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ABSTRACT

Graph-based learning is a cornerstone for analyzing structured data, with node
classification as a central task. However, in many real-world graphs, nodes lack in-
formative feature vectors, leaving only neighborhood connectivity and class labels
as available signals. In such cases, effective classification hinges on learning node
embeddings that capture structural roles and topological context. We introduce a
fast semi-supervised embedding framework that jointly optimizes three comple-
mentary objectives: (i) unsupervised structure preservation via scalable modular-
ity approximation, (ii) supervised regularization to minimize intra-class variance
among labeled nodes, and (iii) semi-supervised propagation that refines unlabeled
nodes through random-walk-based label spreading with attention-weighted simi-
larity. These components are unified into a single iterative optimization scheme,
yielding high-quality node embeddings. On standard benchmarks, our method
consistently achieves classification accuracy at par with or superior to state-of-
the-art approaches, while requiring significantly less computational cost.

1 INTRODUCTION

Graph-based learning has emerged as a powerful paradigm for analyzing structured data, with ap-
plications in social networks (Li et al., 2023), citation graphs (Luo et al., 2023), knowledge graphs
(Ye et al., 2022), and recommendation systems (Lu et al., 2025; Anand and Maurya, 2024). A cen-
tral task is node classification, where a subset of nodes are labeled and the goal is to predict the
labels of the remaining ones (Luo et al., 2024). This task is typically facilitated by node embeddings
X ∈ R|V |×k that capture graph structure (Xiao et al., 2021).

In practice, node embeddings may not be explicitly available, especially in newly constructed or
rapidly evolving graphs, even when partial labels are known. Existing approaches often rely on
unsupervised (Duong et al., 2023) or self-supervised (Veličković et al., 2019) embedding genera-
tion, or directly employ Graph Neural Networks (GNNs) such as GCN (Kipf and Welling, 2017),
GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017) in a semi-supervised fash-
ion. In addition, there are a few semi-supervised approaches that combine GNNs as encoders and
customized classifiers to solve node classification problems (Lee et al., 2022; Yan et al., 2023). The
given features are enhanced using these semi-supervised node representation algorithms. However,
when embeddings are missing, initializing GNNs with random embeddings is ineffective for down-
stream tasks. A more efficient strategy is to generate structured initial embeddings via unsupervised
or self-supervised approaches, and then refine them with GNNs (Hamilton et al., 2017; Weihua Hu
et al., 2020).

We propose a fast semi-supervised embedding generation framework designed specifically for cases
where node embeddings are unavailable. Our method integrates three complementary optimization
components:

1. Unsupervised structure preservation, capturing global connectivity through a novel scal-
able approximation of graph modularity (Newman, 2006; Yazdanparast et al., 2021).

2. Supervised regularization, aligning labeled nodes within the same class via compactness
constraints.
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3. Semi-supervised propagation, refining unlabeled nodes using random-walk-based label
propagation (Raghavan et al., 2007) combined with attention-driven similarity weight-
ing (Wang et al., 2020).

By unifying these three components into a single iterative gradient ascent framework, our approach
produces high-quality node embeddings quickly and without requiring pre-existing features. The
fast convergence of the optimization procedure can make it well-suited to settings where labels are
introduced incrementally, making it especially relevant in real-world applications such as recom-
mendation (Pei et al., 2020), cybersecurity (Fang et al., 2022), and financial transaction monitoring
(Bukhori and Munir, 2023), where embeddings must be updated on the fly.

We evaluate our approach on standard benchmarks including Cora (McCallum et al., 2000), CiteSeer
(Giles et al., 1998), WikiCS (Mernyei and Cangea, 2020), Amazon Photo (McAuley et al., 2015),
PubMed (Namata et al., 2012) and ArXiV (Hu et al., 2020). We compare against widely used
unsupervised methods such as Node2Vec (Grover and Leskovec, 2016), DeepWalk (Perozzi et al.,
2014), VGAE (Kipf and Welling, 2016), M-NMF (Wang et al., 2017), the self-supervised DGI
(Veličković et al., 2019), two semi supervised baselines GraFN (Lee et al., 2022), ReVAR (Yan
et al., 2023) and precomputed embeddings. Downstream classification performance is assessed
using GCN (Kipf and Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton
et al., 2017).

Contributions. Our main contributions are as follows:

1. We introduce a fast semi-supervised embedding generation algorithm that requires no pre-
defined node embeddings.

2. In particular, we propose a linear time approximation of the graph modularity gradient,
which is fundamental to our fast embedding generation process.

3. Notably, the algorithm uses labels if available, but can be adapted to scenarios where labels
are completely unavailable with some compromise in performance.

4. We design a unified optimization framework that equally integrates unsupervised, super-
vised, and semi-supervised components.

2 RELATED WORK

Our approach connects to several lines of research: unsupervised embedding methods, self-
supervised, semi-supervised embedding methods, graph neural network baselines, and modularity-
driven optimization.

Unsupervised node embedding. Random-walk-based approaches such as DeepWalk (Perozzi et al.,
2014) and Node2Vec (Grover and Leskovec, 2016) learn node representations by applying Skip-
Gram training to sequences generated from biased or unbiased random walks. Variational Graph
Auto-Encoders (VGAE) (Kipf and Welling, 2016) extend autoencoding approaches to graphs by us-
ing a GCN encoder with a latent Gaussian distribution, achieving strong results in unsupervised link
prediction. Another method, M-NMF Wang et al. (2017) learn node embeddings by factorizing the
graph structure without using any label information. It integrates both the network’s local structure
(e.g., adjacency information) and global community structure (e.g., modularity) into a joint factor-
ization framework. These methods demonstrate that structural information alone can be leveraged
to build embeddings, since they are agnostic to label information.

Self-supervised learning. Contrastive frameworks such as Deep Graph Infomax (DGI) (Veličković
et al., 2019) maximize mutual information between local node embeddings and global summaries,
enabling representation learning without labels. Other approaches (e.g., SL-GAT (Wang et al.,
2020)) refine attention-based architectures with self-supervised objectives. These methods reduce
the reliance on labeled data but typically incur significant computational overhead.

Semi-supervised learning. Semi-supervised methods like GraFN (Lee et al., 2022) and ReVAR
(Yan et al., 2023) address the limitations of purely supervised or self-supervised graph learning by
combining a small amount of labeled data with structural information. GraFN aligns class predic-
tions across augmented graph views to improve class-discriminative representations by combining

2
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self-supervised and label-guided methods, while ReVAR, which is specifically designed for imbal-
anced scenarios, introduces variance-based regularization to mitigate class imbalance.

Graph neural networks for classification. Semi-supervised GNNs such as GCN (Kipf and
Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al., 2017) refine em-
beddings through message passing and neighborhood aggregation, making them effective classifiers
once initial embeddings are provided. Recent surveys highlight their utility across domains includ-
ing social networks (Li et al., 2023), knowledge graphs (Ye et al., 2022), and recommender systems
(Lu et al., 2025; Anand and Maurya, 2024). However, initializing GNNs with random embeddings
is ineffective for downstream tasks (Wang et al., 2025), motivating the need for fast strategies that
generate embeddings from scratch. It is to be noted that throughout the tables provided, we used
“SAGE” to represent GraphSAGE primarily due to space constraints.

Connections of proposed objective to prior works. Our proposed objective unifies three comple-
mentary components, each drawing inspiration from existing lines of research:

1. Unsupervised structural component. Modularity (Newman, 2006) and its scalable vari-
ants (Yazdanparast et al., 2021; Lu et al., 2018) have long been used for identifying com-
munities in graphs. Neural formulations such as DGCLUSTER (Bhowmick et al., 2023)
further relaxed modularity maximization into differentiable objectives. Inspired by this line
of work, we design an unsupervised objective that preserves structural regularities while
avoiding the computational overhead of spectral methods.

2. Supervised label-aware component. Semi-supervised GNNs such as GCN, GAT, and
GraphSAGE (Kipf and Welling, 2017; Veličković et al., 2018; Hamilton et al., 2017) in-
corporate label signals during message passing to improve classification performance. We
adapt this idea directly at the embedding generation stage, encouraging nodes with the same
label to have structurally similar embeddings. This distinguishes our approach from prior
GNN methods, which rely on node features.

3. Semi-supervised propagation component. Label propagation (Raghavan et al., 2007)
and attention-based refinements such as SL-GAT (Wang et al., 2020) have demonstrated
the ability to diffuse label information across the graph in a scalable way. We build on
these insights by incorporating a random-walk-based propagation mechanism that guides
the embeddings of unlabeled nodes toward those of reachable labeled nodes.

This work bridges these strands by proposing a fast semi-supervised algorithm that avoids depen-
dence on node features while combining the strengths of unsupervised structural preservation, su-
pervised label regularization, and semi-supervised propagation.

3 THE FUSE ALGORITHM

Our approach, Fast Unified Semi-supervised Node Embedding Learning from Scratch (FUSE) com-
bines linearized modularity optimization with supervised regularization and semi-supervised label
propagation to generate embeddings that are both structurally coherent and class-discriminative. We
introduce a differentiable formulation of modularity that enables gradient-based optimization and
integrate random walk-based propagation with attention to refine unlabeled node embeddings.

3.1 PROBLEM SETTING

Let G be a simple, undirected graph with nodes V , edges E, and adjacency matrix A. Let the degree
of a node v ∈ V be dv , and let the vector of degrees be d. Also let m = |E| and n = |V |. Consider
the classification task, where each node v ∈ V is associated with a label yv ∈ C.

Let us choose an embedding dimensionality k ∈ N. Consider an arbitrary downstream classification
model f : Rk → C. Our objective is to learn an embedding map p : V → Rk such that the
performance of the downstream task f ◦p is maximized. We will learn p as a continuous embedding
matrix S ∈ Rn×k, where each row Si,: denotes the k ≪ n-dimensional embedding of node i, i.e.,
Si,: = p(i).

3
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3.2 LINEAR MODULARITY OPTIMIZATION

We want to model modularity-aware embedding generation for graphs with unknown features with
the matrix S. The modularity function can be equivalently written as

Q(S) =
1

2m

∑
i,j

(
Aij −

didj
2m

)
s⊺i sj , (1)

which, in matrix form, reduces to

Q(S) =
1

2m
Tr (S⊺BS) , (2)

where B = A− dd⊺

2m is the modularity matrix (Newman, 2006).

Gradient Approximation. Differentiating w.r.t. S yields

∇SQexact =
1

m

(
AS− 1

2m
d(d⊺S)

)
. (3)

However, for enhanced numerical stability and computational efficiency, we employ the following
gradient approximation:

∇SQprop =
1

2m

(
AS− 1

2m
d(1⊺S)

)
, (4)

where 1⊺S =
∑

i Si,: is the unweighted sum of all node embeddings. We show in Appendix B
that the proposed gradient updates are never too large (i.e., the proposed gradient function has no
singularities).

Interpretation. The proposed gradient has an intuitive interpretation:

• The term AS performs a local aggregation, where each node’s embedding is updated by
summing the embeddings of its neighbors. This pulls nodes towards the center of their
immediate community.

• The term 1
2md(1⊺S) acts as a global correction. It estimates the expected connection

strength under the configuration model but uses the unweighted global average embed-
ding 1

2m1⊺S instead of the degree-weighted average. This pushes nodes away from the
global center of the graph, enhancing the separation between communities.

• The factor 1
2m scales the entire expression to be comparable across graphs of different sizes.

This approximation replaces the degree-weighted mean d⊺S in the exact gradient with the un-
weighted mean 1⊺S. This simplifies the computation and often leads to more stable optimization, as
it reduces the influence of high-degree nodes (hubs) on the global correction term, preventing their
features from overly dominating the global statistics.

Computational Complexity. The main steps of sparse matrix multiplication AS and degree cor-
rections scale as O(|E|k + nk) (|E| being the number of edges), while supervised gradient updates
remain linear in the number of nodes. The additional semi-supervised components add costs of
O(wℓ) for w random walks each of length l, and O(ndmaxk) for attention updates, dmax being the
maximum possible degree of a node. Orthonormalizing the n × k embedding matrix per iteration
incurs a cost of nk2 which is dominated by the sparse matrix multiplication O(|E|k) for moderate
k. Thus, the overall complexity is O(|E|k + nk + ndmaxk + wℓ + nk2), which is more scalable
than spectral methods that require O(n3) for eigen-decomposition.

3.3 SUPERVISED AND SEMI-SUPERVISED COMPONENTS

While modularity optimization preserves structural properties, it does not enforce label consistency.
We therefore introduce supervised and semi-supervised components.

4
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Supervised regularization. Given a set of ground-truth labels y ∈ Rn, we minimize intra-class
embedding variance by defining the loss

Qsup =
∑
c

∑
i∈Cc

∥Si,: − µc∥2, (5)

where µc =
1

|Cc|
∑

i∈Cc
Si,: is the class mean. The gradient is

∇Qsup = S− S̃, S̃i = µc for i ∈ Cc. (6)

This ensures embeddings of labeled nodes in the same class remain clustered.

Semi-supervised label propagation. For unlabeled nodes, we employ biased random walks
(Raghavan et al., 2007) that preferentially visit labeled nodes, allowing labels to diffuse across the
network. At each step, if labeled neighbors exist, they are selected with higher probability; other-
wise, the walk proceeds uniformly. Repeated walks per node accumulate labeled visits, defining a
propagation distribution. We will denote each labeled random walk byW .

To refine this signal, we adopt an attention mechanism (Veličković et al., 2018; Wang et al., 2020),
which weights the contribution of labeled nodes by similarity. For an unlabeled node i with embed-
ding Si,:, the attention weight for node j is

wij =
exp(S⊺

i,:Sj,:)∑
k∈ρ(i) exp(S

⊺
i,:Sk,:)

, (7)

where ρ(i) denotes the set of nodes visited in random walks from i. The corresponding semi-
supervised gradient is

∇SQsemi = Si,: −
∑
j

wijSj,:. (8)

This encourages unlabeled embeddings to shift toward weighted averages of similar labeled neigh-
bors.

3.4 OPTIMIZATION

We integrate modularity, supervised, and semi-supervised objectives into a unified gradient ascent
update:

∇SQtotal = ∇SQprop − λsup∇SQsup − λsemi∇SQsemi. (9)

Embeddings are updated as
S← S+ η∇SQtotal, (10)

where η is the learning rate. To ensure stability, S is orthonormalized after each iteration via QR
decomposition. The overall procedure is represented in Algorithm 1. Further implementation details
can be found in Appendices A and C.

4 EXPERIMENTS

4.1 DATASETS

The evaluation of the proposed semi-supervised modularity-based node embedding method is con-
ducted on six benchmark datasets: Cora (McCallum et al., 2000), CiteSeer (Giles et al., 1998),
WikiCS (Mernyei and Cangea, 2020), Amazon Photo or Photo (McAuley et al., 2015), PubMed
(Namata et al., 2012), and ArXiV (Hu et al., 2020). Each dataset consists of nodes representing en-
tities and edges signifying relationships (Table 4). For experiments, whenever necessary, we mask
labels of subsets of nodes (which are used for testing node classification). The experiments assume
that node features are unavailable, except for the case of a trivial baseline described in Section 4.2.
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Algorithm 1 FUSE

Input: Graph G(V,E), Labels y, Label Mask M, Learning Rate η, Regularization λsup, λsemi, Iter-
ations T

Output: Optimized Embeddings S
1: Convert G to adjacency A, compute degrees d, total edges m
2: Initialize S randomly, orthonormalize using QR
3: W ← LABELEDRANDOMWALKS(G,M,y) ▷ From Algorithm ??
4: W← COMPUTEATTENTIONWEIGHTS(S,W) ▷ From Algorithm 3
5: for t = 1 to T do
6: ∇SQprop ← 1

2m

(
AS− 1

2md(1⊺S)
)

▷ Modularity gradient
7: ∇SQsup ← S− S̃ ▷ Supervised gradient
8: ∇SQsemi ← Si,: −

∑
j wijSj,: ▷ Semi-supervised gradient

9: S← S+ η
(
∇SQprop − λsup∇SQsup − λsemi∇SQsemi

)
10: Orthonormalize S using QR-decomposition
11: end for
12: return S

4.2 BASELINES

We evaluate our approach against a range of baselines spanning unsupervised, self-supervised, semi-
supervised and trivial embedding strategies:

• Unsupervised baselines. We use Node2Vec (Grover and Leskovec, 2016) and Deep-
Walk (Perozzi et al., 2014), both random-walk-based methods that employ the Skip-
Gram model for representation learning. In addition, we include Variational Graph Auto-
Encoders (VGAE) (Kipf and Welling, 2016) as a neural network based unsupervised em-
bedding method. For VGAE, we initialized the feature matrix as an identity matrix since
we assumed that features were unavailable, as recommended by Kipf and Welling (2016).
We also implemented M-NMF (Wang et al., 2017) for generating the k dimensional em-
beddings, observing the downstream classification results later.

• Self-supervised baseline. We employ Deep Graph Infomax (DGI) (Veličković et al.,
2019), which maximizes mutual information between node-level and graph-level repre-
sentations. Here we initialized the feature matrix as a random n × k matrix (n = number
of nodes and k = 150) to compare with FUSE, since we assume that features were unavail-
able.

• Semi-supervised baseline. We employ GraFN (Lee et al., 2022) and ReVAR (Yan et al.,
2023) under the non-availability of features setting, using random feature matrices. Both
frameworks combine a GNN encoder with a classifier via customized losses, making em-
bedding generation and classification degenerate or inseparable. Hence, we tested them
with different encoders (GCN, GAT, GraphSAGE). As ReVAR targets imbalanced node
classification, we adapted it to the non-imbalanced case to generate embeddings through
the encoders and evaluate classifier performance. Reported runtime is the sum of embed-
ding generation and classification, as both are degenerate.

• Trivial baselines. Random embeddings serve as a lower-bound baseline, while directly
using the available node features act as an upper-bound benchmark.

Embeddings generated by each method are subsequently used as input to three GNN classifiers:
GCN (Kipf and Welling, 2017), GAT (Veličković et al., 2018), and GraphSAGE (Hamilton et al.,
2017). For all baselines, unless otherwise mentioned, we have assumed the default parameter values
for all experiments. To ensure comparability, we fix the embedding dimension to 150 and maintain
identical neural architectures across datasets: a two-layer vanilla GNN or MLP with no additional
hyperparameter tuning. For our method, the initialization of the embedding matrix S is random,
and dataset-specific parameter values of FUSE are summarized in Table 3 in Appendix A. All ex-
periments, where runtime for embedding generation is reported, were conducted on a workstation
equipped with an 13th Gen Intel(R) Core(TM) i9-13900 CPU, 64 GB of RAM; no GPU acceleration
was used.

6
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4.3 RESULTS

We now present the empirical evaluation of our proposed method across six benchmark datasets. Re-
sults are structured around five key aspects: (1) downstream classification performance and runtime
efficiency, (2) ablation studies analyzing the contributions of unsupervised, semi-supervised compo-
nents of the FUSE objective, (3) FUSE parameter sensitivity analysis, (4) scalability outcomes and
(5) missingness experiments across different masking mechanisms.

4.3.1 DOWNSTREAM CLASSIFICATION PERFORMANCE

Table 1 summarizes the classification accuracy and F1-scores obtained when embeddings from dif-
ferent methods are fed into GCN, GAT, and GraphSAGE under both 70-30 and 30-70 train-test
splits. Several consistent trends emerge:

• FUSE achieves competitive classification accuracy. On both splits, FUSE performs on
par with DeepWalk, Node2Vec and clearly outperforms self supervised algorithms like
DGI along with unsupervised M-NMF and semi-supervised GraFN and ReVAR in nearly
all cases. Similar to Node2Vec and DeepWalk it is robust across classifiers and also matches
or even surpasses the classification performance of the given embedding.

• FUSE facilitates superior learning for GCNs. FUSE-generated embeddings especially
enhance the learning capability of the GCN classifier. This is an important aspect in the
context of speed and scalability since GCN is significantly faster than GAT or GraphSAGE.

Overall, these results confirm that generating embeddings via FUSE leads to strong downstream
classification without requiring precomputed features.

4.3.2 DOWNSTREAM NODE CLUSTERING PERFORMANCE

We conducted node clustering experiments to evaluate the performance of FUSE compared to ex-
isting baselines. We measured one intrinsic metric, the DB Index, as well as two extrinsic metrics,
ARI and the V-Measure score. Dataset-wise results are presented in Tables 26- 37. We plotted these
results for the embeddings learned through GAT using FUSE initialization in Figures 5 and 6. We
observed that FUSE achieves the minimum DB index in most of the cases, indicating superior cluster
separation in the learned embeddings for most datasets. We also observed that the embeddings for
FUSE have the highest V-Measure score for all the datasets, which indicates that FUSE-initialized
classifiers can learn embeddings where the clusters are consistent with class labels.isting baselines.
We measured one intrinsic metric, the DB Index, as well as two extrinsic metrics,

4.3.3 RUNTIME EFFICIENCY

Tables 2 and 5 report embedding generation times across datasets. Although DeepWalk and
Node2Vec achieve downstream classification performance at par with FUSE, our algorithm exhibits
a significant computational advantage, being approximately 5 times faster on average. This advan-
tage is further supported by scalability studies on the ArXiV dataset (Appendix C.4, Tables 19 and
20), where FUSE is more than 7 times faster.

To address the potential concern that the default walk length of 80 for Node2Vec and DeepWalk
might inflate their runtimes, we conducted an additional experiment with a reduced walk length
of 5 for a single seed for these two algorithms only. Interestingly, across datasets, we observed
that, performance remained comparable to that with the longer walk, and runtimes did improve
significantly. Nonetheless, for larger datasets, especially with more edges, like Photos, WikiCS, and
ArXiV (see Appendix C.4, Tables 16, 17 and 18), FUSE maintains its advantage, delivering superior
classification performance while remaining around 3 times faster.

In fact, FUSE is faster than all compared unsupervised and self-supervised embedding algorithms
except DGI, which performs poorly in downstream classification and node clustering under the
assumption of feature unavailability. Semi-supervised algorithms like GraFN and ReVAR, while
computationally feasible, display significantly lower performance than Node2Vec, DeepWalk, and
FUSE (Table 1).

7
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Execution times for our ablation variants are compared in Table 7. The semi-supervised modularity-
based embeddings are only marginally slower than the purely unsupervised versions but are signif-
icantly more effective (see Table 6), confirming that label propagation is an efficient and beneficial
addition.

Classifier Embedding 70-30 Split 30-70 Split
Accuracy F1 Accuracy F1

GAT

Random 0.71± 0.014 0.68± 0.016 0.48± 0.028 0.40± 0.033
DeepWalk 0.82± 0.008 0.80± 0.009 0.79± 0.007 0.77± 0.009
Node2Vec 0.82± 0.007 0.80± 0.007 0.79± 0.007 0.77± 0.008
MNMF 0.55± 0.024 0.52± 0.026 0.34± 0.024 0.29± 0.022
VGAE 0.81± 0.009 0.79± 0.010 0.78± 0.005 0.76± 0.005
DGI 0.59± 0.073 0.51± 0.098 0.54± 0.070 0.45± 0.100
GraFN 0.76± 0.012 0.71± 0.052 0.70± 0.011 0.60± 0.075
ReVAR 0.43± 0.023 0.29± 0.029 0.42± 0.017 0.29± 0.029
FUSE 0.82± 0.009 0.80± 0.009 0.78± 0.006 0.76± 0.008
Given Emb. 0.86± 0.005 0.84± 0.006 0.84± 0.004 0.82± 0.006

GCN

Random 0.49± 0.031 0.45± 0.030 0.37± 0.032 0.33± 0.028
DeepWalk 0.64± 0.039 0.58± 0.050 0.67± 0.027 0.61± 0.039
Node2Vec 0.64± 0.042 0.57± 0.058 0.66± 0.026 0.61± 0.036
MNMF 0.46± 0.044 0.37± 0.051 0.36± 0.032 0.29± 0.026
VGAE 0.71± 0.017 0.68± 0.022 0.69± 0.017 0.66± 0.017
DGI 0.30± 0.026 0.12± 0.049 0.32± 0.048 0.15± 0.081
GraFN 0.74± 0.010 0.72± 0.009 0.66± 0.006 0.64± 0.007
ReVAR 0.35± 0.019 0.18± 0.028 0.35± 0.017 0.18± 0.028
FUSE 0.78± 0.014 0.76± 0.013 0.73± 0.020 0.71± 0.017
Given Emb. 0.58± 0.022 0.49± 0.018 0.56± 0.023 0.47± 0.018

SAGE

Random 0.56± 0.018 0.51± 0.015 0.35± 0.018 0.26± 0.014
DeepWalk 0.81± 0.011 0.79± 0.012 0.78± 0.008 0.76± 0.009
Node2Vec 0.81± 0.010 0.79± 0.009 0.77± 0.007 0.75± 0.008
MNMF 0.52± 0.016 0.47± 0.021 0.33± 0.019 0.27± 0.022
VGAE 0.80± 0.009 0.78± 0.011 0.76± 0.010 0.74± 0.011
DGI 0.57± 0.054 0.48± 0.088 0.54± 0.047 0.46± 0.070
GraFN 0.67± 0.010 0.63± 0.010 0.55± 0.008 0.51± 0.010
ReVAR 0.25± 0.009 0.15± 0.006 0.24± 0.005 0.16± 0.006
FUSE 0.80± 0.012 0.77± 0.013 0.75± 0.008 0.73± 0.010
Given Emb. 0.85± 0.008 0.83± 0.012 0.83± 0.006 0.80± 0.008

Table 1: Classification accuracy and F1-score (mean ± standard deviation) across embedding meth-
ods and three classifiers for all the datasets (except ArXiV). Results are reported for both 70-30 and
30-70 train-test splits. Best and second-best (excluding given embeddings) are highlighted in bold
and underlined, respectively.

4.3.4 ADDITIONAL ANALYSES

To substantiate the effectiveness and robustness of FUSE, we conducted ablation, sensitivity, scala-
bility, and masking studies (details in Appendix C).

Ablation Study. We evaluated the individual contributions of the semi-supervised and unsuper-
vised objectives (Appendix C.2), as well as their combination, under both the 30-70 and 70-30
train-test splits (assumed learning rate 0.05). The unsupervised component of the FUSE objective
alone performs significantly well compared to the only semi-supervised counterpart, especially for
the GraphSAGE classifier (Tables 6 and 8). This indicates that FUSE can also adapt well to sce-
narios where labels are completely unavailable, relying solely on the modularity-driven objective.
The semi-supervised component alone is also at par with the unsupervised component in terms of
classification performance. However, the unsupervised objective alone proves to be faster (Tables 7
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Embedding Cora CiteSeer Amazon Photo WikiCS PubMed Average
70-30 Split

Random 0.01 0.01 0.01 0.03 0.04 0.02
DeepWalk 50.48 51.41 292.30 747.20 490.72 326.422
Node2Vec 47.26 50.32 288.33 745.33 453.74 316.996
MNMF 41.75 56.34 323.31 672.46 1742.94 567.36
VGAE 12.95 14.32 137.28 329.46 235.24 145.850
DGI 6.78 7.96 53.42 134.58 39.43 48.434
FUSE 12.52 13.36 49.47 86.45 95.79 51.518

30-70 Split
Random 0.01 0.01 0.01 0.03 0.04 0.02
DeepWalk 50.99 51.84 292.98 792.11 477.77 333.138
Node2Vec 47.49 50.65 290.95 785.70 448.58 324.674
MNMF 41.75 56.34 323.31 672.46 1742.94 567.36
VGAE 12.97 14.48 136.07 338.10 226.29 145.582
DGI 6.83 7.33 53.37 126.80 36.05 46.076
FUSE 14.42 14.31 64.55 128.92 109.15 66.27

Table 2: Runtime comparison (in seconds) of different embedding methods across datasets (except
ArXiV) under 70-30 and 30-70 train-test splits. Reported values are averages over 5 runs. Best and
second-best (excluding random embeddings) are highlighted in bold and underlined, respectively.

and 9). It is clear from the overall results, however, that incorporating all three components of the
objective is indeed advantageous, especially for large-scale datasets.

Sensitivity Analysis. We analyzed robustness to hyperparameters (Tables 13 (a, b, c)). Learning
rate η and loss weights λsup, λsemi were most sensitive, while structural parameters (r, L,L′) tolerated
wider ranges. Deeper settings sometimes improved accuracy but increased runtime disproportion-
ately, suggesting moderate configurations as optimal (Appendix C.3).

Scalability Experiments. We additionally evaluated FUSE on a large-scale graph ArXiV to assess
its applicability to real-world settings. The results and execution times are reported in Tables 19 and
20 (Appendix C.4). To further examine scalability under more challenging conditions, we conducted
extended experiments on two substantially larger datasets: MAG (∼736K nodes, ∼8M edges) and
ogbn products (∼2.45M nodes, ∼61.9M edges) using a 30-70 split. As detailed in Appendix C.4
(Tables 14 and 15), the unsupervised variant of FUSE remained highly efficient, completing in
25 minutes on MAG and approximately 2.5 hours on the ogbn products graph, while producing
a substantially better F1-Score on ogbn-products, compared to the given embedding baseline. In
contrast, DeepWalk, which is among one of the best performing benchmarks in terms of Accuracy
and F1-Score, even with reduced walk parameters (walk length 5, 10 walks), failed to complete
within 24 hours on ogbn products using a single CPU worker. While FUSE trades off accuracy and
F1-score on these very large graphs, its substantial speed advantage and its compatibility with the
faster GCN classifier, highlights its suitability for feature-agnostic settings where fast embedding
generation is critical.

Label masking Experiments. In real-world datasets, class distributions among unlabeled nodes are
often highly imbalanced. To assess the robustness of FUSE under such imbalance, we evaluated its
performance under three label-masking strategies at 20%, 50%, and 80% missingness on the Cora
and CiteSeer datasets (details in Appendix C.5). FUSE remained consistently competitive across all
settings, showing a particular advantage with the GCN and GAT classifiers under high missingness
rates (80%) and more challenging masking schemes (MAR, MNAR).
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5 DISCUSSION AND CONCLUSION

In this paper, we introduce FUSE, a fast, scalable and high-performance node embedding generation
algorithm that does not require predefined features. The objective function of FUSE integrates an
unsupervised, a semi-supervised and a supervised component.

The unsupervised component of the FUSE objective is based on a novel linear-time maximization
of graph modularity, which enables runtime and performance-efficient embedding generation even
in the absence of labels. Modularity, being a global graph property, can be interpreted as learning
global structural features. The semi-supervised component, on the other hand, leverages label-biased
random walks and inter-node attention between labeled and unlabeled nodes. This component al-
lows the model to capture local structures at the node or neighborhood level during feature learning.
Supported by the global structure learning of the unsupervised module, we observe that FUSE can
extract meaningful local features using short random walks of length as little as five. Jointly op-
timizing these two objectives also contributes to the overall runtime efficiency of FUSE. Finally,
the supervised component reduces intra-class embedding variance, ensuring that nodes belonging
to the same class are closely aligned in the embedding space. By combining these elements, FUSE
achieves accuracy comparable to or better than established baselines, while being five to seven times
faster, particularly on large-scale datasets such as ArXiv.

Nevertheless, FUSE has some limitations that we would like to highlight. FUSE is designed to op-
erate in settings where node features are assumed to be unavailable. It is thus unable to incorporate
information extraneous to the graph structure. A simple extension of the algorithm to incorporate
node features would be to concatenate these features onto the embedding matrix S. Another direc-
tion for future work is to investigate how this framework can be adapted to dynamically evolving
graphs while maintaining its scalability benefits.

FUSE is designed for settings where node features are assumed to be unavailable, and therefore it
cannot leverage information external to the graph structure. This places FUSE in a specific niche:
feature-agnostic scenarios where fast, structure-driven embedding generation is required and mod-
erate reductions in accuracy is acceptable. Our large-scale scalability experiments support this char-
acterization. FUSE offers substantial computational advantages on large graphs such as MAG and
ogbn products. Notably, the unsupervised variant completes in minutes to a few hours while relying
solely on conventional CPU execution, with no GPU acceleration, multicore parallel processing, or
specialized high-performance libraries. FUSE is most suitable for applications in which labels are
available but features are absent or unreliable, and where scalability requirements outweigh the need
for the highest predictive performance.

REPRODUCIBILITY STATEMENT

All code used to perform the experiments and generate the results presented in this work is
included in the supplementary material as a zip archive. The benchmarking experimental re-
sults presented in Section 4.3 can be obtained from the files benchmarking utils.py,
benchmarking runner.ipynb and aggregation.ipynb files from the folder titled
‘FUSE Unsupervised Self-supervised Benchmarks’. MNMF results can be obtained across the
datasets from MNMF.ipynb inside the ‘MNMF Benchmark’ folder. For the other two semi-
supervised benchmarks, namely GraFN and ReVAR, the results can be obtained from the
files GraFN.ipynb, load datasets revar.ipynb and ReVar.ipynb inside the folders
‘GraFN Benchmark’ and ‘ReVAR Benchmark’ respectively. Ablation results in Appendix C.2 can
be found from the notebooks inside the folder ‘Ablation study’. The sensitivity analysis in Ap-
pendix C.3 (for each of the five datasets except ArXiV) and scalability results in Appendix C.4
are verifiable from the codes inside ‘Sensitivity Analysis’ and ‘Scalability Experiments’. The
experiments in Appendix C.5 can be run with the file benchmark.py in the folder ‘Experi-
ments with masking’.
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A DATASETS, ALGORITHM DETAILS AND VISUALIZATIONS

Input: Graph G = (V,E), labels
yL, dim k, params (η, λsup, λsemi, T )

Initialize S ∈ R|V |×k;
Orthonormalize (QR)

Label-aware random
walks / neighborhoods

Compute attention / weights

Loop:
t = 1, . . . , T

∇mod

(modularity)
∇sup

(supervised)
∇semi

(semi-supervised)

Update S: S ← S +
η(∇mod − λsup∇sup − λsemi∇semi)

Re-orthonormalize (QR)

Output: final embeddings S

(a)

Datasets
(Cora, Citeseer,

PubMed, WikiCS,
Amazon Photo, ArXiV)

Preprocess
(build adjacency A)

Create splits
(train / test)

Compute embeddings S
with embedding algorithms

Train on S
(GCN/GAT/SAGE)

Evaluate & analyze
Accuracy, F1,

runtime; ablation

Results & comparisons

(b)

Figure 1: Overview of the method and experiments. (a) Algorithm pipeline (FUSE) and (b) Experi-
mental workflow.
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Algorithm 2 Labeled Random Walks

Input: Graph G(V,E), Label Mask M, Labels y, Walks per node r, Walk length L, Max labeled
steps L′

Output: Set of labeled walksW
1: InitializeW ← ∅
2: for each node i ∈ V do
3: for w = 1 to r do
4: Initialize walk P ← [i], labeled count← 0
5: for t = 1 to L− 1 do
6: Let N (vt) be the neighbors of current node vt
7: if N (vt) is empty then
8: break
9: end if

10: NL(vt)← {u ∈ N (vt) |M[u] = 1}
11: if |NL(vt)| > 0 and labeled count < L′ then
12: Choose next node vt+1 uniformly from NL(vt) ▷ label-preferential step
13: labeled count← labeled count +1
14: else
15: Choose next node vt+1 uniformly from N (vt) ▷ unbiased step
16: end if
17: Append vt+1 to P
18: if M[vt+1] = 1 then
19: Add vt+1 toW[i]
20: end if
21: end for
22: end for
23: end for
24: returnW

Algorithm 3 Compute Attention Weights

Input: Embeddings S, Labeled WalksW
Output: Attention Weights W

1: for each unlabeled node i ∈ V do
2: for each labeled node j ∈ W[i] do
3: Compute similarity: sij = S⊺

i,:Sj,:

4: Compute attention: wij =
exp(sij)∑

k∈W[i] exp(sik)

5: end for
6: end for
7: return W

Parameter Value Description
k 150 Learnt node embedding dimension (in case node embeddings are not given)
η 0.05 Learning rate
λsupervised 1.0 Supervised loss weight
λsemi-supervised 2.0 Semi-supervised loss weight
T 200 Number of gradient ascent iterations
r 10 Number of random walks per node
L 5 Length of each random walk
L′ 3 Maximum labeled steps in a walk

Table 3: Hyperparameters used in semi-supervised modularity optimization for all datasets.
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Dataset # Nodes # Edges # Classes Given Embedding Dim.
Cora 2,708 5,429 7 1,433
CiteSeer 3,327 9,104 6 3,703
PubMed 19,717 44,338 3 500
Amazon Photo 7,487 119,043 8 745
WikiCS 11,701 216,123 10 300
ArXiV 1,69,343 1,166,243 40 128

Table 4: Statistics of the benchmark datasets used in the experiments.

Figure 2: Runtimes averaged across seeds for several datasets. FUSE shows clear advantage in
compared to Node2Vec and DeepWalk with default parameters. Even though DGI and VGAE are
faster than FUSE for some datasets, FUSE outperforms them significantly in terms of Accuracy and
F1-Score ass seen in Tables 1, 19 and 20.
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Figure 3: This Figure present accuracies and runtimes averaged across datasets for the three Ablation
cases of FUSE algorithm as presented in Section C.2.
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Figure 4: In this Figure we show Accuracy vs label rates for SAGE across several datasets. We
do not observe significant changes in accuracy with change in label rate for any of the algorithms.
There is a slight downward trend in most cases, with reduced proportion of labeled nodes (training
data), as expected.
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Figure 5: The Figure shows DB Index comparison for GAT-learnt embeddings across several ini-
tializations of the embedding generation benchmarks. We observe that the embeddings for FUSE
has the least DB index, indicating superior cluster separation in the learned embeddings for most
datasets

Figure 6: The Figure shows V-Measure comparison for GAT-learnt embeddings across several ini-
tializations of the embedding generation benchmarks. We observe that the embeddings for FUSE
have the highest V-Measure for all of the datasets. This indicates that FUSE-initialized classifiers
can learn embeddings where clusters are consistent with known class labels.
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Figure 7: UMAP visualizations of Cora 70-30 embeddings
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Figure 8: UMAP visualizations of Cora 30-70 embeddings
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Figure 9: UMAP visualizations of PubMed 70-30 embeddings
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Figure 10: UMAP visualizations of PubMed 30-70 embeddings

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

B THEORETICAL RESULTS

We will show that the operator norm, and hence the Fröbenius norm of the surrogate gradient
∇SQprop in equation 4 is bounded above.

Proposition 1.

sup
||x||≤1

∣∣∣∣(A− 1
2md1⊺)Sx

∣∣∣∣
||x||

≤M (11)

for some M ∈ R+

Proof. Since S is orthonormal, without loss of generality we can replace Sx with x in the numera-
tor, since for all x ∈ Rk there exists x̃ ∈ Rk such that x = Sx̃ and ||x|| = ||x̃||. So it is enough to
show that

sup
||x||≤1

∣∣∣∣(A− 1
2md1⊺)x

∣∣∣∣2
||x||2

≤M

for some M ∈ R+. We have,∣∣∣∣∣∣∣∣(A− 1

2m
d1⊺)x

∣∣∣∣∣∣∣∣2 = x⊺(A− 1

2m
d1⊺)⊺(A− 1

2m
d1⊺)x

= x⊺(A⊺A+
1d⊺d1⊺

4m2
− 1d⊺A+A⊺d1⊺

2m
)x

= x⊺A⊺Ax+ x⊺

(
n∑

i=1

d2i
4m2

1n×n −
1d⊺A+A⊺d1⊺

2m

)
x

Let us denote the neighborhood of a node vi by N (vi). Then,

x⊺1d⊺Ax =

(
n∑

i=1

xi

) n∑
i=1

 ∑
j:vj∈N (vi)

dj

xi


=⇒ x⊺A⊺d1⊺x =

(
n∑

i=1

xi

) n∑
i=1

 ∑
j:vj∈N (vi)

dj

xi


Additionally, it is easy to show that

∑n
i=1 d

2
i =

∑n
i=1

(∑
j:vj∈N (vi)

dj

)
. Let us denote ri =∑

j:vj∈N (vi)
dj . Then we have

x⊺

(
n∑

i=1

d2i
4m2

1n×n −
1d⊺A+A⊺d1⊺

2m

)
x =

(
n∑

i=1

xi

2m

)2 n∑
i=1

ri −
n∑

i=1

(xi

m

)( n∑
i=1

rixi

)
By Cauchy-Schwarz inequality, we have,

−
n∑

i=1

rixi ≤

√√√√ n∑
i=1

r2i

√√√√ n∑
i=1

x2
i

(
n∑

i=1

xi

)
≤

√√√√n

n∑
i=1

x2
i

(
n∑

i=1

xi

)(
n∑

i=1

ri

)
≤ n

√√√√ n∑
i=1

r2i

√√√√ n∑
i=1

x2
i
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Hence,

x⊺

(
n∑

i=1

d2i
4m2

1n×n −
1d⊺A+A⊺d1⊺

2m

)
x ≤

n
3
2

√∑n
i=1 r

2
i

(∑n
i=1 x

2
i

)
4m2

(n+ 4m)

=
n

3
2 (n+ 4m)

4m2

√√√√ n∑
i=1

r2i ||x||
2

From Proposition 3.1.2 in Brouwer and Haemers (2011) we know that ||A||op ≤ dmax, the maximum

degree of the graph. So finally, we choose M = n
3
2 (n+4m)
4m2

√∑n
i=1 r

2
i +d2max, and we are done.

Since the Fröbenius norm of a matrix is upper bounded by the square root of the rank times the
operator norm (Equation (2.3.7) in Golub and Van Loan (1996)), we finally have ||∇SQprop||2F ≤
n

5
2 (n+4m)
4m2

√∑n
i=1 r

2
i + nd2max, or as a coarser upper bound, ||∇SQprop||F ≤ O(n1.75m−0.25 +

n1.25m0.75 + n0.5m). This indicates that the entries in the surrogate gradient matrix cannot be too
large, and the surrogate gradient function has no singularities.

C EXTENDED RESULTS

C.1 SEMI-SUPERVISED BASELINES

Model Encoder (Split) Accuracy F1 Time (s)

GraFN

GCN (70-30) 0.74± 0.010 0.72± 0.009 18.65
GCN (30-70) 0.66± 0.006 0.64± 0.007 18.64
GAT (70-30) 0.76± 0.012 0.71± 0.052 103.80
GAT (30-70) 0.70± 0.011 0.60± 0.075 103.83
SAGE (70-30) 0.67± 0.010 0.63± 0.010 10.89
SAGE (30-70) 0.55± 0.008 0.51± 0.010 10.89

ReVAR

GCN (70-30) 0.35± 0.019 0.18± 0.028 43.74
GCN (30-70) 0.35± 0.017 0.18± 0.028 43.53
GAT (70-30) 0.43± 0.023 0.29± 0.029 385.26
GAT (30-70) 0.42± 0.017 0.29± 0.029 378.15
SAGE (70-30) 0.25± 0.009 0.15± 0.006 27.04
SAGE (30-70) 0.24± 0.005 0.16± 0.006 28.67

Table 5: Performance metrics (Accuracy, F1-score, and Execution Time in seconds) of the semi su-
pervised baselines for all datasets (except ArXiV) across 70-30 and 30-70 splits. Values are averages
over five runs.

Table 5 represents the results along with the time required for each of ReVAR and GraFN. In these
models, the embedding generation and classification process is degenerate for which the times re-
ported are a combination of the two instead of just the embedders as reported in Table 2.

C.2 ABLATION STUDY

To complement the analysis in the main text, we provide a more detailed view of the ablation ex-
periments that disentangle the contributions of the semi-supervised and unsupervised components
within FUSE. The learning rate of the FUSE algorithm was adjusted to 103 for the Only Unsu-
pervised Component case. All other relevant parameter values remain the same. Tables 6 and 7
summarize performance and runtime, respectively, across different classifiers and datasets for the
30-70 split, while Tables 8 and 9 show the same for the 70-30 split.

We conducted an experiment where, instead of orthonormalizing the embedding matrix after every
iteration, we orthonormalized it at the very end. The runtimes have been reported in Table 10. The
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Classifier Loss Accuracy F1

GAT
Only Semi-supervised Component 0.690 0.657
Both components 0.697 0.666
Only Unsupervised Component 0.688 0.657

GCN
Only Semi-supervised Component 0.656 0.633
Both components 0.668 0.649
Only Unsupervised Component 0.660 0.637

SAGE
Only Semi-supervised Component 0.525 0.530
Both components 0.732 0.707
Only Unsupervised Component 0.716 0.696

Table 6: Classification accuracy and F1-score across different FUSE variants and classifiers on the
30-70 split averaged across datasets.

Embedding Dataset AverageCora CiteSeer Amazon Photo WikiCS PubMed
Only Semisupervised 8.18 8.04 50.18 79.60 103.62 49.124
Only Unsupervised 3.44 4.84 11.04 24.02 42.63 17.194
Both 8.99 8.63 46.86 77.39 126.36 53.246

Table 7: Execution times (in seconds) of different FUSE components across datasets for 30-70 split.

Classifier Loss Accuracy F1

GAT
Only Semi-supervised Component 0.75 0.72
Both components 0.74 0.72
Only Unsupervised Component 0.74 0.72

GCN
Only Semi-supervised Component 0.71 0.68
Both components 0.70 0.68
Only Unsupervised Component 0.71 0.68

SAGE
Only Semi-supervised Component 0.69 0.66
Both components 0.76 0.73
Only Unsupervised Component 0.75 0.73

Table 8: Classification accuracy and F1-score across different FUSE variants and classifiers on the
70-30 split averaged across datasets.

Embedding Dataset AverageCora CiteSeer Amazon Photo WikiCS PubMed
Only Semisupervised 6.74 7.79 31.04 53.81 69.69 33.814
Only Unsupervised 3.49 4.15 10.73 23.84 34.66 15.574
Both 8.08 7.29 33.76 58.75 70.07 35.59

Table 9: Execution times (in seconds) of different FUSE components across datasets for 70-30 split.
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Table 10: Runtime (seconds) of FUSE across datasets for the 70–30 and 30–70 splits.

Split Cora CiteSeer Amazon Photo WikiCS PubMed ArXiV
70–30 10.51± 0.479 10.19± 0.139 56.22± 0.961 92.04± 1.549 104.62± 1.358 1221.85

30–70 13.18± 0.289 11.89± 0.211 83.51± 0.783 137.48± 0.820 136.89± 1.368 1705.38

Table 11: Accuracy and F1 (70–30 split) of FUSE across datasets using GAT, GCN and SAGE.

Dataset GAT GCN SAGE
Accuracy F1 Accuracy F1 Accuracy F1

CiteSeer 0.72± 0.016 0.68± 0.012 0.67± 0.008 0.64± 0.004 0.69± 0.014 0.67± 0.010
Cora 0.86± 0.009 0.85± 0.012 0.82± 0.013 0.80± 0.018 0.84± 0.007 0.83± 0.008
Amazon Photo 0.92± 0.004 0.91± 0.004 0.91± 0.006 0.90± 0.007 0.89± 0.007 0.88± 0.010
PubMed 0.79± 0.011 0.79± 0.011 0.80± 0.007 0.79± 0.008 0.77± 0.011 0.75± 0.013
WikiCS 0.81± 0.002 0.79± 0.008 0.76± 0.006 0.74± 0.009 0.73± 0.011 0.69± 0.017

Averaged 0.82± 0.008 0.80± 0.009 0.79± 0.008 0.77± 0.009 0.79± 0.010 0.76± 0.012

ArXiV1 0.40 0.09 0.53 0.25 0.47 0.11
ArXiV2 0.63 0.44 0.49 0.24 0.59 0.19
ArXiV3 0.68 0.46 0.50 0.24 0.62 0.24

dataset-wise (except ArXiV) and the averaged results are shown in Table 11 and Table 12. ArXiV1

denotes the results for the ArXiV dataset in which we orthonormalize the embedding matrix at the
very end instead of doing it every iteration.
Case-1 : We orthonormalized S at the very end instead of doing it every iteration. It took 367.31
seconds for the 70-30 split and 492.46 seconds for the 30-70 split.
Case-2 : We orthonormalized S in every iteration. It took 650.91 seconds for the 70-30 split and
782.43 seconds for the 30-70 split.
The results have been reported in Table 11 and Table 12 respectively as ArXiV2 (for Case-1) and
ArXiV3 (for Case-2). From the results, we observe that orthonormalizing at the very end instead of
every iteration indeed takes slightly less time (the margin is greater when performed on a stronger
CPU), but degrades performance in some cases, such as ArXiV. Hence, we recommend using or-
thonormalization per iteration, which incurs a cost of O(nk2). This is included in Section 3.2
(paragraph: Computational Complexity).

Performance Across Classifiers. As shown in Tables 6 and 8, the relative contribution of each com-
ponent is consistent across GAT, GCN, and GraphSAGE. Notably, embeddings trained with only the
unsupervised modularity term are better than those using only the semi-supervised term on an av-
erage. This confirms that community structure provides a strong inductive bias even when label
information is sparse. However, combining both objectives consistently yields the highest accu-
racy and F1-scores overall, demonstrating that structural and label-based signals are complementary
rather than interchangeable. Interestingly, the performance gap between “Both” and “Unsupervised
only” is smaller than that between “Both” and “Semi-supervised only”, especially for GraphSAGE,
suggesting that topology carries more transferable information than a small label set in these bench-
marks.

Runtime Considerations. Tables 7 and 9 highlight that the efficiency of FUSE is not compromised
by integrating multiple objectives. The combined loss incurs only a marginal overhead relative to
either component in isolation, while producing markedly better embeddings. This efficiency gain
stems from the linearized modularity update, which dominates the runtime irrespective of whether
label propagation is included. We also observe that datasets with a larger number of nodes and
denser connectivity like PubMed and WikiCS yield proportionally higher execution times, but the
scaling behavior remains consistent across variants.

These results provide additional evidence that FUSE’s strength lies not in any single component, but
in their unification. The unsupervised modularity term ensures that embeddings respect community
structure, while the semi-supervised propagation aligns them with available labels. Their joint opti-
mization balances exploration of global topology with exploitation of label information, leading to
robust performance without significant runtime penalties.
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Table 12: Accuracy and F1 (30–70 split) of FUSE across datasets using GAT, GCN and SAGE.

Dataset GAT GCN SAGE
Accuracy F1 Accuracy F1 Accuracy F1

CiteSeer 0.63± 0.003 0.59± 0.003 0.61± 0.009 0.57± 0.009 0.62± 0.009 0.59± 0.008
Cora 0.81± 0.007 0.79± 0.008 0.78± 0.002 0.77± 0.004 0.79± 0.004 0.78± 0.003
Amazon Photo 0.92± 0.002 0.91± 0.003 0.90± 0.004 0.89± 0.004 0.89± 0.002 0.87± 0.003
PubMed 0.79± 0.003 0.79± 0.003 0.79± 0.002 0.78± 0.002 0.76± 0.003 0.74± 0.004
WikiCS 0.79± 0.002 0.77± 0.002 0.76± 0.006 0.73± 0.006 0.72± 0.007 0.68± 0.009

Averaged 0.79± 0.003 0.77± 0.004 0.77± 0.004 0.75± 0.005 0.76± 0.005 0.73± 0.005

ArXiV1 0.49 0.16 0.54 0.27 0.50 0.14
ArXiV2 0.64 0.47 0.41 0.10 0.59 0.26
ArXiV3 0.64 0.44 0.45 0.14 0.59 0.24

C.3 SENSITIVITY ANALYSIS

To further assess the robustness of FUSE, we carried out a sensitivity analysis of its main hyperpa-
rameters across datasets. Tables 13 (a, b, c) summarize the optimal settings discovered under two
search protocols. These results provide insights into which hyperparameters consistently influence
performance and which are less critical.

Influential hyperparameters. Among the parameters, the learning rate η and the loss weights
λsup and λsemi emerge as the most sensitive across datasets. Small variations in η often lead to
pronounced differences in both accuracy and convergence speed, indicating the need for dataset-
specific tuning. Similarly, the balance between the supervised and semi-supervised terms must be
carefully adjusted, as an overemphasis on one can suppress the benefits of the other. By contrast, the
neighborhood radius r and structural depths L,L′ showed more stable behavior, with broad ranges
yielding near-optimal accuracy.

Consistency Across Datasets. Interestingly, although the exact optimal values vary, the relative
importance of hyperparameters remains consistent. For example, on both Cora and PubMed, ad-
justing λsemi within [2, 2.5] was essential to achieve competitive performance, while on WikiCS and
CiteSeer, a more balanced weighting was required. The Amazon Photo dataset was less sensitive
overall, achieving high accuracy under multiple configurations, suggesting that denser graphs with
richer labels are inherently more robust to hyperparameter shifts.

Runtime Trade-offs. The sensitivity analysis also reveals a runtime–performance trade-off. While
larger values of T or deeper L,L′ occasionally yield marginal accuracy gains, they incur dispropor-
tionately higher costs in training time (e.g., PubMed in Table 13 (a and b). This indicates diminishing
returns from overparameterization, and reinforces the practical value of moderate configurations that
balance accuracy and efficiency.

C.4 SCALABILITY EXPERIMENTS

1. Purpose and Setup for ArXiV. In addition to the experiments above, we performed an-
other benchmarking experiment on dataset, namely ArXiV(∼ 169K nodes, ∼ 1.1M edges)
for investigating the scalability of FUSE. This dataset is highly imbalanced as well. Given
that the dataset is significantly larger than others for FUSE we have considered a learning
rate of 0.05 to ensure convergence within 200 iterations. For VGAE, we took the initial
matrix to be a n×k random matrix instead of the n×n identity matrix as assumed in other
experiments. This is to avoid scalability issues due to very large value of n for this dataset.
All other parameters remain the same.
Observations on ArXiV. The results across the two splits (30-70 and 70-30) for a fixed
seed is given in Tables 19 and 20. The results reveal that FUSE is not only scalable and ro-
bust to labels, but performs at par with unsupervised algorithms like Node2Vec and Deep-
Walk in terms of performance metrics. Furthermore, it offers a significant advantage in
terms of computational time. In addition, it outperforms the semi supervised algorithms
like GraFN and ReVAR; in terms of Accuracy, F1 Score by a large margin. Notably, the
MNMF algorithm was not scalable to this particular dataset.
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2. We performed additional scalability analyses on two yet larger datasets: MAG (∼736K
nodes, ∼8M citation edges) and ogbn products (∼2.45M nodes, ∼61.9M edges) using a
30-70 split (70% label masking). Since DeepWalk and Node2Vec consistently achieve the
strongest accuracy and F1 scores among the baseline embedding methods, and because
their performance remains stable even with shorter walk lengths (5) and fewer walks (10),
we report comparisons against DeepWalk using these reduced parameters. We also include
the given embedding as a high-end benchmark. These reductions substantially lower the
computational cost of the random-walk baselines while preserving their representative per-
formance, providing a meaningful reference point for FUSE in terms of scalability. We
exclude GAT from these comparisons due to its high computational overhead and instead
evaluate against GCN and GraphSAGE.
Our observations (Tables 14 and 15) are as follows:

(a) FUSE remains faster on MAG compared to DeepWalk, with the unsupervised variant
being at least three times faster. On the ogbn products dataset, the unsupervised ver-
sion of FUSE completes in approximately 2.5 hours. In contrast, DeepWalk could not
complete within 24 hours while the full version takes a little more than 10 hours using
the standard Python implementation with a single CPU worker and no GPU.

(b) While FUSE is fast, in a few cases it sacrifices Accuracy and F1-Score, and this perfor-
mance gap becomes more pronounced on larger datasets. Therefore, the applicability
of FUSE is most relevant in feature-agnostic settings where fast embedding generation
is the primary requirement.

(c) FUSE is compatible with GCN but performs less effectively with GraphSAGE.

isting baselines. We measured one intrinsic metric, the DB Index, as well as two extrinsic
metrics,

3. Analysis for Node2Vec and DeepWalk for a lower walk length. To address the poten-
tial concern that the default walk length of 80 for Node2Vec and DeepWalk might in-
flate their runtimes, we conducted an additional experiment with a reduced walk length
of 5 for a single seed for these two algorithms. Tables 16, 17, and 18 summarize the re-
sults of this experiment across all datasets, reporting classification accuracy, F1-score, and
runtime for both 70-30 and 30-70 train-test splits.
Performance Analysis: For most datasets, the classification performance of Node2Vec
and DeepWalk with the shorter walk length remained largely comparable to that obtained
with the default longer walk, suggesting that reducing the walk length does not severely
compromise the quality of learned embeddings.
Runtime Comparison: Reducing the walk length substantially improved the runtime
of both Node2Vec and DeepWalk across datasets. As reported in Table 18, runtime reduc-
tions of FUSE regarding these two algorithms are particularly significant for large datasets
like Photos, WikiCS, and ArXiV with more edges. For example, on ArXiV, DeepWalk and
Node2Vec required approximately 3,100–3,200 seconds for the 70-30 split, whereas FUSE
completed within 1,360 seconds, which is roughly a 3 times improvement in speed.
FUSE Advantage: Despite the reduction in random walk length for Node2Vec and Deep-
Walk, FUSE was consistently equally or more effective in both performance and runtime
metrics. FUSE embeddings yielded higher classification accuracy and F1-scores compared
to DeepWalk and Node2Vec especially for a larger dataset like ArXiV with a higher number
of edges, even when the latter used a very short walk length. This indicates that FUSE’s
embedding methodology is not only scalable but also robust to variations in graph size
and connectivity, offering a more efficient alternative for large-scale graph representation
learning (Tables 16, 17).

C.5 EXPERIMENTS ON DIFFERENT MASKING MECHANISMS

We also performed experiments on various masking rates and mechanisms to investigate the robust-
ness of our method. We analyzed our method on 3 types of simulated masking mechanisms, based
on the 3 types of missingness as described in Rubin (1976). The notations of MCAR, MAR and
MNAR have been redefined for our specific use case. We describe these mechanisms here:
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Dataset k η λsup λsemi T r L L′ Accuracy (%) Time (s)
Cora 145 0.31 0.6 1.9 200 20 4 1 80.47 18.92
CiteSeer 135 0.51 0.8 1.5 450 13 5 3 63.32 25.56
PubMed 155 0.11 0.9 2.0 450 12 9 1 81.17 226.58
WikiCS 130 0.28 1.1 1.1 200 20 3 2 74.05 76.66
Amazon Photo 100 0.21 1.7 2.5 300 13 3 2 89.15 59.47

(a) Optimal hyperparameters in the 30-70 setup.

Dataset k η λsup λsemi T r L L′ Accuracy (%) Time (s)
Cora 170 0.35 0.5 2.5 250 20 3 2 85.59 21.14
CiteSeer 200 0.79 2.2 1.1 300 15 4 3 73.74 24.75
PubMed 180 0.59 2.2 1.2 350 18 3 3 84.09 303.46
WikiCS 140 0.37 1.8 2.3 250 20 3 1 76.75 78.22
Amazon Photo 120 0.79 2.1 1.1 100 12 4 3 90.71 34.42

(b) Optimal hyperparameters in the 70-30 setup.

Dataset η λsup λsemi r L L′ Accuracy (%) Time (s)
Cora 0.25 0.9 2.3 17 4 9 80.16 21.12
CiteSeer 0.35 1.3 1.7 15 7 2 63.27 35.57
PubMed 0.46 0.8 2.5 18 4 1 80.93 79.95
WikiCS 0.03 0.8 1.3 15 3 2 73.79 71.44
Amazon Photo 0.49 1.1 2.3 9 3 10 89.09 44.61

(c) Optimal hyperparameters under k=150, T=200 for the 30-70 setup.

Table 13: Optimal hyperparameters of FUSE.

Table 14: Results on the MAG dataset with mask fraction 0.7 (30-70 split).

Embedding Classifier Embed Time (s) Accuracy F1 Score
FUSE GCN 4075.66 0.241 0.094
FUSE SAGE 4075.66 0.154 0.009
FUSE (unsup) GCN 1520.15 0.13 0.018
FUSE (unsup) SAGE 1520.15 0.12 0.008
DeepWalk (walk length=5) GCN 5549.27 0.041 0.000
DeepWalk (walk length=5) SAGE 5549.27 0.223 0.203
Given GCN - 0.082 0.002
Given SAGE - 0.224 0.023

Table 15: Results on the obgn products dataset with mask fraction 0.3 (30-70 split).

Embedding Classifier Embed Time (s) Accuracy F1 Score
FUSE GCN 36571.08 0.801 0.443
FUSE SAGE 36571.08 0.273 0.009
FUSE (unsup) GCN 10334.95 0.706 0.326
FUSE (unsup) SAGE 10334.95 0.510 0.175
DeepWalk (walk length=5) GCN NA NA NA
DeepWalk (walk length=5) SAGE NA NA NA
Given GCN - 0.61 0.255
Given SAGE - 0.759 0.251
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Classifier Embedding 70-30 Split 30-70 Split
Accuracy F1 Accuracy F1

GAT DeepWalk (walk length=5) 0.81 0.793 0.78 0.764
Node2Vec (walk length=5) 0.81 0.792 0.78 0.756
FUSE 0.82 0.795 0.78 0.751

GCN DeepWalk (walk length=5) 0.62 0.552 0.65 0.578
Node2Vec (walk length=5) 0.62 0.554 0.65 0.598
FUSE 0.77 0.753 0.73 0.699

SAGE DeepWalk (walk length=5) 0.81 0.786 0.78 0.754
Node2Vec (walk length=5) 0.81 0.781 0.77 0.751
FUSE 0.79 0.769 0.75 0.731

Table 16: Classification accuracy and F1-score (averaged) for DeepWalk (walk length=5),
Node2Vec (walk length=5) and FUSE across three classifiers for all the datasets (except ArXiV)
for a fixed seed. Results are reported for both 70-30 and 30-70 train-test splits.

Classifier Embedding 70-30 Split 30-70 Split
Accuracy F1 Accuracy F1

GAT DeepWalk (walk length=5) 0.66 0.42 0.65 0.40
Node2Vec (walk length=5) 0.64 0.39 0.64 0.38
FUSE 0.67 0.47 0.64 0.43

GCN DeepWalk (walk length=5) 0.47 0.18 0.48 0.21
Node2Vec (walk length=5) 0.46 0.15 0.49 0.22
FUSE 0.50 0.24 0.45 0.14

SAGE DeepWalk (walk length=5) 0.61 0.23 0.60 0.23
Node2Vec (walk length=5) 0.59 0.22 0.58 0.21
FUSE 0.62 0.23 0.60 0.25

Table 17: Classification accuracy and F1-score for DeepWalk (walk length=5), Node2Vec
(walk length=5) and FUSE across three classifiers for ArXiV for a fixed seed. Results are reported
for both 70-30 and 30-70 train-test splits. The best metric values across each classifier have been
highlighted in bold.

Embedding Cora CiteSeer Amazon Photo WikiCS PubMed ArXiV
70-30 Split

DeepWalk (walk length=5) 3.92 4.23 152.48 412.52 36.04 3290.21
Node2Vec (walk length=5) 3.64 3.84 154.83 417.46 35.44 3217.85
FUSE 12.67 13.30 49.15 84.88 96.76 1360.30

30-70 Split
DeepWalk (walk length=5) 3.72 3.81 155.53 421.54 36.01 3143.32
Node2Vec (walk length=5) 3.65 3.80 154.27 423.19 35.90 3141.81
FUSE 14.25 14.55 64.63 111.87 104.89 1698.52

Table 18: Runtime comparison (in seconds) of DeepWalk (walk length=5), Node2Vec
(walk length=5) and FUSE across datasets under 70-30 and 30-70 train-test splits for a fixed seed.
The least runtimes have been highlighted in bold.

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

• Masking-Completely-At-Random (MCAR): The probability of a node label being masked
is independent of the data.

• Masking-At-Random (MAR): The probability of a node label being masked is dependent
on the feature vector of the node.

• Masking-Not-At-Random (MNAR): The probability of a node label being masked depends
both on the feature vector of the node, and the label itself.

We simulated these masking scenarios using a procedure similar to Jarrett et al. (2022), where the
masks were generated using a logistic model with random coefficients. Further details can be found
in the attached code. For each masking scenario, we tested 3 masking rates: 0.2, 0.5 and 0.8,
and reported the mean and standard deviations of the classification accuracy and F1 score over 10
iterations with different random seeds. The Multi-Layer Perceptron (MLP) was chosen to have depth
and width equivalent to the graph neural network models, in this case 2 and 16 respectively. The
associated results are given in Tables 38– 43.

Classifier Embedding Accuracy (%) F1 Score Time (s)

GCN

Random 22.58 0.05 0.4303
DeepWalk 51.43 0.27 12996.76
Node2Vec 50.32 0.25 12038.33
VGAE 16.17 0.01 1098.25
DGI 16.16 0.01 758.04
FUSE 59.65 0.25 1698.52
GraFN 26.28 0.08 360.64
ReVAR 16.14 0.01 468.55
Given 41.22 0.10 0.0521

GAT

Random 19.08 0.02 0.4303
DeepWalk 67.65 0.44 12996.76
Node2Vec 66.86 0.44 12038.33
VGAE 16.16 0.01 1098.25
DGI 16.16 0.01 758.04
FUSE 63.83 0.43 1698.52
GraFN 57.04 0.39 13712.21
ReVAR 16.16 0.01 9265.35
Given 56.74 0.28 0.0521

SAGE

Random 15.13 0.02 0.4303
DeepWalk 61.95 0.23 12996.76
Node2Vec 61.75 0.24 12038.33
VGAE 16.16 0.01 1098.25
DGI 16.16 0.01 758.04
FUSE 59.65 0.25 1698.52
GraFN 36.49 0.13 199.11
ReVAR 15.81 0.01 285.55
Given 53.65 0.18 0.0521

Table 19: Performance of different embedding–classifier pairs (except GraFN and ReVAR as they
do have degenerate embedders and classifiers) on the ArXiv dataset (30–70 split) for a fixed seed.
Embedding generation times were added across each of the embeddings except GraFN and ReVAR
for which the time required by each encoder is given separately. The best and second-best in each
metric for each classifier are highlighted in bold and underlined, respectively.
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Classifier Embedding Accuracy F1 Score Time (s)

GCN

Random 33.19 0.4628
DeepWalk 50.04 0.2180 13029.78
Node2Vec 49.20 0.1992 12899.23
VGAE 13.12 0.0058 1072.42
DGI 16.37 0.0070 633.06
FUSE 49.97 0.2353 1360.30
GraFN 26.21 0.07 360.17
ReVAR 16.37 0.01 432.88
Given 38.19 0.0794 0.0473

GAT

Random 22.37 0.0300 0.4628
DeepWalk 68.58 0.4601 13029.78
Node2Vec 67.87 0.4506 12899.23
VGAE 13.44 0.0082 1072.42
DGI 13.13 0.0073 633.06
FUSE 67.45 0.4682 1360.30
GraFN 61.35 0.43 13564.56
ReVAR 16.37 0.01 9462.59
Given 58.74 0.3294 0.0473

SAGE

Random 16.15 0.0163 0.4628
DeepWalk 62.39 0.2421 13029.78
Node2Vec 62.03 0.2421 12899.73
VGAE 16.53 0.0092 1072.42
DGI 16.37 0.0070 633.06
FUSE 61.91 0.2344 1360.30
GraFN 44.73 0.17 248.13
ReVAR 16.13 0.01 321.53
Given 54.16 0.1792 0.0473

Table 20: Performance of different embedding–classifier pairs (except GraFN and ReVAR as they
have degenerate embedders and classifiers) on the ArXiv dataset (70–30 split) for a fixed seed.
Embedding generation times were added across each of the embeddings except GraFN and ReVAR
for which the time required by each encoder is given separately. The best and second-best in each
metric, for each classifier are highlighted in bold and underlined, respectively.
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Table 21: Cora – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT DeepWalk 0.85 ± 0.010 0.84 ± 0.012 0.80 ± 0.009 0.79 ± 0.010
DGI 0.62 ± 0.225 0.58 ± 0.262 0.56 ± 0.225 0.47 ± 0.339
FUSE 0.86 ± 0.009 0.85 ± 0.011 0.81 ± 0.007 0.80 ± 0.006
Given 0.87 ± 0.011 0.86 ± 0.015 0.83 ± 0.010 0.82 ± 0.010
Node2Vec 0.85 ± 0.014 0.84 ± 0.016 0.80 ± 0.005 0.78 ± 0.007
Random 0.84 ± 0.008 0.83 ± 0.012 0.74 ± 0.004 0.73 ± 0.005
VGAE 0.86 ± 0.007 0.86 ± 0.009 0.79 ± 0.010 0.78 ± 0.010

GCN DeepWalk 0.82 ± 0.012 0.80 ± 0.013 0.78 ± 0.016 0.76 ± 0.018
DGI 0.30 ± 0.101 0.10 ± 0.084 0.28 ± 0.123 0.08 ± 0.060
FUSE 0.82 ± 0.011 0.81 ± 0.012 0.79 ± 0.006 0.78 ± 0.004
Given 0.82 ± 0.007 0.81 ± 0.011 0.81 ± 0.011 0.79 ± 0.015
Node2Vec 0.81 ± 0.015 0.80 ± 0.017 0.78 ± 0.012 0.76 ± 0.013
Random 0.68 ± 0.019 0.67 ± 0.019 0.60 ± 0.011 0.58 ± 0.013
VGAE 0.82 ± 0.009 0.81 ± 0.009 0.78 ± 0.008 0.76 ± 0.010

SAGE DeepWalk 0.84 ± 0.021 0.83 ± 0.024 0.79 ± 0.009 0.78 ± 0.011
DGI 0.57 ± 0.168 0.51 ± 0.221 0.52 ± 0.143 0.45 ± 0.201
FUSE 0.84 ± 0.012 0.83 ± 0.012 0.79 ± 0.006 0.78 ± 0.006
Given 0.86 ± 0.012 0.85 ± 0.014 0.83 ± 0.012 0.81 ± 0.020
Node2Vec 0.84 ± 0.016 0.83 ± 0.016 0.78 ± 0.014 0.77 ± 0.017
Random 0.62 ± 0.038 0.59 ± 0.036 0.41 ± 0.031 0.34 ± 0.029
VGAE 0.84 ± 0.006 0.83 ± 0.012 0.78 ± 0.009 0.77 ± 0.008

Table 22: CiteSeer – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.70 ± 0.021 0.66 ± 0.019 0.61 ± 0.010 0.58 ± 0.009
DGI 0.31 ± 0.190 0.20 ± 0.234 0.31 ± 0.144 0.20 ± 0.179
FUSE 0.71 ± 0.014 0.68 ± 0.010 0.63 ± 0.008 0.59 ± 0.006
Given 0.74 ± 0.016 0.71 ± 0.013 0.69 ± 0.006 0.66 ± 0.006
Node2Vec 0.69 ± 0.019 0.65 ± 0.018 0.60 ± 0.004 0.57 ± 0.005
Random 0.70 ± 0.014 0.66 ± 0.011 0.58 ± 0.006 0.55 ± 0.007
VGAE 0.71 ± 0.012 0.67 ± 0.010 0.61 ± 0.005 0.58 ± 0.005

GCN

DeepWalk 0.60 ± 0.026 0.56 ± 0.027 0.57 ± 0.011 0.54 ± 0.013
DGI 0.20 ± 0.024 0.06 ± 0.003 0.22 ± 0.029 0.08 ± 0.046
FUSE 0.67 ± 0.012 0.64 ± 0.010 0.62 ± 0.004 0.58 ± 0.004
Given 0.69 ± 0.005 0.66 ± 0.007 0.68 ± 0.009 0.64 ± 0.010
Node2Vec 0.59 ± 0.020 0.55 ± 0.028 0.56 ± 0.013 0.53 ± 0.014
Random 0.50 ± 0.011 0.47 ± 0.011 0.42 ± 0.009 0.40 ± 0.009
VGAE 0.61 ± 0.012 0.58 ± 0.010 0.57 ± 0.011 0.54 ± 0.012

SAGE

DeepWalk 0.68 ± 0.011 0.64 ± 0.013 0.61 ± 0.005 0.57 ± 0.008
DGI 0.31 ± 0.102 0.24 ± 0.117 0.32 ± 0.085 0.26 ± 0.101
FUSE 0.70 ± 0.015 0.67 ± 0.011 0.62 ± 0.010 0.59 ± 0.009
Given 0.75 ± 0.016 0.72 ± 0.014 0.70 ± 0.008 0.66 ± 0.004
Node2Vec 0.67 ± 0.015 0.63 ± 0.013 0.59 ± 0.011 0.55 ± 0.007
Random 0.48 ± 0.021 0.43 ± 0.018 0.30 ± 0.019 0.25 ± 0.015
VGAE 0.68 ± 0.010 0.63 ± 0.006 0.58 ± 0.003 0.54 ± 0.007
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Table 23: Amazon Photo – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.93 ± 0.005 0.93 ± 0.005 0.92 ± 0.003 0.92 ± 0.004
DGI 0.89 ± 0.011 0.87 ± 0.014 0.89 ± 0.010 0.88 ± 0.014
FUSE 0.92 ± 0.006 0.91 ± 0.008 0.92 ± 0.003 0.91 ± 0.003
Given 0.94 ± 0.002 0.93 ± 0.004 0.94 ± 0.003 0.93 ± 0.003
Node2Vec 0.93 ± 0.005 0.93 ± 0.007 0.92 ± 0.003 0.92 ± 0.003
Random 0.92 ± 0.007 0.91 ± 0.009 0.91 ± 0.004 0.90 ± 0.003
VGAE 0.92 ± 0.005 0.92 ± 0.008 0.92 ± 0.004 0.91 ± 0.003

GCN

DeepWalk 0.83 ± 0.043 0.72 ± 0.069 0.83 ± 0.042 0.74 ± 0.086
DGI 0.18 ± 0.073 0.05 ± 0.029 0.21 ± 0.051 0.05 ± 0.009
FUSE 0.91 ± 0.007 0.90 ± 0.009 0.90 ± 0.004 0.90 ± 0.005
Given 0.18 ± 0.116 0.06 ± 0.067 0.15 ± 0.082 0.04 ± 0.015
Node2Vec 0.79 ± 0.081 0.65 ± 0.124 0.78 ± 0.085 0.70 ± 0.139
Random 0.86 ± 0.013 0.79 ± 0.044 0.84 ± 0.013 0.77 ± 0.043
VGAE 0.86 ± 0.011 0.80 ± 0.036 0.86 ± 0.004 0.79 ± 0.025

SAGE

DeepWalk 0.92 ± 0.005 0.91 ± 0.005 0.91 ± 0.004 0.90 ± 0.006
DGI 0.87 ± 0.013 0.85 ± 0.016 0.87 ± 0.020 0.84 ± 0.040
FUSE 0.90 ± 0.003 0.89 ± 0.008 0.89 ± 0.005 0.87 ± 0.005
Given 0.95 ± 0.006 0.93 ± 0.011 0.94 ± 0.003 0.93 ± 0.005
Node2Vec 0.92 ± 0.005 0.91 ± 0.008 0.91 ± 0.005 0.90 ± 0.006
Random 0.89 ± 0.004 0.88 ± 0.008 0.83 ± 0.010 0.80 ± 0.011
VGAE 0.91 ± 0.007 0.90 ± 0.009 0.91 ± 0.006 0.90 ± 0.006

Table 24: PubMed – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.84 ± 0.003 0.82 ± 0.004 0.82 ± 0.004 0.81 ± 0.004
DGI 0.55 ± 0.092 0.46 ± 0.124 0.58 ± 0.087 0.52 ± 0.132
FUSE 0.81 ± 0.008 0.80 ± 0.008 0.80 ± 0.004 0.79 ± 0.004
Given 0.88 ± 0.003 0.87 ± 0.003 0.87 ± 0.002 0.86 ± 0.002
Node2Vec 0.83 ± 0.004 0.82 ± 0.004 0.82 ± 0.003 0.81 ± 0.004
random 0.81 ± 0.004 0.80 ± 0.005 0.78 ± 0.005 0.77 ± 0.005
VGAE 0.83 ± 0.005 0.82 ± 0.005 0.82 ± 0.002 0.80 ± 0.002

GCN

DeepWalk 0.80 ± 0.011 0.78 ± 0.012 0.79 ± 0.001 0.77 ± 0.002
DGI 0.44 ± 0.080 0.26 ± 0.119 0.46 ± 0.092 0.31 ± 0.146
FUSE 0.81 ± 0.006 0.80 ± 0.007 0.80 ± 0.002 0.79 ± 0.003
Given 0.84 ± 0.003 0.83 ± 0.003 0.83 ± 0.004 0.82 ± 0.004
Node2Vec 0.79 ± 0.007 0.78 ± 0.010 0.79 ± 0.005 0.78 ± 0.005
random 0.72 ± 0.003 0.70 ± 0.004 0.69 ± 0.003 0.67 ± 0.003
VGAE 0.80 ± 0.006 0.79 ± 0.007 0.79 ± 0.002 0.78 ± 0.002

SAGE

DeepWalk 0.83 ± 0.004 0.82 ± 0.004 0.81 ± 0.003 0.80 ± 0.004
DGI 0.54 ± 0.070 0.46 ± 0.110 0.53 ± 0.039 0.44 ± 0.077
FUSE 0.80 ± 0.005 0.79 ± 0.007 0.78 ± 0.004 0.76 ± 0.005
Given 0.88 ± 0.004 0.87 ± 0.004 0.86 ± 0.008 0.85 ± 0.008
Node2Vec 0.83 ± 0.004 0.81 ± 0.004 0.81 ± 0.005 0.80 ± 0.005
Random 0.65 ± 0.009 0.62 ± 0.007 0.55 ± 0.013 0.51 ± 0.015
VGAE 0.82 ± 0.006 0.81 ± 0.006 0.80 ± 0.004 0.78 ± 0.004
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Table 25: WikiCS – Accuracy and F1 for 70–30 and 30–70 Splits

Classifier Embedding 70–30 Split 30–70 Split
Accuracy F1 Accuracy F1

GAT

DeepWalk 0.82 ± 0.002 0.80 ± 0.004 0.81 ± 0.002 0.78 ± 0.003
DGI 0.76 ± 0.006 0.72 ± 0.005 0.75 ± 0.011 0.70 ± 0.016
FUSE 0.81 ± 0.003 0.79 ± 0.006 0.80 ± 0.002 0.76 ± 0.005
Given 0.84 ± 0.003 0.82 ± 0.002 0.83 ± 0.004 0.81 ± 0.005
Node2Vec 0.82 ± 0.002 0.80 ± 0.005 0.81 ± 0.002 0.78 ± 0.003
Random 0.80 ± 0.003 0.77 ± 0.003 0.78 ± 0.005 0.75 ± 0.007
VGAE 0.80 ± 0.005 0.77 ± 0.007 0.80 ± 0.001 0.77 ± 0.003

GCN

DeepWalk 0.67 ± 0.092 0.55 ± 0.123 0.66 ± 0.073 0.54 ± 0.089
DGI 0.19 ± 0.067 0.04 ± 0.009 0.18 ± 0.075 0.03 ± 0.012
FUSE 0.77 ± 0.007 0.74 ± 0.008 0.76 ± 0.004 0.73 ± 0.003
Given 0.44 ± 0.132 0.25 ± 0.141 0.39 ± 0.147 0.22 ± 0.150
Node2Vec 0.69 ± 0.058 0.60 ± 0.069 0.64 ± 0.069 0.50 ± 0.056
Random 0.74 ± 0.009 0.68 ± 0.031 0.72 ± 0.011 0.65 ± 0.037
VGAE 0.73 ± 0.039 0.69 ± 0.034 0.71 ± 0.014 0.62 ± 0.027

SAGE

DeepWalk 0.81 ± 0.005 0.78 ± 0.007 0.79 ± 0.006 0.75 ± 0.007
DGI 0.69 ± 0.020 0.56 ± 0.062 0.69 ± 0.021 0.58 ± 0.054
FUSE 0.78 ± 0.006 0.74 ± 0.010 0.74 ± 0.008 0.70 ± 0.010
Given 0.84 ± 0.005 0.82 ± 0.008 0.83 ± 0.003 0.80 ± 0.004
Node2Vec 0.81 ± 0.005 0.77 ± 0.007 0.79 ± 0.008 0.75 ± 0.010
Random 0.76 ± 0.005 0.73 ± 0.008 0.68 ± 0.009 0.63 ± 0.008
VGAE 0.80 ± 0.002 0.76 ± 0.002 0.79 ± 0.003 0.76 ± 0.004
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Table 26: Clustering results for Cora (70–30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.814 ± 0.069 0.535 ± 0.035 0.587 ± 0.017
DGI 1.946 ± 0.585 0.075 ± 0.037 0.166 ± 0.055
FUSE 0.979 ± 0.140 0.810 ± 0.015 0.775 ± 0.019
Given 1.153 ± 0.037 0.781 ± 0.016 0.748 ± 0.013
Node2Vec 1.905 ± 0.083 0.565 ± 0.049 0.591 ± 0.021
Random 4.278 ± 0.405 0.175 ± 0.062 0.240 ± 0.061
VGAE 2.043 ± 0.134 0.377 ± 0.055 0.491 ± 0.037

GCN

DeepWalk 1.126 ± 0.124 0.062 ± 0.020 0.239 ± 0.011
DGI 0.819 ± 0.321 0.007 ± 0.009 0.036 ± 0.049
FUSE 1.266 ± 0.033 0.392 ± 0.044 0.476 ± 0.022
Given 1.142 ± 0.110 0.106 ± 0.025 0.254 ± 0.050
Node2Vec 1.193 ± 0.044 0.065 ± 0.019 0.224 ± 0.015
Random 2.114 ± 0.110 0.013 ± 0.007 0.043 ± 0.017
VGAE 1.257 ± 0.172 0.073 ± 0.020 0.214 ± 0.014

SAGE

DeepWalk 1.168 ± 0.149 0.412 ± 0.028 0.537 ± 0.027
DGI 1.514 ± 0.315 0.068 ± 0.036 0.126 ± 0.065
FUSE 0.540 ± 0.044 0.886 ± 0.007 0.854 ± 0.007
Given 0.860 ± 0.031 0.864 ± 0.008 0.823 ± 0.006
Node2Vec 1.275 ± 0.109 0.453 ± 0.054 0.560 ± 0.011
Random 1.980 ± 0.033 0.006 ± 0.007 0.026 ± 0.007
VGAE 1.269 ± 0.139 0.287 ± 0.045 0.471 ± 0.022

Raw

DeepWalk 3.035 ± 0.026 0.350 ± 0.005 0.440 ± 0.005
DGI 2.074 ± 1.133 -0.001 ± 0.002 0.013 ± 0.001
FUSE 5.068 ± 3.156 0.050 ± 0.080 0.082 ± 0.118
Given 6.380 ± 0.231 0.081 ± 0.013 0.142 ± 0.026
Node2Vec 3.337 ± 0.043 0.298 ± 0.040 0.410 ± 0.026
Random 8.593 ± 0.082 -0.000 ± 0.001 0.004 ± 0.001
VGAE 3.725 ± 0.208 0.202 ± 0.029 0.353 ± 0.019
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Table 27: Clustering results for Cora (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.557 ± 0.079 0.567 ± 0.043 0.586 ± 0.016
DGI 1.673 ± 1.013 0.055 ± 0.054 0.116 ± 0.082
FUSE 0.872 ± 0.047 0.670 ± 0.015 0.647 ± 0.014
Given 1.148 ± 0.042 0.689 ± 0.017 0.673 ± 0.009
Node2Vec 1.580 ± 0.054 0.592 ± 0.023 0.588 ± 0.015
Random 4.349 ± 0.181 0.054 ± 0.007 0.093 ± 0.007
VGAE 1.816 ± 0.112 0.417 ± 0.072 0.488 ± 0.032

GCN

DeepWalk 1.159 ± 0.066 0.041 ± 0.024 0.147 ± 0.049
DGI 0.455 ± 0.256 0.011 ± 0.022 0.027 ± 0.034
FUSE 1.104 ± 0.065 0.278 ± 0.083 0.414 ± 0.027
Given 1.176 ± 0.083 0.041 ± 0.011 0.107 ± 0.025
Node2Vec 1.212 ± 0.066 0.055 ± 0.026 0.162 ± 0.035
Random 2.108 ± 0.124 0.022 ± 0.004 0.034 ± 0.007
VGAE 1.205 ± 0.096 0.071 ± 0.024 0.220 ± 0.015

SAGE

DeepWalk 1.177 ± 0.232 0.399 ± 0.044 0.527 ± 0.019
DGI 1.315 ± 0.500 0.040 ± 0.031 0.087 ± 0.060
FUSE 0.689 ± 0.058 0.673 ± 0.014 0.647 ± 0.009
Given 1.105 ± 0.049 0.676 ± 0.010 0.638 ± 0.009
Node2Vec 1.181 ± 0.119 0.407 ± 0.035 0.526 ± 0.015
Random 2.073 ± 0.077 0.001 ± 0.000 0.011 ± 0.002
VGAE 1.262 ± 0.067 0.270 ± 0.025 0.446 ± 0.027

Raw

DeepWalk 3.035 ± 0.026 0.350 ± 0.005 0.440 ± 0.005
DGI 2.060 ± 1.165 0.002 ± 0.003 0.015 ± 0.002
FUSE 5.045 ± 0.749 0.223 ± 0.159 0.289 ± 0.166
Given 6.380 ± 0.231 0.081 ± 0.013 0.142 ± 0.026
Node2Vec 3.337 ± 0.043 0.298 ± 0.040 0.410 ± 0.026
Random 8.593 ± 0.082 -0.000 ± 0.001 0.004 ± 0.001
VGAE 3.862 ± 0.249 0.222 ± 0.043 0.350 ± 0.026
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Table 28: Clustering results for CiteSeer (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.368 ± 0.115 0.201 ± 0.018 0.290 ± 0.011
DGI 1.232 ± 1.053 0.028 ± 0.005 0.043 ± 0.007
FUSE 1.179 ± 0.032 0.627 ± 0.016 0.592 ± 0.015
Given 1.407 ± 0.020 0.646 ± 0.007 0.611 ± 0.008
Node2Vec 2.521 ± 0.208 0.159 ± 0.016 0.269 ± 0.006
Random 5.178 ± 0.196 0.060 ± 0.011 0.088 ± 0.006
VGAE 2.927 ± 0.233 0.108 ± 0.008 0.197 ± 0.020

GCN

DeepWalk 1.105 ± 0.126 0.010 ± 0.006 0.104 ± 0.004
DGI 0.273 ± 0.473 0.002 ± 0.004 0.011 ± 0.021
FUSE 1.492 ± 0.038 0.235 ± 0.042 0.324 ± 0.013
Given 1.336 ± 0.056 0.035 ± 0.004 0.179 ± 0.016
Node2Vec 1.240 ± 0.174 0.010 ± 0.002 0.110 ± 0.017
Random 2.098 ± 0.049 0.002 ± 0.003 0.017 ± 0.006
VGAE 1.685 ± 0.125 0.004 ± 0.003 0.071 ± 0.011

SAGE

DeepWalk 1.533 ± 0.153 0.158 ± 0.023 0.254 ± 0.038
DGI 1.041 ± 0.503 0.011 ± 0.012 0.031 ± 0.019
FUSE 0.623 ± 0.023 0.786 ± 0.018 0.742 ± 0.017
Given 1.182 ± 0.070 0.759 ± 0.021 0.724 ± 0.013
Node2Vec 1.499 ± 0.141 0.129 ± 0.024 0.240 ± 0.026
Random 2.165 ± 0.042 0.002 ± 0.002 0.008 ± 0.001
VGAE 1.714 ± 0.063 0.065 ± 0.022 0.164 ± 0.017

Raw

DeepWalk 3.707 ± 0.459 0.111 ± 0.014 0.217 ± 0.020
DGI 1.396 ± 0.852 0.014 ± 0.003 0.024 ± 0.008
FUSE 6.872 ± 1.213 0.596 ± 0.331 0.564 ± 0.310
Given 8.539 ± 0.133 0.177 ± 0.041 0.220 ± 0.050
Node2Vec 4.221 ± 0.125 0.094 ± 0.012 0.193 ± 0.008
Random 9.140 ± 0.043 0.000 ± 0.001 0.003 ± 0.001
VGAE 4.606 ± 0.056 0.054 ± 0.009 0.132 ± 0.017
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Table 29: Clustering results for CiteSeer (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.219 ± 0.116 0.213 ± 0.023 0.296 ± 0.015
DGI 1.279 ± 0.964 0.028 ± 0.011 0.045 ± 0.008
FUSE 1.131 ± 0.059 0.445 ± 0.013 0.416 ± 0.011
Given 1.382 ± 0.062 0.536 ± 0.017 0.522 ± 0.012
Node2Vec 2.413 ± 0.044 0.185 ± 0.018 0.268 ± 0.012
Random 4.963 ± 0.286 0.025 ± 0.007 0.041 ± 0.010
VGAE 2.635 ± 0.193 0.091 ± 0.016 0.173 ± 0.011

GCN

DeepWalk 1.038 ± 0.082 0.004 ± 0.001 0.068 ± 0.013
DGI 0.344 ± 0.595 0.000 ± 0.000 0.006 ± 0.010
FUSE 1.164 ± 0.097 0.128 ± 0.016 0.242 ± 0.012
Given 1.141 ± 0.079 0.001 ± 0.002 0.043 ± 0.017
Node2Vec 1.093 ± 0.146 0.007 ± 0.006 0.074 ± 0.014
Random 2.247 ± 0.109 -0.000 ± 0.001 0.011 ± 0.003
VGAE 1.461 ± 0.059 0.004 ± 0.004 0.100 ± 0.017

SAGE

DeepWalk 1.556 ± 0.065 0.138 ± 0.027 0.232 ± 0.039
DGI 1.164 ± 0.580 0.011 ± 0.009 0.026 ± 0.008
FUSE 0.667 ± 0.028 0.475 ± 0.010 0.442 ± 0.011
Given 1.366 ± 0.068 0.532 ± 0.013 0.512 ± 0.012
Node2Vec 1.662 ± 0.115 0.109 ± 0.021 0.198 ± 0.037
Random 2.252 ± 0.065 0.001 ± 0.001 0.005 ± 0.001
VGAE 1.761 ± 0.166 0.063 ± 0.013 0.132 ± 0.018

Raw

DeepWalk 3.707 ± 0.459 0.111 ± 0.014 0.217 ± 0.020
DGI 1.291 ± 0.793 0.016 ± 0.005 0.025 ± 0.005
FUSE 6.725 ± 0.984 0.106 ± 0.118 0.150 ± 0.126
Given 8.539 ± 0.133 0.177 ± 0.041 0.220 ± 0.050
Node2Vec 4.221 ± 0.125 0.094 ± 0.012 0.193 ± 0.008
Random 9.140 ± 0.043 0.000 ± 0.001 0.003 ± 0.001
VGAE 4.610 ± 0.091 0.049 ± 0.008 0.123 ± 0.013
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Table 30: Clustering results for PubMed (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.713 ± 0.048 0.414 ± 0.019 0.389 ± 0.010
DGI 1.452 ± 0.297 0.008 ± 0.003 0.010 ± 0.004
FUSE 0.978 ± 0.056 0.492 ± 0.042 0.416 ± 0.035
Given 1.098 ± 0.033 0.521 ± 0.019 0.511 ± 0.011
Node2Vec 1.736 ± 0.030 0.390 ± 0.041 0.372 ± 0.026
Random 6.159 ± 0.278 0.001 ± 0.001 0.002 ± 0.001
VGAE 2.512 ± 0.142 0.198 ± 0.061 0.265 ± 0.049

GCN

DeepWalk 0.871 ± 0.069 0.003 ± 0.014 0.047 ± 0.017
DGI 0.087 ± 0.150 -0.000 ± 0.000 0.000 ± 0.000
FUSE 1.581 ± 0.109 0.051 ± 0.016 0.109 ± 0.026
Given 1.351 ± 0.203 0.028 ± 0.077 0.040 ± 0.065
Node2Vec 0.964 ± 0.154 0.002 ± 0.011 0.046 ± 0.013
Random 2.274 ± 0.031 -0.006 ± 0.002 0.002 ± 0.001
VGAE 1.697 ± 0.269 -0.002 ± 0.004 0.017 ± 0.006

SAGE

DeepWalk 1.397 ± 0.080 0.453 ± 0.043 0.400 ± 0.026
DGI 1.052 ± 0.415 0.009 ± 0.010 0.009 ± 0.011
FUSE 1.348 ± 0.124 0.415 ± 0.041 0.360 ± 0.031
Given 1.221 ± 0.067 0.623 ± 0.024 0.558 ± 0.025
Node2Vec 1.483 ± 0.106 0.457 ± 0.034 0.393 ± 0.024
Random 2.753 ± 0.109 -0.001 ± 0.002 0.001 ± 0.001
VGAE 2.009 ± 0.183 0.260 ± 0.095 0.303 ± 0.043

Raw

DeepWalk 4.580 ± 0.011 0.304 ± 0.001 0.296 ± 0.001
DGI 1.167 ± 0.441 0.007 ± 0.002 0.003 ± 0.001
FUSE 12.849 ± 0.128 0.062 ± 0.046 0.050 ± 0.037
Given 5.161 ± 0.009 0.280 ± 0.001 0.312 ± 0.001
Node2Vec 4.885 ± 0.027 0.279 ± 0.002 0.288 ± 0.003
Random 12.406 ± 0.015 0.000 ± 0.000 0.000 ± 0.000
VGAE 3.900 ± 0.256 0.029 ± 0.022 0.152 ± 0.024
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Table 31: Clustering results for PubMed (30-70)

Classifier Embedding DB ARI VMeasure

GAT

DeepWalk 1.835 ± 0.073 0.402 ± 0.048 0.375 ± 0.027
DGI 1.556 ± 0.382 0.006 ± 0.004 0.007 ± 0.004
FUSE 0.796 ± 0.013 0.518 ± 0.005 0.433 ± 0.005
Given 1.060 ± 0.022 0.470 ± 0.012 0.466 ± 0.005
Node2Vec 1.909 ± 0.049 0.390 ± 0.050 0.368 ± 0.031
Random 6.677 ± 0.152 0.001 ± 0.000 0.001 ± 0.001
VGAE 2.610 ± 0.104 0.216 ± 0.023 0.271 ± 0.014

GCN

DeepWalk 1.183 ± 0.121 0.007 ± 0.003 0.038 ± 0.011
DGI 0.821 ± 0.203 -0.004 ± 0.002 0.001 ± 0.001
FUSE 1.205 ± 0.093 0.026 ± 0.032 0.100 ± 0.009
Given 1.241 ± 0.124 -0.008 ± 0.008 0.037 ± 0.010
Node2Vec 1.245 ± 0.212 0.004 ± 0.008 0.034 ± 0.005
Random 2.389 ± 0.099 -0.005 ± 0.001 0.001 ± 0.001
VGAE 1.361 ± 0.399 -0.005 ± 0.007 0.025 ± 0.008

SAGE

DeepWalk 1.565 ± 0.185 0.443 ± 0.038 0.386 ± 0.013
DGI 1.310 ± 0.428 0.011 ± 0.012 0.008 ± 0.007
FUSE 1.377 ± 0.204 0.311 ± 0.112 0.300 ± 0.037
Given 1.358 ± 0.062 0.561 ± 0.036 0.500 ± 0.022
Node2Vec 1.659 ± 0.125 0.409 ± 0.055 0.365 ± 0.022
Random 2.933 ± 0.143 0.000 ± 0.001 0.000 ± 0.000
VGAE 2.264 ± 0.160 0.169 ± 0.048 0.241 ± 0.048

Raw

DeepWalk 4.580 ± 0.011 0.304 ± 0.001 0.296 ± 0.001
DGI 1.291 ± 0.380 0.007 ± 0.001 0.003 ± 0.001
FUSE 11.476 ± 0.126 0.400 ± 0.017 0.329 ± 0.014
Given 5.161 ± 0.009 0.280 ± 0.001 0.312 ± 0.001
Node2Vec 4.885 ± 0.027 0.279 ± 0.002 0.288 ± 0.003
Random 12.406 ± 0.015 0.000 ± 0.000 0.000 ± 0.000
VGAE 4.014 ± 0.319 0.034 ± 0.016 0.154 ± 0.017
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Table 32: Clustering results for Photo (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.085 ± 0.029 0.628 ± 0.007 0.740 ± 0.005
DGI 1.538 ± 0.106 0.383 ± 0.032 0.476 ± 0.027
FUSE 0.894 ± 0.016 0.873 ± 0.017 0.857 ± 0.015
Given 1.065 ± 0.081 0.660 ± 0.026 0.720 ± 0.017
Node2Vec 1.122 ± 0.028 0.635 ± 0.014 0.739 ± 0.009
Random 3.233 ± 0.180 0.262 ± 0.061 0.402 ± 0.044
VGAE 1.336 ± 0.084 0.571 ± 0.031 0.700 ± 0.022

GCN

DeepWalk 0.808 ± 0.101 0.030 ± 0.015 0.232 ± 0.021
DGI 0.222 ± 0.257 -0.007 ± 0.008 0.022 ± 0.029
FUSE 0.916 ± 0.051 0.162 ± 0.018 0.455 ± 0.022
Given 0.017 ± 0.024 -0.001 ± 0.001 0.001 ± 0.002
Node2Vec 0.671 ± 0.059 0.013 ± 0.018 0.231 ± 0.025
Random 1.974 ± 0.099 0.021 ± 0.011 0.096 ± 0.023
VGAE 0.967 ± 0.148 0.038 ± 0.020 0.253 ± 0.014

SAGE

DeepWalk 0.808 ± 0.088 0.699 ± 0.060 0.762 ± 0.026
DGI 1.067 ± 0.103 0.528 ± 0.034 0.601 ± 0.028
FUSE 0.597 ± 0.098 0.892 ± 0.022 0.881 ± 0.019
Given 0.874 ± 0.042 0.773 ± 0.012 0.824 ± 0.012
Node2Vec 0.906 ± 0.054 0.681 ± 0.069 0.746 ± 0.026
Random 2.042 ± 0.048 0.024 ± 0.008 0.050 ± 0.006
VGAE 0.760 ± 0.127 0.592 ± 0.052 0.715 ± 0.019

Raw

DeepWalk 2.400 ± 0.033 0.597 ± 0.003 0.690 ± 0.002
DGI 1.569 ± 0.100 0.077 ± 0.006 0.075 ± 0.007
FUSE 5.087 ± 0.844 0.364 ± 0.192 0.448 ± 0.155
Given 4.887 ± 0.062 0.058 ± 0.007 0.140 ± 0.019
Node2Vec 2.510 ± 0.067 0.579 ± 0.036 0.673 ± 0.028
Random 9.147 ± 0.034 -0.000 ± 0.000 0.001 ± 0.000
VGAE 1.943 ± 0.068 0.199 ± 0.069 0.468 ± 0.048
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Table 33: Clustering results for Photo (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.075 ± 0.026 0.612 ± 0.013 0.729 ± 0.004
DGI 1.628 ± 0.050 0.336 ± 0.034 0.426 ± 0.028
FUSE 0.875 ± 0.025 0.814 ± 0.007 0.802 ± 0.003
Given 1.034 ± 0.039 0.636 ± 0.032 0.702 ± 0.018
Node2Vec 1.097 ± 0.049 0.607 ± 0.015 0.719 ± 0.010
Random 3.877 ± 0.297 0.116 ± 0.028 0.216 ± 0.031
VGAE 1.332 ± 0.085 0.528 ± 0.027 0.678 ± 0.027

GCN

DeepWalk 0.781 ± 0.025 0.040 ± 0.019 0.290 ± 0.014
DGI 0.547 ± 0.505 0.024 ± 0.032 0.063 ± 0.072
FUSE 1.004 ± 0.025 0.130 ± 0.013 0.401 ± 0.038
Given 0.000 ± 0.000 0.000 ± 0.000 0.000 ± 0.000
Node2Vec 0.767 ± 0.072 0.037 ± 0.024 0.287 ± 0.047
Random 2.078 ± 0.070 0.017 ± 0.004 0.072 ± 0.009
VGAE 1.046 ± 0.163 0.038 ± 0.009 0.261 ± 0.030

SAGE

DeepWalk 0.848 ± 0.082 0.667 ± 0.064 0.738 ± 0.026
DGI 1.196 ± 0.137 0.523 ± 0.023 0.592 ± 0.015
FUSE 0.576 ± 0.096 0.803 ± 0.022 0.792 ± 0.015
Given 0.928 ± 0.021 0.768 ± 0.019 0.806 ± 0.009
Node2Vec 0.904 ± 0.029 0.634 ± 0.057 0.713 ± 0.019
Random 1.974 ± 0.041 0.005 ± 0.001 0.011 ± 0.003
VGAE 0.844 ± 0.058 0.631 ± 0.083 0.721 ± 0.022

Raw

DeepWalk 2.400 ± 0.033 0.597 ± 0.003 0.690 ± 0.002
DGI 1.657 ± 0.169 0.063 ± 0.007 0.065 ± 0.008
FUSE 4.317 ± 0.437 0.510 ± 0.109 0.638 ± 0.046
Given 4.887 ± 0.062 0.058 ± 0.007 0.140 ± 0.019
Node2Vec 2.510 ± 0.067 0.579 ± 0.036 0.673 ± 0.028
Random 9.147 ± 0.034 -0.000 ± 0.000 0.001 ± 0.000
VGAE 1.973 ± 0.067 0.204 ± 0.049 0.486 ± 0.031
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Table 34: Clustering results for WikiCS (70-30)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.963 ± 0.051 0.458 ± 0.015 0.519 ± 0.010
DGI 1.601 ± 0.065 0.098 ± 0.012 0.174 ± 0.019
FUSE 1.342 ± 0.110 0.688 ± 0.039 0.674 ± 0.020
Given 1.663 ± 0.050 0.510 ± 0.036 0.557 ± 0.018
Node2Vec 1.926 ± 0.091 0.449 ± 0.034 0.521 ± 0.007
Random 3.792 ± 0.179 0.120 ± 0.015 0.214 ± 0.016
VGAE 1.778 ± 0.052 0.333 ± 0.019 0.443 ± 0.018

GCN

DeepWalk 0.477 ± 0.065 -0.003 ± 0.006 0.079 ± 0.017
DGI 0.238 ± 0.207 0.001 ± 0.002 0.006 ± 0.008
FUSE 1.140 ± 0.107 0.055 ± 0.014 0.222 ± 0.015
Given 0.371 ± 0.061 -0.002 ± 0.005 0.046 ± 0.015
Node2Vec 0.541 ± 0.058 0.003 ± 0.005 0.066 ± 0.035
Random 1.927 ± 0.080 0.002 ± 0.011 0.041 ± 0.005
VGAE 0.939 ± 0.086 0.007 ± 0.002 0.086 ± 0.022

SAGE

DeepWalk 1.013 ± 0.070 0.512 ± 0.039 0.563 ± 0.008
DGI 1.348 ± 0.192 0.176 ± 0.046 0.279 ± 0.048
FUSE 0.782 ± 0.099 0.476 ± 0.046 0.653 ± 0.014
Given 1.002 ± 0.048 0.541 ± 0.022 0.631 ± 0.005
Node2Vec 0.986 ± 0.176 0.511 ± 0.096 0.569 ± 0.013
Random 1.872 ± 0.064 0.021 ± 0.004 0.049 ± 0.004
VGAE 0.983 ± 0.034 0.464 ± 0.051 0.525 ± 0.011

Raw

DeepWalk 3.228 ± 0.152 0.359 ± 0.038 0.452 ± 0.015
DGI 2.716 ± 0.170 0.030 ± 0.003 0.046 ± 0.002
FUSE 5.185 ± 0.306 0.131 ± 0.074 0.164 ± 0.088
Given 2.639 ± 0.025 0.145 ± 0.003 0.252 ± 0.003
Node2Vec 3.240 ± 0.113 0.345 ± 0.017 0.448 ± 0.008
Random 8.884 ± 0.023 -0.000 ± 0.000 0.002 ± 0.001
VGAE 1.896 ± 0.047 0.144 ± 0.011 0.332 ± 0.015
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Table 35: Clustering results for WikiCS (30-70)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 1.988 ± 0.076 0.419 ± 0.057 0.492 ± 0.025
DGI 1.725 ± 0.190 0.088 ± 0.008 0.164 ± 0.018
FUSE 1.523 ± 0.139 0.581 ± 0.015 0.580 ± 0.008
Given 1.705 ± 0.125 0.453 ± 0.047 0.518 ± 0.017
Node2Vec 2.107 ± 0.060 0.409 ± 0.040 0.487 ± 0.012
Random 4.328 ± 0.132 0.048 ± 0.012 0.112 ± 0.016
VGAE 1.831 ± 0.049 0.295 ± 0.022 0.412 ± 0.017

GCN

DeepWalk 0.548 ± 0.165 -0.001 ± 0.004 0.132 ± 0.021
DGI 0.000 ± 0.000 0.001 ± 0.002 0.003 ± 0.004
FUSE 1.110 ± 0.059 0.021 ± 0.022 0.186 ± 0.034
Given 0.419 ± 0.035 -0.003 ± 0.017 0.086 ± 0.040
Node2Vec 0.602 ± 0.116 0.000 ± 0.007 0.127 ± 0.012
Random 1.947 ± 0.078 0.006 ± 0.007 0.045 ± 0.006
VGAE 0.869 ± 0.048 0.007 ± 0.009 0.110 ± 0.019

SAGE

DeepWalk 1.023 ± 0.160 0.348 ± 0.051 0.497 ± 0.008
DGI 1.442 ± 0.089 0.193 ± 0.051 0.272 ± 0.024
FUSE 0.824 ± 0.139 0.420 ± 0.070 0.537 ± 0.026
Given 1.137 ± 0.029 0.520 ± 0.047 0.578 ± 0.011
Node2Vec 1.012 ± 0.213 0.376 ± 0.087 0.511 ± 0.023
Random 1.860 ± 0.023 0.002 ± 0.003 0.010 ± 0.002
VGAE 1.116 ± 0.107 0.401 ± 0.040 0.494 ± 0.016

Raw

DeepWalk 3.228 ± 0.152 0.359 ± 0.038 0.452 ± 0.015
DGI 2.608 ± 0.126 0.033 ± 0.002 0.047 ± 0.002
FUSE 4.698 ± 0.389 0.336 ± 0.067 0.415 ± 0.020
Given 2.639 ± 0.025 0.145 ± 0.003 0.252 ± 0.003
Node2Vec 3.240 ± 0.113 0.345 ± 0.017 0.448 ± 0.008
Random 8.884 ± 0.023 -0.000 ± 0.000 0.002 ± 0.001
VGAE 1.937 ± 0.064 0.137 ± 0.015 0.323 ± 0.016
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Table 36: Clustering results for ArXiV (70-30) (single seed)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.429 0.228 0.448
DGI 0.729 -0.003 0.015
FUSE 1.186 0.680 0.720
Given 2.213 0.132 0.346
Node2Vec 2.540 0.233 0.441
Random 4.650 0.002 0.008
VGAE 1.047 -0.002 0.015

GCN

DeepWalk 1.251 0.058 0.280
DGI 0.000 0.010 0.007
FUSE 1.447 0.050 0.332
Given 1.015 0.016 0.218
Node2Vec 1.243 0.049 0.241
Random 2.028 -0.014 0.037
VGAE 0.000 0.010 0.007

SAGE

DeepWalk 1.364 0.247 0.442
DGI 0.900 -0.003 0.006
FUSE 0.861 0.791 0.793
Given 1.571 0.189 0.358
Node2Vec 1.404 0.280 0.434
Random 1.877 0.000 0.003
VGAE 1.346 -0.000 0.006

Raw

DeepWalk 3.617 0.185 0.402
DGI 1.107 -0.003 0.008
FUSE 2.432 0.732 0.776
Given 3.495 0.070 0.221
Node2Vec 3.751 0.179 0.385
Random 7.524 0.000 0.001
VGAE 2.219 -0.002 0.007
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Table 37: Clustering results for ArXiV (30-70) (single seed)

Classifier Embedding DB ARI V-Measure

GAT

DeepWalk 2.461 0.233 0.447
DGI 0.924 0.002 0.010
FUSE 1.692 0.515 0.576
Given 2.199 0.132 0.344
Node2Vec 2.528 0.234 0.441
Random 4.860 0.002 0.007
VGAE 1.093 -0.003 0.013

GCN

DeepWalk 1.412 0.039 0.278
DGI 0.000 0.000 0.000
FUSE 0.948 0.037 0.320
Given 1.270 0.006 0.245
Node2Vec 1.342 0.015 0.274
Random 2.035 -0.019 0.033
VGAE 0.000 -0.000 0.000

SAGE

DeepWalk 1.305 0.213 0.435
DGI 1.012 -0.001 0.006
FUSE 0.995 0.520 0.572
Given 1.499 0.184 0.353
Node2Vec 1.375 0.279 0.438
Random 1.787 0.000 0.002
VGAE 1.406 0.000 0.006

Raw

DeepWalk 3.617 0.185 0.402
DGI 1.088 -0.003 0.007
FUSE 0.766 0.397 0.534
Given 3.495 0.070 0.221
Node2Vec 3.751 0.179 0.385
Random 7.519 -0.000 0.001
VGAE 2.033 -0.002 0.007
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Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.81 ±0.02 0.78 ±0.01 0.77 ±0.01 0.80 ±0.02 0.77 ±0.01 0.76 ±0.01
Node2Vec 0.78 ±0.01 0.76 ±0.01 0.68 ±0.04 0.76 ±0.02 0.75 ±0.01 0.67 ±0.04
DeepWalk 0.78 ±0.01 0.75 ±0.02 0.71 ±0.01 0.76 ±0.01 0.74 ±0.02 0.69 ±0.01
VGAE 0.78 ±0.01 0.74 ±0.02 0.66 ±0.02 0.76 ±0.01 0.72 ±0.02 0.65 ±0.02
DGI 0.32 ±0.05 0.36 ±0.07 0.32 ±0.05 0.10 ±0.08 0.16 ±0.12 0.15 ±0.10
Random 0.52 ±0.02 0.39 ±0.02 0.29 ±0.03 0.50 ±0.02 0.35 ±0.02 0.25 ±0.03

GAT
FUSE 0.84 ±0.02 0.82 ±0.01 0.77 ±0.02 0.83 ±0.02 0.81 ±0.01 0.75 ±0.02
Node2Vec 0.83 ±0.01 0.80 ±0.01 0.74 ±0.02 0.82 ±0.02 0.79 ±0.01 0.73 ±0.02
DeepWalk 0.84 ±0.02 0.80 ±0.02 0.74 ±0.02 0.83 ±0.02 0.78 ±0.02 0.73 ±0.02
VGAE 0.79 ±0.02 0.75 ±0.02 0.71 ±0.02 0.78 ±0.02 0.73 ±0.02 0.69 ±0.02
DGI 0.70 ±0.05 0.64 ±0.08 0.60 ±0.07 0.68 ±0.08 0.59 ±0.10 0.56 ±0.09
Random 0.66 ±0.02 0.50 ±0.03 0.33 ±0.04 0.63 ±0.03 0.47 ±0.03 0.27 ±0.04

SAGE
FUSE 0.85 ±0.02 0.82 ±0.01 0.76 ±0.01 0.84 ±0.02 0.81 ±0.01 0.74 ±0.01
Node2Vec 0.85 ±0.02 0.83 ±0.01 0.77 ±0.01 0.84 ±0.02 0.81 ±0.01 0.76 ±0.01
DeepWalk 0.86 ±0.01 0.83 ±0.01 0.78 ±0.01 0.84 ±0.01 0.82 ±0.01 0.76 ±0.01
VGAE 0.79 ±0.02 0.73 ±0.01 0.67 ±0.02 0.78 ±0.02 0.71 ±0.01 0.64 ±0.02
DGI 0.60 ±0.05 0.59 ±0.04 0.58 ±0.04 0.52 ±0.09 0.50 ±0.08 0.50 ±0.07
Random 0.51 ±0.02 0.35 ±0.02 0.26 ±0.02 0.46 ±0.03 0.26 ±0.02 0.17 ±0.02

MLP
FUSE 0.81 ±0.02 0.79 ±0.01 0.73 ±0.01 0.79 ±0.03 0.77 ±0.01 0.71 ±0.01
Node2Vec 0.84 ±0.01 0.82 ±0.01 0.76 ±0.01 0.83 ±0.01 0.81 ±0.01 0.74 ±0.02
DeepWalk 0.85 ±0.01 0.81 ±0.01 0.77 ±0.02 0.84 ±0.01 0.80 ±0.01 0.75 ±0.02
VGAE 0.65 ±0.02 0.63 ±0.02 0.62 ±0.01 0.63 ±0.02 0.61 ±0.01 0.60 ±0.02
DGI 0.53 ±0.05 0.49 ±0.07 0.48 ±0.06 0.44 ±0.09 0.35 ±0.13 0.36 ±0.11
Random 0.18 ±0.02 0.18 ±0.01 0.19 ±0.01 0.15 ±0.02 0.14 ±0.01 0.15 ±0.01

Table 38: Classification experiments on different masking rates for the MCAR scenario on the Cora
dataset. The mean and standard deviation over 10 iterations are reported. The best and second-
best in each metric, for each masking rate and each classifier, are highlighted in bold and underline
respectively.

49



2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699

Under review as a conference paper at ICLR 2026

Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.81± 0.01 0.78± 0.01 0.76± 0.02 0.80± 0.01 0.76± 0.01 0.75± 0.02
Node2Vec 0.79± 0.02 0.76± 0.01 0.68± 0.02 0.77± 0.02 0.75± 0.02 0.66± 0.02
DeepWalk 0.77± 0.02 0.77± 0.02 0.68± 0.02 0.76± 0.02 0.76± 0.02 0.66± 0.02
VGAE 0.77± 0.02 0.72± 0.02 0.66± 0.03 0.76± 0.02 0.72± 0.02 0.64± 0.03
DGI 0.28± 0.02 0.30± 0.03 0.36± 0.08 0.06± 0.00 0.08± 0.04 0.20± 0.14
Random 0.51± 0.02 0.40± 0.02 0.29± 0.03 0.48± 0.03 0.36± 0.02 0.24± 0.03

GAT
FUSE 0.85± 0.01 0.81± 0.01 0.77± 0.01 0.85± 0.01 0.80± 0.01 0.76± 0.02
Node2Vec 0.84± 0.01 0.80± 0.01 0.75± 0.02 0.83± 0.01 0.79± 0.01 0.73± 0.02
DeepWalk 0.83± 0.01 0.80± 0.01 0.75± 0.01 0.82± 0.01 0.79± 0.01 0.74± 0.01
VGAE 0.78± 0.01 0.75± 0.01 0.70± 0.01 0.77± 0.01 0.73± 0.01 0.68± 0.02
DGI 0.68± 0.05 0.68± 0.03 0.64± 0.03 0.64± 0.08 0.67± 0.03 0.62± 0.04
Random 0.65± 0.03 0.50± 0.03 0.34± 0.03 0.63± 0.03 0.46± 0.04 0.25± 0.04

SAGE
FUSE 0.85± 0.01 0.81± 0.01 0.76± 0.02 0.84± 0.01 0.80± 0.01 0.75± 0.02
Node2Vec 0.85± 0.01 0.83± 0.01 0.78± 0.01 0.84± 0.02 0.82± 0.01 0.77± 0.01
DeepWalk 0.85± 0.02 0.83± 0.01 0.78± 0.01 0.83± 0.02 0.82± 0.01 0.77± 0.02
VGAE 0.76± 0.02 0.72± 0.01 0.67± 0.01 0.74± 0.02 0.70± 0.01 0.63± 0.03
DGI 0.57± 0.07 0.59± 0.04 0.53± 0.06 0.47± 0.08 0.51± 0.06 0.42± 0.10
Random 0.49± 0.02 0.35± 0.02 0.27± 0.01 0.43± 0.03 0.27± 0.03 0.17± 0.01

MLP
FUSE 0.80± 0.02 0.77± 0.01 0.72± 0.02 0.79± 0.02 0.76± 0.01 0.70± 0.02
Node2Vec 0.84± 0.01 0.81± 0.01 0.76± 0.01 0.83± 0.01 0.81± 0.01 0.75± 0.01
DeepWalk 0.84± 0.02 0.82± 0.01 0.76± 0.01 0.82± 0.02 0.81± 0.01 0.75± 0.01
VGAE 0.65± 0.01 0.63± 0.01 0.61± 0.02 0.63± 0.02 0.61± 0.01 0.59± 0.02
DGI 0.54± 0.03 0.50± 0.07 0.50± 0.06 0.44± 0.07 0.40± 0.12 0.39± 0.11
Random 0.17± 0.01 0.18± 0.01 0.19± 0.01 0.14± 0.01 0.14± 0.01 0.14± 0.01

Table 39: Classification experiments on different masking rates for the MAR scenario on the Cora
dataset. The mean and standard deviation over 10 iterations are reported. The best and second-best
in each metric, for each masking rate and each classifier, are highlighted in bold and underlined,
respectively.
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Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.80± 0.01 0.78± 0.02 0.76± 0.02 0.79± 0.01 0.76± 0.01 0.74± 0.02
Node2Vec 0.76± 0.05 0.75± 0.02 0.66± 0.02 0.74± 0.06 0.73± 0.02 0.63± 0.02
DeepWalk 0.78± 0.02 0.75± 0.03 0.68± 0.03 0.76± 0.03 0.74± 0.03 0.65± 0.04
VGAE 0.77± 0.02 0.73± 0.01 0.64± 0.03 0.75± 0.02 0.72± 0.01 0.61± 0.03
DGI 0.30± 0.03 0.32± 0.05 0.32± 0.09 0.08± 0.03 0.12± 0.08 0.16± 0.11
Random 0.48± 0.03 0.40± 0.03 0.29± 0.04 0.45± 0.03 0.36± 0.03 0.24± 0.03

GAT
FUSE 0.84± 0.02 0.80± 0.01 0.75± 0.02 0.83± 0.02 0.78± 0.01 0.74± 0.02
Node2Vec 0.84± 0.02 0.80± 0.02 0.73± 0.02 0.83± 0.02 0.79± 0.02 0.71± 0.02
DeepWalk 0.85± 0.01 0.80± 0.02 0.74± 0.02 0.83± 0.02 0.79± 0.02 0.72± 0.02
VGAE 0.77± 0.02 0.73± 0.01 0.69± 0.01 0.75± 0.02 0.72± 0.01 0.68± 0.02
DGI 0.61± 0.10 0.68± 0.04 0.59± 0.06 0.58± 0.13 0.65± 0.06 0.54± 0.07
Random 0.64± 0.02 0.49± 0.03 0.32± 0.04 0.62± 0.03 0.44± 0.04 0.24± 0.04

SAGE
FUSE 0.85± 0.01 0.80± 0.02 0.74± 0.02 0.83± 0.02 0.79± 0.02 0.72± 0.02
Node2Vec 0.86± 0.01 0.83± 0.01 0.76± 0.02 0.85± 0.01 0.82± 0.01 0.73± 0.03
DeepWalk 0.85± 0.01 0.83± 0.01 0.77± 0.01 0.83± 0.01 0.81± 0.01 0.75± 0.02
VGAE 0.75± 0.02 0.71± 0.02 0.65± 0.02 0.73± 0.02 0.69± 0.02 0.61± 0.03
DGI 0.55± 0.05 0.57± 0.05 0.53± 0.05 0.47± 0.08 0.48± 0.08 0.43± 0.06
Random 0.49± 0.03 0.35± 0.02 0.25± 0.02 0.43± 0.03 0.25± 0.03 0.17± 0.01

MLP
FUSE 0.81± 0.01 0.76± 0.01 0.71± 0.02 0.79± 0.01 0.74± 0.02 0.69± 0.02
Node2Vec 0.85± 0.01 0.82± 0.01 0.75± 0.01 0.84± 0.02 0.81± 0.01 0.73± 0.02
DeepWalk 0.85± 0.01 0.81± 0.01 0.76± 0.02 0.83± 0.01 0.80± 0.01 0.74± 0.03
VGAE 0.63± 0.02 0.63± 0.02 0.60± 0.01 0.61± 0.01 0.61± 0.03 0.58± 0.02
DGI 0.50± 0.06 0.48± 0.09 0.49± 0.04 0.41± 0.09 0.35± 0.14 0.39± 0.06
Random 0.18± 0.01 0.18± 0.01 0.18± 0.01 0.14± 0.02 0.14± 0.01 0.14± 0.01

Table 40: Classification experiments on different masking rates for the MNAR scenario on the Cora
dataset. The mean and standard deviation over 10 iterations are reported. The best and second-best
in each metric, for each masking rate and each classifier, are highlighted in bold and underlined,
respectively.
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Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.66± 0.01 0.67± 0.01 0.59± 0.01 0.63± 0.01 0.64± 0.01 0.55± 0.01
Node2Vec 0.58± 0.02 0.54± 0.01 0.46± 0.02 0.52± 0.02 0.50± 0.01 0.42± 0.02
DeepWalk 0.57± 0.02 0.53± 0.01 0.44± 0.01 0.52± 0.02 0.50± 0.01 0.41± 0.01
VGAE 0.54± 0.02 0.50± 0.01 0.42± 0.02 0.50± 0.02 0.46± 0.01 0.38± 0.02
DGI 0.30± 0.07 0.32± 0.06 0.32± 0.03 0.19± 0.09 0.20± 0.09 0.25± 0.04
Random 0.34± 0.03 0.28± 0.02 0.24± 0.02 0.32± 0.03 0.26± 0.02 0.21± 0.02

GAT
FUSE 0.72± 0.01 0.68± 0.01 0.59± 0.01 0.68± 0.01 0.64± 0.01 0.55± 0.01
Node2Vec 0.71± 0.02 0.65± 0.01 0.56± 0.01 0.69± 0.02 0.62± 0.01 0.53± 0.01
DeepWalk 0.71± 0.01 0.64± 0.01 0.55± 0.02 0.67± 0.01 0.61± 0.01 0.52± 0.01
VGAE 0.61± 0.02 0.56± 0.02 0.47± 0.02 0.57± 0.02 0.52± 0.01 0.43± 0.02
DGI 0.49± 0.03 0.48± 0.02 0.45± 0.02 0.42± 0.05 0.43± 0.02 0.40± 0.02
Random 0.48± 0.02 0.40± 0.01 0.28± 0.02 0.45± 0.02 0.37± 0.01 0.25± 0.01

SAGE
FUSE 0.72± 0.01 0.67± 0.01 0.58± 0.01 0.69± 0.01 0.63± 0.01 0.54± 0.01
Node2Vec 0.70± 0.01 0.66± 0.01 0.57± 0.01 0.66± 0.01 0.62± 0.01 0.54± 0.02
DeepWalk 0.71± 0.01 0.66± 0.01 0.57± 0.01 0.67± 0.01 0.62± 0.01 0.54± 0.01
VGAE 0.57± 0.02 0.50± 0.01 0.44± 0.02 0.51± 0.02 0.46± 0.01 0.40± 0.01
DGI 0.45± 0.03 0.46± 0.02 0.42± 0.01 0.38± 0.03 0.40± 0.02 0.35± 0.02
Random 0.38± 0.03 0.29± 0.01 0.22± 0.01 0.33± 0.02 0.25± 0.01 0.19± 0.01

MLP
FUSE 0.72± 0.01 0.66± 0.01 0.57± 0.01 0.67± 0.01 0.62± 0.01 0.53± 0.01
Node2Vec 0.72± 0.02 0.65± 0.01 0.56± 0.01 0.69± 0.02 0.62± 0.01 0.53± 0.02
DeepWalk 0.71± 0.01 0.66± 0.01 0.55± 0.01 0.68± 0.02 0.63± 0.01 0.52± 0.01
VGAE 0.42± 0.02 0.40± 0.01 0.38± 0.01 0.38± 0.01 0.37± 0.01 0.36± 0.01
DGI 0.39± 0.07 0.41± 0.03 0.37± 0.04 0.31± 0.09 0.34± 0.05 0.30± 0.05
Random 0.18± 0.01 0.17± 0.01 0.17± 0.01 0.17± 0.01 0.16± 0.01 0.16± 0.01

Table 41: Classification experiments on different masking rates for the MCAR scenario on the
CiteSeer dataset. The mean and standard deviation over 10 iterations are reported. The best and
second-best in each metric, for each masking rate and each classifier, are highlighted in bold and
underlined, respectively.
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Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.68± 0.01 0.68± 0.01 0.58± 0.01 0.64± 0.01 0.64± 0.01 0.55± 0.01
Node2Vec 0.57± 0.01 0.54± 0.01 0.42± 0.02 0.51± 0.02 0.51± 0.01 0.39± 0.02
DeepWalk 0.58± 0.02 0.54± 0.02 0.42± 0.03 0.52± 0.02 0.51± 0.02 0.40± 0.02
VGAE 0.54± 0.03 0.48± 0.02 0.41± 0.03 0.51± 0.03 0.45± 0.02 0.38± 0.03
DGI 0.29± 0.10 0.33± 0.07 0.32± 0.02 0.18± 0.13 0.21± 0.10 0.23± 0.05
Random 0.34± 0.02 0.26± 0.01 0.23± 0.02 0.32± 0.01 0.24± 0.01 0.21± 0.02

GAT
FUSE 0.72± 0.01 0.68± 0.01 0.59± 0.01 0.68± 0.01 0.64± 0.01 0.54± 0.01
Node2Vec 0.71± 0.02 0.65± 0.02 0.54± 0.03 0.67± 0.02 0.61± 0.01 0.51± 0.02
DeepWalk 0.71± 0.01 0.65± 0.02 0.54± 0.02 0.67± 0.01 0.61± 0.02 0.51± 0.02
VGAE 0.62± 0.01 0.57± 0.01 0.47± 0.01 0.58± 0.02 0.54± 0.01 0.43± 0.01
DGI 0.51± 0.02 0.48± 0.03 0.44± 0.03 0.45± 0.02 0.42± 0.04 0.39± 0.03
Random 0.48± 0.02 0.38± 0.02 0.27± 0.02 0.44± 0.02 0.35± 0.02 0.25± 0.02

SAGE
FUSE 0.72± 0.01 0.67± 0.01 0.58± 0.01 0.68± 0.01 0.63± 0.01 0.54± 0.01
Node2Vec 0.71± 0.01 0.66± 0.01 0.57± 0.02 0.66± 0.02 0.62± 0.01 0.54± 0.01
DeepWalk 0.71± 0.01 0.66± 0.01 0.57± 0.01 0.66± 0.01 0.62± 0.01 0.53± 0.01
VGAE 0.57± 0.01 0.51± 0.02 0.43± 0.01 0.52± 0.01 0.47± 0.02 0.39± 0.02
DGI 0.47± 0.03 0.45± 0.03 0.42± 0.03 0.40± 0.02 0.38± 0.03 0.35± 0.04
Random 0.36± 0.02 0.29± 0.02 0.21± 0.01 0.31± 0.02 0.25± 0.01 0.19± 0.01

MLP
FUSE 0.71± 0.01 0.66± 0.01 0.57± 0.01 0.66± 0.01 0.62± 0.01 0.53± 0.01
Node2Vec 0.72± 0.01 0.66± 0.01 0.55± 0.02 0.68± 0.01 0.62± 0.01 0.52± 0.01
DeepWalk 0.72± 0.01 0.66± 0.02 0.56± 0.01 0.68± 0.01 0.63± 0.02 0.53± 0.01
VGAE 0.42± 0.02 0.41± 0.01 0.39± 0.01 0.40± 0.02 0.38± 0.01 0.36± 0.01
DGI 0.42± 0.05 0.41± 0.02 0.37± 0.03 0.35± 0.05 0.34± 0.03 0.30± 0.05
Random 0.17± 0.01 0.18± 0.01 0.18± 0.01 0.16± 0.01 0.16± 0.01 0.17± 0.00

Table 42: Classification experiments on different masking rates for the MAR scenario on the Cite-
Seer dataset. The mean and standard deviation over 10 iterations are reported. The best and second-
best in each metric, for each masking rate and each classifier, are highlighted in bold and underlined,
respectively.
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Accuracy F1 Score
Rates 0.2 0.5 0.8 0.2 0.5 0.8

GCN
FUSE 0.68± 0.02 0.68± 0.01 0.58± 0.01 0.64± 0.02 0.64± 0.01 0.54± 0.01
Node2Vec 0.58± 0.02 0.53± 0.01 0.42± 0.02 0.52± 0.02 0.50± 0.01 0.39± 0.02
DeepWalk 0.59± 0.02 0.53± 0.01 0.43± 0.02 0.54± 0.02 0.49± 0.01 0.40± 0.02
VGAE 0.56± 0.01 0.49± 0.02 0.38± 0.03 0.51± 0.02 0.46± 0.01 0.35± 0.02
DGI 0.31± 0.10 0.32± 0.05 0.28± 0.05 0.20± 0.12 0.23± 0.07 0.18± 0.06
SGCL 0.36± 0.01 0.26± 0.02 0.21± 0.02 0.33± 0.01 0.24± 0.02 0.19± 0.02
Random 0.35± 0.01 0.27± 0.01 0.21± 0.03 0.32± 0.01 0.25± 0.01 0.19± 0.02

GAT
FUSE 0.73± 0.02 0.69± 0.01 0.58± 0.01 0.68± 0.02 0.64± 0.01 0.54± 0.01
Node2Vec 0.71± 0.01 0.65± 0.02 0.55± 0.02 0.67± 0.02 0.61± 0.01 0.52± 0.02
DeepWalk 0.73± 0.02 0.65± 0.02 0.55± 0.03 0.67± 0.02 0.61± 0.02 0.52± 0.02
VGAE 0.62± 0.01 0.56± 0.01 0.44± 0.02 0.58± 0.02 0.52± 0.01 0.42± 0.02
DGI 0.52± 0.03 0.48± 0.04 0.41± 0.03 0.44± 0.03 0.42± 0.05 0.36± 0.03
Random 0.47± 0.02 0.38± 0.01 0.25± 0.01 0.44± 0.02 0.35± 0.02 0.22± 0.01

SAGE
FUSE 0.73± 0.02 0.67± 0.01 0.57± 0.01 0.68± 0.02 0.63± 0.01 0.53± 0.01
Node2Vec 0.70± 0.01 0.66± 0.01 0.57± 0.01 0.64± 0.01 0.62± 0.01 0.53± 0.01
DeepWalk 0.72± 0.02 0.67± 0.01 0.57± 0.01 0.66± 0.03 0.62± 0.01 0.54± 0.01
VGAE 0.57± 0.02 0.52± 0.02 0.42± 0.02 0.51± 0.02 0.47± 0.02 0.39± 0.02
DGI 0.48± 0.04 0.47± 0.02 0.39± 0.02 0.40± 0.03 0.40± 0.03 0.33± 0.04
Random 0.37± 0.03 0.27± 0.02 0.21± 0.01 0.32± 0.03 0.24± 0.02 0.17± 0.01

MLP
FUSE 0.72± 0.02 0.66± 0.02 0.55± 0.01 0.67± 0.02 0.62± 0.02 0.52± 0.01
Node2Vec 0.71± 0.01 0.66± 0.01 0.56± 0.02 0.67± 0.01 0.62± 0.01 0.53± 0.02
DeepWalk 0.73± 0.01 0.66± 0.01 0.55± 0.02 0.68± 0.02 0.63± 0.02 0.52± 0.01
VGAE 0.42± 0.01 0.40± 0.01 0.37± 0.01 0.38± 0.01 0.38± 0.01 0.35± 0.01
DGI 0.41± 0.04 0.40± 0.03 0.37± 0.03 0.33± 0.04 0.34± 0.03 0.31± 0.03
Random 0.18± 0.02 0.18± 0.01 0.17± 0.01 0.16± 0.02 0.16± 0.01 0.16± 0.01

Table 43: Classification experiments on different masking rates for the MNAR scenario on the
CiteSeer dataset. The mean and standard deviation over 10 iterations are reported. The best and
second-best in each metric, for each masking rate and each classifier, are highlighted in bold and
underlined, respectively.
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