) and more challenging masking schemes (MAR, MNAR).

9

https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

5 DISCUSSION AND CONCLUSION

In this paper, we introduce FUSE, a fast, scalable and high-performance node embedding generation
algorithm that does not require predefined features. The objective function of FUSE integrates an
unsupervised, a semi-supervised and a supervised component.

The unsupervised component of the FUSE objective is based on a novel linear-time maximization
of graph modularity, which enables runtime and performance-efficient embedding generation even
in the absence of labels. Modularity, being a global graph property, can be interpreted as learning
global structural features. The semi-supervised component, on the other hand, leverages label-biased
random walks and inter-node attention between labeled and unlabeled nodes. This component al-
lows the model to capture local structures at the node or neighborhood level during feature learning.
Supported by the global structure learning of the unsupervised module, we observe that FUSE can
extract meaningful local features using short random walks of length as little as five. Jointly op-
timizing these two objectives also contributes to the overall runtime efficiency of FUSE. Finally,
the supervised component reduces intra-class embedding variance, ensuring that nodes belonging
to the same class are closely aligned in the embedding space. By combining these elements, FUSE
achieves accuracy comparable to or better than established baselines, while being five to seven times
faster, particularly on large-scale datasets such as ArXiv.

Nevertheless, FUSE has some limitations that we would like to highlight. FUSE is designed to op-
erate in settings where node features are assumed to be unavailable. It is thus unable to incorporate
information extraneous to the graph structure. A simple extension of the algorithm to incorporate
node features would be to concatenate these features onto the embedding matrix S. Another direc-
tion for future work is to investigate how this framework can be adapted to dynamically evolving
graphs while maintaining its scalability benefits.

FUSE is designed for settings where node features are assumed to be unavailable, and therefore it
cannot leverage information external to the graph structure. This places FUSE in a specific niche:
feature-agnostic scenarios where fast, structure-driven embedding generation is required and mod-
erate reductions in accuracy is acceptable. Our large-scale scalability experiments support this char-
acterization. FUSE offers substantial computational advantages on large graphs such as MAG and
ogbn products. Notably, the unsupervised variant completes in minutes to a few hours while relying
solely on conventional CPU execution, with no GPU acceleration, multicore parallel processing, or
specialized high-performance libraries. FUSE is most suitable for applications in which labels are
available but features are absent or unreliable, and where scalability requirements outweigh the need
for the highest predictive performance.

REPRODUCIBILITY STATEMENT

All code used to perform the experiments and generate the results presented in this work is
included in the supplementary material as a zip archive. The benchmarking experimental re-
sults presented in Section 4.3 can be obtained from the files benchmarking utils.py,
benchmarking runner.ipynb and aggregation.ipynb files from the folder titled
‘FUSE Unsupervised Self-supervised Benchmarks’. MNMF results can be obtained across the
datasets from MNMF.ipynb inside the ‘MNMF Benchmark’ folder. For the other two semi-
supervised benchmarks, namely GraFN and ReVAR, the results can be obtained from the
files GraFN.ipynb, load datasets revar.ipynb and ReVar.ipynb inside the folders
‘GraFN Benchmark’ and ‘ReVAR Benchmark’ respectively. Ablation results in Appendix C.2 can
be found from the notebooks inside the folder ‘Ablation study’. The sensitivity analysis in Ap-
pendix C.3 (for each of the five datasets except ArXiV) and scalability results in Appendix C.4
are verifiable from the codes inside ‘Sensitivity Analysis’ and ‘Scalability Experiments’. The
experiments in Appendix C.5 can be run with the file benchmark.py in the folder ‘Experi-
ments with masking’.

REFERENCES

Vineeta Anand and Ashish Kumar Maurya. A survey on recommender systems using graph neural
network. ACM Trans. Inf. Syst., 43(1), November 2024. ISSN 1046-8188. doi: 10.1145/3694784.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aritra Bhowmick, Mert Kosan, Zexi Huang, Ambuj Singh, and Sourav Medya. Dgcluster: A
neural framework for attributed graph clustering via modularity maximization. arXiv preprint
arXiv:2312.12697, 2023. doi: 10.48550/arXiv.2312.12697.

Andries E Brouwer and Willem H Haemers. Spectra of graphs. Universitext. Springer, New York,
NY, 2012 edition, December 2011.

Hilmi Aziz Bukhori and Rinaldi Munir. Inductive link prediction banking fraud detection system
using homogeneous graph-based machine learning model. In 2023 IEEE 13th Annual Computing
and Communication Workshop and Conference (CCWC), page 10099180, 2023. doi: 10.1109/
CCWC57344.2023.10099180.

Chi Thang Duong, Thanh Tam Nguyen, Trung-Dung Hoang, Hongzhi Yin, Matthias Weidlich, and
Quoc Viet Hung Nguyen. Deep mincut: Learning node embeddings by detecting communities.
Pattern Recognition, 134:109126, 2023. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.
2022.109126.

Yong Fang, Congshuang Wang, Zhiyang Fang, and Cheng Huang. Lmtracker: Lateral movement
path detection based on heterogeneous graph embedding. Neurocomputing, 482:266–277, 2022.
doi: 10.1016/j.neucom.2021.12.026.

C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence. Citeseer: An automatic citation indexing
system. In Proceedings of the Third ACM Conference on Digital Libraries (DL’98), pages 89–98.
ACM, 1998. doi: 10.1145/276675.276685.

Gene H. Golub and Charles F. Van Loan. Matrix computations (3rd ed.). Johns Hopkins University
Press, USA, 1996. ISBN 0801854148.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
page 855–864, San Francisco California USA, August 2016. ACM. ISBN 9781450342322. doi:
10.1145/2939672.2939754.

Will Hamilton, Zhitao Ying, and Jure Leskovec. Inductive representation learning on large graphs.
In Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open graph benchmark: Datasets for machine learning on graphs. In Proceed-
ings of the 34th International Conference on Neural Information Processing Systems (NeurIPS),
2020.

Daniel Jarrett, Bogdan Cebere, Tennison Liu, Alicia Curth, and Mihaela van der Schaar. Hy-
perimpute: Generalized iterative imputation with automatic model selection. 2022. doi:
10.48550/ARXIV.2206.07769. URL https://arxiv.org/abs/2206.07769.

Thomas N. Kipf and Max Welling. Variational graph auto-encoders. arXiv preprint
arXiv:1611.07308, 2016. URL https://arxiv.org/abs/1611.07308.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In 5th International Conference on Learning Representations, ICLR 2017, Toulon,
France, April 24-26, 2017, Conference Track Proceedings. OpenReview.net, 2017. URL https:
//openreview.net/forum?id=SJU4ayYgl.

Junseok Lee, Yunhak Oh, Yeonjun In, Namkyeong Lee, Dongmin Hyun, and Chanyoung Park.
Grafn: Semi-supervised node classification on graph with few labels via non-parametric distribu-
tion assignment. arXiv preprint arXiv:2204.01303, 2022.

Xiao Li, Li Sun, Mengjie Ling, and Yan Peng. A survey of graph neural network based recom-
mendation in social networks. Neurocomputing, 549:126441, 2023. ISSN 0925-2312. doi:
https://doi.org/10.1016/j.neucom.2023.126441.

Haoran Lu, Lei Wang, Xiaoliang Ma, Jun Cheng, and Mengchu Zhou. A survey of graph neural
networks and their industrial applications. Neurocomputing, 614:128761, 2025. ISSN 0925-2312.
doi: https://doi.org/10.1016/j.neucom.2024.128761.

11

https://arxiv.org/abs/2206.07769
https://arxiv.org/abs/1611.07308
https://openreview.net/forum?id=SJU4ayYgl
https://openreview.net/forum?id=SJU4ayYgl

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Xiaoyan Lu, Konstantin Kuzmin, Mingming Chen, and Boleslaw K. Szymanski. Adaptive modu-
larity maximization via edge weighting scheme. Information Sciences, 424:55–68, 2018. doi:
10.1016/j.ins.2017.09.063.

Xiao Luo, Wei Ju, Yiyang Gu, Yifang Qin, Siyu Yi, Daqing Wu, Luchen Liu, and Ming Zhang. To-
ward effective semi-supervised node classification with hybrid curriculum pseudo-labeling. ACM
Transactions on Multimedia Computing, Communications and Applications, 20(3):Article 82, 1–
19, 2024. doi: 10.1145/3626528. URL https://doi.org/10.1145/3626528.

Zheheng Luo, Qianqian Xie, and Sophia Ananiadou. Citationsum: Citation-aware graph contrastive
learning for scientific paper summarization. In Proceedings of the ACM Web Conference 2023
(WWW ’23). ACM, 2023. doi: 10.48550/arXiv.2301.11223. URL https://doi.org/10.
48550/arXiv.2301.11223.

Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton Van Den Hengel. Image-based rec-
ommendations on styles and substitutes. In Proceedings of the 38th International ACM SIGIR
Conference on Research and Development in Information Retrieval (SIGIR’15), pages 43–52.
ACM, 2015. doi: 10.1145/2766462.2767755.

Andrew McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore. Automating the construction
of internet portals with machine learning. Information Retrieval, 3(2):127–163, 2000. doi: 10.
1023/A:1009953814988.

Péter Mernyei and Cătălina Cangea. Wiki-cs: A wikipedia-based benchmark for graph neural net-
works. arXiv preprint arXiv:2007.02901, 2020.

Galileo Mark Namata, Ben London, Lise Getoor, Bert Huang, and U Edu. Query-driven active
surveying for collective classification. In 10th international workshop on mining and learning
with graphs, volume 8, page 1, 2012.

M. E. J. Newman. Modularity and community structure in networks. Proceedings of the National
Academy of Sciences, 103(23):8577–8582, June 2006. doi: 10.1073/pnas.0601602103.

Hongwei Pei, Bingzhe Wei, Kevin Chang, Yizhou Lei, and Bo Yang. Geom-gcn: Geometric graph
convolutional networks. In International Conference on Learning Representations (ICLR), 2020.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: online learning of social represen-
tations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge dis-
covery and data mining, page 701–710, New York New York USA, August 2014. ACM. ISBN
9781450329569. doi: 10.1145/2623330.2623732.

Usha Nandini Raghavan, Réka Albert, and Soundar Kumara. Near linear time algorithm to de-
tect community structures in large-scale networks. arXiv preprint arXiv:0709.2938, 2007. URL
https://arxiv.org/abs/0709.2938.

Donald B. Rubin. Inference and missing data. Biometrika, 63(3):581–592, 1976. ISSN 00063444,
14643510. URL http://www.jstor.org/stable/2335739.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. In International Conference on Learning Representations,
2018. URL https://openreview.net/forum?id=rJXMpikCZ.

Petar Veličković, William Fedus, William L. Hamilton, Pietro Liò, Yoshua Bengio, and R Devon
Hjelm. Deep graph infomax. In International Conference on Learning Representations, 2019.
URL https://openreview.net/forum?id=rklz9iAcKQ.

Siheng Wang, Guitao Cao, Wenming Cao, and Yan Li. Nla-gnn: Non-local information aggregated
graph neural network for heterogeneous graph embedding. Pattern Recognition, 158:110940,
2025. ISSN 0031-3203. doi: https://doi.org/10.1016/j.patcog.2024.110940.

Xiao Wang, Peng Cui, Jing Wang, Jian Pei, Wenwu Zhu, and Shiqiang Yang. Community preserving
network embedding. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 31,
2017. doi: 10.1609/aaai.v31i1.10488.

12

https://doi.org/10.1145/3626528
https://doi.org/10.48550/arXiv.2301.11223
https://doi.org/10.48550/arXiv.2301.11223
https://arxiv.org/abs/0709.2938
http://www.jstor.org/stable/2335739
https://openreview.net/forum?id=rJXMpikCZ
https://openreview.net/forum?id=rklz9iAcKQ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Yubin Wang, Zhenyu Zhang, Tingwen Liu, and Li Guo. SLGAT: Soft Labels Guided Graph Attention
Networks, volume 12084, page 512–523. Springer International Publishing, Cham, 2020. ISBN
9783030474256 9783030474263. doi: 10.1007/978-3-030-47426-3 40.

Bowen Liu Weihua Hu, Joseph Gomes, Marinka Zitnik, Percy Liang, Vijay Pande, and Jure
Leskovec. Strategies for pre-training graph neural networks. In International Conference on
Learning Representations, 2020.

Shunxin Xiao, Shiping Wang, Yuanfei Dai, and Wenzhong Guo. Graph neural networks in node
classification: survey and evaluation. Machine Vision and Applications, 33(1):4, November 2021.
doi: 10.1007/s00138-021-01251-0.

Liang Yan, Gengchen Wei, Chen Yang, Shengzhong Zhang, and Zengfeng Huang. Revar: Rethink-
ing semi-supervised imbalanced node classification from bias-variance decomposition. arXiv
preprint arXiv:2310.18765, 2023.

Sakineh Yazdanparast, Mohsen Jamalabdollahi, and Timothy C. Havens. Linear time community
detection by a novel modularity gain acceleration in label propagation. IEEE Transactions on Big
Data, 7(6):961–966, December 2021. doi: 10.1109/TBDATA.2020.2995621.

Zi Ye, Yogan Jaya Kumar, Goh Ong Sing, Fengyan Song, and Junsong Wang. A comprehensive
survey of graph neural networks for knowledge graphs. IEEE Access, 10:75729–75741, 2022.
doi: 10.1109/ACCESS.2022.3191784.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A DATASETS, ALGORITHM DETAILS AND VISUALIZATIONS

Input: Graph G = (V,E), labels
yL, dim k, params (η, λsup, λsemi, T)

Initialize S ∈ R|V |×k;
Orthonormalize (QR)

Label-aware random
walks / neighborhoods

Compute attention / weights

Loop:
t = 1, . . . , T

∇mod

(modularity)
∇sup

(supervised)
∇semi

(semi-supervised)

Update S: S ← S +
η(∇mod − λsup∇sup − λsemi∇semi)

Re-orthonormalize (QR)

Output: final embeddings S

(a)

Datasets
(Cora, Citeseer,

PubMed, WikiCS,
Amazon Photo, ArXiV)

Preprocess
(build adjacency A)

Create splits
(train / test)

Compute embeddings S
with embedding algorithms

Train on S
(GCN/GAT/SAGE)

Evaluate & analyze
Accuracy, F1,

runtime; ablation

Results & comparisons

(b)

Figure 1: Overview of the method and experiments. (a) Algorithm pipeline (FUSE) and (b) Experi-
mental workflow.

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Algorithm 2 Labeled Random Walks

Input: Graph G(V,E), Label Mask M, Labels y, Walks per node r, Walk length L, Max labeled
steps L′

Output: Set of labeled walksW
1: InitializeW ← ∅
2: for each node i ∈ V do
3: for w = 1 to r do
4: Initialize walk P ← [i], labeled count← 0
5: for t = 1 to L− 1 do
6: Let N (vt) be the neighbors of current node vt
7: if N (vt) is empty then
8: break
9: end if

10: NL(vt)← {u ∈ N (vt) |M[u] = 1}
11: if |NL(vt)| > 0 and labeled count < L′ then
12: Choose next node vt+1 uniformly from NL(vt) ▷ label-preferential step
13: labeled count← labeled count +1
14: else
15: Choose next node vt+1 uniformly from N (vt) ▷ unbiased step
16: end if
17: Append vt+1 to P
18: if M[vt+1] = 1 then
19: Add vt+1 toW[i]
20: end if
21: end for
22: end for
23: end for
24: returnW

Algorithm 3 Compute Attention Weights

Input: Embeddings S, Labeled WalksW
Output: Attention Weights W

1: for each unlabeled node i ∈ V do
2: for each labeled node j ∈ W[i] do
3: Compute similarity: sij = S⊺

i,:Sj,:

4: Compute attention: wij =
exp(sij)∑

k∈W[i] exp(sik)

5: end for
6: end for
7: return W

Parameter Value Description
k 150 Learnt node embedding dimension (in case node embeddings are not given)
η 0.05 Learning rate
λsupervised 1.0 Supervised loss weight
λsemi-supervised 2.0 Semi-supervised loss weight
T 200 Number of gradient ascent iterations
r 10 Number of random walks per node
L 5 Length of each random walk
L′ 3 Maximum labeled steps in a walk

Table 3: Hyperparameters used in semi-supervised modularity optimization for all datasets.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Dataset # Nodes # Edges # Classes Given Embedding Dim.
Cora 2,708 5,429 7 1,433
CiteSeer 3,327 9,104 6 3,703
PubMed 19,717 44,338 3 500
Amazon Photo 7,487 119,043 8 745
WikiCS 11,701 216,123 10 300
ArXiV 1,69,343 1,166,243 40 128

Table 4: Statistics of the benchmark datasets used in the experiments.

Figure 2: Runtimes averaged across seeds for several datasets. FUSE shows clear advantage in
compared to Node2Vec and DeepWalk with default parameters. Even though DGI and VGAE are
faster than FUSE for some datasets, FUSE outperforms them significantly in terms of Accuracy and
F1-Score ass seen in Tables 1, 19 and 20.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Figure 3: This Figure present accuracies and runtimes averaged across datasets for the three Ablation
cases of FUSE algorithm as presented in Section C.2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

Figure 4: In this Figure we show Accuracy vs label rates for SAGE across several datasets. We
do not observe significant changes in accuracy with change in label rate for any of the algorithms.
There is a slight downward trend in most cases, with reduced proportion of labeled nodes (training
data), as expected.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Figure 5: The Figure shows DB Index comparison for GAT-learnt embeddings across several ini-
tializations of the embedding generation benchmarks. We observe that the embeddings for FUSE
has the least DB index, indicating superior cluster separation in the learned embeddings for most
datasets

Figure 6: The Figure shows V-Measure comparison for GAT-learnt embeddings across several ini-
tializations of the embedding generation benchmarks. We observe that the embeddings for FUSE
have the highest V-Measure for all of the datasets. This indicates that FUSE-initialized classifiers
can learn embeddings where clusters are consistent with known class labels.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Figure 7: UMAP visualizations of Cora 70-30 embeddings

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Figure 8: UMAP visualizations of Cora 30-70 embeddings

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: UMAP visualizations of PubMed 70-30 embeddings

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Figure 10: UMAP visualizations of PubMed 30-70 embeddings

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B THEORETICAL RESULTS

We will show that the operator norm, and hence the Fröbenius norm of the surrogate gradient
∇SQprop in equation 4 is bounded above.

Proposition 1.

sup
||x||≤1

∣∣∣∣(A− 1
2md1⊺)Sx

∣∣∣∣
||x||

≤M (11)

for some M ∈ R+

Proof. Since S is orthonormal, without loss of generality we can replace Sx with x in the numera-
tor, since for all x ∈ Rk there exists x̃ ∈ Rk such that x = Sx̃ and ||x|| = ||x̃||. So it is enough to
show that

sup
||x||≤1

∣∣∣∣(A− 1
2md1⊺)x

∣∣∣∣2
||x||2

≤M

for some M ∈ R+. We have,∣∣∣∣∣∣∣∣(A− 1

2m
d1⊺)x

∣∣∣∣∣∣∣∣2 = x⊺(A− 1

2m
d1⊺)⊺(A− 1

2m
d1⊺)x

= x⊺(A⊺A+
1d⊺d1⊺

4m2
− 1d⊺A+A⊺d1⊺

2m
)x

= x⊺A⊺Ax+ x⊺

(
n∑

i=1

d2i
4m2

1n×n −
1d⊺A+A⊺d1⊺

2m

)
x

Let us denote the neighborhood of a node vi by N (vi). Then,

x⊺1d⊺Ax =

(
n∑

i=1

xi

) n∑
i=1

 ∑
j:vj∈N (vi)

dj

xi


=⇒ x⊺A⊺d1⊺x =

(
n∑

i=1

xi

) n∑
i=1

 ∑
j:vj∈N (vi)

dj

xi


Additionally, it is easy to show that

∑n
i=1 d

2
i =

∑n
i=1

(∑
j:vj∈N (vi)

dj

)
. Let us denote ri =∑

j:vj∈N (vi)
dj . Then we have

x⊺

(
n∑

i=1

d2i
4m2

1n×n −
1d⊺A+A⊺d1⊺

2m

)
x =

(
n∑

i=1

xi

2m

)2 n∑
i=1

ri −
n∑

i=1

(xi

m

)(n∑
i=1

rixi

)
By Cauchy-Schwarz inequality, we have,

−
n∑

i=1

rixi ≤

√√√√ n∑
i=1

r2i

√√√√ n∑
i=1

x2
i

(
n∑

i=1

xi

)
≤

√√√√n

n∑
i=1

x2
i

(
n∑

i=1

xi

)(
n∑

i=1

ri

)
≤ n

√√√√ n∑
i=1

r2i

√√√√ n∑
i=1

x2
i

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Hence,

x⊺

(
n∑

i=1

d2i
4m2

1n×n −
1d⊺A+A⊺d1⊺

2m

)
x ≤

n
3
2

√∑n
i=1 r

2
i

(∑n
i=1 x

2
i

)
4m2

(n+ 4m)

=
n

3
2 (n+ 4m)

4m2

√√√√ n∑
i=1

r2i ||x||
2

From Proposition 3.1.2 in Brouwer and Haemers (2011) we know that ||A||op ≤ dmax, the maximum

degree of the graph. So finally, we choose M = n
3
2 (n+4m)
4m2

√∑n
i=1 r

2
i +d2max, and we are done.

Since the Fröbenius norm of a matrix is upper bounded by the square root of the rank times the
operator norm (Equation (2.3.7) in Golub and Van Loan (1996)), we finally have ||∇SQprop||2F ≤
n

5
2 (n+4m)
4m2

√∑n
i=1 r

2
i + nd2max, or as a coarser upper bound, ||∇SQprop||F ≤ O(n1.75m−0.25 +

n1.25m0.75 + n0.5m). This indicates that the entries in the surrogate gradient matrix cannot be too
large, and the surrogate gradient function has no singularities.

C EXTENDED RESULTS

C.1 SEMI-SUPERVISED BASELINES

Model Encoder (Split) Accuracy F1 Time (s)

GraFN

GCN (70-30) 0.74± 0.010 0.72± 0.009 18.65
GCN (30-70) 0.66± 0.006 0.64± 0.007 18.64
GAT (70-30) 0.76± 0.012 0.71± 0.052 103.80
GAT (30-70) 0.70± 0.011 0.60± 0.075 103.83
SAGE (70-30) 0.67± 0.010 0.63± 0.010 10.89
SAGE (30-70) 0.55± 0.008 0.51± 0.010 10.89

ReVAR

GCN (70-30) 0.35± 0.019 0.18± 0.028 43.74
GCN (30-70) 0.35± 0.017 0.18± 0.028 43.53
GAT (70-30) 0.43± 0.023 0.29± 0.029 385.26
GAT (30-70) 0.42± 0.017 0.29± 0.029 378.15
SAGE (70-30) 0.25± 0.009 0.15± 0.006 27.04
SAGE (30-70) 0.24± 0.005 0.16± 0.006 28.67

Table 5: Performance metrics (Accuracy, F1-score, and Execution Time in seconds) of the semi su-
pervised baselines for all datasets (except ArXiV) across 70-30 and 30-70 splits. Values are averages
over five runs.

Table 5 represents the results along with the time required for each of ReVAR and GraFN. In these
models, the embedding generation and classification process is degenerate for which the times re-
ported are a combination of the two instead of just the embedders as reported in Table 2.

C.2 ABLATION STUDY

To complement the analysis in the main text, we provide a more detailed view of the ablation ex-
periments that disentangle the contributions of the semi-supervised and unsupervised components
within FUSE. The learning rate of the FUSE algorithm was adjusted to 103 for the Only Unsu-
pervised Component case. All other relevant parameter values remain the same. Tables 6 and 7
summarize performance and runtime, respectively, across different classifiers and datasets for the
30-70 split, while Tables 8 and 9 show the same for the 70-30 split.

We conducted an experiment where, instead of orthonormalizing the embedding matrix after every
iteration, we orthonormalized it at the very end. The runtimes have been reported in Table 10. The

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Classifier Loss Accuracy F1

GAT
Only Semi-supervised Component 0.690 0.657
Both components 0.697 0.666
Only Unsupervised Component 0.688 0.657

GCN
Only Semi-supervised Component 0.656 0.633
Both components 0.668 0.649
Only Unsupervised Component 0.660 0.637

SAGE
Only Semi-supervised Component 0.525 0.530
Both components 0.732 0.707
Only Unsupervised Component 0.716 0.696

Table 6: Classification accuracy and F1-score across different FUSE variants and classifiers on the
30-70 split averaged across datasets.

Embedding Dataset AverageCora CiteSeer Amazon Photo WikiCS PubMed
Only Semisupervised 8.18 8.04 50.18 79.60 103.62 49.124
Only Unsupervised 3.44 4.84 11.04 24.02 42.63 17.194
Both 8.99 8.63 46.86 77.39 126.36 53.246

Table 7: Execution times (in seconds) of different FUSE components across datasets for 30-70 split.

Classifier Loss Accuracy F1

GAT
Only Semi-supervised Component 0.75 0.72
Both components 0.74 0.72
Only Unsupervised Component 0.74 0.72

GCN
Only Semi-supervised Component 0.71 0.68
Both components 0.70 0.68
Only Unsupervised Component 0.71 0.68

SAGE
Only Semi-supervised Component 0.69 0.66
Both components 0.76 0.73
Only Unsupervised Component 0.75 0.73

Table 8: Classification accuracy and F1-score across different FUSE variants and classifiers on the
70-30 split averaged across datasets.

Embedding Dataset AverageCora CiteSeer Amazon Photo WikiCS PubMed
Only Semisupervised 6.74 7.79 31.04 53.81 69.69 33.814
Only Unsupervised 3.49 4.15 10.73 23.84 34.66 15.574
Both 8.08 7.29 33.76 58.75 70.07 35.59

Table 9: Execution times (in seconds) of different FUSE components across datasets for 70-30 split.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 10: Runtime (seconds) of FUSE across datasets for the 70–30 and 30–70 splits.

Split Cora CiteSeer Amazon Photo WikiCS PubMed ArXiV
70–30 10.51± 0.479 10.19± 0.139 56.22± 0.961 92.04± 1.549 104.62± 1.358 1221.85

30–70 13.18± 0.289 11.89± 0.211 83.51± 0.783 137.48± 0.820 136.89± 1.368 1705.38

Table 11: Accuracy and F1 (70–30 split) of FUSE across datasets using GAT, GCN and SAGE.

Dataset GAT GCN SAGE
Accuracy F1 Accuracy F1 Accuracy F1

CiteSeer 0.72± 0.016 0.68± 0.012 0.67± 0.008 0.64± 0.004 0.69± 0.014 0.67± 0.010
Cora 0.86± 0.009 0.85± 0.012 0.82± 0.013 0.80± 0.018 0.84± 0.007 0.83± 0.008
Amazon Photo 0.92± 0.004 0.91± 0.004 0.91± 0.006 0.90± 0.007 0.89± 0.007 0.88± 0.010
PubMed 0.79± 0.011 0.79± 0.011 0.80± 0.007 0.79± 0.008 0.77± 0.011 0.75± 0.013
WikiCS 0.81± 0.002 0.79± 0.008 0.76± 0.006 0.74± 0.009 0.73± 0.011 0.69± 0.017

Averaged 0.82± 0.008 0.80± 0.009 0.79± 0.008 0.77± 0.009 0.79± 0.010 0.76± 0.012

ArXiV1 0.40 0.09 0.53 0.25 0.47 0.11
ArXiV2 0.63 0.44 0.49 0.24 0.59 0.19
ArXiV3 0.68 0.46 0.50 0.24 0.62 0.24

dataset-wise (except ArXiV) and the averaged results are shown in Table 11 and Table 12. ArXiV1

denotes the results for the ArXiV dataset in which we orthonormalize the embedding matrix at the
very end instead of doing it every iteration.
Case-1 : We orthonormalized S at the very end instead of doing it every iteration. It took 367.31
seconds for the 70-30 split and 492.46 seconds for the 30-70 split.
Case-2 : We orthonormalized S in every iteration. It took 650.91 seconds for the 70-30 split and
782.43 seconds for the 30-70 split.
The results have been reported in Table 11 and Table 12 respectively as ArXiV2 (for Case-1) and
ArXiV3 (for Case-2). From the results, we observe that orthonormalizing at the very end instead of
every iteration indeed takes slightly less time (the margin is greater when performed on a stronger
CPU), but degrades performance in some cases, such as ArXiV. Hence, we recommend using or-
thonormalization per iteration, which incurs a cost of O(nk2). This is included in Section 3.2
(paragraph: Computational Complexity).

Performance Across Classifiers. As shown in Tables 6 and 8, the relative contribution of each com-
ponent is consistent across GAT, GCN, and GraphSAGE. Notably, embeddings trained with only the
unsupervised modularity term are better than those using only the semi-supervised term on an av-
erage. This confirms that community structure provides a strong inductive bias even when label
information is sparse. However, combining both objectives consistently yields the highest accu-
racy and F1-scores overall, demonstrating that structural and label-based signals are complementary
rather than interchangeable. Interestingly, the performance gap between “Both” and “Unsupervised
only” is smaller than that between “Both” and “Semi-supervised only”, especially for GraphSAGE,
suggesting that topology carries more transferable information than a small label set in these bench-
marks.

Runtime Considerations. Tables 7 and 9 highlight that the efficiency of FUSE is not compromised
by integrating multiple objectives. The combined loss incurs only a marginal overhead relative to
either component in isolation, while producing markedly better embeddings. This efficiency gain
stems from the linearized modularity update, which dominates the runtime irrespective of whether
label propagation is included. We also observe that datasets with a larger number of nodes and
denser connectivity like PubMed and WikiCS yield proportionally higher execution times, but the
scaling behavior remains consistent across variants.

These results provide additional evidence that FUSE’s strength lies not in any single component, but
in their unification. The unsupervised modularity term ensures that embeddings respect community
structure, while the semi-supervised propagation aligns them with available labels. Their joint opti-
mization balances exploration of global topology with exploitation of label information, leading to
robust performance without significant runtime penalties.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Table 12: Accuracy and F1 (30–70 split) of FUSE across datasets using GAT, GCN and SAGE.

Dataset GAT GCN SAGE
Accuracy F1 Accuracy F1 Accuracy F1

CiteSeer 0.63± 0.003 0.59± 0.003 0.61± 0.009 0.57± 0.009 0.62± 0.009 0.59± 0.008
Cora 0.81± 0.007 0.79± 0.008 0.78± 0.002 0.77± 0.004 0.79± 0.004 0.78± 0.003
Amazon Photo 0.92± 0.002 0.91± 0.003 0.90± 0.004 0.89± 0.004 0.89± 0.002 0.87± 0.003
PubMed 0.79± 0.003 0.79± 0.003 0.79± 0.002 0.78± 0.002 0.76± 0.003 0.74± 0.004
WikiCS 0.79± 0.002 0.77± 0.002 0.76± 0.006 0.73± 0.006 0.72± 0.007 0.68± 0.009

Averaged 0.79± 0.003 0.77± 0.004 0.77± 0.004 0.75± 0.005 0.76± 0.005 0.73± 0.005

ArXiV1 0.49 0.16 0.54 0.27 0.50 0.14
ArXiV2 0.64 0.47 0.41 0.10 0.59 0.26
ArXiV3 0.64 0.44 0.45 0.14 0.59 0.24

C.3 SENSITIVITY ANALYSIS

To further assess the robustness of FUSE, we carried out a sensitivity analysis of its main hyperpa-
rameters across datasets. Tables 13 (a, b, c) summarize the optimal settings discovered under two
search protocols. These results provide insights into which hyperparameters consistently influence
performance and which are less critical.

Influential hyperparameters. Among the parameters, the learning rate η and the loss weights
λsup and λsemi emerge as the most sensitive across datasets. Small variations in η often lead to
pronounced differences in both accuracy and convergence speed, indicating the need for dataset-
specific tuning. Similarly, the balance between the supervised and semi-supervised terms must be
carefully adjusted, as an overemphasis on one can suppress the benefits of the other. By contrast, the
neighborhood radius r and structural depths L,L′ showed more stable behavior, with broad ranges
yielding near-optimal accuracy.

Consistency Across Datasets. Interestingly, although the exact optimal values vary, the relative
importance of hyperparameters remains consistent. For example, on both Cora and PubMed, ad-
justing λsemi within [2, 2.5] was essential to achieve competitive performance, while on WikiCS and
CiteSeer, a more balanced weighting was required. The Amazon Photo dataset was less sensitive
overall, achieving high accuracy under multiple configurations, suggesting that denser graphs with
richer labels are inherently more robust to hyperparameter shifts.

Runtime Trade-offs. The sensitivity analysis also reveals a runtime–performance trade-off. While
larger values of T or deeper L,L′ occasionally yield marginal accuracy gains, they incur dispropor-
tionately higher costs in training time (e.g., PubMed in Table 13 (a and b). This indicates diminishing
returns from overparameterization, and reinforces the practical value of moderate configurations that
balance accuracy and efficiency.

C.4 SCALABILITY EXPERIMENTS

1. Purpose and Setup for ArXiV. In addition to the experiments above, we performed an-
other benchmarking experiment on dataset, namely ArXiV(∼ 169K nodes, ∼ 1.1M edges)
for investigating the scalability of FUSE. This dataset is highly imbalanced as well. Given
that the dataset is significantly larger than others for FUSE we have considered a learning
rate of 0.05 to ensure convergence within 200 iterations. For VGAE, we took the initial
matrix to be a n×k random matrix instead of the n×n identity matrix as assumed in other
experiments. This is to avoid scalability issues due to very large value of n for this dataset.
All other parameters remain the same.
Observations on ArXiV. The results across the two splits (30-70 and 70-30) for a fixed
seed is given in Tables 19 and 20. The results reveal that FUSE is not only scalable and ro-
bust to labels, but performs at par with unsupervised algorithms like Node2Vec and Deep-
Walk in terms of performance metrics. Furthermore, it offers a significant advantage in
terms of computational time. In addition, it outperforms the semi supervised algorithms
like GraFN and ReVAR; in terms of Accuracy, F1 Score by a large margin. Notably, the
MNMF algorithm was not scalable to this particular dataset.

28

https://ogb.stanford.edu/docs/nodeprop/#ogbn-arxiv

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

2. We performed additional scalability analyses on two yet larger datasets: MAG (∼736K
nodes, ∼8M citation edges) and ogbn products (∼2.45M nodes, ∼61.9M edges) using a
30-70 split (70% label masking). Since DeepWalk and Node2Vec consistently achieve the
strongest accuracy and F1 scores among the baseline embedding methods, and because
their performance remains stable even with shorter walk lengths (5) and fewer walks (10),
we report comparisons against DeepWalk using these reduced parameters. We also include
the given embedding as a high-end benchmark. These reductions substantially lower the
computational cost of the random-walk baselines while preserving their representative per-
formance, providing a meaningful reference point for FUSE in terms of scalability. We
exclude GAT from these comparisons due to its high computational overhead and instead
evaluate against GCN and GraphSAGE.
Our observations (Tables 14 and 15) are as follows:

(a) FUSE remains faster on MAG compared to DeepWalk, with the unsupervised variant
being at least three times faster. On the ogbn products dataset, the unsupervised ver-
sion of FUSE completes in approximately 2.5 hours. In contrast, DeepWalk could not
complete within 24 hours while the full version takes a little more than 10 hours using
the standard Python implementation with a single CPU worker and no GPU.

(b) While FUSE is fast, in a few cases it sacrifices Accuracy and F1-Score, and this perfor-
mance gap becomes more pronounced on larger datasets. Therefore, the applicability
of FUSE is most relevant in feature-agnostic settings where fast embedding generation
is the primary requirement.

(c) FUSE is compatible with GCN but performs less effectively with GraphSAGE.

isting baselines. We measured one intrinsic metric, the DB Index, as well as two extrinsic
metrics,

3. Analysis for Node2Vec and DeepWalk for a lower walk length. To address the poten-
tial concern that the default walk length of 80 for Node2Vec and DeepWalk might in-
flate their runtimes, we conducted an additional experiment with a reduced walk length
of 5 for a single seed for these two algorithms. Tables 16, 17, and 18 summarize the re-
sults of this experiment across all datasets, reporting classification accuracy, F1-score, and
runtime for both 70-30 and 30-70 train-test splits.
Performance Analysis: For most datasets, the classification performance of Node2Vec
and DeepWalk with the shorter walk length remained largely comparable to that obtained
with the default longer walk, suggesting that reducing the walk length does not severely
compromise the quality of learned embeddings.
Runtime Comparison: Reducing the walk length substantially improved the runtime
of both Node2Vec and DeepWalk across datasets. As reported in Table 18, runtime reduc-
tions of FUSE regarding these two algorithms are particularly significant for large datasets
like Photos, WikiCS, and ArXiV with more edges. For example, on ArXiV, DeepWalk and
Node2Vec required approximately 3,100–3,200 seconds for the 70-30 split, whereas FUSE
completed within 1,360 seconds, which is roughly a 3 times improvement in speed.
FUSE Advantage: Despite the reduction in random walk length for Node2Vec and Deep-
Walk, FUSE was consistently equally or more effective in both performance and runtime
metrics. FUSE embeddings yielded higher classification accuracy and F1-scores compared
to DeepWalk and Node2Vec especially for a larger dataset like ArXiV with a higher number
of edges, even when the latter used a very short walk length. This indicates that FUSE’s
embedding methodology is not only scalable but also robust to variations in graph size
and connectivity, offering a more efficient alternative for large-scale graph representation
learning (Tables 16, 17).

C.5 EXPERIMENTS ON DIFFERENT MASKING MECHANISMS

We also performed experiments on various masking rates and mechanisms to investigate the robust-
ness of our method. We analyzed our method on 3 types of simulated masking mechanisms, based
on the 3 types of missingness as described in Rubin (1976). The notations of MCAR, MAR and
MNAR have been redefined for our specific use case. We describe these mechanisms here:

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

Dataset k η λsup λsemi T r L L′ Accuracy (%) Time (s)
Cora 145 0.31 0.6 1.9 200 20 4 1 80.47 18.92
CiteSeer 135 0.51 0.8 1.5 450 13 5 3 63.32 25.56
PubMed 155 0.11 0.9 2.0 450 12 9 1 81.17 226.58
WikiCS 130 0.28 1.1 1.1 200 20 3 2 74.05 76.66
Amazon Photo 100 0.21 1.7 2.5 300 13 3 2 89.15 59.47

(a) Optimal hyperparameters in the 30-70 setup.

Dataset k η λsup λsemi T r L L′ Accuracy (%) Time (s)
Cora 170 0.35 0.5 2.5 250 20 3 2 85.59 21.14
CiteSeer 200 0.79 2.2 1.1 300 15 4 3 73.74 24.75
PubMed 180 0.59 2.2 1.2 350 18 3 3 84.09 303.46
WikiCS 140 0.37 1.8 2.3 250 20 3 1 76.75 78.22
Amazon Photo 120 0.79 2.1 1.1 100 12 4 3 90.71 34.42

(b) Optimal hyperparameters in the 70-30 setup.

Dataset η λsup λsemi r L L′ Accuracy (%) Time (s)
Cora 0.25 0.9 2.3 17 4 9 80.16 21.12
CiteSeer 0.35 1.3 1.7 15 7 2 63.27 35.57
PubMed 0.46 0.8 2.5 18 4 1 80.93 79.95
WikiCS 0.03 0.8 1.3 15 3 2 73.79 71.44
Amazon Photo 0.49 1.1 2.3 9 3 10 89.09 44.61

(c) Optimal hyperparameters under k=150, T=200 for the 30-70 setup.

Table 13: Optimal hyperparameters of FUSE.

Table 14: Results on the MAG dataset with mask fraction 0.7 (30-70 split).

Embedding Classifier Embed Time (s) Accuracy F1 Score
FUSE GCN 4075.66 0.241 0.094
FUSE SAGE 4075.66 0.154 0.009
FUSE (unsup) GCN 1520.15 0.13 0.018
FUSE (unsup) SAGE 1520.15 0.12 0.008
DeepWalk (walk length=5) GCN 5549.27 0.041 0.000
DeepWalk (walk length=5) SAGE 5549.27 0.223 0.203
Given GCN - 0.082 0.002
Given SAGE - 0.224 0.023

Table 15: Results on the obgn products dataset with mask fraction 0.3 (30-70 split).

Embedding Classifier Embed Time (s) Accuracy F1 Score
FUSE GCN 36571.08 0.801 0.443
FUSE SAGE 36571.08 0.273 0.009
FUSE (unsup) GCN 10334.95 0.706 0.326
FUSE (unsup) SAGE 10334.95 0.510 0.175
DeepWalk (walk length=5) GCN NA NA NA
DeepWalk (walk length=5) SAGE NA NA NA
Given GCN - 0.61 0.255
Given SAGE - 0.759 0.251

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

Classifier Embedding 70-30 Split 30-70 Split
Accuracy F1 Accuracy F1

GAT DeepWalk (walk length=5) 0.81 0.793 0.78 0.764
Node2Vec (walk length=5) 0.81 0.792 0.78 0.756
FUSE 0.82 0.795 0.78 0.751

GCN DeepWalk (walk length=5) 0.62 0.552 0.65 0.578
Node2Vec (walk length=5) 0.62 0.554 0.65 0.598
FUSE 0.77 0.753 0.73 0.699

SAGE DeepWalk (walk length=5) 0.81 0.786 0.78 0.754
Node2Vec (walk length=5) 0.81 0.781 0.77 0.751
FUSE 0.79 0.769 0.75 0.731

Table 16: Classification accuracy and F1-score (averaged) for DeepWalk (walk length=5),
Node2Vec (walk length=5) and FUSE across three classifiers for all the datasets (except ArXiV)
for a fixed seed. Results are reported for both 70-30 and 30-70 train-test splits.

Classifier Embedding 70-30 Split 30-70 Split
Accuracy F1 Accuracy F1

GAT DeepWalk (walk length=5) 0.66 0.42 0.65 0.40
Node2Vec (walk length=5) 0.64 0.39 0.64 0.38
FUSE 0.67 0.47 0.64 0.43

GCN DeepWalk (walk length=5) 0.47 0.18 0.48 0.21
Node2Vec (walk length=5) 0.46 0.15 0.49 0.22
FUSE 0.50 0.24 0.45 0.14

SAGE DeepWalk (walk length=5) 0.61 0.23 0.60 0.23
Node2Vec (walk length=5) 0.59 0.22 0.58 0.21
FUSE 0.62 0.23 0.60 0.25

Table 17: Classification accuracy and F1-score for DeepWalk (walk length=5), Node2Vec
(walk length=5) and FUSE across three classifiers for ArXiV for a fixed seed. Results are reported
for both 70-30 and 30-70 train-test splits. The best metric values across each classifier have been
highlighted in bold.

Embedding Cora CiteSeer Amazon Photo WikiCS PubMed ArXiV
70-30 Split

DeepWalk (walk length=5) 3.92 4.23 152.48 412.52 36.04 3290.21
Node2Vec (walk length=5) 3.64 3.84 154.83 417.46 35.44 3217.85
FUSE 12.67 13.30 49.15 84.88 96.76 1360.30

30-70 Split
DeepWalk (walk length=5) 3.72 3.81 155.53 421.54 36.01 3143.32
Node2Vec (walk length=5) 3.65 3.80 154.27 423.19 35.90 3141.81
FUSE 14.25 14.55 64.63 111.87 104.89 1698.52

Table 18: Runtime comparison (in seconds) of DeepWalk (walk length=5), Node2Vec
(walk length=5) and FUSE across datasets under 70-30 and 30-70 train-test splits for a fixed seed.
The least runtimes have been highlighted in bold.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• Masking-Completely-At-Random (MCAR): The probability of a node label being masked
is independent of the data.

• Masking-At-Random (MAR): The probability of a node label being masked is dependent
on the feature vector of the node.

• Masking-Not-At-Random (MNAR): The probability of a node label being masked depends
both on the feature vector of the node, and the label itself.

We simulated these masking scenarios using a procedure similar to Jarrett et al. (2022), where the
masks were generated using a logistic model with random coefficients. Further details can be found
in the attached code. For each masking scenario, we tested 3 masking rates: 0.2, 0.5 and 0.8,
and reported the mean and standard deviations of the classification accuracy and F1 score over 10
iterations with different random seeds. The Multi-Layer Perceptron (MLP) was chosen to have depth
and width equivalent to the graph neural network models, in this case 2 and 16 respectively. The
associated results are given in Tables 38– 43.

Classifier Embedding Accuracy (%) F1 Score Time (s)

GCN

Random 22.58 0.05 0.4303
DeepWalk 51.43 0.27 12996.76
Node2Vec 50.32 0.25 12038.33
VGAE 16.17 0.01 1098.25
DGI 16.16 0.01 758.04
FUSE 59.65 0.25 1698.52
GraFN 26.28 0.08 360.64
ReVAR 16.14 0.01 468.55
Given 41.22 0.10 0.0521

GAT

Random 19.08 0.02 0.4303
DeepWalk 67.65 0.44 12996.76
Node2Vec 66.86 0.44 12038.33
VGAE 16.16 0.01 1098.25
DGI 16.16 0.01 758.04
FUSE 63.83 0.43 1698.52
GraFN 57.04 0.39 13712.21
ReVAR 16.16 0.01 9265.35
Given 56.74 0.28 0.0521

SAGE

Random 15.13 0.02 0.4303
DeepWalk 61.95 0.23 12996.76
Node2Vec 61.75 0.24 12038.33
VGAE 16.16 0.01 1098.25
DGI 16.16 0.01 758.04
FUSE 59.65 0.25 1698.52
GraFN 36.49 0.13 199.11
ReVAR 15.81 0.01 285.55
Given 53.65 0.18 0.0521

Table 19: Performance of different embedding–classifier pairs (except GraFN and ReVAR as they
do have degenerate embedders and classifiers) on the ArXiv dataset (30–70 split) for a fixed seed.
Embedding generation times were added across each of the embeddings except GraFN and ReVAR
for which the time required by each encoder is given separately. The best and second-best in each
metric for each classifier are highlighted in bold and underlined, respectively.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

Classifier Embedding Accuracy F1 Score Time (s)

GCN

Random 33.19 0.4628
DeepWalk 50.04 0.2180 13029.78
Node2Vec 49.20 0.1992 12899.23
VGAE 13.12 0.0058 1072.42
DGI 16.37 0.0070 633.06
FUSE 49.97 0.2353 1360.30
GraFN 26.21 0.07 360.17
ReVAR 16.37 0.01 432.88
Given 38.19 0.0794 0.0473

GAT

Random 22.37 0.0300 0.4628
DeepWalk 68.58 0.4601 13029.78
Node2Vec 67.87 0.4506 12899.23
VGAE 13.44 0.0082 1072.42
DGI 13.13 0.0073 633.06
FUSE 67.45 0.4682 1360.30
GraFN 61.35 0.43 13564.56
ReVAR 16.37 0.01 9462.59
Given 58.74 0.3294 0.0473

SAGE

Random 16.15 0.0163 0.4628
DeepWalk 62.39 0.2421 13029.78
Node2Vec 62.03 0.2421 12899.73
VGAE 16.53 0.0092 1072.42
DGI 16.37 0.0070 633.06
FUSE 61.91 0.2344 1360.30
GraFN 44.73 0.17 248.13
ReVAR 16.13 0.01 321.53
Given 54.16 0.1792 0.0473

Table 20: Performance of different embedding–classifier pairs (except GraFN and ReVAR as they
have degenerate embedders and classifiers) on the ArXiv dataset (70–30 split) for a fixed seed.
Embedding generation times were added across each of the embeddings except GraFN and ReVAR
for which the time required by each encoder is given separately. The best and second-best in each
metric, for each classifier are highlighted in bold and underlined, respectively.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

Table 21: Cora – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT DeepWalk 0.85 ± 0.010 0.84 ± 0.012 0.80 ± 0.009 0.79 ± 0.010
DGI 0.62 ± 0.225 0.58 ± 0.262 0.56 ± 0.225 0.47 ± 0.339
FUSE 0.86 ± 0.009 0.85 ± 0.011 0.81 ± 0.007 0.80 ± 0.006
Given 0.87 ± 0.011 0.86 ± 0.015 0.83 ± 0.010 0.82 ± 0.010
Node2Vec 0.85 ± 0.014 0.84 ± 0.016 0.80 ± 0.005 0.78 ± 0.007
Random 0.84 ± 0.008 0.83 ± 0.012 0.74 ± 0.004 0.73 ± 0.005
VGAE 0.86 ± 0.007 0.86 ± 0.009 0.79 ± 0.010 0.78 ± 0.010

GCN DeepWalk 0.82 ± 0.012 0.80 ± 0.013 0.78 ± 0.016 0.76 ± 0.018
DGI 0.30 ± 0.101 0.10 ± 0.084 0.28 ± 0.123 0.08 ± 0.060
FUSE 0.82 ± 0.011 0.81 ± 0.012 0.79 ± 0.006 0.78 ± 0.004
Given 0.82 ± 0.007 0.81 ± 0.011 0.81 ± 0.011 0.79 ± 0.015
Node2Vec 0.81 ± 0.015 0.80 ± 0.017 0.78 ± 0.012 0.76 ± 0.013
Random 0.68 ± 0.019 0.67 ± 0.019 0.60 ± 0.011 0.58 ± 0.013
VGAE 0.82 ± 0.009 0.81 ± 0.009 0.78 ± 0.008 0.76 ± 0.010

SAGE DeepWalk 0.84 ± 0.021 0.83 ± 0.024 0.79 ± 0.009 0.78 ± 0.011
DGI 0.57 ± 0.168 0.51 ± 0.221 0.52 ± 0.143 0.45 ± 0.201
FUSE 0.84 ± 0.012 0.83 ± 0.012 0.79 ± 0.006 0.78 ± 0.006
Given 0.86 ± 0.012 0.85 ± 0.014 0.83 ± 0.012 0.81 ± 0.020
Node2Vec 0.84 ± 0.016 0.83 ± 0.016 0.78 ± 0.014 0.77 ± 0.017
Random 0.62 ± 0.038 0.59 ± 0.036 0.41 ± 0.031 0.34 ± 0.029
VGAE 0.84 ± 0.006 0.83 ± 0.012 0.78 ± 0.009 0.77 ± 0.008

Table 22: CiteSeer – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.70 ± 0.021 0.66 ± 0.019 0.61 ± 0.010 0.58 ± 0.009
DGI 0.31 ± 0.190 0.20 ± 0.234 0.31 ± 0.144 0.20 ± 0.179
FUSE 0.71 ± 0.014 0.68 ± 0.010 0.63 ± 0.008 0.59 ± 0.006
Given 0.74 ± 0.016 0.71 ± 0.013 0.69 ± 0.006 0.66 ± 0.006
Node2Vec 0.69 ± 0.019 0.65 ± 0.018 0.60 ± 0.004 0.57 ± 0.005
Random 0.70 ± 0.014 0.66 ± 0.011 0.58 ± 0.006 0.55 ± 0.007
VGAE 0.71 ± 0.012 0.67 ± 0.010 0.61 ± 0.005 0.58 ± 0.005

GCN

DeepWalk 0.60 ± 0.026 0.56 ± 0.027 0.57 ± 0.011 0.54 ± 0.013
DGI 0.20 ± 0.024 0.06 ± 0.003 0.22 ± 0.029 0.08 ± 0.046
FUSE 0.67 ± 0.012 0.64 ± 0.010 0.62 ± 0.004 0.58 ± 0.004
Given 0.69 ± 0.005 0.66 ± 0.007 0.68 ± 0.009 0.64 ± 0.010
Node2Vec 0.59 ± 0.020 0.55 ± 0.028 0.56 ± 0.013 0.53 ± 0.014
Random 0.50 ± 0.011 0.47 ± 0.011 0.42 ± 0.009 0.40 ± 0.009
VGAE 0.61 ± 0.012 0.58 ± 0.010 0.57 ± 0.011 0.54 ± 0.012

SAGE

DeepWalk 0.68 ± 0.011 0.64 ± 0.013 0.61 ± 0.005 0.57 ± 0.008
DGI 0.31 ± 0.102 0.24 ± 0.117 0.32 ± 0.085 0.26 ± 0.101
FUSE 0.70 ± 0.015 0.67 ± 0.011 0.62 ± 0.010 0.59 ± 0.009
Given 0.75 ± 0.016 0.72 ± 0.014 0.70 ± 0.008 0.66 ± 0.004
Node2Vec 0.67 ± 0.015 0.63 ± 0.013 0.59 ± 0.011 0.55 ± 0.007
Random 0.48 ± 0.021 0.43 ± 0.018 0.30 ± 0.019 0.25 ± 0.015
VGAE 0.68 ± 0.010 0.63 ± 0.006 0.58 ± 0.003 0.54 ± 0.007

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

Table 23: Amazon Photo – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.93 ± 0.005 0.93 ± 0.005 0.92 ± 0.003 0.92 ± 0.004
DGI 0.89 ± 0.011 0.87 ± 0.014 0.89 ± 0.010 0.88 ± 0.014
FUSE 0.92 ± 0.006 0.91 ± 0.008 0.92 ± 0.003 0.91 ± 0.003
Given 0.94 ± 0.002 0.93 ± 0.004 0.94 ± 0.003 0.93 ± 0.003
Node2Vec 0.93 ± 0.005 0.93 ± 0.007 0.92 ± 0.003 0.92 ± 0.003
Random 0.92 ± 0.007 0.91 ± 0.009 0.91 ± 0.004 0.90 ± 0.003
VGAE 0.92 ± 0.005 0.92 ± 0.008 0.92 ± 0.004 0.91 ± 0.003

GCN

DeepWalk 0.83 ± 0.043 0.72 ± 0.069 0.83 ± 0.042 0.74 ± 0.086
DGI 0.18 ± 0.073 0.05 ± 0.029 0.21 ± 0.051 0.05 ± 0.009
FUSE 0.91 ± 0.007 0.90 ± 0.009 0.90 ± 0.004 0.90 ± 0.005
Given 0.18 ± 0.116 0.06 ± 0.067 0.15 ± 0.082 0.04 ± 0.015
Node2Vec 0.79 ± 0.081 0.65 ± 0.124 0.78 ± 0.085 0.70 ± 0.139
Random 0.86 ± 0.013 0.79 ± 0.044 0.84 ± 0.013 0.77 ± 0.043
VGAE 0.86 ± 0.011 0.80 ± 0.036 0.86 ± 0.004 0.79 ± 0.025

SAGE

DeepWalk 0.92 ± 0.005 0.91 ± 0.005 0.91 ± 0.004 0.90 ± 0.006
DGI 0.87 ± 0.013 0.85 ± 0.016 0.87 ± 0.020 0.84 ± 0.040
FUSE 0.90 ± 0.003 0.89 ± 0.008 0.89 ± 0.005 0.87 ± 0.005
Given 0.95 ± 0.006 0.93 ± 0.011 0.94 ± 0.003 0.93 ± 0.005
Node2Vec 0.92 ± 0.005 0.91 ± 0.008 0.91 ± 0.005 0.90 ± 0.006
Random 0.89 ± 0.004 0.88 ± 0.008 0.83 ± 0.010 0.80 ± 0.011
VGAE 0.91 ± 0.007 0.90 ± 0.009 0.91 ± 0.006 0.90 ± 0.006

Table 24: PubMed – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.84 ± 0.003 0.82 ± 0.004 0.82 ± 0.004 0.81 ± 0.004
DGI 0.55 ± 0.092 0.46 ± 0.124 0.58 ± 0.087 0.52 ± 0.132
FUSE 0.81 ± 0.008 0.80 ± 0.008 0.80 ± 0.004 0.79 ± 0.004
Given 0.88 ± 0.003 0.87 ± 0.003 0.87 ± 0.002 0.86 ± 0.002
Node2Vec 0.83 ± 0.004 0.82 ± 0.004 0.82 ± 0.003 0.81 ± 0.004
random 0.81 ± 0.004 0.80 ± 0.005 0.78 ± 0.005 0.77 ± 0.005
VGAE 0.83 ± 0.005 0.82 ± 0.005 0.82 ± 0.002 0.80 ± 0.002

GCN

DeepWalk 0.80 ± 0.011 0.78 ± 0.012 0.79 ± 0.001 0.77 ± 0.002
DGI 0.44 ± 0.080 0.26 ± 0.119 0.46 ± 0.092 0.31 ± 0.146
FUSE 0.81 ± 0.006 0.80 ± 0.007 0.80 ± 0.002 0.79 ± 0.003
Given 0.84 ± 0.003 0.83 ± 0.003 0.83 ± 0.004 0.82 ± 0.004
Node2Vec 0.79 ± 0.007 0.78 ± 0.010 0.79 ± 0.005 0.78 ± 0.005
random 0.72 ± 0.003 0.70 ± 0.004 0.69 ± 0.003 0.67 ± 0.003
VGAE 0.80 ± 0.006 0.79 ± 0.007 0.79 ± 0.002 0.78 ± 0.002

SAGE

DeepWalk 0.83 ± 0.004 0.82 ± 0.004 0.81 ± 0.003 0.80 ± 0.004
DGI 0.54 ± 0.070 0.46 ± 0.110 0.53 ± 0.039 0.44 ± 0.077
FUSE 0.80 ± 0.005 0.79 ± 0.007 0.78 ± 0.004 0.76 ± 0.005
Given 0.88 ± 0.004 0.87 ± 0.004 0.86 ± 0.008 0.85 ± 0.008
Node2Vec 0.83 ± 0.004 0.81 ± 0.004 0.81 ± 0.005 0.80 ± 0.005
Random 0.65 ± 0.009 0.62 ± 0.007 0.55 ± 0.013 0.51 ± 0.015
VGAE 0.82 ± 0.006 0.81 ± 0.006 0.80 ± 0.004 0.78 ± 0.004

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

Table 25: WikiCS – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.82 ± 0.002 0.80 ± 0.004 0.81 ± 0.002 0.78 ± 0.003
DGI 0.76 ± 0.006 0.72 ± 0.005 0.75 ± 0.011 0.70 ± 0.016
FUSE 0.81 ± 0.003 0.79 ± 0.006 0.80 ± 0.002 0.76 ± 0.005
Given 0.84 ± 0.003 0.82 ± 0.002 0.83 ± 0.004 0.81 ± 0.005
Node2Vec 0.82 ± 0.002 0.80 ± 0.005 0.81 ± 0.002 0.78 ± 0.003
Random 0.80 ± 0.003 0.77 ± 0.003 0.78 ± 0.005 0.75 ± 0.007
VGAE 0.80 ± 0.005 0.77 ± 0.007 0.80 ± 0.001 0.77 ± 0.003

GCN

DeepWalk 0.67 ± 0.092 0.55 ± 0.123 0.66 ± 0.073 0.54 ± 0.089
DGI 0.19 ± 0.067 0.04 ± 0.009 0.18 ± 0.075 0.03 ± 0.012
FUSE 0.77 ± 0.007 0.74 ± 0.008 0.76 ± 0.004 0.73 ± 0.003
Given 0.44 ± 0.132 0.25 ± 0.141 0.39 ± 0.147 0.22 ± 0.150
Node2Vec 0.69 ± 0.058 0.60 ± 0.069 0.64 ± 0.069 0.50 ± 0.056
Random 0.74 ± 0.009 0.68 ± 0.031 0.72 ± 0.011 0.65 ± 0.037
VGAE 0.73 ± 0.039 0.69 ± 0.034 0.71 ± 0.014 0.62 ± 0.027

SAGE

DeepWalk 0.81 ± 0.005 0.78 ± 0.007 0.79 ± 0.006 0.75 ± 0.007
DGI 0.69 ± 0.020 0.56 ± 0.062 0.69 ± 0.021 0.58 ± 0.054
FUSE 0.78 ± 0.006 0.74 ± 0.010 0.74 ± 0.008 0.70 ± 0.010
Given 0.84 ± 0.005 0.82 ± 0.008 0.83 ± 0.003 0.80 ± 0.004
Node2Vec 0.81 ± 0.005 0.77 ± 0.007 0.79 ± 0.008 0.75 ± 0.010
Random 0.76 ± 0.005 0.73 ± 0.008 0.68 ± 0.009 0.63 ± 0.008
VGAE 0.80 ± 0.002 0.76 ± 0.002 0.79 ± 0.003 0.76 ± 0.004

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

Table 26: Clustering results for Cora (70–30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.814 ± 0.069 0.535 ± 0.035 0.587 ± 0.017
DGI 1.946 ± 0.585 0.075 ± 0.037 0.166 ± 0.055
FUSE 0.979 ± 0.140 0.810 ± 0.015 0.775 ± 0.019
Given 1.153 ± 0.037 0.781 ± 0.016 0.748 ± 0.013
Node2Vec 1.905 ± 0.083 0.565 ± 0.049 0.591 ± 0.021
Random 4.278 ± 0.405 0.175 ± 0.062 0.240 ± 0.061
VGAE 2.043 ± 0.134 0.377 ± 0.055 0.491 ± 0.037

GCN

DeepWalk 1.126 ± 0.124 0.062 ± 0.020 0.239 ± 0.011
DGI 0.819 ± 0.321 0.007 ± 0.009 0.036 ± 0.049
FUSE 1.266 ± 0.033 0.392 ± 0.044 0.476 ± 0.022
Given 1.142 ± 0.110 0.106 ± 0.025 0.254 ± 0.050
Node2Vec 1.193 ± 0.044 0.065 ± 0.019 0.224 ± 0.015
Random 2.114 ± 0.110 0.013 ± 0.007 0.043 ± 0.017
VGAE 1.257 ± 0.172 0.073 ± 0.020 0.214 ± 0.014

SAGE

DeepWalk 1.168 ± 0.149 0.412 ± 0.028 0.537 ± 0.027
DGI 1.514 ± 0.315 0.068 ± 0.036 0.126 ± 0.065
FUSE 0.540 ± 0.044 0.886 ± 0.007 0.854 ± 0.007
Given 0.860 ± 0.031 0.864 ± 0.008 0.823 ± 0.006
Node2Vec 1.275 ± 0.109 0.453 ± 0.054 0.560 ± 0.011
Random 1.980 ± 0.033 0.006 ± 0.007 0.026 ± 0.007
VGAE 1.269 ± 0.139 0.287 ± 0.045 0.471 ± 0.022

Raw

DeepWalk 3.035 ± 0.026 0.350 ± 0.005 0.440 ± 0.005
DGI 2.074 ± 1.133 -0.001 ± 0.002 0.013 ± 0.001
FUSE 5.068 ± 3.156 0.050 ± 0.080 0.082 ± 0.118
Given 6.380 ± 0.231 0.081 ± 0.013 0.142 ± 0.026
Node2Vec 3.337 ± 0.043 0.298 ± 0.040 0.410 ± 0.026
Random 8.593 ± 0.082 -0.000 ± 0.001 0.004 ± 0.001
VGAE 3.725 ± 0.208 0.202 ± 0.029 0.353 ± 0.019

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

Table 27: Clustering results for Cora (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.557 ± 0.079 0.567 ± 0.043 0.586 ± 0.016
DGI 1.673 ± 1.013 0.055 ± 0.054 0.116 ± 0.082
FUSE 0.872 ± 0.047 0.670 ± 0.015 0.647 ± 0.014
Given 1.148 ± 0.042 0.689 ± 0.017 0.673 ± 0.009
Node2Vec 1.580 ± 0.054 0.592 ± 0.023 0.588 ± 0.015
Random 4.349 ± 0.181 0.054 ± 0.007 0.093 ± 0.007
VGAE 1.816 ± 0.112 0.417 ± 0.072 0.488 ± 0.032

GCN

DeepWalk 1.159 ± 0.066 0.041 ± 0.024 0.147 ± 0.049
DGI 0.455 ± 0.256 0.011 ± 0.022 0.027 ± 0.034
FUSE 1.104 ± 0.065 0.278 ± 0.083 0.414 ± 0.027
Given 1.176 ± 0.083 0.041 ± 0.011 0.107 ± 0.025
Node2Vec 1.212 ± 0.066 0.055 ± 0.026 0.162 ± 0.035
Random 2.108 ± 0.124 0.022 ± 0.004 0.034 ± 0.007
VGAE 1.205 ± 0.096 0.071 ± 0.024 0.220 ± 0.015

SAGE

DeepWalk 1.177 ± 0.232 0.399 ± 0.044 0.527 ± 0.019
DGI 1.315 ± 0.500 0.040 ± 0.031 0.087 ± 0.060
FUSE 0.689 ± 0.058 0.673 ± 0.014 0.647 ± 0.009
Given 1.105 ± 0.049 0.676 ± 0.010 0.638 ± 0.009
Node2Vec 1.181 ± 0.119 0.407 ± 0.035 0.526 ± 0.015
Random 2.073 ± 0.077 0.001 ± 0.000 0.011 ± 0.002
VGAE 1.262 ± 0.067 0.270 ± 0.025 0.446 ± 0.027

Raw

DeepWalk 3.035 ± 0.026 0.350 ± 0.005 0.440 ± 0.005
DGI 2.060 ± 1.165 0.002 ± 0.003 0.015 ± 0.002
FUSE 5.045 ± 0.749 0.223 ± 0.159 0.289 ± 0.166
Given 6.380 ± 0.231 0.081 ± 0.013 0.142 ± 0.026
Node2Vec 3.337 ± 0.043 0.298 ± 0.040 0.410 ± 0.026
Random 8.593 ± 0.082 -0.000 ± 0.001 0.004 ± 0.001
VGAE 3.862 ± 0.249 0.222 ± 0.043 0.350 ± 0.026

38

2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105

Under review as a conference paper at ICLR 2026

Table 28: Clustering results for CiteSeer (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.368 ± 0.115 0.201 ± 0.018 0.290 ± 0.011
DGI 1.232 ± 1.053 0.028 ± 0.005 0.043 ± 0.007
FUSE 1.179 ± 0.032 0.627 ± 0.016 0.592 ± 0.015
Given 1.407 ± 0.020 0.646 ± 0.007 0.611 ± 0.008
Node2Vec 2.521 ± 0.208 0.159 ± 0.016 0.269 ± 0.006
Random 5.178 ± 0.196 0.060 ± 0.011 0.088 ± 0.006
VGAE 2.927 ± 0.233 0.108 ± 0.008 0.197 ± 0.020

GCN

DeepWalk 1.105 ± 0.126 0.010 ± 0.006 0.104 ± 0.004
DGI 0.273 ± 0.473 0.002 ± 0.004 0.011 ± 0.021
FUSE 1.492 ± 0.038 0.235 ± 0.042 0.324 ± 0.013
Given 1.336 ± 0.056 0.035 ± 0.004 0.179 ± 0.016
Node2Vec 1.240 ± 0.174 0.010 ± 0.002 0.110 ± 0.017
Random 2.098 ± 0.049 0.002 ± 0.003 0.017 ± 0.006
VGAE 1.685 ± 0.125 0.004 ± 0.003 0.071 ± 0.011

SAGE

DeepWalk 1.533 ± 0.153 0.158 ± 0.023 0.254 ± 0.038
DGI 1.041 ± 0.503 0.011 ± 0.012 0.031 ± 0.019
FUSE 0.623 ± 0.023 0.786 ± 0.018 0.742 ± 0.017
Given 1.182 ± 0.070 0.759 ± 0.021 0.724 ± 0.013
Node2Vec 1.499 ± 0.141 0.129 ± 0.024 0.240 ± 0.026
Random 2.165 ± 0.042 0.002 ± 0.002 0.008 ± 0.001
VGAE 1.714 ± 0.063 0.065 ± 0.022 0.164 ± 0.017

Raw

DeepWalk 3.707 ± 0.459 0.111 ± 0.014 0.217 ± 0.020
DGI 1.396 ± 0.852 0.014 ± 0.003 0.024 ± 0.008
FUSE 6.872 ± 1.213 0.596 ± 0.331 0.564 ± 0.310
Given 8.539 ± 0.133 0.177 ± 0.041 0.220 ± 0.050
Node2Vec 4.221 ± 0.125 0.094 ± 0.012 0.193 ± 0.008
Random 9.140 ± 0.043 0.000 ± 0.001 0.003 ± 0.001
VGAE 4.606 ± 0.056 0.054 ± 0.009 0.132 ± 0.017

39

2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159

Under review as a conference paper at ICLR 2026

Table 29: Clustering results for CiteSeer (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.219 ± 0.116 0.213 ± 0.023 0.296 ± 0.015
DGI 1.279 ± 0.964 0.028 ± 0.011 0.045 ± 0.008
FUSE 1.131 ± 0.059 0.445 ± 0.013 0.416 ± 0.011
Given 1.382 ± 0.062 0.536 ± 0.017 0.522 ± 0.012
Node2Vec 2.413 ± 0.044 0.185 ± 0.018 0.268 ± 0.012
Random 4.963 ± 0.286 0.025 ± 0.007 0.041 ± 0.010
VGAE 2.635 ± 0.193 0.091 ± 0.016 0.173 ± 0.011

GCN

DeepWalk 1.038 ± 0.082 0.004 ± 0.001 0.068 ± 0.013
DGI 0.344 ± 0.595 0.000 ± 0.000 0.006 ± 0.010
FUSE 1.164 ± 0.097 0.128 ± 0.016 0.242 ± 0.012
Given 1.141 ± 0.079 0.001 ± 0.002 0.043 ± 0.017
Node2Vec 1.093 ± 0.146 0.007 ± 0.006 0.074 ± 0.014
Random 2.247 ± 0.109 -0.000 ± 0.001 0.011 ± 0.003
VGAE 1.461 ± 0.059 0.004 ± 0.004 0.100 ± 0.017

SAGE

DeepWalk 1.556 ± 0.065 0.138 ± 0.027 0.232 ± 0.039
DGI 1.164 ± 0.580 0.011 ± 0.009 0.026 ± 0.008
FUSE 0.667 ± 0.028 0.475 ± 0.010 0.442 ± 0.011
Given 1.366 ± 0.068 0.532 ± 0.013 0.512 ± 0.012
Node2Vec 1.662 ± 0.115 0.109 ± 0.021 0.198 ± 0.037
Random 2.252 ± 0.065 0.001 ± 0.001 0.005 ± 0.001
VGAE 1.761 ± 0.166 0.063 ± 0.013 0.132 ± 0.018

Raw

DeepWalk 3.707 ± 0.459 0.111 ± 0.014 0.217 ± 0.020
DGI 1.291 ± 0.793 0.016 ± 0.005 0.025 ± 0.005
FUSE 6.725 ± 0.984 0.106 ± 0.118 0.150 ± 0.126
Given 8.539 ± 0.133 0.177 ± 0.041 0.220 ± 0.050
Node2Vec 4.221 ± 0.125 0.094 ± 0.012 0.193 ± 0.008
Random 9.140 ± 0.043 0.000 ± 0.001 0.003 ± 0.001
VGAE 4.610 ± 0.091 0.049 ± 0.008 0.123 ± 0.013

40

2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213

Under review as a conference paper at ICLR 2026

Table 30: Clustering results for PubMed (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.713 ± 0.048 0.414 ± 0.019 0.389 ± 0.010
DGI 1.452 ± 0.297 0.008 ± 0.003 0.010 ± 0.004
FUSE 0.978 ± 0.056 0.492 ± 0.042 0.416 ± 0.035
Given 1.098 ± 0.033 0.521 ± 0.019 0.511 ± 0.011
Node2Vec 1.736 ± 0.030 0.390 ± 0.041 0.372 ± 0.026
Random 6.159 ± 0.278 0.001 ± 0.001 0.002 ± 0.001
VGAE 2.512 ± 0.142 0.198 ± 0.061 0.265 ± 0.049

GCN

DeepWalk 0.871 ± 0.069 0.003 ± 0.014 0.047 ± 0.017
DGI 0.087 ± 0.150 -0.000 ± 0.000 0.000 ± 0.000
FUSE 1.581 ± 0.109 0.051 ± 0.016 0.109 ± 0.026
Given 1.351 ± 0.203 0.028 ± 0.077 0.040 ± 0.065
Node2Vec 0.964 ± 0.154 0.002 ± 0.011 0.046 ± 0.013
Random 2.274 ± 0.031 -0.006 ± 0.002 0.002 ± 0.001
VGAE 1.697 ± 0.269 -0.002 ± 0.004 0.017 ± 0.006

SAGE

DeepWalk 1.397 ± 0.080 0.453 ± 0.043 0.400 ± 0.026
DGI 1.052 ± 0.415 0.009 ± 0.010 0.009 ± 0.011
FUSE 1.348 ± 0.124 0.415 ± 0.041 0.360 ± 0.031
Given 1.221 ± 0.067 0.623 ± 0.024 0.558 ± 0.025
Node2Vec 1.483 ± 0.106 0.457 ± 0.034 0.393 ± 0.024
Random 2.753 ± 0.109 -0.001 ± 0.002 0.001 ± 0.001
VGAE 2.009 ± 0.183 0.260 ± 0.095 0.303 ± 0.043

Raw

DeepWalk 4.580 ± 0.011 0.304 ± 0.001 0.296 ± 0.001
DGI 1.167 ± 0.441 0.007 ± 0.002 0.003 ± 0.001
FUSE 12.849 ± 0.128 0.062 ± 0.046 0.050 ± 0.037
Given 5.161 ± 0.009 0.280 ± 0.001 0.312 ± 0.001
Node2Vec 4.885 ± 0.027 0.279 ± 0.002 0.288 ± 0.003
Random 12.406 ± 0.015 0.000 ± 0.000 0.000 ± 0.000
VGAE 3.900 ± 0.256 0.029 ± 0.022 0.152 ± 0.024

41

2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267

Under review as a conference paper at ICLR 2026

Table 31: Clustering results for PubMed (30-70)

Classifier Embedding DB ARI VMeasure

GAT

DeepWalk 1.835 ± 0.073 0.402 ± 0.048 0.375 ± 0.027
DGI 1.556 ± 0.382 0.006 ± 0.004 0.007 ± 0.004
FUSE 0.796 ± 0.013 0.518 ± 0.005 0.433 ± 0.005
Given 1.060 ± 0.022 0.470 ± 0.012 0.466 ± 0.005
Node2Vec 1.909 ± 0.049 0.390 ± 0.050 0.368 ± 0.031
Random 6.677 ± 0.152 0.001 ± 0.000 0.001 ± 0.001
VGAE 2.610 ± 0.104 0.216 ± 0.023 0.271 ± 0.014

GCN

DeepWalk 1.183 ± 0.121 0.007 ± 0.003 0.038 ± 0.011
DGI 0.821 ± 0.203 -0.004 ± 0.002 0.001 ± 0.001
FUSE 1.205 ± 0.093 0.026 ± 0.032 0.100 ± 0.009
Given 1.241 ± 0.124 -0.008 ± 0.008 0.037 ± 0.010
Node2Vec 1.245 ± 0.212 0.004 ± 0.008 0.034 ± 0.005
Random 2.389 ± 0.099 -0.005 ± 0.001 0.001 ± 0.001
VGAE 1.361 ± 0.399 -0.005 ± 0.007 0.025 ± 0.008

SAGE

DeepWalk 1.565 ± 0.185 0.443 ± 0.038 0.386 ± 0.013
DGI 1.310 ± 0.428 0.011 ± 0.012 0.008 ± 0.007
FUSE 1.377 ± 0.204 0.311 ± 0.112 0.300 ± 0.037
Given 1.358 ± 0.062 0.561 ± 0.036 0.500 ± 0.022
Node2Vec 1.659 ± 0.125 0.409 ± 0.055 0.365 ± 0.022
Random 2.933 ± 0.143 0.000 ± 0.001 0.000 ± 0.000
VGAE 2.264 ± 0.160 0.169 ± 0.048 0.241 ± 0.048

Raw

DeepWalk 4.580 ± 0.011 0.304 ± 0.001 0.296 ± 0.001
DGI 1.291 ± 0.380 0.007 ± 0.001 0.003 ± 0.001
FUSE 11.476 ± 0.126 0.400 ± 0.017 0.329 ± 0.014
Given 5.161 ± 0.009 0.280 ± 0.001 0.312 ± 0.001
Node2Vec 4.885 ± 0.027 0.279 ± 0.002 0.288 ± 0.003
Random 12.406 ± 0.015 0.000 ± 0.000 0.000 ± 0.000
VGAE 4.014 ± 0.319 0.034 ± 0.016 0.154 ± 0.017

42

2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2026

Table 32: Clustering results for Photo (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.085 ± 0.029 0.628 ± 0.007 0.740 ± 0.005
DGI 1.538 ± 0.106 0.383 ± 0.032 0.476 ± 0.027
FUSE 0.894 ± 0.016 0.873 ± 0.017 0.857 ± 0.015
Given 1.065 ± 0.081 0.660 ± 0.026 0.720 ± 0.017
Node2Vec 1.122 ± 0.028 0.635 ± 0.014 0.739 ± 0.009
Random 3.233 ± 0.180 0.262 ± 0.061 0.402 ± 0.044
VGAE 1.336 ± 0.084 0.571 ± 0.031 0.700 ± 0.022

GCN

DeepWalk 0.808 ± 0.101 0.030 ± 0.015 0.232 ± 0.021
DGI 0.222 ± 0.257 -0.007 ± 0.008 0.022 ± 0.029
FUSE 0.916 ± 0.051 0.162 ± 0.018 0.455 ± 0.022
Given 0.017 ± 0.024 -0.001 ± 0.001 0.001 ± 0.002
Node2Vec 0.671 ± 0.059 0.013 ± 0.018 0.231 ± 0.025
Random 1.974 ± 0.099 0.021 ± 0.011 0.096 ± 0.023
VGAE 0.967 ± 0.148 0.038 ± 0.020 0.253 ± 0.014

SAGE

DeepWalk 0.808 ± 0.088 0.699 ± 0.060 0.762 ± 0.026
DGI 1.067 ± 0.103 0.528 ± 0.034 0.601 ± 0.028
FUSE 0.597 ± 0.098 0.892 ± 0.022 0.881 ± 0.019
Given 0.874 ± 0.042 0.773 ± 0.012 0.824 ± 0.012
Node2Vec 0.906 ± 0.054 0.681 ± 0.069 0.746 ± 0.026
Random 2.042 ± 0.048 0.024 ± 0.008 0.050 ± 0.006
VGAE 0.760 ± 0.127 0.592 ± 0.052 0.715 ± 0.019

Raw

DeepWalk 2.400 ± 0.033 0.597 ± 0.003 0.690 ± 0.002
DGI 1.569 ± 0.100 0.077 ± 0.006 0.075 ± 0.007
FUSE 5.087 ± 0.844 0.364 ± 0.192 0.448 ± 0.155
Given 4.887 ± 0.062 0.058 ± 0.007 0.140 ± 0.019
Node2Vec 2.510 ± 0.067 0.579 ± 0.036 0.673 ± 0.028
Random 9.147 ± 0.034 -0.000 ± 0.000 0.001 ± 0.000
VGAE 1.943 ± 0.068 0.199 ± 0.069 0.468 ± 0.048

43

2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

Under review as a conference paper at ICLR 2026

Table 33: Clustering results for Photo (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.075 ± 0.026 0.612 ± 0.013 0.729 ± 0.004
DGI 1.628 ± 0.050 0.336 ± 0.034 0.426 ± 0.028
FUSE 0.875 ± 0.025 0.814 ± 0.007 0.802 ± 0.003
Given 1.034 ± 0.039 0.636 ± 0.032 0.702 ± 0.018
Node2Vec 1.097 ± 0.049 0.607 ± 0.015 0.719 ± 0.010
Random 3.877 ± 0.297 0.116 ± 0.028 0.216 ± 0.031
VGAE 1.332 ± 0.085 0.528 ± 0.027 0.678 ± 0.027

GCN

DeepWalk 0.781 ± 0.025 0.040 ± 0.019 0.290 ± 0.014
DGI 0.547 ± 0.505 0.024 ± 0.032 0.063 ± 0.072
FUSE 1.004 ± 0.025 0.130 ± 0.013 0.401 ± 0.038
Given 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Node2Vec 0.767 ± 0.072 0.037 ± 0.024 0.287 ± 0.047
Random 2.078 ± 0.070 0.017 ± 0.004 0.072 ± 0.009
VGAE 1.046 ± 0.163 0.038 ± 0.009 0.261 ± 0.030

SAGE

DeepWalk 0.848 ± 0.082 0.667 ± 0.064 0.738 ± 0.026
DGI 1.196 ± 0.137 0.523 ± 0.023 0.592 ± 0.015
FUSE 0.576 ± 0.096 0.803 ± 0.022 0.792 ± 0.015
Given 0.928 ± 0.021 0.768 ± 0.019 0.806 ± 0.009
Node2Vec 0.904 ± 0.029 0.634 ± 0.057 0.713 ± 0.019
Random 1.974 ± 0.041 0.005 ± 0.001 0.011 ± 0.003
VGAE 0.844 ± 0.058 0.631 ± 0.083 0.721 ± 0.022

Raw

DeepWalk 2.400 ± 0.033 0.597 ± 0.003 0.690 ± 0.002
DGI 1.657 ± 0.169 0.063 ± 0.007 0.065 ± 0.008
FUSE 4.317 ± 0.437 0.510 ± 0.109 0.638 ± 0.046
Given 4.887 ± 0.062 0.058 ± 0.007 0.140 ± 0.019
Node2Vec 2.510 ± 0.067 0.579 ± 0.036 0.673 ± 0.028
Random 9.147 ± 0.034 -0.000 ± 0.000 0.001 ± 0.000
VGAE 1.973 ± 0.067 0.204 ± 0.049 0.486 ± 0.031

44

2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429

Under review as a conference paper at ICLR 2026

Table 34: Clustering results for WikiCS (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.963 ± 0.051 0.458 ± 0.015 0.519 ± 0.010
DGI 1.601 ± 0.065 0.098 ± 0.012 0.174 ± 0.019
FUSE 1.342 ± 0.110 0.688 ± 0.039 0.674 ± 0.020
Given 1.663 ± 0.050 0.510 ± 0.036 0.557 ± 0.018
Node2Vec 1.926 ± 0.091 0.449 ± 0.034 0.521 ± 0.007
Random 3.792 ± 0.179 0.120 ± 0.015 0.214 ± 0.016
VGAE 1.778 ± 0.052 0.333 ± 0.019 0.443 ± 0.018

GCN

DeepWalk 0.477 ± 0.065 -0.003 ± 0.006 0.079 ± 0.017
DGI 0.238 ± 0.207 0.001 ± 0.002 0.006 ± 0.008
FUSE 1.140 ± 0.107 0.055 ± 0.014 0.222 ± 0.015
Given 0.371 ± 0.061 -0.002 ± 0.005 0.046 ± 0.015
Node2Vec 0.541 ± 0.058 0.003 ± 0.005 0.066 ± 0.035
Random 1.927 ± 0.080 0.002 ± 0.011 0.041 ± 0.005
VGAE 0.939 ± 0.086 0.007 ± 0.002 0.086 ± 0.022

SAGE

DeepWalk 1.013 ± 0.070 0.512 ± 0.039 0.563 ± 0.008
DGI 1.348 ± 0.192 0.176 ± 0.046 0.279 ± 0.048
FUSE 0.782 ± 0.099 0.476 ± 0.046 0.653 ± 0.014
Given 1.002 ± 0.048 0.541 ± 0.022 0.631 ± 0.005
Node2Vec 0.986 ± 0.176 0.511 ± 0.096 0.569 ± 0.013
Random 1.872 ± 0.064 0.021 ± 0.004 0.049 ± 0.004
VGAE 0.983 ± 0.034 0.464 ± 0.051 0.525 ± 0.011

Raw

DeepWalk 3.228 ± 0.152 0.359 ± 0.038 0.452 ± 0.015
DGI 2.716 ± 0.170 0.030 ± 0.003 0.046 ± 0.002
FUSE 5.185 ± 0.306 0.131 ± 0.074 0.164 ± 0.088
Given 2.639 ± 0.025 0.145 ± 0.003 0.252 ± 0.003
Node2Vec 3.240 ± 0.113 0.345 ± 0.017 0.448 ± 0.008
Random 8.884 ± 0.023 -0.000 ± 0.000 0.002 ± 0.001
VGAE 1.896 ± 0.047 0.144 ± 0.011 0.332 ± 0.015

45

2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483

Under review as a conference paper at ICLR 2026

Table 35: Clustering results for WikiCS (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.988 ± 0.076 0.419 ± 0.057 0.492 ± 0.025
DGI 1.725 ± 0.190 0.088 ± 0.008 0.164 ± 0.018
FUSE 1.523 ± 0.139 0.581 ± 0.015 0.580 ± 0.008
Given 1.705 ± 0.125 0.453 ± 0.047 0.518 ± 0.017
Node2Vec 2.107 ± 0.060 0.409 ± 0.040 0.487 ± 0.012
Random 4.328 ± 0.132 0.048 ± 0.012 0.112 ± 0.016
VGAE 1.831 ± 0.049 0.295 ± 0.022 0.412 ± 0.017

GCN

DeepWalk 0.548 ± 0.165 -0.001 ± 0.004 0.132 ± 0.021
DGI 0.000 ± 0.000 0.001 ± 0.002 0.003 ± 0.004
FUSE 1.110 ± 0.059 0.021 ± 0.022 0.186 ± 0.034
Given 0.419 ± 0.035 -0.003 ± 0.017 0.086 ± 0.040
Node2Vec 0.602 ± 0.116 0.000 ± 0.007 0.127 ± 0.012
Random 1.947 ± 0.078 0.006 ± 0.007 0.045 ± 0.006
VGAE 0.869 ± 0.048 0.007 ± 0.009 0.110 ± 0.019

SAGE

DeepWalk 1.023 ± 0.160 0.348 ± 0.051 0.497 ± 0.008
DGI 1.442 ± 0.089 0.193 ± 0.051 0.272 ± 0.024
FUSE 0.824 ± 0.139 0.420 ± 0.070 0.537 ± 0.026
Given 1.137 ± 0.029 0.520 ± 0.047 0.578 ± 0.011
Node2Vec 1.012 ± 0.213 0.376 ± 0.087 0.511 ± 0.023
Random 1.860 ± 0.023 0.002 ± 0.003 0.010 ± 0.002
VGAE 1.116 ± 0.107 0.401 ± 0.040 0.494 ± 0.016

Raw

DeepWalk 3.228 ± 0.152 0.359 ± 0.038 0.452 ± 0.015
DGI 2.608 ± 0.126 0.033 ± 0.002 0.047 ± 0.002
FUSE 4.698 ± 0.389 0.336 ± 0.067 0.415 ± 0.020
Given 2.639 ± 0.025 0.145 ± 0.003 0.252 ± 0.003
Node2Vec 3.240 ± 0.113 0.345 ± 0.017 0.448 ± 0.008
Random 8.884 ± 0.023 -0.000 ± 0.000 0.002 ± 0.001
VGAE 1.937 ± 0.064 0.137 ± 0.015 0.323 ± 0.016

46

2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537

Under review as a conference paper at ICLR 2026

Table 36: Clustering results for ArXiV (70-30) (single seed)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.429 0.228 0.448
DGI 0.729 -0.003 0.015
FUSE 1.186 0.680 0.720
Given 2.213 0.132 0.346
Node2Vec 2.540 0.233 0.441
Random 4.650 0.002 0.008
VGAE 1.047 -0.002 0.015

GCN

DeepWalk 1.251 0.058 0.280
DGI 0.000 0.010 0.007
FUSE 1.447 0.050 0.332
Given 1.015 0.016 0.218
Node2Vec 1.243 0.049 0.241
Random 2.028 -0.014 0.037
VGAE 0.000 0.010 0.007

SAGE

DeepWalk 1.364 0.247 0.442
DGI 0.900 -0.003 0.006
FUSE 0.861 0.791 0.793
Given 1.571 0.189 0.358
Node2Vec 1.404 0.280 0.434
Random 1.877 0.000 0.003
VGAE 1.346 -0.000 0.006

Raw

DeepWalk 3.617 0.185 0.402
DGI 1.107 -0.003 0.008
FUSE 2.432 0.732 0.776
Given 3.495 0.070 0.221
Node2Vec 3.751 0.179 0.385
Random 7.524 0.000 0.001
VGAE 2.219 -0.002 0.007

47

2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591

Under review as a conference paper at ICLR 2026

Table 37: Clustering results for ArXiV (30-70) (single seed)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.461 0.233 0.447
DGI 0.924 0.002 0.010
FUSE 1.692 0.515 0.576
Given 2.199 0.132 0.344
Node2Vec 2.528 0.234 0.441
Random 4.860 0.002 0.007
VGAE 1.093 -0.003 0.013

GCN

DeepWalk 1.412 0.039 0.278
DGI 0.000 0.000 0.000
FUSE 0.948 0.037 0.320
Given 1.270 0.006 0.245
Node2Vec 1.342 0.015 0.274
Random 2.035 -0.019 0.033
VGAE 0.000 -0.000 0.000

SAGE

DeepWalk 1.305 0.213 0.435
DGI 1.012 -0.001 0.006
FUSE 0.995 0.520 0.572
Given 1.499 0.184 0.353
Node2Vec 1.375 0.279 0.438
Random 1.787 0.000 0.002
VGAE 1.406 0.000 0.006

Raw

DeepWalk 3.617 0.185 0.402
DGI 1.088 -0.003 0.007
FUSE 0.766 0.397 0.534
Given 3.495 0.070 0.221
Node2Vec 3.751 0.179 0.385
Random 7.519 -0.000 0.001
VGAE 2.033 -0.002 0.007

48

2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645

Under review as a conference paper at ICLR 2026

Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.81 ±0.02 0.78 ±0.01 0.77 ±0.01 0.80 ±0.02 0.77 ±0.01 0.76 ±0.01
Node2Vec 0.78 ±0.01 0.76 ±0.01 0.68 ±0.04 0.76 ±0.02 0.75 ±0.01 0.67 ±0.04
DeepWalk 0.78 ±0.01 0.75 ±0.02 0.71 ±0.01 0.76 ±0.01 0.74 ±0.02 0.69 ±0.01
VGAE 0.78 ±0.01 0.74 ±0.02 0.66 ±0.02 0.76 ±0.01 0.72 ±0.02 0.65 ±0.02
DGI 0.32 ±0.05 0.36 ±0.07 0.32 ±0.05 0.10 ±0.08 0.16 ±0.12 0.15 ±0.10
Random 0.52 ±0.02 0.39 ±0.02 0.29 ±0.03 0.50 ±0.02 0.35 ±0.02 0.25 ±0.03

GAT
FUSE 0.84 ±0.02 0.82 ±0.01 0.77 ±0.02 0.83 ±0.02 0.81 ±0.01 0.75 ±0.02
Node2Vec 0.83 ±0.01 0.80 ±0.01 0.74 ±0.02 0.82 ±0.02 0.79 ±0.01 0.73 ±0.02
DeepWalk 0.84 ±0.02 0.80 ±0.02 0.74 ±0.02 0.83 ±0.02 0.78 ±0.02 0.73 ±0.02
VGAE 0.79 ±0.02 0.75 ±0.02 0.71 ±0.02 0.78 ±0.02 0.73 ±0.02 0.69 ±0.02
DGI 0.70 ±0.05 0.64 ±0.08 0.60 ±0.07 0.68 ±0.08 0.59 ±0.10 0.56 ±0.09
Random 0.66 ±0.02 0.50 ±0.03 0.33 ±0.04 0.63 ±0.03 0.47 ±0.03 0.27 ±0.04

SAGE
FUSE 0.85 ±0.02 0.82 ±0.01 0.76 ±0.01 0.84 ±0.02 0.81 ±0.01 0.74 ±0.01
Node2Vec 0.85 ±0.02 0.83 ±0.01 0.77 ±0.01 0.84 ±0.02 0.81 ±0.01 0.76 ±0.01
DeepWalk 0.86 ±0.01 0.83 ±0.01 0.78 ±0.01 0.84 ±0.01 0.82 ±0.01 0.76 ±0.01
VGAE 0.79 ±0.02 0.73 ±0.01 0.67 ±0.02 0.78 ±0.02 0.71 ±0.01 0.64 ±0.02
DGI 0.60 ±0.05 0.59 ±0.04 0.58 ±0.04 0.52 ±0.09 0.50 ±0.08 0.50 ±0.07
Random 0.51 ±0.02 0.35 ±0.02 0.26 ±0.02 0.46 ±0.03 0.26 ±0.02 0.17 ±0.02

MLP
FUSE 0.81 ±0.02 0.79 ±0.01 0.73 ±0.01 0.79 ±0.03 0.77 ±0.01 0.71 ±0.01
Node2Vec 0.84 ±0.01 0.82 ±0.01 0.76 ±0.01 0.83 ±0.01 0.81 ±0.01 0.74 ±0.02
DeepWalk 0.85 ±0.01 0.81 ±0.01 0.77 ±0.02 0.84 ±0.01 0.80 ±0.01 0.75 ±0.02
VGAE 0.65 ±0.02 0.63 ±0.02 0.62 ±0.01 0.63 ±0.02 0.61 ±0.01 0.60 ±0.02
DGI 0.53 ±0.05 0.49 ±0.07 0.48 ±0.06 0.44 ±0.09 0.35 ±0.13 0.36 ±0.11
Random 0.18 ±0.02 0.18 ±0.01 0.19 ±0.01 0.15 ±0.02 0.14 ±0.01 0.15 ±0.01

Table 38: Classification experiments on different masking rates for the MCAR scenario on the Cora
dataset. The mean and standard deviation over 10 iterations are reported. The best and second-
best in each metric, for each masking rate and each classifier, are highlighted in bold and underline
respectively.

49

2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.81± 0.01 0.78± 0.01 0.76± 0.02 0.80± 0.01 0.76± 0.01 0.75± 0.02
Node2Vec 0.79± 0.02 0.76± 0.01 0.68± 0.02 0.77± 0.02 0.75± 0.02 0.66± 0.02
DeepWalk 0.77± 0.02 0.77± 0.02 0.68± 0.02 0.76± 0.02 0.76± 0.02 0.66± 0.02
VGAE 0.77± 0.02 0.72± 0.02 0.66± 0.03 0.76± 0.02 0.72± 0.02 0.64± 0.03
DGI 0.28± 0.02 0.30± 0.03 0.36± 0.08 0.06± 0.00 0.08± 0.04 0.20± 0.14
Random 0.51± 0.02 0.40± 0.02 0.29± 0.03 0.48± 0.03 0.36± 0.02 0.24± 0.03

GAT
FUSE 0.85± 0.01 0.81± 0.01 0.77± 0.01 0.85± 0.01 0.80± 0.01 0.76± 0.02
Node2Vec 0.84± 0.01 0.80± 0.01 0.75± 0.02 0.83± 0.01 0.79± 0.01 0.73± 0.02
DeepWalk 0.83± 0.01 0.80± 0.01 0.75± 0.01 0.82± 0.01 0.79± 0.01 0.74± 0.01
VGAE 0.78± 0.01 0.75± 0.01 0.70± 0.01 0.77± 0.01 0.73± 0.01 0.68± 0.02
DGI 0.68± 0.05 0.68± 0.03 0.64± 0.03 0.64± 0.08 0.67± 0.03 0.62± 0.04
Random 0.65± 0.03 0.50± 0.03 0.34± 0.03 0.63± 0.03 0.46± 0.04 0.25± 0.04

SAGE
FUSE 0.85± 0.01 0.81± 0.01 0.76± 0.02 0.84± 0.01 0.80± 0.01 0.75± 0.02
Node2Vec 0.85± 0.01 0.83± 0.01 0.78± 0.01 0.84± 0.02 0.82± 0.01 0.77± 0.01
DeepWalk 0.85± 0.02 0.83± 0.01 0.78± 0.01 0.83± 0.02 0.82± 0.01 0.77± 0.02
VGAE 0.76± 0.02 0.72± 0.01 0.67± 0.01 0.74± 0.02 0.70± 0.01 0.63± 0.03
DGI 0.57± 0.07 0.59± 0.04 0.53± 0.06 0.47± 0.08 0.51± 0.06 0.42± 0.10
Random 0.49± 0.02 0.35± 0.02 0.27± 0.01 0.43± 0.03 0.27± 0.03 0.17± 0.01

MLP
FUSE 0.80± 0.02 0.77± 0.01 0.72± 0.02 0.79± 0.02 0.76± 0.01 0.70± 0.02
Node2Vec 0.84± 0.01 0.81± 0.01 0.76± 0.01 0.83± 0.01 0.81± 0.01 0.75± 0.01
DeepWalk 0.84± 0.02 0.82± 0.01 0.76± 0.01 0.82± 0.02 0.81± 0.01 0.75± 0.01
VGAE 0.65± 0.01 0.63± 0.01 0.61± 0.02 0.63± 0.02 0.61± 0.01 0.59± 0.02
DGI 0.54± 0.03 0.50± 0.07 0.50± 0.06 0.44± 0.07 0.40± 0.12 0.39± 0.11
Random 0.17± 0.01 0.18± 0.01 0.19± 0.01 0.14± 0.01 0.14± 0.01 0.14± 0.01

Table 39: Classification experiments on different masking rates for the MAR scenario on the Cora
dataset. The mean and standard deviation over 10 iterations are reported. The best and second-best
in each metric, for each masking rate and each classifier, are highlighted in bold and underlined,
respectively.

50

2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753

Under review as a conference paper at ICLR 2026

Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.80± 0.01 0.78± 0.02 0.76± 0.02 0.79± 0.01 0.76± 0.01 0.74± 0.02
Node2Vec 0.76± 0.05 0.75± 0.02 0.66± 0.02 0.74± 0.06 0.73± 0.02 0.63± 0.02
DeepWalk 0.78± 0.02 0.75± 0.03 0.68± 0.03 0.76± 0.03 0.74± 0.03 0.65± 0.04
VGAE 0.77± 0.02 0.73± 0.01 0.64± 0.03 0.75± 0.02 0.72± 0.01 0.61± 0.03
DGI 0.30± 0.03 0.32± 0.05 0.32± 0.09 0.08± 0.03 0.12± 0.08 0.16± 0.11
Random 0.48± 0.03 0.40± 0.03 0.29± 0.04 0.45± 0.03 0.36± 0.03 0.24± 0.03

GAT
FUSE 0.84± 0.02 0.80± 0.01 0.75± 0.02 0.83± 0.02 0.78± 0.01 0.74± 0.02
Node2Vec 0.84± 0.02 0.80± 0.02 0.73± 0.02 0.83± 0.02 0.79± 0.02 0.71± 0.02
DeepWalk 0.85± 0.01 0.80± 0.02 0.74± 0.02 0.83± 0.02 0.79± 0.02 0.72± 0.02
VGAE 0.77± 0.02 0.73± 0.01 0.69± 0.01 0.75± 0.02 0.72± 0.01 0.68± 0.02
DGI 0.61± 0.10 0.68± 0.04 0.59± 0.06 0.58± 0.13 0.65± 0.06 0.54± 0.07
Random 0.64± 0.02 0.49± 0.03 0.32± 0.04 0.62± 0.03 0.44± 0.04 0.24± 0.04

SAGE
FUSE 0.85± 0.01 0.80± 0.02 0.74± 0.02 0.83± 0.02 0.79± 0.02 0.72± 0.02
Node2Vec 0.86± 0.01 0.83± 0.01 0.76± 0.02 0.85± 0.01 0.82± 0.01 0.73± 0.03
DeepWalk 0.85± 0.01 0.83± 0.01 0.77± 0.01 0.83± 0.01 0.81± 0.01 0.75± 0.02
VGAE 0.75± 0.02 0.71± 0.02 0.65± 0.02 0.73± 0.02 0.69± 0.02 0.61± 0.03
DGI 0.55± 0.05 0.57± 0.05 0.53± 0.05 0.47± 0.08 0.48± 0.08 0.43± 0.06
Random 0.49± 0.03 0.35± 0.02 0.25± 0.02 0.43± 0.03 0.25± 0.03 0.17± 0.01

MLP
FUSE 0.81± 0.01 0.76± 0.01 0.71± 0.02 0.79± 0.01 0.74± 0.02 0.69± 0.02
Node2Vec 0.85± 0.01 0.82± 0.01 0.75± 0.01 0.84± 0.02 0.81± 0.01 0.73± 0.02
DeepWalk 0.85± 0.01 0.81± 0.01 0.76± 0.02 0.83± 0.01 0.80± 0.01 0.74± 0.03
VGAE 0.63± 0.02 0.63± 0.02 0.60± 0.01 0.61± 0.01 0.61± 0.03 0.58± 0.02
DGI 0.50± 0.06 0.48± 0.09 0.49± 0.04 0.41± 0.09 0.35± 0.14 0.39± 0.06
Random 0.18± 0.01 0.18± 0.01 0.18± 0.01 0.14± 0.02 0.14± 0.01 0.14± 0.01

Table 40: Classification experiments on different masking rates for the MNAR scenario on the Cora
dataset. The mean and standard deviation over 10 iterations are reported. The best and second-best
in each metric, for each masking rate and each classifier, are highlighted in bold and underlined,
respectively.

51

2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807

Under review as a conference paper at ICLR 2026

Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.66± 0.01 0.67± 0.01 0.59± 0.01 0.63± 0.01 0.64± 0.01 0.55± 0.01
Node2Vec 0.58± 0.02 0.54± 0.01 0.46± 0.02 0.52± 0.02 0.50± 0.01 0.42± 0.02
DeepWalk 0.57± 0.02 0.53± 0.01 0.44± 0.01 0.52± 0.02 0.50± 0.01 0.41± 0.01
VGAE 0.54± 0.02 0.50± 0.01 0.42± 0.02 0.50± 0.02 0.46± 0.01 0.38± 0.02
DGI 0.30± 0.07 0.32± 0.06 0.32± 0.03 0.19± 0.09 0.20± 0.09 0.25± 0.04
Random 0.34± 0.03 0.28± 0.02 0.24± 0.02 0.32± 0.03 0.26± 0.02 0.21± 0.02

GAT
FUSE 0.72± 0.01 0.68± 0.01 0.59± 0.01 0.68± 0.01 0.64± 0.01 0.55± 0.01
Node2Vec 0.71± 0.02 0.65± 0.01 0.56± 0.01 0.69± 0.02 0.62± 0.01 0.53± 0.01
DeepWalk 0.71± 0.01 0.64± 0.01 0.55± 0.02 0.67± 0.01 0.61± 0.01 0.52± 0.01
VGAE 0.61± 0.02 0.56± 0.02 0.47± 0.02 0.57± 0.02 0.52± 0.01 0.43± 0.02
DGI 0.49± 0.03 0.48± 0.02 0.45± 0.02 0.42± 0.05 0.43± 0.02 0.40± 0.02
Random 0.48± 0.02 0.40± 0.01 0.28± 0.02 0.45± 0.02 0.37± 0.01 0.25± 0.01

SAGE
FUSE 0.72± 0.01 0.67± 0.01 0.58± 0.01 0.69± 0.01 0.63± 0.01 0.54± 0.01
Node2Vec 0.70± 0.01 0.66± 0.01 0.57± 0.01 0.66± 0.01 0.62± 0.01 0.54± 0.02
DeepWalk 0.71± 0.01 0.66± 0.01 0.57± 0.01 0.67± 0.01 0.62± 0.01 0.54± 0.01
VGAE 0.57± 0.02 0.50± 0.01 0.44± 0.02 0.51± 0.02 0.46± 0.01 0.40± 0.01
DGI 0.45± 0.03 0.46± 0.02 0.42± 0.01 0.38± 0.03 0.40± 0.02 0.35± 0.02
Random 0.38± 0.03 0.29± 0.01 0.22± 0.01 0.33± 0.02 0.25± 0.01 0.19± 0.01

MLP
FUSE 0.72± 0.01 0.66± 0.01 0.57± 0.01 0.67± 0.01 0.62± 0.01 0.53± 0.01
Node2Vec 0.72± 0.02 0.65± 0.01 0.56± 0.01 0.69± 0.02 0.62± 0.01 0.53± 0.02
DeepWalk 0.71± 0.01 0.66± 0.01 0.55± 0.01 0.68± 0.02 0.63± 0.01 0.52± 0.01
VGAE 0.42± 0.02 0.40± 0.01 0.38± 0.01 0.38± 0.01 0.37± 0.01 0.36± 0.01
DGI 0.39± 0.07 0.41± 0.03 0.37± 0.04 0.31± 0.09 0.34± 0.05 0.30± 0.05
Random 0.18± 0.01 0.17± 0.01 0.17± 0.01 0.17± 0.01 0.16± 0.01 0.16± 0.01

Table 41: Classification experiments on different masking rates for the MCAR scenario on the
CiteSeer dataset. The mean and standard deviation over 10 iterations are reported. The best and
second-best in each metric, for each masking rate and each classifier, are highlighted in bold and
underlined, respectively.

52

2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861

Under review as a conference paper at ICLR 2026

Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.68± 0.01 0.68± 0.01 0.58± 0.01 0.64± 0.01 0.64± 0.01 0.55± 0.01
Node2Vec 0.57± 0.01 0.54± 0.01 0.42± 0.02 0.51± 0.02 0.51± 0.01 0.39± 0.02
DeepWalk 0.58± 0.02 0.54± 0.02 0.42± 0.03 0.52± 0.02 0.51± 0.02 0.40± 0.02
VGAE 0.54± 0.03 0.48± 0.02 0.41± 0.03 0.51± 0.03 0.45± 0.02 0.38± 0.03
DGI 0.29± 0.10 0.33± 0.07 0.32± 0.02 0.18± 0.13 0.21± 0.10 0.23± 0.05
Random 0.34± 0.02 0.26± 0.01 0.23± 0.02 0.32± 0.01 0.24± 0.01 0.21± 0.02

GAT
FUSE 0.72± 0.01 0.68± 0.01 0.59± 0.01 0.68± 0.01 0.64± 0.01 0.54± 0.01
Node2Vec 0.71± 0.02 0.65± 0.02 0.54± 0.03 0.67± 0.02 0.61± 0.01 0.51± 0.02
DeepWalk 0.71± 0.01 0.65± 0.02 0.54± 0.02 0.67± 0.01 0.61± 0.02 0.51± 0.02
VGAE 0.62± 0.01 0.57± 0.01 0.47± 0.01 0.58± 0.02 0.54± 0.01 0.43± 0.01
DGI 0.51± 0.02 0.48± 0.03 0.44± 0.03 0.45± 0.02 0.42± 0.04 0.39± 0.03
Random 0.48± 0.02 0.38± 0.02 0.27± 0.02 0.44± 0.02 0.35± 0.02 0.25± 0.02

SAGE
FUSE 0.72± 0.01 0.67± 0.01 0.58± 0.01 0.68± 0.01 0.63± 0.01 0.54± 0.01
Node2Vec 0.71± 0.01 0.66± 0.01 0.57± 0.02 0.66± 0.02 0.62± 0.01 0.54± 0.01
DeepWalk 0.71± 0.01 0.66± 0.01 0.57± 0.01 0.66± 0.01 0.62± 0.01 0.53± 0.01
VGAE 0.57± 0.01 0.51± 0.02 0.43± 0.01 0.52± 0.01 0.47± 0.02 0.39± 0.02
DGI 0.47± 0.03 0.45± 0.03 0.42± 0.03 0.40± 0.02 0.38± 0.03 0.35± 0.04
Random 0.36± 0.02 0.29± 0.02 0.21± 0.01 0.31± 0.02 0.25± 0.01 0.19± 0.01

MLP
FUSE 0.71± 0.01 0.66± 0.01 0.57± 0.01 0.66± 0.01 0.62± 0.01 0.53± 0.01
Node2Vec 0.72± 0.01 0.66± 0.01 0.55± 0.02 0.68± 0.01 0.62± 0.01 0.52± 0.01
DeepWalk 0.72± 0.01 0.66± 0.02 0.56± 0.01 0.68± 0.01 0.63± 0.02 0.53± 0.01
VGAE 0.42± 0.02 0.41± 0.01 0.39± 0.01 0.40± 0.02 0.38± 0.01 0.36± 0.01
DGI 0.42± 0.05 0.41± 0.02 0.37± 0.03 0.35± 0.05 0.34± 0.03 0.30± 0.05
Random 0.17± 0.01 0.18± 0.01 0.18± 0.01 0.16± 0.01 0.16± 0.01 0.17± 0.00

Table 42: Classification experiments on different masking rates for the MAR scenario on the Cite-
Seer dataset. The mean and standard deviation over 10 iterations are reported. The best and second-
best in each metric, for each masking rate and each classifier, are highlighted in bold and underlined,
respectively.

53

2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915

Under review as a conference paper at ICLR 2026

Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.68± 0.02 0.68± 0.01 0.58± 0.01 0.64± 0.02 0.64± 0.01 0.54± 0.01
Node2Vec 0.58± 0.02 0.53± 0.01 0.42± 0.02 0.52± 0.02 0.50± 0.01 0.39± 0.02
DeepWalk 0.59± 0.02 0.53± 0.01 0.43± 0.02 0.54± 0.02 0.49± 0.01 0.40± 0.02
VGAE 0.56± 0.01 0.49± 0.02 0.38± 0.03 0.51± 0.02 0.46± 0.01 0.35± 0.02
DGI 0.31± 0.10 0.32± 0.05 0.28± 0.05 0.20± 0.12 0.23± 0.07 0.18± 0.06
SGCL 0.36± 0.01 0.26± 0.02 0.21± 0.02 0.33± 0.01 0.24± 0.02 0.19± 0.02
Random 0.35± 0.01 0.27± 0.01 0.21± 0.03 0.32± 0.01 0.25± 0.01 0.19± 0.02

GAT
FUSE 0.73± 0.02 0.69± 0.01 0.58± 0.01 0.68± 0.02 0.64± 0.01 0.54± 0.01
Node2Vec 0.71± 0.01 0.65± 0.02 0.55± 0.02 0.67± 0.02 0.61± 0.01 0.52± 0.02
DeepWalk 0.73± 0.02 0.65± 0.02 0.55± 0.03 0.67± 0.02 0.61± 0.02 0.52± 0.02
VGAE 0.62± 0.01 0.56± 0.01 0.44± 0.02 0.58± 0.02 0.52± 0.01 0.42± 0.02
DGI 0.52± 0.03 0.48± 0.04 0.41± 0.03 0.44± 0.03 0.42± 0.05 0.36± 0.03
Random 0.47± 0.02 0.38± 0.01 0.25± 0.01 0.44± 0.02 0.35± 0.02 0.22± 0.01

SAGE
FUSE 0.73± 0.02 0.67± 0.01 0.57± 0.01 0.68± 0.02 0.63± 0.01 0.53± 0.01
Node2Vec 0.70± 0.01 0.66± 0.01 0.57± 0.01 0.64± 0.01 0.62± 0.01 0.53± 0.01
DeepWalk 0.72± 0.02 0.67± 0.01 0.57± 0.01 0.66± 0.03 0.62± 0.01 0.54± 0.01
VGAE 0.57± 0.02 0.52± 0.02 0.42± 0.02 0.51± 0.02 0.47± 0.02 0.39± 0.02
DGI 0.48± 0.04 0.47± 0.02 0.39± 0.02 0.40± 0.03 0.40± 0.03 0.33± 0.04
Random 0.37± 0.03 0.27± 0.02 0.21± 0.01 0.32± 0.03 0.24± 0.02 0.17± 0.01

MLP
FUSE 0.72± 0.02 0.66± 0.02 0.55± 0.01 0.67± 0.02 0.62± 0.02 0.52± 0.01
Node2Vec 0.71± 0.01 0.66± 0.01 0.56± 0.02 0.67± 0.01 0.62± 0.01 0.53± 0.02
DeepWalk 0.73± 0.01 0.66± 0.01 0.55± 0.02 0.68± 0.02 0.63± 0.02 0.52± 0.01
VGAE 0.42± 0.01 0.40± 0.01 0.37± 0.01 0.38± 0.01 0.38± 0.01 0.35± 0.01
DGI 0.41± 0.04 0.40± 0.03 0.37± 0.03 0.33± 0.04 0.34± 0.03 0.31± 0.03
Random 0.18± 0.02 0.18± 0.01 0.17± 0.01 0.16± 0.02 0.16± 0.01 0.16± 0.01

Table 43: Classification experiments on different masking rates for the MNAR scenario on the
CiteSeer dataset. The mean and standard deviation over 10 iterations are reported. The best and
second-best in each metric, for each masking rate and each classifier, are highlighted in bold and
underlined, respectively.

54

	Introduction
	Related Work
	The FUSE Algorithm
	Problem Setting
	Linear Modularity Optimization
	Supervised and Semi-Supervised Components
	Optimization

	Experiments
	Datasets
	Baselines
	Results
	Downstream Classification Performance
	Downstream Node Clustering Performance
	Runtime Efficiency
	Additional Analyses

	Discussion and conclusion
	Datasets, Algorithm Details and Visualizations
	Theoretical Results
	Extended Results
	Semi-Supervised Baselines
	Ablation study
	Sensitivity analysis
	Scalability experiments
	Experiments on different masking mechanisms

