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ABSTRACT

The impressive performances of large language models (LLMs) and their im-
mense potential for commercialization have given rise to serious concerns over
the intellectual property (IP) of their training data. In particular, the synthetic texts
generated by LLMs may infringe the IP of the data being used to train the LLMs.
To this end, it is imperative to be able to perform source attribution by identifying
the data provider who contributed to the generation of a synthetic text by an LLM.
In this paper, we show that this problem can be tackled by watermarking, i.e.,
by enabling an LLM to generate synthetic texts with embedded watermarks that
contain information about their source(s). We identify the key properties of such
watermarking frameworks (e.g., source attribution accuracy, robustness against
adversaries), and propose a source attribution framework that satisfies these key
properties due to our algorithmic designs. Our framework enables an LLM to
learn an accurate mapping from the generated texts to data providers, which sets
the foundation for effective source attribution. Extensive empirical evaluations
show that our framework achieves effective source attribution.

1 INTRODUCTION

Large language models (LLMs) (Ouyang et al., 2022; Touvron et al., 2023a) have recently demon-
strated remarkable performances and hence received a surging interest. These LLMs, trained using
massive text data, have displayed impressive text generation abilities. This has given rise to the
immense potential of adopting LLM-generated texts for commercial use. However, this potential
commercialization has led to major concerns regarding the intellectual property (IP) of training data
for LLMs because the texts generated by an LLM may infringe the IP of the data being used to train
the LLM. These concerns have been reflected by the increasing regulations on data protection re-
lated to AI models. For example, the Coalition for Content Provenance and Authenticity has stressed
the necessity of certifying the source of online content produced by generative models (Rosenthol,
2022). Therefore, it is of crucial importance for LLMs to be equipped with source attribution for
their generated synthetic texts.

In source attribution, given some texts generated by an LLM, its aim is to find the source respon-
sible for the generation of these texts. That is, if the data from a data provider has been used to
train the LLM and contributed to the generation of a sentence by the LLM, then source attribution
identifies this data provider. Moreover, source attribution also improves the interpretability of LLM-
generated texts: for example, if the generated content from an LLM is attributed to a trustworthy
source (e.g., a peer-reviewed academic paper), then the user is likely to consider the content more
reliable. The ability to perform source attribution can endow the LLM with the capability of data
provenance, which presents a different problem where a data provider can verify whether its data
has been used to train the LLM. This problem can be solved with source attribution. Specifically, a
data provider can check the source of the generated texts from an LLM via source attribution, and
hence verify data provenance, as detailed in App. E.1.6.

While some recent works have addressed the problem of data provenance in LLMs (Kirchenbauer
et al., 2023; Liu et al., 2023a), to the best of our knowledge, effective source attribution for LLMs
remains an open problem. In contrast to data provenance which presents a binary determination,
source attribution aims to identify the specific data source(s) influencing a particular output, which
presents a more challenging task. Our work focuses on addressing source attribution rather than
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Figure 1: Illustration of WASA’s problem setting. Watermarks are embedded into the texts from data
providers for training the LLM. The LLM produced by our WASA framework can generate synthetic
texts with embedded watermarks that allow for effective source attribution.

on data provenance. Additionally, recent studies have explored data selection and can find the most
influential training data for test points (Kwon et al.; Xia et al., 2024; Wettig et al., 2024). How-
ever, they are limited to supervised downstream tasks such as classification, question answering, or
summarization, where test points with ground truths are available. In contrast, our work focuses on
attributing all varieties of LLM generations, encompassing both supervised tasks and unsupervised
generations, which do not have predefined ground truths.

To perform source attribution for LLM-generated texts, a natural solution involves watermarking,
i.e., by enabling the LLM to generate synthetic texts with embedded watermarks that contain in-
formation about their source(s). Consequently, source attribution can be performed by examining
the watermarks embedded in the generated texts. Our problem setting (Fig. 1) involves 3 parties:
data providers contributing text data that may be used for LLM training, an honest third-party LLM
platform operator producing an LLM with generated texts that embed watermarks (hence allowing
for source attribution), and users of the texts generated by this LLM. The users may request source
attribution for the LLM-generated synthetic texts to find out which data provider is responsible for
the generated texts. We consider scenarios where each data provider contributes ample balanced
data with unique characteristics, i.e., the data from different data providers exhibit dissimilarities.
This encompasses a wide variety of real-world scenarios: For example, online articles written by
different authors (i.e., data providers) usually feature their unique writing styles. On the other hand,
we do not consider individual documents/sentences as data providers since they have insufficient
data. Additionally, this work focuses on single-source scenarios, where the generated content can
be attributed to a single data provider.

An effective source attribution framework has to satisfy some key properties: The framework should
(1) achieve accurate source attribution, (2) be robust against malicious attacks on the watermarks,
(3) preserve the performance (i.e., text generation ability) of the LLM, (4) be scalable to a large
number of data providers, (5) ensure that the generated watermarks are transferable to (i.e., persist
after being used as training data for) other LLMs, and (6) be adaptable to fit different LLMs. Sec. 2
discusses these key properties in more detail. To this end, this paper introduces a WAtermarking
for Source Attribution (WASA) framework which, to our best knowledge, is the first framework
capable of enabling effective source attribution in text generated by large language models
Our WASA framework assigns a unique watermark (i.e., imperceptible to human eyes) to every data
provider, and enables an LLM (coined as WASA-LLM) to learn an accurate mapping from the texts
of different data providers to their corresponding watermarks (Sec. 3). So, if a data provider is
responsible for generating a sentence, then our WASA-LLM is able to include the unique watermark
of this data provider in this generated sentence, which naturally supports source attribution. Our
contributions are summarized below:

• We propose to use watermarking for source attribution on LLM-generated synthetic texts
and identify the key properties of such source attribution frameworks.

• We introduce the WASA framework which satisfies these key properties and is hence capable
of producing LLMs whose generated texts allow for effective source attribution.

• We perform extensive empirical evaluations (Sec. 4) to verify that our WASA framework
satisfies these key properties and achieves effective source attribution.

2 KEY PROPERTIES OF WATERMARKING FOR SOURCE ATTRIBUTION

Here, we first present a clear definition of source attribution. For a piece of LLM-generated synthetic
text s, if s correlates the most with the LLM’s training data provided by one data provider compared
to other providers, we recognize that data provider as the source for s and denote as a one-hot label
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ys := {0, 0, ..., 1, ..., 0} where ys[i] = 1 if ys[i] is the source, otherwise ys[i] = 0; the dimension is
n, which is the total number of data providers and is fixed. The goal of source attribution is: given a
piece of LLM-generated text s, we want to find a mapping s→ ys that attributes s to its source ys.

To simplify the problem, we discuss the following scenarios: (1) While x may correlate with mul-
tiple training data from provides, meaning that y may not necessarily be a one-hot vector, we only
consider attribution to a single data source (that x correlates the most with), restricting the y to be
one-hot vector in our case, and present case studies when attributing to more than one data source
in App. G.3; (2) There might be an edge case where the generated content x correlates the most
with pretraining data (from public training datasets) rather than data from data providers. We do not
consider this case in our paper and ensure that in our evaluations the generated contents are related
to the data from providers by carefully designing controlled experiments.

In this paper, we would like to address the problem of source attribution with watermarking. Specif-
ically, to use watermarking for source attribution, we first transform the data providers y to water-
marks wtm correspondingly: encoder(y) = wtm where encoder denotes the watermark encoder.
During LLM training, we aim to allow the LLM to learn a mapping g : s → wtm to generate
watermarks along with synthetic texts. Then during inference, we can perform the mapping s→ ys
by ys = decoder(g(s)) where decoder(wtm) = y is the watermark decoder function, translating
the watermark to sources for the user. Importantly, since each generated content s must correlate
with some pieces of training data, there always exists a source ys which is the most correlated data
source with s. Hence, under all conditions (except the special case mentioned above), as long as a
user requests, s should be attributed to its source ys. In our WASA framework, since we assume that
all data providers provide watermarked training data, we can perform source attribution under all
conditions: Upon request, we can perform ys = decoder(g(s)) and map the generated watermark to
the corresponding data provider ys.

Subsequently, we discuss the key properties for an effective watermarking source attribution frame-
work and how our WASA framework satisfies them.

Accuracy. Accurate source attribution should be enforced. Our WASA framework achieves this by
training the WASA-LLM to map texts from different data providers to their respective watermarks.
Specifically, we first train WASA-LLM using watermarked texts (Sec. 3.1) and separate the pre-
diction/generation spaces for the texts and watermarks to both reduce the complexity of watermark
prediction (Sec. 3.2) and explicitly enforce watermark generation (Sec. 3.3). Empirical results in
Sec. 4.1 demonstrate the effectiveness in source attribution.

Robustness. Generated text with watermarks should be robust against malicious attacks. Since
our trained WASA-LLM is able to learn an accurate mapping from the texts to the watermarks as
mentioned (a) it can be exploited to regenerate the watermarks even if generated texts are tampered
with and (b) it maintains generating the correct watermarks even if the input texts (prompts) are
perturbed, which are empirically verified in Sec. 4.2.

Scalability. The framework should cater to a large number of data providers. The design of the
watermark (Sec. 3.1) facilitates the generation of numerous unique watermarks and the scalability
can be empirically verified in Sec. 4.3.

Performance Preservation. The introduction of watermarks should (a) not significantly degrade
the text generation ability of the LLM (b) nor affect the readability of the LLM-generated synthetic
texts too much. We empirically show in Sec. 4.4 that our WASA-LLM preserves (a), and the water-
marks are carefully designed to achieve (b) (see App. G.1).

Transferability. After the generated watermarked texts are used as training data for other LLMs,
their generated texts should preserve the watermarks. We achieve this by ensuring that the water-
marked training data of our WASA-LLM has the same structure as the generated watermarked data.

Adaptability. The framework should be easily adapted to fit different LLMs. Our WASA framework
only requires mild modifications to the LLMs and can hence adopt a wide variety of LLMs using
the transformer architecture, as shown in Sec. 4.1.

We have only listed above the most essential properties of such source attribution frameworks; there
may be additional considerations depending on specific applications. In Sec. 3, we will discuss in
more detail how our WASA framework satisfies these key properties due to our algorithmic designs.
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Figure 2: Sentences embedded (the first one) and not embedded (the second one) with our imper-
ceptible watermark visualized in the bottom sentence.

3 WATERMARKING FOR SOURCE ATTRIBUTION (WASA) FRAMEWORK

Sec. 3.1 discusses watermark design and embedding process. Sec. 3.2 details the training of WASA-
LLM with watermarked texts and its alignment with key properties. Sec. 3.3 explains how our
trained WASA-LLM produces synthetic texts with watermarks for source attribution.

3.1 EMBEDDING WATERMARKS INTO TEXTS

Firstly, the LLM platform operator embeds a unique watermark for each data provider’s texts.

Design of Watermarks. We construct the watermarks using Unicode characters which are imper-
ceptible to human eyes (yet can be decoded by machine learning models). Some of these invisible
characters have also been adopted in other studies with language models (Boucher et al., 2022). Ev-
ery watermark is made up of 10 characters, each of which is chosen among the following 6 Unicode
characters: U+200B, U+200C, U+200D, U+2062, U+2063, U+2064. We chose these characters
because they are found to be invisible on many commonly used platforms. So, these watermarks
preserve the semantic meaning of the original texts to human readers (Fig. 2). Also, our WASA frame-
work can easily adopt other choices of characters depending on the use cases. Moreover, these 10-
character watermarks allow us to construct numerous combinations and hence achieve scalability
to a large number of data providers. As shown in App. F.10, reducing the watermark length trades
off scalability for source attribution accuracy.

Embedding Watermarks into Sentences. To enable our WASA-LLM to learn the mapping from
the texts of different data providers to their watermarks, it is important to only embed watermarks
into the sentences that are representative of the unique characteristics of the data providers. To this
end, we calculate the term frequency-inverse document frequency (TF-IDF) scores of all sentences
from a data provider and select the sentences with the top 20% of the TF-IDF scores (i.e., most
representative sentences) for watermarking, which empirically yields the best trade-off of source
attribution accuracy vs. text generation performance among different tested proportions, as reported
in App. F.8. For every selected sentence, we embed our 10-character watermark at a random position
in the sentence, which allows the LLM to learn to map texts of different lengths to the watermarks
and also makes it harder for an adversary to remove/modify the watermarks. As empirically verified
in App. F.2, our method of selecting sentences for watermarking based on TF-IDF indeed leads to
more accurate source attribution than random selection.

3.2 TRAINING WASA-LLM

We consider a practical scenario where the LLM is already pre-trained before being used by
WASA framework, and we refer to our training of the LLM as second-stage pre-training. Our frame-
work can also be used to train an LLM from scratch.

Preliminaries on LLMs. Denote an unsupervised corpus by D, in which every sequence si =
[u1, u2, . . . , uk] is with a block of k tokens. We focus on decoder-only language models (e.g.,
GPT (Radford et al., 2019), OPT (Zhang et al., 2022), Llama2 (Touvron et al., 2023b)). When
presented with a sub-sequence s = si[1 : j − 1] = [u1, . . . , uj−1], the LLM predicts P (uj) using
feed-forward operations, as detailed below:

h0 = s ·We +Wp ,

hτ = decoder(hτ−1) for τ = 1, . . . , l ,

z = hl[j − 1] ·We
⊤,

P (uj) = softmax(z) .

(1)

We represents the embedding matrix with a dimension of vocabulary size V by embedding/hidden
dimension E, and Wp is the positional encoding. The training objective is to maximize the log-

4



216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

vocabulary 

size V

aardvark
aarhus
aaron
…
…

…

zyzzyva
U+200B

U+2064

…

watermark 

character 

embedding 

size V'

Token Embeddings (𝑾𝒆
′ )

embedding size E

…
DECODER

DECODER

This has ten char [wtm] U+200B … U+2064

1 2 3 4 5 6 … 6+m … k

+
=

Logits

Hidden 
states

Positional 
encoding
Token 
Embedding

Word Token Generation

…
DECODER

DECODER

This has ten char [wtm] U+200B … U+2064

1 2 3 4 5 6 … 6+m … k

+
=

Watermark Token Generation

Figure 3: Separation of token embeddings and prediction spaces for texts and watermarks.

likelihood L(si) of a sequence si of tokens:

L(si) =
∑k

j=2 logP (uj |u1, . . . , uj−1) (2)

where P (uj |u1, . . . , uj−1) (i.e., similar to P (uj) in equation 1) is the probability of j-th token uj

conditioned on the preceding j − 1 tokens [u1, . . . , uj−1].

Forward Pass. To ease exposition, we consider one watermark in a block. Denote a sequence with
an embedded watermark by s′i = [u1, u2, . . . , ut, w1, w2, . . . , wm, ut+1, . . . , uk−m] where m = 10
for 10-character watermark and the u’s and w’s are the word and watermark tokens, respectively.
Hereafter, we will use t to denote the token index before the first watermark token.

To begin with, we augment the original vocabulary by our V ′ = 6 watermark characters (Sec. 3.1),
leading to our modified token embedding matrix W ′

e is (V + V ′) × E (Fig. 3). For a sequence s′i,
given a sub-sequence s′ = s′i[1 : j − 1] comprising the first j − 1 tokens, the same feed-forward
operations in equation 1 are applied to produce hl. Next, depending on whether the ground-truth j-
th token being predicted is a word token u or watermark token w, we adopt two separate prediction
spaces (i.e., separate softmax layers): For a word token u, (W ′

e[1 : V ])⊤ forms the linear layer:

zu = hl[j − 1] · (W ′
e[1 : V ])⊤,

Pu(u) = softmax(zu) .
(3)

For a watermark token w, (W ′
e[V + 1 : V + V ′])⊤ forms the linear layer:

zw = hl[j − 1] · (W ′
e[V + 1 : V + V ′])⊤,

Pw(w) = softmax(zw) .
(4)

This separation of the prediction/generation spaces of the word tokens equation 3 and watermark
tokens equation 4 allows us to use a small number of additional parameters (i.e., E × V ′ instead
of E × (V + V ′)) for watermark prediction based on the hidden states of WASA-LLM. Moreover,
this separation allows us to explicitly enforce the generation of watermarks (i.e., using its designated
generation space) when we use the trained WASA-LLM to generate synthetic texts, as discussed in
Sec. 3.3. Therefore, the watermarks can be regenerated using cleaned texts after being attacked, and
the correct watermarks can still be generated even if the input texts (i.e., prompts) are perturbed,
hence ensuring the robustness of our WASA framework; more details are in Sec. 4.2.

The two separate softmax layers naturally lead to the following separate log-likelihoods:

Llm(s
′
i) =

∑t
j=2 logPu(uj |u1, . . . , uj−1)

+

k−m∑
j=t+1

logPu(uj |u1, . . . , ut, w1, . . . , wm, ut+1, . . . , uj−1) ,
(5)

Lwtm(s
′
i) =

m∑
j=1

logPw(wj |u1, . . . , ut, w1, . . . , wj−1) (6)

where Llm(s
′
i) equation 5 is the log-likelihood of word tokens, and Lwtm(s

′
i) equation 6 is the log-

likelihood of watermark tokens , which encourages the LLM to learn texts-to-watermarks mapping.1
The overall log-likelihood we aim to maximize is therefore LWASA-LLM(s′i) = Llm(s

′
i) + Lwtm(s

′
i).

1To simplify exposition, for the second sum in equation 5, when j = t + 1, the term reduces to
logPu(uj |u1, . . . , ut, w1, . . . , wm). In equation 6, when j = 1, the term reduces to logPw(wj |u1, . . . , ut).
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The maximization of the log-likelihood of the watermarks conditioned on the texts equation 6, to-
gether with the separation of the prediction/generation spaces, enables WASA-LLM to accurately
learn the mapping from the texts to watermarks and achieve a high accuracy in source attribution,
which will be empirically verified in Sec. 4.1. The backward pass is further elaborated in App. B.

3.3 GENERATING TEXTS WITH EMBEDDED WATERMARKS USING WASA-LLM

After our WASA-LLM is trained (Sec. 3.2), it can generate synthetic texts which naturally include
both the word and watermark tokens due to their separate prediction/generation spaces. To further
improve the alignment between our training and generation stages, we introduce a special token
[WTM ] which is similar to other specialized tokens and in the vocabulary of V word tokens: When
training our WASA-LLM using the watermarked texts, [WTM ] is added right before the watermark
tokens during tokenization so that the presence of [WTM ] indicates that the subsequent m = 10
tokens are watermark tokens; when generating texts, if [WTM ] is encountered/generated, then it in-
dicates that our WASA-LLM should switch to generating watermark tokens. After watermark tokens
have been generated, our WASA-LLM resumes the word token generation. Fig. 9 (App. G.1) shows
the WASA-LLM-generated synthetic texts with embedded watermarks, which verifies that the water-
marks are imperceptible to human eyes. Subsequently, when a user requests source attribution for
some synthetic texts generated by our WASA-LLM, the LLM platform operator uses a designated
watermark decoder algorithm to extract the generated watermark from the texts and then attribute
these texts to the source (data provider) whose watermark matches the generated watermark (Fig. 1).
The matching algorithm is elaborated in App. C.

4 EXPERIMENTS

We perform extensive empirical evaluations to validate that our WASA framework satisfies the 6
key properties in Sec. 2. The experimental results are the average taken from 5 random seeds. We
consider two datasets in the main experiments:

ArXiv is collected by post-processing academic papers from ArXiv (Clement et al., 2019). This
dataset contains academic papers from several fields, each field functions as a data provider.

BookSum (Kryściński et al., 2022) consists of various books, each considered as a data provider.

We adopt 10 data providers for each dataset in our main experiments and show that our WASA can
scale to a larger number of data providers in Sec. 4.3. We further incorporate more diverse datasets
and conduct experiments on them in App. E.1.7. They comprise contents crawled from different
websites and the data providers offer similar information, thus presenting more challenging scenar-
ios for source attribution. We obtain WASA-LLM from our second-stage pre-training (Sec. 3.2) of
the pre-trained GPT2-Large , OPT-1.3B, and Llama2-7B. The results from OPT-1.3B are presented
in App. E. More details on the datasets and model training are given in App. D, and an ablation
study on generalizing to a frontier model, Llama3-8B model (Dubey et al., 2024), is in App. E.1.8.

Baseline. Since WASA is the first effective source attribution framework, there is no existing base-
line. We extend BM25 (Trotman et al., 2014), which is a famous search engine algorithm that
estimates the relevance of generated texts to data providers, machine learning-based technique as
an additional baseline which compares between the semantic representations of generated text from
each contributor and synthetic text, following a similar setup to Foley et al. (2023) (detailed in
App. E.1.3).

4.1 ACCURACY

We design the following experiment to facilitate easier evaluations of the single-source attribution
accuracy. Specifically, for each data provider, we use the sentences selected for watermarking (after
removing the watermarks) as the inputs/prompts to the trained WASA-LLM, and perform source attri-
bution on the generated texts. This simplifies the evaluations: specifically, while LLM-generated text
doesn’t come with a ground-truth source, the data provider corresponding to the input sentence can
naturally serve as the ground-truth source of the generated text. We verify the effectiveness of this
evaluation method in App. D.3. Subsequently, we select 50 sentences from each data provider after
removing the watermarks (i.e., 50 trials) as the input/prompt to the trained WASA-LLM, which gen-
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Table 1: Accuracies of top-1, top-3, and top-5 source attribution (resp. denoted by ‘acc.’, ‘top-3.’,
and ‘top-5.’) and F1 score by BM25 and WASA-LLM from second-stage pre-training of different
models on various datasets.

model method ArXiv dataset BookSum dataset
acc. top-3. top-5. F1 acc. top-3. top-5. F1

GPT2 BM25 54.73±6.52 85.13±0.58 93.80±0.53 0.517±0.01 58.94±3.43 77.73±1.94 88.33±2.53 0.593±0.04

WASA 74.84±2.04 95.76±1.24 98.56±0.82 0.758±0.02 77.92±1.57 91.80±0.24 96.52±0.76 0.723±0.08

Llama2 BM25 60.07±4.83 88.67±1.33 95.60±1.31 0.576±0.01 54.01±12.3 75.40±9.53 86.60±4.04 0.607±0.05

WASA 77.40±1.91 96.87±1.62 99.40±0.35 0.800±0.03 83.27±4.50 95.27±1.53 97.67±0.46 0.840±0.06

erates texts (by continuing the sentence) together with watermarks. More details are in App. E.1.1.
The watermark in the generated sentence is then decoded, and the source attribution is correct if
this watermark matches the watermark of the data provider corresponding to the input sentence
(Sec. 3.3). Therefore, for every data provider, the source attribution accuracy is calculated as

accuracy =
number of correct watermarks

number of trials
. (7)

The macro F1 score is also reported in the results with the definition detailed in App. E.1.2. To miti-
gate the impact of the length of the generated sentence on our evaluations (i.e., a watermark may not
be generated if the generated sentence is too short), we use a simple technique to enforce watermark
generation: If a watermark is not generated, then we force the generation of a watermark by adding
the token [WTM ] to the end of the sentence (Sec. 3.3). This is only adopted to simplify the eval-
uations; as verified in App. F.3, naturally and forcefully generated watermarks lead to comparable
source attribution accuracy. We also show in App. F.9 that this enforced watermark generation is
not necessary if the generated texts are long enough. Tab. 1 reports the source attribution accuracy
averaged over 10 data providers. Our WASA framework consistently achieves more accurate source
attribution for both datasets and both language models; Tabs. 9 and 10 in App. E.1.4 gives the
source attribution accuracy for different data providers.

Top-k Source Attribution. In addition to attributing a generated sentence to a single source by using
one watermark, it may be acceptable for some users to attribute a generated sentence to multiple
possible sources that contain the true source. To account for these scenarios, we propose top-k
source attribution in which we modify our watermark generation (Sec. 3.3) so that when the token
[WTM ] is encountered, we generate the top k > 1 watermarks with the largest beam search scores.
In this case, source attribution is successful if the true watermark is contained in these k watermarks,
so the top-k accuracy can be defined by replacing the number of correct watermarks in equation 7
with the number of generated sentences whose top k watermarks contain the true watermark. Note
that even though the methodology and main evaluation are targeted at single-source, an extension to
multiple data providers can be handled by our top-k source attribution, and we present a case study
when true sources are multiple sources in App. G.3.

Fine-grained Error Analysis. To better understand the incorrect attributions, where the generated
text is not correctly attributed to its true source, we conduct a detailed error analysis on the ArXiv
dataset. For every category (i.e., data provider), we separate the source attribution errors into two
types of errors: (a) misclassification in which the generated watermark matches the watermark of
another incorrect category, and (b) incorrect watermark in which the generated watermark does not
match the watermark of any category. The results are presented in Tab. 11 in App. E.1.5, which show
that the vast majority of our errors result from misclassification and our WASA-LLM rarely generates
incorrect watermarks not belonging to any category. This further substantiates the reliability of our
WASA-LLM. The results also suggest that errors are mostly caused by the generated texts exhibiting
the characteristics of multiple data providers. Additionally, an edge case of incorrect attribution may
arise when the true source is not watermarked, such as the public pre-training data. In such cases,
content cannot be attributed to any recognized provider. To investigate this phenomenon, we have
designed a controlled experiment detailed in App. F.4.

4.2 ROBUSTNESS

Our WASA framework is robust against malicious attacks aiming to disrupt the source attribution. We
introduce the threat model as follows: We identify potential attackers as those intending to alter the
LLM-generated text to remove IP acknowledgments to data contributors or alter input sentences to
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Table 2: Source attribution accuracy using regenerated watermarks by WASA-LLM (from second-
stage pre-training of GPT2 on ArXiv dataset) under various attacks on generated sentences with
embedded watermarks (in addition to watermark removal/modification attacks) and on input sen-
tences. std is given in Tabs. 16 and 17 (App. E.2).

strength
attacks on generated sentences with embedded watermarks attacks on input sentences
insertion attack deletion attack synonym substitution insertion attack deletion attack synonym substitution
acc. top-3. acc. top-3. acc. top-3. acc. top-3. acc. top-3. acc. top-3.

0% 71.60 93.76 71.60 93.76 71.60 93.76 74.84 95.76 74.84 95.76 74.84 95.76
Localized 71.40 93.56 - - - - 74.20 95.40 - - - -
5% 70.12 93.20 71.08 93.92 70.52 93.52 74.20 95.40 73.56 95.52 72.84 95.24
10% 69.12 92.20 71.84 93.68 71.02 92.88 72.88 94.68 72.96 94.68 73.60 95.00
15% 66.92 91.96 71.36 94.04 70.96 92.72 71.52 93.20 72.68 94.12 71.88 94.20
20% 65.12 91.44 70.00 93.24 69.20 93.20 68.60 93.40 72.68 94.12 72.08 93.76

Table 3: Source attribution accuracy and F1 score for different numbers of data providers on ArXiv
dataset. ‘BM25’ denotes the source attribution obtained from BM25 on Llama2 as a baseline.

n BM25 Llama2 WASA GPT2 WASA Llama2
acc. F1 acc. top-3. top-5. F1 acc. top-3. top-5. F1

10 60.07±4.83 0.576±0.01 74.84±2.04 95.76±1.24 98.56±0.82 0.758±0.02 77.40±1.91 96.87±1.62 99.40±0.35 0.800±0.03

25 46.08±2.75 0.445±0.01 66.48±0.76 90.69±4.23 94.05±0.32 0.663±0.01 72.38±1.18 92.44±1.66 96.60±0.70 0.717±0.01

50 26.85±10.1 0.348±0.02 56.44±0.84 80.19±1.02 87.54±0.68 0.560±0.01 63.15±2.71 84.74±0.76 90.49±0.47 0.600±0.01

100 19.91±12.5 0.229±0.01 45.06±0.67 68.61±0.27 78.76±2.80 0.443±0.01 49.88±0.34 73.63±0.04 82.34±0.31 0.505±0.01

disrupt the watermark generation and hence the source attribution results. The attackers do not have
access to the LLM itself but can query the model and modify the generated outputs. The attackers
may also possess tools that can remove the Unicode characters (hence the watermark) inside a text.

Watermark Removal/Modification Attack. An adversary may remove/modify the watermarks in
our generated sentence to sabotage the source attribution accuracy. Due to the ability of our WASA-
LLM in learning an accurate texts-to-watermarks mapping, the watermark can be regenerated if it is
manipulated. Specifically, we clean the generated sentence by removing the corrupted watermark,
and use the cleaned sentence as input/prompt to WASA-LLM to regenerate the watermark (without
generating synthetic texts) which is then used for source attribution. The regenerated watermarks by
WASA-LLM (from second-stage pre-training of GPT2 on ArXiv dataset) lead to an overall accuracy
(top-3 accuracy) of 71.60%(93.76%) which is comparable to the original 74.84%(95.76%) (Tab. 1).
So, our watermark regeneration is an effective defense mechanism. Besides removing/modifying
the watermark, an adversary may additionally modify the content of the generated sentence:

Additional Attacks. We also consider additional attacks on generated sentences with embedded
watermarks and on input sentences, including insertion, deletion, synonym substitution, syntactic
transformation attacks, and an oracle-based attack (Zhang et al., 2023). Tab. 2 reports the source
attribution accuracy under the first 3 attacks, where the attack strength relates to how many words in
the sentence are attacked, and App. E.2 reports the accuracy under the last 2 attacks along with all
the attacks descriptions. For such attacks (in addition to watermark removal/modification attacks)
on generated sentences, watermark regeneration is used. The results show that although the attacks
deteriorate attribution accuracy, high source attribution accuracy can still be preserved. This can
again be explained by the reliable texts-to-watermarks mapping of our WASA-LLM, which is robust
against perturbations to the input/prompt.

4.3 SCALABILITY

Here, we verify WASA’s ability to scale to a large number of data providers. We follow the experi-
mental setup in Sec. 4.1 and increase the number of data providers. Results in Tab. 3, Tab. 20, and
Tab. 21 (App. E.3, which includes 500 data providers) show that as the number of data providers
increases, the source attribution accuracy inevitably decreases yet still remains high compared with
the BM25 baseline. With more data providers, we recommend using k > 1 in top-k attribution due
to higher resulting accuracy and identifying the true source from among them.

4.4 PERFORMANCE PRESERVATION

Here, we show that our WASA-LLM preserves the text generation ability of the original LLM by
comparing it with the original GPT2-Large model which we denote as originalGPT. We train orig-
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Table 4: Comparison of the text generation performances achieved by our WASA-LLM vs. the base-
line model. The coherency and naturalness are evaluated by GPT4.

models perplexity (↓) distinct-1 (↑) distinct-2 (↑) coherency (↑) naturalness (↑)
originalGPT 12.4682±0.40 0.8141±0.00 0.9796±0.00 7.370 7.744
WASA-LLM 12.6570±0.54 0.8193±0.00 0.9795±0.00 7.135 6.926

inalGPT using the same (but un-watermarked) data from the ArXiv dataset as that used for our
WASA-LLM. We assess the text generation performance using several commonly used evaluation
metrics (with a separate evaluation dataset, as explained in App. D.1): perplexity, distinct-1, and
distinct-2 scores (Li et al., 2016). To further assess the naturalness and coherence of the generated
text, we have also employed the GPT4 zero-shot prompt method (i.e., introduced in the work of Yao
et al. (2023)) to assess the text’s naturalness and coherence. The results in Tab. 4 show that the text
generation performance of our WASA-LLM is comparable to that of originalGPT, which indicates
that our WASA framework preserves the ability of the LLM to generate high-quality texts (Sec. 2).
The larger degradation in naturalness may stem from the embedded watermarks (Unicode charac-
ters). We validate that our WASA-LLM balances between the number of embedded watermarks and
source attribution accuracy in App. F.8. We show that our framework also ensures decent readability
of generated text in App. G.1.

4.5 OTHER KEY PROPERTIES

Transferability and Adaptability are elaborated in Apps. E.4 & E.5.

Ablation Studies are carried out to assess the effectiveness of the designs, including (a) the des-
ignated embedding space for watermark tokens and separation of the prediction/generation spaces
(App. F.1), (b) adopting TF-IDF to select sentences for embedding watermarks (App. F.2), and (c)
the enforced watermark generation (App. F.3). Additional analysis, including (d) unattributable
content (App. F.4), (e) the effectiveness in supervised fine-tuning (App. F.5), (f) the relative posi-
tions of the generated watermarks (App. F.6), and (f) the application in continuous training pipeline
(App. F.7), are examined. We also explored the impact of hyperparameters from App. F.8 to
App. F.13.

5 RELATED WORK

In this section, we will review related works on source attribution and data provenance; further
discussions on watermarking natural languages and models as well as text steganography are in
App. A. Recent studies by Song & Shmatikov (2019) verify dataset usage in language model training
through membership inference attacks. Liu et al. (2023a) have proposed to plant backdoor triggers in
training texts to check for data usage, but they can impair text generation performance. Importantly,
the above works have only focused on data provenance and cannot be easily adapted to perform
effective source attribution. Abdelnabi & Fritz (2021) have embedded messages post-generation via
adversarial training, which means the messages can only be used for IP protection and cannot be
used for source attribution during generation. Studies on data selection (Lin et al., 2024; Xia et al.,
2024; Wettig et al., 2024) can potentially attribute data in supervised downstream tasks but cannot
handle LLM generation in general settings when lacking test points with ground truth. Some works
in computer vision have tackled the problem of source attribution (Marra et al., 2018; Yu et al., 2019;
2021). However, to the best of our knowledge, effective source attribution for the texts generated by
language models remains an open problem and is the focus of our work here.

6 CONCLUSION

This paper describes our proposed WASA framework which allows for effective source attribution
as a solution to intellectual property infringement in the context of LLMs. By embedding unique
watermarks into LLM-generated texts, WASA not only enhances the reliability and interpretability of
LLM-generated content but also provides a crucial tool for data protection, allowing data providers
to verify the use of their contributions in LLM training processes. The extensive empirical evalua-
tions of the WASA framework affirm its effectiveness in achieving accurate source attribution while
satisfying the key properties we have identified above. Since our WASA is the first effective source
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attribution framework for LLM-generated texts, it faces some limitations which may call for future
work. For example, though we have shown that our WASA is robust against various adversarial at-
tacks, it is unclear whether it is robust against more advanced/sophisticated attacks, which may be
achieved through adversarial training in future work.

REPRODUCIBILITY STATEMENT

We have given the necessary details for reproducing the results of our work in this paper. Detailed
descriptions of the datasets used and the experimental settings have been included in Sec. 4 and
App. D, including the 5 specific random seed numbers for the experiment runs. Our code to repro-
duce the experiments has been included in the supplementary material.

ETHICAL CONSIDERATIONS

Similar to other research topics on LLMs, watermarking the synthetic texts generated by LLMs for
source attribution requires a thoughtful and ethical approach due to its potential societal implica-
tions. That is, it is important to take necessary measures to avoid causing harm to certain parties.
Potential risks related to our watermarking framework include the following:

• Privacy Risks. Watermarking can potentially reveal sensitive information about data
providers, thus leading to privacy breaches or the possibility of re-identification if not han-
dled carefully. In our WASA framework, only the watermark can be seen in the generated
data, which does not directly imply personal information about the data providers. Pri-
vacy can be preserved given that the mapping from watermarks to data providers is kept
confidential.

• Chilling Effects. Watermarking may discourage some data providers from sharing their
datasets, especially if they fear potential misuse or unintended consequences of having
their data linked to specific research outcomes.

• Data Manipulation. While watermarks are meant to be unobtrusive and our WASA frame-
work has been shown to be robust against various adversarial attacks, there can be un-
foreseen real-world instances where malicious actors attempt to manipulate the watermark,
which may lead to negative consequences such as the dissemination of altered or mislead-
ing information.

To address these potential risks, it is essential to carefully consider the ethical implications of our
watermarking framework and implement measures to protect the privacy and interests of all involved
parties, particularly those who are more susceptible to harm. Researchers should conduct compre-
hensive risk assessments and engage in transparent communication with data providers to ensure the
responsible and ethical use of watermarked data. Additionally, incorporating diverse perspectives
and involving vulnerable communities in the decision-making process can help identify and mitigate
potential harm effectively.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sahar Abdelnabi and Mario Fritz. Adversarial Watermarking Transformer: Towards Tracing Text
Provenance with Data Hiding. In Proc. IEEE SP, pp. 121–140, 2021.

Nicholas Boucher, Ilia Shumailov, Ross Anderson, and Nicolas Papernot. Bad Characters: Imper-
ceptible NLP Attacks. In Proc. IEEE SP, pp. 1987–2004, 2022.

Colin B. Clement, Matthew Bierbaum, Kevin P. O’Keeffe, and Alexander A. Alemi. On the Use of
ArXiv as a Dataset. arXiv:1905.00075, 2019.

Long Dai, Jiarong Mao, Xuefeng Fan, and Xiaoyi Zhou. DeepHider: A Covert NLP Watermarking
Framework Based on Multi-task Learning. arXiv:2208.04676, 2022.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony
Hartshorn, Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark,
Arun Rao, Aston Zhang, Aurelien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Roziere,
Bethany Biron, Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris
Marra, Chris McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong,
Cristian Canton Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny
Livshits, David Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino,
Dieuwke Hupkes, Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael
Smith, Filip Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Ander-
son, Graeme Nail, Gregoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah
Korevaar, Hu Xu, Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel Kloumann, Ishan
Misra, Ivan Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Ma-
hadeokar, Jeet Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy
Fu, Jianfeng Chi, Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak,
Jongsoo Park, Joseph Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Al-
wala, Kartikeya Upasani, Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, Khalid El-Arini,
Krithika Iyer, Kshitiz Malik, Kuenley Chiu, Kunal Bhalla, Lauren Rantala-Yeary, Laurens van der
Maaten, Lawrence Chen, Liang Tan, Liz Jenkins, Louis Martin, Lovish Madaan, Lubo Malo,
Lukas Blecher, Lukas Landzaat, Luke de Oliveira, Madeline Muzzi, Mahesh Pasupuleti, Man-
nat Singh, Manohar Paluri, Marcin Kardas, Mathew Oldham, Mathieu Rita, Maya Pavlova,
Melanie Kambadur, Mike Lewis, Min Si, Mitesh Kumar Singh, Mona Hassan, Naman Goyal,
Narjes Torabi, Nikolay Bashlykov, Nikolay Bogoychev, Niladri Chatterji, Olivier Duchenne, Onur
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A ADDITIONAL RELATED WORKS

In addition to the previous works discussed in Sec. 5 that are most closely related to ours, we will
give a review of additional related works on watermarking natural languages and text steganography,
as well as recent works on watermarking language models.

Watermarking Natural Language/Text Stegano-graphy. In natural language processing, water-
marking and steganography are closely related in that they both desire stealthiness and robustness.
However, there are also important differences because watermarking emphasizes the importance
of ownership, whereas steganography focuses on the secret communication of messages. Language
watermarking is used to protect the integrity and authorship of digital texts (Kamaruddin et al., 2018;
Podilchuk & Delp, 2001). Early approaches of language watermarking are mostly rule-based and
make use of linguistic techniques such as synonym substitution (Topkara et al., 2006b) and sentence
structure alteration (Topkara et al., 2006a) to embed watermarks while attempting to preserve the
semantic meaning of the original texts. However, these approaches usually lead to deteriorated text
quality and are not scalable. Some recent works have aimed to develop advanced text steganography
methods using deep learning. The work of Yang et al. (2019) has utilized recurrent neural networks
to automatically generate steganographic texts, and the work of Ziegler et al. (2019) has proposed
to first convert the secret messages into bit strings and then map them to the cover text based on
arithmetic coding with the help of GPT2 (Radford et al., 2019).

Watermarking Language Models. Some recent works have proposed methods to add watermarks
to language models in order to protect the IP of the models (Dai et al., 2022; Gu et al., 2023; He et al.,
2022; Zhao et al., 2022). These methods allow the verification of model ownership and are hence
able to protect the economic interests of model owners. Specifically, the work of He et al. (2022)
has employed lexical replacement to watermark the language model output and used hypothesis
testing for post-hoc model ownership verification. The work of Gu et al. (2023) has adopted back-
door attacks to embed black-box watermarks into pre-trained language models, which is achieved
by using rare words as well as a combination of common words as backdoor triggers and verifying
the watermarks by calculating the extraction success rate. Apart from model protection, multiple
methods (Kirchenbauer et al., 2023; Kuditipudi et al., 2023; Lu et al., 2024) have been proposed
to use watermarking to distinguish between human-generated and model-generated synthetic texts.
Kirchenbauer et al. (2023) softly constrain the word choices when the model generates synthetic
texts and use hypothesis testing to make the distinction. More recently, the work of Kuditipudi et al.
(2023) has improved the above method by developing a distortion-free method, which ensures that
the watermarks do not change the sampling distribution of the texts. The work of Lu et al. (2024)
also refines the same method by ensuring the influence of a token during watermark detection to be
proportional to its entropy. Finally, in terms of security in watermarking models, Liu et al. (2024b)
develop a compact watermarking model that embeds a semantic watermark within model outputs,
enhancing their robustness against adversarial text modifications. Meanwhile, Liu et al. (2024a)
employ two distinct neural networks to generate and detect watermarks, enabling public verification
of the watermark while maintaining the confidentiality of the secret key throughout the watermark
generation process. Additionally, He et al. (2024) introduce a Cross-lingual Watermark Removal
Attack (CWRA), which can effectively remove watermarks by interfering with the watermark gen-
eration process through translation into another language. Importantly, these methods cannot be
used to perform source attribution for the texts generated by language models, which we focus on in
this work.

B BACKWARD PASS

In the main paper, we introduce the forward pass of our model in Sec. 3.2. Here, we delve into
the backward pass in our framework. Remember that the most important design of the framework
is the separation of the prediction/generation spaces of the word tokens equation 3 and watermark
tokens equation 4. We represent the overall log-likelihood as LWASA-LLM(s′i) = Llm(s

′
i) + Lwtm(s

′
i).

Notice that maximizing these log-likelihoods is equivalent to minimizing the cross-entropy loss

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

LossWASA-LLM(s′i) = Losslm(s
′
i) + Losswtm(s

′
i) in which

Losslm(s
′
i) =

t∑
j=2

CE(Pu(uj), uj) +

k−m∑
j=t+1

CE(Pu(uj), uj) ,

Losswtm(s
′
i) =

∑m
j=1 CE(Pw(wj), wj)

(8)

represent the losses for the word and watermark tokens, respectively. For simplicity, in equation 8,
we omit the conditioning on the preceding tokens in Pu(uj) and Pw(wj), which can be found in
equation 5 and equation 6.

Due to the design above, the backward pass for updating the parameters W ′
e in the last linear layer

is also separated. That is, the gradients of word token loss Losslm(s
′
i) and watermark token loss

Losswtm(s
′
i) equation 8 are responsible for updating (W ′

e[1 : V ])⊤ equation 3 and (W ′
e[V + 1 :

V + V ′])⊤ equation 4, respectively. Specifically, the gradient update rule for W ′
e (with learning rate

α) can be expressed as W ′
e ←W ′

e − αhl · ∇z where∇z is a (V + V ′)-dimensional gradient vector
allowing the separated gradient updates to be easily achieved in a unified manner, as described below.
Next, using the respective losses for word and watermark tokens equation 8, the gradient vectors
w.r.t. zu and zw are calculated as V -dimensional∇zu = ∂CE(Pu(uj), uj)/∂zu and V ′-dimensional
∇zw = ∂CE(Pw(wj), wj)/∂zw, respectively. When the loss is calculated from predicting a word
token uj equation 8, let ∇z = [∇zu , 0V ′ ] where 0V ′ is a V ′-dimensional all-zero vector. When the
loss results from predicting a watermark token wj equation 8, let ∇z = [0V ,∇zw ]. Note that for
the parameters in the last linear layer which are responsible for predicting the word tokens using the
hidden state (i.e., parameters (W ′

e[1 : V ])⊤ in equation 3), the gradient updates are not affected by
the loss for the watermark tokens. This helps us to further limit the impact of the added watermarks
on the original ability of the LLM to generate high-quality synthetic texts and hence preserve its
performance. For the parameters in the other transformer layers (except for the frozen layers), their
updates are performed using the gradients w.r.t. the losses for both the word and watermark tokens;
see App. D.2 for more details.

Note that both our forward pass and backward pass only require mild modifications to an LLM.
Therefore, our WASA framework can be easily adapted to fit a wide variety of LLMs, which ensures
its adaptability property.

C WATERMARK MATCHING

Exact Matching. In this work, we adopt exact matching to determine the correctness of the gen-
erated watermarks. That is, given a piece of generated text with watermarks and the corresponding
ground-truth watermark, the generated watermark is correct only if they are strictly equal in string
matching. In addition, in case multiple watermarks are generated in the synthetic data, all generated
watermarks have to match the ground-truth watermark to affirm the correctness. The pseudocode
for the matching algorithm is given in Alg. 1:

Algorithm 1 Exact Matching

Require: Synthetic text syn, ground-truth watermark wtmg

1: if ∃ wtm in syn then
2: wtms← watermark decoder(syn)
3: if for all wtm in wtms wtm == wtmg (by string matching) then
4: return True
5: end if
6: end if

Soft Matching. To further improve the source attribution accuracy in some applications, we may
relax the requirement of exact watermarking matching and instead attribute the generated texts to the
data provider whose watermark has the smallest Levenshtein distance to the generated watermark.
However, in all our experiments, our WASA is able to achieve accurate source attribution without
soft matching.
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D DETAILED EXPERIMENTAL SETUP

D.1 DATASETS

ArXiv: To simulate different data providers with unique characteristics, we create the Clean-ArXiv-
Corpus (or ArXiv for short) dataset which consists of academic papers from ArXiv. The dataset
contains academic papers from various sub-disciplines, including computer science, physics, math-
ematics, public health, and other related fields. We make use of the provided metadata from the work
of Clement et al. (2019) to download the corresponding PDF files and retrieve the categorization in-
formation associated with each article. Subsequently, we employ GROBID (Lopez, 2008–2023)
to parse and extract the main body of the papers, excluding the abstract and reference sections.
Our Clean-ArXiv-Corpus dataset covers a comprehensive collection of 100 distinct categories, each
comprising a number of papers ranging from 2827 to 2984. We treat every category as a data
provider, so one data provider/category is the source of each piece of text. Our main experiments in
Sec. 4 are conducted using 10 categories (i.e., data providers) and we use 33% of papers from each
category due to computational constraints. However, in our ablation study (App. F.12), we have also
tested utilizing more data from every data provider (including 100% of the data), which has led to
further improved performances and consistent conclusions. For each of the 10 categories, we further
randomly split its data into training and evaluation datasets with a ratio of 9 : 1 according to the seed
number. In our ablation study, we will use more categories and also use all papers in each category.
More detailed information about the full Clean-ArXiv-Corpus dataset, including all 100 categories
and all papers in each category, is shown in Tab. 5; Tab. 5 shows an instance of the random split into
training and evaluation datasets based on seed number 2023.

BookSum: In addition to the Clean-ArXiv-Corpus dataset, we also adopt the BookSum
dataset (Kryściński et al., 2022). This dataset contains documents from the literature domain in-
cluding novels, plays, and stories. The BookSum dataset contains 181 books and we treat every
book as a data provider. For every data provider (i.e., book), we adopt all the text data from the
book in all our experiments. More information on the BookSum dataset is shown in Tab. 6; Tab. 6
shows an instance of the random split into training and evaluation datasets based on seed number
2023. Additionally, we have adopted more diverse datasets, details of which are found in App. E.1.7.

Table 5: Information on the Clean-ArXiv-Corpus (or ArXiv for short) dataset.

Training Evaluation

Papers 264K 29K
Unique tokens 17.1M 3M
Unique tokens per Category 407K 87K
Total tokens 1.8B 203M
Total tokens per Category 18.2M 2M

Table 6: Information on the BookSum dataset.

Training Evaluation

Books 161 20
Unique tokens 413K 106K
Unique tokens per Book 91K 20K
Total tokens 33M 4.6M
Total tokens per Book 3.3M 467K

D.2 EXPERIMENTAL SETTING

In our experiments, we build our WASA-LLM based on the open-source pre-trained GPT2-Large
model (Radford et al., 2019), OPT-1.3B model (Zhang et al., 2022) and Llama2-7B model (Tou-
vron et al., 2023b). Based on the pre-trained weights, we perform our second-stage pre-training
(Sec. 3.2) of the pre-trained GPT2-Large model, OPT-1.3B model, or the Llama2-7B model on the
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watermarked (Sec. 3.1) text data for one epoch to obtain WASA-LLM. We find that training for one
epoch already allows our WASA framework to achieve compelling performances, as shown in our
experiments in Sec. 4. We have also tested more training epochs in App. F.13 and the results suggest
that our performances can potentially be further improved with more training epochs. We plot the
convergence of the training of our WASA-LLM in terms of the losses for the word and watermark
tokens in Fig. 4, which shows that our second-stage pre-training effectively reduces both losses. Im-
portantly, the watermark token loss rapidly declines after a small number of steps, which suggests
that our WASA-LLM can quickly learn an accurate texts-to-watermarks mapping.

Figure 4: Training losses for word tokens (Loss lm) and watermark tokens (Loss wtm) when ob-
taining WASA-LLM from second-stage pre-training of the GPT2 model on ArXiv dataset.

Here, we give more details on the hyperparameters we adopted. We fix 5 seed numbers at 2021,
2022, 2023, 2024, and 2025 for obtaining reproducible results on GPT2 and OPT models, and 3
seed numbers at 2022, 2023, 2024 for the Llama2 model. The results shown in this work are the
average taken across that from the seeds. We adopt the Adam optimizer with a learning rate of
5×10−5 and no weight decay. We make use of the fp16 technique and a gradient accumulation of 8
to speed up training. We also adopt a gradient checkpoint to reduce memory usage so that batch size
can be slightly increased. We use a block size of 512 and a batch size of 3 for most of the experiments
and a batch size of 16 in the experiments to evaluate scalability. To further preserve the ability of the
original pre-trained LLM models, during the second-stage pre-training, we freeze the first 12 layers
of GPT2-Large (among a total of 36 layers) and freeze the first 8 layers of OPT-1.3B (among a total
of 24 layers). For the second-stage pre-training of Llama2-7B, we adopt LoRA (Hu et al., 2021) and
set the rank and alpha to 32, ‘q proj’, ‘k proj’, ‘v proj’, ‘o proj’, ‘gate proj’, ‘gate proj’, ‘gate proj’,
‘up proj’, ‘down proj’ as the target modules, and ‘lm head’, ‘embed tokens’ as the modules to save.
When generating the synthetic texts (see Sec. 3.3), we use the multinomial sampling of top-60 with
temperature = 0.7. We also make use of a 1.2 repetition penalty and a 2.0 length penalty to generate
better synthetic data. The generation of watermarks for our WASA-LLM adopts a pure beam search,
as discussed in Sec. 3.3, with a beam size of 5. For the baseline model used in the ablation studies
(i.e., GPT2-Large), watermark generation is performed in the same way as text generation, so we
use the same hyperparameters as that specified in the baseline model. All second-stage pre-training
is performed using NVIDIA RTX A5000 and A100. In our implementation, we adopt the GROBID
library to process the PDF files. For model training, we adopt the Hugging Face Trainer pipeline
which embeds necessary tricks to speed up the training process. The open-source GPT2-Large,
OPT-1.3B, and Llama2-7B are also adopted from Hugging Face.2

D.3 EFFECTIVENESS OF EVALUATION

In our experiment design, we assign the ground truth source of each generated text to be identical to
that of the prompt sentence. Here, we would like to verify that our method of using the source of the

2https://huggingface.co/facebook/OPT-1.3B, https://huggingface.co/
meta-llama/Llama-2-7b-hf, and https://huggingface.co/GPT2-Large.
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Table 7: Definition of task in prompts for GPT4 labeling.

Definition of Task in Prompts for GPT4 Labeling

Given below are 10 categories for texts from ArXiv papers with their descriptions. Please
read the descriptions and classify the provided texts to one of the paper categories.
The 10 categories are: hep-th, hep-ph, quant-ph, astro-ph, cs.CV, cs.LG, cond-mat.mes-
hall, gr-qc, cond-mat.mtrl-sci, cond-mat.str-el.
hep-th stands for High Energy Physics - Theory. This category includes research pa-
pers which are centered on theoretical concepts and mathematical models in high energy
physics.
hep-ph stands for High Energy Physics - Phenomenology. This category includes research
papers centered on the application of theoretical physics to high energy physics experi-
ments.
quant-ph stands for Quantum Physics. This category includes research papers centered on
the theoretical and experimental aspects of the fundamental theory of quantum mechanics.
astro-ph stands for Astrophysics. This category includes research papers centered on the
study of the physics of the universe, including the properties and behavior of celestial
bodies.
cs.CV stands for Computer Science - Computer Vision and Pattern Recognition. This
category includes research papers focused on how computers can be made to gain high-
level understanding from digital images or videos.
cs.LG stands for Computer Science - Machine Learning. This category includes research
papers focused on the development and implementation of algorithms that allow comput-
ers to learn from and make decisions or predictions based on data.
cond-mat.mes-hall stands for Condensed Matter - Mesoscale and Nanoscale Physics. This
category includes research papers that focus on the properties and phenomena of physical
systems at mesoscopic (intermediate) and nanoscopic scales.
gr-qc stands for General Relativity and Quantum Cosmology. This category includes re-
search papers centered on theoretical and observational aspects of the theory of general
relativity and its implications for understanding cosmology at the quantum scale.
cond-mat.mtrl-sci stands for Condensed Matter - Materials Science. This category in-
cludes research papers centered on the understanding, description, and development of
novel materials from a physics perspective.
cond-mat.str-el stands for Condensed Matter - Strongly Correlated Electrons. This cate-
gory includes research papers focused on the study of solids and liquids in which interac-
tions among electrons play a dominant role in determining the properties of the material.
Note that you should only include the class in your reply and provide no explanations.
Please classify the following sentence into one of the 10 categories, however, if you think
that the sentence could be classified into multiple categories, you may give up to 3 most
likely categories:

prompt sentence as the ground truth source for the generated sentence is indeed a reliable approach,
in addition to its benefit of simplifying the experimental evaluation.

A natural and reliable method to find the ground truth source of a generated text is to consult the
opinion of human experts. Therefore, we would like to show that our method to determine the
ground truth source is an accurate approximation to human evaluations. To avoid the substan-
tial costs and resources associated with human evaluators, we have employed GPT4, noted for its
human-level performance across various benchmarks (OpenAI, 2023), as a surrogate ‘human-like
labeler’. Then, we examine whether the ground truth source determined by our method (i.e., using
the source of the prompt sentence) aligns well with those determined by GPT4. Specifically, we use
GPT4 to categorize generated texts into one of the ten ArXiv categories (i.e., data providers) using
a carefully constructed prompt, as shown in Tab. 7. After evaluating 500 generated texts, we have
found that 89.6% of GPT4’s decisions align with our source determination method (i.e., using the
source of the prompt sentence). This validates that our method to determine the ground truth source
of a generated text is a reasonable and reliable approach.
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We would like to add that employing GPT4 as a ‘human-like labeler’ is only feasible in our con-
trolled setting here because it requires prior knowledge about all sources and detailed descriptions
of the sources; see the detailed prompt in Tab. 7. Moreover, it also incurs excessive costs in terms
of monetary expenses and computations when the number of data providers is large. Therefore, we
would like to clarify that this GPT4-based method is not a realistic alternative method for source
attribution and is instead only employed here to verify the reliability of our method of source deter-
mination.

Additionally, note that the reason why we have used watermarked training data as the prompt sen-
tences in our evaluation is because it leads to simple and reliable evaluations. Here, we justify this
using the GPT4-based experiment as well. We use GPT4 to examine the reliability of the ground
truth source determination when sentences from two held-out sets are used as the prompt sentences:
when the prompt sentences are selected from unwatermarked training data and when the prompt
sentences are from the validation data. The results show that when the prompt sentences are se-
lected from unwatermarked training data, 81.6% of GPT4’s decisions align with the source of the
prompt sentences; when the prompt sentences are from the validation data, the alignment becomes
75.0%. The results suggest that when the sentences from both held-out sets are used as the prompt
sentences, our method to determine the ground truth source is still reasonably reliable. However, our
ground truth source determination is the most reliable when sentences from watermarked training
data are used as the prompt, as we have done in our main experiments. Therefore, the results justify
the rationale behind our choice of using watermarked training data as prompts because it enhances
the reliability of our source determination and hence the fidelity of our evaluation results.

E MORE EXPERIMENTAL RESULTS

E.1 ACCURACY

E.1.1 MORE DETAILS ON EXPERIMENTAL SETUP.

In our experiments on the source attribution accuracy, for the ArXiv dataset, we select 50 papers
from each of the 10 categories (App. D.1) and for every selected paper, we choose the first sentence
that has been selected for watermarking (to obtain our WASA-LLM from second-stage pre-training
of various pre-trained LLMs, see Sec. 3.1 for more details on how we select the sentences for water-
marking) as well as contains at least 200 characters. Next, we use the first 200 characters of every
selected sentence (after removing the watermarks) as the input/prompt to the trained WASA-LLM ,
which generates texts with a token length of 100. Similarly, for every book (i.e., data provider) in
the BookSum dataset, we select the first 50 sentences that have been selected for watermarking as
well as have at least 200 characters. As a result, for both datasets, we have selected 50 sentences to
be used as the inputs/prompts to our WASA-LLM, which corresponds to 50 trials of source attribu-
tion for each of the 10 data providers. In addition, the source attribution accuracy and F1 score for
OPT-1.3B model are presented in App. E.3, together with the scalability results.

E.1.2 F1 SCORE.

In our main experiments, we have reported the macro F1 score for a more comprehensive evaluation.
To compute the F1 score, here we first define precision as the number of correct watermarks (wa-
termarks that correctly correspond to its true source) for the data provider i divided by the number
of all generated watermarks that correspond to the data provider i and define recall as the num-
ber of correct watermarks divided by the number of trails of the data provider i. We calculate the
precision and recall for each data provider and obtain precisioni and recalli. Subsequently, We
obtain precisionma and recallma by averaging the precisions and recalls from all data providers.
Therefore, the macro F1 score can be computed as:

F1 = 2× precisionma × recallma

precisionma + recallma
. (9)
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Table 8: Source attribution accuracy for different numbers of data providers on ArXiv dataset. ‘ML’
denotes the source attribution obtained from the ML baseline.

n ML GPT2 WASA GPT2 WASA Llama2
acc. top-3. top-5. acc. top-3. top-5. acc. top-3. top-5.

10 52.84±1.78 83.42±1.02 92.47±0.91 74.84±2.04 95.76±1.24 98.56±0.82 77.40±1.91 96.87±1.62 99.40±0.35

25 42.83±2.41 72.47±1.14 83.24±0.54 66.48±0.76 90.69±4.23 94.05±0.32 72.38±1.18 92.44±1.66 96.60±0.70

50 36.73±1.30 61.70±1.75 73.09±1.35 56.44±0.84 80.19±1.02 87.54±0.68 63.15±2.71 84.74±0.76 90.49±0.47

E.1.3 SOURCE ATTRIBUTION BASELINE.

BM25 is a well-known search engine algorithm that can potentially be utilized to perform source
attribution given the generated sentences. In our experiments, we have implemented the BM25 from
GitHub 3 as a source attribution baseline for comparison. Specifically, we apply BM25 and take the
unwatermarked training data as the corpus, and take the same generated sentences from our WASA-
LLM (the watermarks are cleaned) as input. Subsequently, we can use BM25 to find the top-k
closest data providers in the training data. BM25 operates as a post-hoc process, which may slow
down source identification, especially for a larger number of potential sources.

ML baseline. In addition, we consider a machine learning baseline, following a similar setup to Fo-
ley et al. (2023). Specifically, we first select 10, 000 prompts for each contributor. While Foley et al.
(2023) uses manually curated prompts, due to the large number of data points and limited domain
knowledge, we opted for an automated approach to identify 10, 000 examples per provider. We fil-
ter out the 10, 000 sentences with the highest TF-IDF scores for each provider and use that as the
prompts. Next, we obtain the semantic representation of the prompts and generate sentences using
a BERT model 4. For each data provider, we used representations from that provider as positive ex-
amples and representations from all other providers as negative examples to train a binary classifier.
The evaluation setup is the same as in Sec. 4.1. For each prompt and generated text, we first obtain
the semantic representation and feed it to each data provider’s classifier to get attribution results.
Similar to BM25, this ML baseline also operates as a post-hoc process and requires additional time
for prompt generation, semantic representation extraction, and classifier training, especially for a
larger number of potential sources.

Here, we present the results of source attribution accuracy of the ML baseline and our WASA using
the Arxiv dataset up to 50 data providers in Table 8. As demonstrated in the results, the ML baseline
still falls short compared to our WASA. Moreover, beyond the second-stage pretraining on each data
provider’s data, this ML baseline requires additional time for prompt generation, semantic represen-
tation extraction, and classifier training, hence is less efficient than our WASA . Furthermore, since
this ML handles source attribution as a ”classification” task, the results also show that trivializing
the source attribution problem to a typical classification task may not perform well.

E.1.4 SOURCE ATTRIBUTION ACCURACY FOR EACH DATA PROVIDER.

Tabs. 9 and 10 show the detailed results on source attribution accuracy and F1 score for the 10
different data providers, in addition to Tab. 1 in Sec. 4.1. The results show that the accuracy remains
balanced across the data providers.

E.1.5 FINE-GRAINED ERROR ANALYSIS OF SOURCE ATTRIBUTION.

Tab. 11 shows the errors of misclassification and incorrect watermark, as mentioned in Sec. 4.1.
The results show that most source attribution errors are caused by generated texts exhibiting the
characteristics of multiple data providers.

E.1.6 DATA PROVENANCE.

We show here that WASA’s ability to perform reliable source attribution also allows us to achieve
accurate data provenance. Since the data providers are given both their own unique watermarks

3https://github.com/dorianbrown/rank_bm25
4https://huggingface.co/google-bert/bert-base-multilingual-cased
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Table 9: Source attribution accuracy and F1 score achieved by our WASA-LLM (i.e., obtained from
second-stage pre-training of different models on various datasets) for the ArXiv dataset.

Data Provider GPT2 OPT Llama2
acc. top-3. F1 acc. top-3. F1 acc. top-3. F1

hep-th 65.60±7.40 94.40±2.61 0.730±0.04 67.60±13.22 99.20±1.10 0.622±0.35 88.00±5.29 96.67±3.06 0.810±0.07

hep-ph 85.20±4.15 96.80±3.03 0.708±0.13 87.60±5.55 98.80±2.68 0.820±0.07 71.33±8.08 96.67±2.31 0.853±0.08

quant-ph 74.80±6.72 91.60±5.90 0.678±0.08 76.80±6.72 98.00±3.46 0.808±0.07 72.00±5.29 95.33±1.15 0.820±0.13

astro-ph 86.40±2.61 94.40±2.61 0.793±0.03 86.00±4.47 98.40±2.19 0.818±0.03 69.33±6.43 98.00±2.00 0.850±0.06

cs.CV 82.00±4.00 95.20±3.03 0.790±0.08 85.20±6.72 99.20±1.10 0.610±0.35 78.00±2.00 97.33±2.31 0.787±0.10

cs.LG 77.60±3.58 98.80±1.10 0.808±0.08 83.20±4.38 99.60±0.89 0.688±0.06 79.33±1.15 98.00±2.00 0.737±0.06

cond-mat.mes-hall 64.80±5.22 98.40±0.89 0.693±0.08 74.00±3.74 99.20±1.10 0.742±0.10 76.00±8.72 99.33±1.15 0.783±0.10

gr-qc 76.40±2.61 96.40±1.67 0.748±0.08 82.00±5.10 99.20±1.10 0.728±0.09 86.00±5.29 98.00±2.00 0.780±0.14

cond-mat.mtrl-sci 64.80±3.63 95.20±3.35 0.845±0.06 71.60±5.18 99.20±1.79 0.752±0.11 73.33±6.43 94.00±5.29 0.860±0.06

cond-mat.str-el 70.80±1.01 96.40±1.67 0.810±0.11 69.60±8.29 99.60±0.89 0.752±0.11 80.67±2.31 96.00±4.00 0.703±0.04

Overall 74.84±10.06 95.76±1.67 0.758±0.02 78.36±8.29 99.04±0.89 0.738±0.05 77.40±1.91 96.87±1.62 0.800±0.03

Table 10: Source attribution accuracy and F1 score achieved by our WASA-LLM (i.e., obtained from
second-stage pre-training of different models on various datasets) for BookSum dataset.

Data Provider GPT2 OPT Llama2
acc. top-3. F1 acc. top-3. F1 acc. top-3. F1

Adam Bede 82.40±3.29 95.60±2.19 0.805±0.01 85.20±3.35 96.00±2.15 0.745±0.01 85.33±5.03 94.67±6.11 0.820±0.06

David Copperfield 80.00±6.63 88.40±5.90 0.670±0.04 77.20±6.72 91.60±1.67 0.820±0.03 80.67±2.31 96.67±2.31 0.755±0.28

Dracula 66.80±6.26 86.00±6.16 0.880±0.10 71.60±8.17 91.60±2.97 0.905±0.12 74.67±6.11 90.67±4.16 0.915±0.06

Hamlet 91.20±4.38 96.80±2.28 0.700±0.08 97.60±2.19 99.20±1.10 0.920±0.10 98.00±0.00 99.33±1.15 0.810±0.03

Henry IV Part 1 90.40±2.61 98.40±2.61 0.375±0.53 97.20±1.10 99.60±0.89 0.885±0.13 98.67±1.15 100.00±0.00 0.995±0.01

Ivanhoe 83.60±3.28 94.40±1.67 0.790±0.21 89.20±5.40 93.60±4.34 0.920±0.04 85.33±8.33 94.67±4.16 0.820±0.08

Jane Eyre 74.00±6.16 90.00±4.00 0.805±0.11 80.00±2.00 96.40±3.85 0.810±0.10 77.33±15.53 94.67±3.06 0.785±0.18

Little Women 85.60±2.61 94.00±3.16 0.650±0.10 94.00±3.16 98.00±2.00 0.820±0.07 92.67±5.77 100.00±0.00 0.815±0.02

Middlemarch 72.80±3.35 94.40±2.61 0.755±0.09 76.00±5.83 93.20±3.35 0.755±0.06 74.67±7.02 93.33±4.62 0.815±0.02

The Pickwick Papers 52.40±4.78 80.00±6.16 0.775±0.11 64.00±9.27 79.20±5.76 0.850±0.21 65.33±6.43 88.67±1.15 0.850±0.21

Overall 77.92±1.57 91.80±0.24 0.723±0.08 83.20±1.08 93.84±1.01 0.840±0.01 83.27±4.50 95.27±1.53 0.840±0.06

(Sec. 3.1) and the watermark decoder, they can request their data provenance. Specifically, when
a data provider requests data provenance, it uses its own text data (without watermark) as the in-
put/prompt to our trained WASA-LLM to verify whether the generated watermark matches its own
(Fig. 1). We consider 20 categories/data providers in the ArXiv dataset, including 10 categories
whose data was used for second-stage pre-training of GPT2 to obtain WASA-LLM and 10 other cate-
gories whose data was not used. We select 50 papers from each category and choose a sentence from
every selected paper to use as the input/prompt to WASA-LLM for generating a watermark. The re-
sults in Tab. 15 show that for the first 10 categories whose data was not used to obtain WASA-LLM,
we are consistently able to recognize that their data was not misused; for the other 10 categories
whose data was used to obtain WASA-LLM, we can also identify this with high accuracy of 74.84%
and top-3 accuracy of 95.76%. The results show that, due to its ability to perform accurate source
attribution, our WASA framework can also achieve reliable data provenance.

E.1.7 MORE DIVERSE DATASETS

To verify the generalizability of our WASA framework on more diverse datasets from various do-
mains, including those that are potentially less curated and less formal, we have adopted several
additional datasets from other domains and selected 10 data providers for our experiment, including
Wikipedia, news, and movie reviews. To elaborate, the additional datasets we consider are:

DBpedia14 (Zhang et al., 2015) is an ontology classification dataset taken from DBpedia 2014,
containing 14 classes and 560k training samples. The content is extracted from information created
in Wikipedia. In our experiments, we refer to the ‘title’ column, which denotes the ontology class
of the content, to categorize the data providers.

CC-News (Hamborg et al., 2017) is a representative less-curated and less-formal dataset. It contains
approximately 700K English language news articles sourced from various global news sites. The
dataset is collected by crawling the news websites for main text content. Importantly, no additional
preprocessing is conducted on the text content, resulting in a dataset that is less curated, quite noisy,
and may include diverse elements such as different languages, emojis, URLs, Unicode, etc. In our
experiments, we categorize data providers based on the ‘domain’ column, which denotes the distinct
news media.
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Table 11: Error analysis of watermarks incurred by our WASA-LLM that is obtained from second-
stage pre-training of the GPT2 model on the ArXiv dataset. Note that the numbers shown here
are the average taken across 5 runs with different random seeds and ‘wtm’ is the short form of
“watermark”.

category n wtm n match misclassify incorrect

hep-th 50 32.8±3.72 17.2±3.72 0±0.00

hep-ph 50 42.6±2.07 7.4±2.07 0±0.00

quant-ph 50 37.4±3.36 12.6±3.36 0±0.00

astro-ph 50 43.2±1.30 6.8±1.30 0±0.00

cs.CV 50 41.0±2.00 9.0±2.00 0±0.00

cs.LG 50 38.8±1.79 11.2±1.79 0±0.00

cond-mat.mes-hall 50 32.4±2.61 17.6±2.61 0±0.00

gr-qc 50 38.2±1.30 11.8±1.30 0±0.00

cond-mat.mtrl-sci 50 32.4±1.82 17.6±1.82 0±0.00

cond-mat.str-el 50 35.4±5.03 14.6±5.03 0±0.00

Total 500 374.2±10.18 125.8±10.18 0±0.00

IMDB62 (Seroussi et al., 2014) comprises movie reviews written by 62 distinct authors, with each
author serving as an individual data provider. Each author contributes 1, 000 reviews, which are sam-
pled from their complete collection of reviews. This dataset facilitates the evaluation of our approach
in a context where the texts share similar thematic content. The dataset is relatively noisy, as it may
include spelling and grammatical errors. In our experiments, we categorize data providers based on
the ‘userId’ column. Note that specifically for this dataset, since each data provider contributes too
few data samples, we perform 10 epochs of second-stage pretraining to obtain our WASA-LLM .

Fake News Opensources5 comprises 8, 529, 090 individual articles, which were scraped from vari-
ous news websites between late 2017 and early 2018, encompassing a total of 647 distinct sources.
Similar to the CC-News dataset, this dataset is less curated. We categorize the data providers based
on the ’domain’ column, which specifies the distinct news media sources.

The source attribution accuracy on these more diverse datasets using our WASA-LLM adopting
Llama2 as the pre-trained model is illustrated in Tab. 12. The results indicate that our framework
consistently achieves decent accuracy in source attribution across various datasets that mostly re-
main higher than the BM25 baseline. This further verifies the effectiveness of our WASA framework
on various datasets. However, it is also observed that the accuracy tends to be lower on the less
curated and noisy datasets (i.e., CC-News, IMDB62, and Fake News) compared to the datasets with
more formal language (i.e., ArXiv, BookSum, DBpedia14).

Table 12: Source attribution accuracy on the dataset from diverse domains.

Dataset acc. top-3. top-5.
BM25 ML WASA BM25 ML WASA BM25 ML WASA

DBpedia14 86.00 85.80 90.80 96.00 97.40 93.20 98.20 100.00 94.00
CC-News 45.00 51.00 60.20 71.20 76.20 79.40 84.00 88.40 85.00
IMDB62 29.60 50.80 67.20 48.20 79.60 89.40 65.80 91.00 97.00

FakeNews 33.40 42.40 62.63 53.40 63.40 85.00 62.20 77.20 93.13

E.1.8 MORE RECENT MODEL

In addition, to verify the generalizability of our WASA framework on more recent models, we have
adopted an additional pre-trained Llama3-8B model (Dubey et al., 2024). The source attribution ac-
curacy of our WASA-LLM adopting Llama3-8B on the ArXiv dataset with 10 providers is illustrated
in Tab. 13. The results show that with the use of a model with better capability, the source attribution
accuracy of our WASA improves further.

5https://huggingface.co/datasets/andyP/fake_news_en_opensources
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Table 13: Source attribution accuracy on Llama3-8B using ArXiv dataset.

Model acc. top-3. top-5.

Llama2-7B 77.40 96.87 99.40
Llama3-8B 80.20 98.20 99.00

E.1.9 ANALYSIS OF DATA SOURCES

In Sec. 1, we have mentioned that we consider data providers that contribute balanced data with
unique characteristics. Here we analyze and show the balance and unique characteristics of the
data sources in each dataset we have adopted in Tab. 14. Firstly, we calculate the imbalance ratio
by dividing the number of tokens in the largest data source by that in the smallest, hence larger
imbalance ratio suggests that the data sources are more imbalanced. The results shown in Table 14
indicate that the data sources in our adopted datasets are not perfectly balanced while some are
particularly imbalanced. This indicates that our proposed method can generalize to imbalanced data
sources and achieve decent source attribution accuracy.

Our datasets also encompass a variety of unique characteristics, which ensures that our framework
is applicable across different applications. These include academic fields (ArXiv), general knowl-
edge (DBpedia14), and attributing authorship based on story or writing style (BookSum, CC-News,
IMDB62, FakeNews). Our analysis reveals that both our framework and baselines face challenges
in scenarios where the distinguishing features are restricted to writing style and word choice, nat-
urally resulting in lower accuracy. This underscores the inherent difficulties of source attribution
in homogeneous topic environments, yet our method consistently outperforms the baselines across
these challenging conditions.

Table 14: Balance and unique characteristics of the data sources in each dataset.

Dataset balance Characteristics

ArXiv 2.5 academic knowledge fields (with overlaps)
BookSum 17.51 book stories and writing style from book authors
DBpedia14 1.66 common knowledge fields
CC-News 5.37 writing style and word choices from news publishers
IMDB62 1.64 writing style and word choices from common Internet users
FakeNews 25.45 writing style and word choices from news publishers

E.2 ROBUSTNESS

E.2.1 ADDITIONAL ATTACKS ON GENERATED SENTENCES WITH EMBEDDED WATERMARKS

As discussed in Sec. 4.2, an adversary may additionally modify the content of the generated sentence
while removing/modifying the generated watermarks. Here, we will consider insertion, deletion,
synonym substitution, and syntactic transformation attacks. In insertion attacks on a generated
watermarked sentence, either one word is randomly inserted into the sentence (i.e., localized inser-
tion attacks), or various words are randomly interspersed throughout the sentence (i.e., dispersed
insertion attacks) (Kamaruddin et al., 2018). For dispersed insertion attacks, we vary the attack
strengths by changing the number of inserted words from 5% to 20% of the total number of words
in the sentence. In deletion attacks, some words in the text are randomly deleted. In synonym
substitution attacks (Kamaruddin et al., 2018), an adversary substitutes some words in the gener-
ated sentence with their synonyms while preserving the semantic meaning of the sentence. Again,
we tested different attack strengths by varying the percentage of randomly deleted and substituted
words. In addition, we also performed the syntactic transformation attack on the generated sen-
tences whereby an adversary transforms the sentences (without altering their semantic meanings)
via techniques such as modifying the prepositions, tenses, and other syntax components. Here, we
adopt two strong variants of such attacks on our WASA-LLM obtained from Llama2: Firstly, we
use the PEGASUS model fine-tuned for paraphrasing (Zhang et al., 2020) to paraphrases the input
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Table 15: Reliable data provenance can be achieved due to the ability of WASA-LLM to perform
accurate source attribution. WASA-LLM is obtained from second-stage pre-training of the GPT2
model on the ArXiv dataset. Note that the numbers shown here are the average taken across 5 runs
with different random seeds. ‘wtm’ is the short form of “watermark”.

category n wtm data provenance (n match)

cond-mat.soft 50 ✗ (0±0.00)
q-bio.PE 50 ✗ (0±0.00)
cs.SY 50 ✗ (0±0.00)
eess.IV 50 ✗ (0±0.00)
hep-ex 50 ✗ (0±0.00)
math.LO 50 ✗ (0±0.00)
math.NA 50 ✗ (0±0.00)
math.ST 50 ✗ (0±0.00)
nlin.SI 50 ✗ (0±0.00)
physics.class-ph 50 ✗ (0±0.00)
hep-th 50 ✓ (32.8±3.70)
hep-ph 50 ✓ (42.6±2.07)
quant-ph 50 ✓ (37.4±3.36)
astro-ph 50 ✓ (43.2±1.30)
cs.CV 50 ✓ (41.0±2.00)
cs.LG 50 ✓ (38.8±1.79)
cond-mat.mes-hall 50 ✓ (32.4±2.61)
gr-qc 50 ✓ (38.2±1.30)
cond-mat.mtrl-sci 50 ✓ (32.4±1.82)
cond-mat.str-el 50 ✓ (35.4±5.03)

sentence. The accuracy (top-3 accuracy) with our regeneration defense after this syntactic transfor-
mation attack is 69.20% (91.80%). In addition, we consider the DIPPER paraphraser (Krishna et al.,
2024), which performs semantically equivalent rewriting. The accuracy (top-3 accuracy) with our
regeneration defense after using this paraphraser is 75.60% (96.40%). Besides the above attacks,
we have further considered a more recent oracle-based attack as proposed in (Zhang et al., 2023),
which generates perturbation oracles with an open-source model and removes the watermarks in
the attacked sentence. Under this attack, the watermark regeneration defense is also performed and
we are still able to achieve a source attribution accuracy of 75.80%, which further validates the ro-
bustness of our WASA framework. The robustness of our WASA framework can be validated by the
marginal performance degradation in Tab. 2. In addition, the standard deviations for this part of the
results in Tab. 2 are reported in Tab. 16.

E.2.2 ATTACKS ON INPUT SENTENCES (PROMPTS)

An adversary may also manipulate the input sentence (prompt) to our trained WASA-LLM to dis-
rupt watermark generation and hence source attribution. The insertion, deletion, and syntactic
transformation attacks are the same as those described in App. E.2.1, except that these attacks
are performed on the input sentences here. Similar to App. E.2.1, we vary the attack strengths for
these three types of attacks. The results in Tab. 2 show that these attacks also only lead to marginal
degradation in the source attribution accuracy. Moreover, under the strong syntactic transformation
attacks, the source attribution remains accurate (with an accuracy of 63.00% and a top-3 accuracy
of 89.00%), which provides further evidence for the robustness of our WASA framework against
attacks on the input sentences. Its robustness against these attacks can again be explained by its
reliable texts-to-watermarks mapping, which allows our WASA-LLM to consistently generate the
correct watermarks even if the prompt is perturbed. The standard deviations for this part of the
results in Tab. 2 are reported in Tab. 17.
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Table 16: Source attribution accuracy and standard deviation using regenerated watermarks by
WASA-LLM (from second-stage pre-training of GPT2 on ArXiv dataset) under attacks on generated
sentences with embedded watermarks (in addition to watermark removal/modification attacks).

strength
attacks on generated sentences with embedded watermarks

insertion attack deletion attack synonym substitution
acc. top-3. acc. top-3. acc. top-3.

0% 71.60±1.33 93.76±0.57 71.60±1.33 93.76±0.57 71.60±1.33 93.76±0.57

Localized 71.40±0.89 93.56±0.46 - - - -
5% 70.12±1.35 93.20±0.14 71.08±0.92 93.92±0.66 70.52±0.83 93.52±0.64

10% 69.12±1.90 92.20±0.47 71.84±1.36 93.68±0.78 71.02±0.81 92.88±0.95

15% 66.92±1.32 91.96±0.91 71.36±1.01 94.04±0.79 70.96±0.52 92.72±0.46

20% 65.12±2.37 91.44±0.50 70.00±1.17 93.24±0.54 69.20±1.89 93.20±0.62

Table 17: Source attribution accuracy and standard deviation using regenerated watermarks by
WASA-LLM (from second-stage pre-training of GPT2 on ArXiv dataset) under attacks on input
sentences (in addition to watermark removal/modification attacks).

strength
attacks on input sentences

insertion attack deletion attack synonym substitution
acc. top-3. acc. top-3. acc. top-3.

0% 74.84±2.04 95.76±1.24 74.84±2.04 95.76±1.24 74.84±2.04 95.76±1.24

Localized 74.20±1.76 95.40±1.02 - - - -
5% 74.20±2.40 95.40±0.62 73.56±1.48 95.52±0.86 72.84±2.13 95.24±1.06

10% 72.88±2.74 94.68±1.17 72.96±2.05 94.68±0.87 73.60±1.84 95.00±1.09

15% 71.52±2.09 93.20±0.71 72.68±1.74 94.12±1.02 71.88±1.40 94.20±1.10

20% 68.60±1.36 93.40±0.55 72.68±2.73 94.12±1.45 72.08±1.09 93.76±0.52

E.2.3 CHARACTER-LEVEL ATTACKS

Apart from the word-level attacks that additionally modify the content of the generated sentence
while removing/modifying the generated watermarks, for the regenerated watermarks, we would
also like to explore some character-level attacks on the generated sentences similar to the setting in
the work of Gao et al. (2018). These attacks aim to disrupt the original texts at a character level, thus
making them stronger than word-level attacks; however, it is also potentially easier to identify such
attacks (Li et al., 2023). Specifically, we consider character-level insertion, deletion, and character-
swapping attacks. We also adopt our regeneration defense after these attacks are applied. Tab. 18
shows the source attribution accuracy for the regenerated watermarks.

As shown in Tab. 18, under these strong character-level attacks, the source attribution accuracy of
our watermarks is lowered yet remains decent. In addition, we would like to clarify that since these
character-level attacks can heavily influence the original readability of the texts, their feasibility in
realistic scenarios may be limited.

E.3 SCALABILITY

In Sec. 4.3, we have verified WASA’s scalability to a large number of data providers using the ArXiv
dataset. Here, we will also show in Tab. 19 the attribution accuracy obtained from the OPT model
and in Tab. 20 the source attribution accuracy for a larger number of books (i.e., data providers) us-
ing the BookSum dataset. It can be observed that WASA generally does not scale as well (especially
for GPT2 and OPT) on the BookSum dataset as compared to the ArXiv dataset because each data
provider in the former offers much less data. It is also noteworthy that the larger Llama2 model
produces higher accuracy than the smaller GPT2 and OPT models, especially when the number of
providers is larger on the BookSum dataset. Nevertheless, the source attribution accuracy still re-
mains relatively high compared with BM25. As mentioned in Sec. 4.3, with more data providers, we
recommend using k > 1 in top-k source attribution due to higher resulting accuracy and identifying
the true source from among them.

For an even larger number of data providers, we adopt the Reddit Webis-TLDR-17 (Völske et al.,
2017) dataset, which comprises 3, 848, 330 posts, each with an average length of 270 words. These
posts originate from various subreddits created by different users. Although the dataset was initially
developed for summarization tasks, we utilize only the ’body’ column for the text and the ’subreddit’
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Table 18: Source attribution accuracy using regenerated watermarks by WASA-LLM (from second-
stage pre-training of GPT2 on ArXiv dataset) under character-level attacks on generated sentences
with embedded watermarks (in addition to watermark removal/modification attacks).

strength insertion attack deletion attack strength swap attack
acc. top-3. acc. top-3. acc. top-3.

0% 71.60±1.33 93.76±0.57 71.60±1.33 93.76±0.57 0% 71.60±1.33 93.76±0.57

5% 69.60±2.05 91.08±1.79 69.60±2.03 92.08±1.85 2% 69.90±6.48 91.88±2.65

10% 60.95±3.21 89.64±4.73 60.15±2.75 88.96±5.08 4% 68.70±8.77 91.28±3.11

column to identify the data providers. Using this dataset, we consider 500 data providers. Table 21
shows the source attribution accuracy when the number of data providers increases to 500 trained
on Llama2 model, where the accuracy still remains high compared with the BM25 baseline.

Table 19: Source attribution accuracy and F1 score for OPT-1.3B model on ArXiv dataset.

n acc. top-3. top-5. F1

10 78.36±2.04 99.04±1.22 99.36±0.61 0.743±0.06

25 69.76±0.21 90.48±0.71 95.76±0.79 0.697±0.01

50 61.14±1.37 82.63±1.25 89.37±0.82 0.613±0.01

100 48.86±0.95 73.34±0.76 81.54±0.27 0.487±0.01

Table 20: Source attribution accuracy for different numbers of books (i.e., data providers) on the
BookSum dataset. BM25 source attribution results are obtained using Llama2.

n BM25 GPT2 OPT Llama2
acc. top-3. top-5. acc. top-3. top-5. acc. top-3. top-5.

10 54.07±12.3 77.92±1.57 91.80±0.24 96.52±0.76 83.20±1.08 93.84±1.01 97.80±0.42 83.27±4.50 95.27±1.53 97.67±0.46

25 43.68±3.40 52.69±4.87 68.80±6.76 75.33±7.38 64.04±0.79 76.85±0.94 83.71±0.41 65.65±5.85 81.79±4.36 87.84±2.38

50 29.70±0.37 45.18±2.91 62.23±6.10 67.63±5.78 54.17±0.90 70.01±0.84 76.79±0.43 56.67±5.30 73.80±3.18 81.55±0.05

100 29.61±0.35 18.50±1.83 40.15±1.17 44.52±1.74 24.01±5.08 55.70±1.17 63.31±1.25 55.43±1.09 72.73±0.31 79.78±1.08

E.4 TRANSFERABILITY

Our generated watermarked text has the same structure as the watermarked text used to train our
WASA-LLM: They both embed 10-character watermarks into texts with characters from the same
vocabulary. So, our generated watermarked text can be readily used as training data for other LLMs
that, like our WASA-LLM, can also generate synthetic text with watermarks. That is, our generated
watermarked text is transferable to other LLMs as their training data.

E.5 ADAPTABILITY

Our WASA framework only requires mild modifications to existing LLMs (Sec. 3.2) and can hence be
easily adapted to fit various LLMs. This has been empirically verified by our results in Secs. 4.1&4.3
and App. E.1&E.3 that given the same experimental setup, accurate source attributions can be
achieved by WASA-LLM that is obtained from our second-stage pre-training of various LLMs (i.e.,
GPT2, OPT, Llama2).

F DETAILED RESULTS FROM ABLATION STUDIES

Here, we will present detailed results from our ablation studies. In all our ablation studies, we use
second-stage pre-training of the GPT2-Large model on the ArXiv dataset to obtain WASA-LLM.

F.1 EFFECTIVENESS OF OUR WASA-LLM TRAINING

We have mainly implemented two important algorithmic designs to help our WASA-LLM learn an
accurate texts-to-watermarks mapping (Sec. 3.2): (1) using a designated embedding space for water-
mark tokens and (2) separating the prediction/generation spaces for the word and watermark tokens.
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Table 21: Source attribution accuracy for 500 data providers on Llama2 model trained on Reddit
Webis-TLDR-17 dataset.

n method acc. top-3. top-5.

500
BM25 19.02 30.52 36.01

ML 12.08 21.39 26.66
WASA 35.66 48.65 54.39

Here, we compare our WASA-LLM with two baselines: tokenizerGPT implementing only the first
design of a designated embedding space for watermark tokens, and originalGPT (original GPT2-
Large) implementing neither design. We apply our second-stage pre-training to both baselines using
the same (watermarked) data from the ArXiv dataset which was used for second-stage pre-training
of the GPT2-Large model to obtain our WASA-LLM, and evaluate the source attribution accuracy
following that of Sec. 4.1. The results in Tab. 22 show that the first design alone does not improve
the source attribution accuracy whereas the combination of both designs brings about a significant
improvement. This is because merely creating the embedding space for watermark tokens does not
help in learning the mapping from the texts to watermarks, and it is of particular importance to
combine both designs for our WASA-LLM to perform well. Moreover, our WASA-LLM achieves a
significantly better source attribution accuracy at the expense of incurring more computational time.
Note that originalGPT takes longer training time than tokenizerGPT because there is no designated
embedding space for watermark tokens in originalGPT, hence resulting in more training instances
used.

Table 22: Comparison of source attribution accuracy achieved by WASA-LLM (obtained from
second-stage pre-training of the GPT2 model) vs. the baseline models on the ArXiv dataset where
‘n wtm’ denotes the number of generated sentences with watermark, and ‘acc.’ denotes the source
attribution accuracy.

model n wtm acc. n samples training time

BM25 - 54.73 - -
ML - 52.84 -
originalGPT 412 45.69 163507 6h30m3s
tokenizerGPT 439 44.01 140599 5h3m6s
WASA-LLM 448 74.84 159387 8h9m24s

F.2 STRATEGY FOR SELECTING SENTENCES TO WATERMARK

As we have discussed in Sec. 3.1, for every data provider, we embed watermarks into the sentences
with top TF-IDF scores and then use these watermarked sentences for the second-stage pre-training
(Sec. 3.2) of the GPT2 model to obtain our WASA-LLM. This is because the sentences with high
TF-IDF scores are more representative of the text data from a data provider, which makes it eas-
ier to learn the mapping from the texts of different data providers to their corresponding unique
watermarks. Here, we will evaluate whether this strategy is effective by comparing it with the nat-
ural baseline of randomly selecting sentences to embed watermarks. The results in Tab. 23 show
that when selecting 20% of the sentences for watermarking, the strategy of random embedding de-
creases the source attribution accuracy, which validates the effectiveness of our strategy of selecting
sentences with high TF-IDF scores to watermark.

Table 23: Source attribution accuracy achieved by WASA-LLM (obtained from second-stage pre-
training of the GPT2 model on the ArXiv dataset) using different strategies to select the sentences
for watermarking.

embedding strategy acc. top-3.

TF-IDF (ours) 74.84 95.76
Randomly Embed 71.40 94.48
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Table 24: Comparison of source attribution accuracy and perplexity achieved by WASA-LLM (ob-
tained from second-stage pre-training of the GPT2 model on the ArXiv dataset) across different
dataset sizes.

dataset size acc. top-3. perplexity

10%: 100MB 68.80 94.10 14.6135
33%: 300MB 74.84 95.76 12.6570
66%: 600MB 76.28 95.88 11.6749
100%: 1GB 78.48 95.80 11.3171

F.3 IMPACT OF ENFORCED WATERMARK GENERATION

As discussed in Sec. 4.1, to evaluate the source attribution accuracy in our experiments, we have
adopted a simple technique to enforce watermark generation in order to simplify the evaluations.
That is, if a watermark is not generated after the generation of the sentence is completed, we add
the token [WTM ] to the end of the sentence to enforce the watermark generation. Here, we will
evaluate the impact of this enforced watermark generation. The results in Tab. 25 show that the
forcefully generated watermarks and naturally generated watermarks have comparable source attri-
bution accuracy. This shows that the technique of enforced watermark generation we have adopted
has minimal impact on the evaluations of the source attribution accuracy (Sec. 4.1).

Table 25: Source attribution accuracy achieved by WASA-LLM (i.e., obtained from second-stage
pre-training of the GPT2 model on the ArXiv dataset) for naturally generated watermarks (denoted
by ‘watermark nf’) vs. forcefully generated watermarks (denoted by ‘watermark f’).

category n watermark nf n match nf acc. nf n watermark f n match f acc. f

hep-th 45.8 30.4 66.38 4.2 2.4 57.14
hep-ph 44.2 37.8 85.52 5.8 4.8 82.76
quant-ph 46.0 35.4 77.00 4 2 50.00
astro-ph 44.2 38.6 87.33 5.8 4.6 79.31
cs.CV 44.2 36.4 82.35 5.8 4.6 79.31
cs.LG 44.4 35.0 78.83 5.6 3.8 67.86
cond-mat.mes-hall 44.8 28.8 64.29 5.2 3.6 69.23
gr-qc 43.2 33.8 78.24 6.8 4.4 64.71
cond-mat.mtrl-sci 46.6 30.6 65.67 3.4 1.8 52.94
cond-mat.str-el 44.6 31.6 70.85 5.4 3.8 70.37

Total 448 338.4 75.54 52 35.8 68.85

F.4 UNATTRIBUTABLE CONTENT ANALAYSIS

Here we consider the special case where the LLM-generated content is not attributable to any data
provider. Note that in our main experiments, such a case does not exist since all data providers have
watermarked their training data. Such unattributable content might be generated from public datasets
used for pretraining the LLM, but we do not consider attributing sources to the public datasets in this
paper as stated in Sec. 2; instead, we have focused on attributing to the data providers’ watermarked
private datasets. Moreover, it is hard to design prompts to enforce the model to generate content
only from pretrain-knowledge, making it difficult to design corresponding experiments. Therefore,
here we choose the setting by training our framework with data from both 5 watermarked data
providers and 5 unwatermarked data providers to force our WASA-LLM to be able to generate content
that is not attributable to the watermarked data providers. In this setting, our framework generates
watermarks for 12% of the sentences generated from the 5 unwatermarked data providers while
generating watermarks for 87.6% of the sentences generated from the 5 watermarked data providers.
By analyzing the watermarks for sentences from unwatermarked data providers, we observe that
100% of these watermarks are from the watermarked data providers. This suggests that if there
exists content not attributable to any data provider, our framework sometimes might misclassify it
to the watermarked data providers.
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F.5 EFFECTIVENESS OF WASA FOR SUPERVISED FINETUNING (SFT) TASK

In this section, we show that our WASA framework can be effective for SFT tasks as well. Overall,
while finetuning for the SFT task, our WASA-LLM can also learn the mapping from the texts of the
data providers to their unique watermarks using an algorithm akin to the one described in Sec. 3.2.
Then, during sample prediction, our WASA-LLM can provide not only the predicted label but also
the corresponding watermark.

Specifically, for the SFT task, we apply prompt finetuning (Gao et al., 2021) where we intro-
duce a prompt (manual template) after each training data. We then introduce the watermark
following the training data by embedding it after the label. Each supervised data point si is
a sequence of tokens: si = [u1, u2, . . . , u|si|] where |si| is the token count for si. For in-
stance, si = “What he can’t do is read a book” in Fig. 5. We extend si by appending a tem-
plate, which results in stemplate

i = [u1, u2, . . . , u|si|, u|si|+1, . . . , u|si|+p] with the template exam-
ple being “Are you sarcastic? Yes/No”. A data point embedded with a watermark is denoted as
si

template′ = [u1, u2, . . . , u|si|+p, w1, . . . , wm] where w’s represent watermark tokens. As shown in
Fig. 5, an invisible watermark may follow after the label “Yes”.

Figure 5: Example of training samples in the SFT dataset.

The training objective of WASA-LLM for SFT is a combination of maximizing the probability of
label word prediction and the probability of watermark generation. Since we only need to predict
the label word, the predictive distribution can be simplified to

P (u|si|+p|u1, u2, . . . , u|si|, u|si|+1, . . . , u|si|+p−1)

= hl[|si|+ p− 1] ·W⊤
e [label word indices]

(10)

where W⊤
e [label word indices] means to only use the label words’ embedding. So,

Lsft(s
template
i

′
) = logPu(u|si|+p|u1, u2, . . . , u|si|+p−1) ,

Lwtm(s
template
i

′
)

=
∑m

j=1 logPw(wj |u1, u2, . . . , u|si|+p, w1, . . . , wj−1) .

Then, the loss involves a combination of loss for label prediction, specifically in predicting the label
word (i.e., Yes/No in the case of sarcasm), and loss for watermark generation. In particular, the loss
is LossWASA-LLM(stemplate

i

′
) = Losssft(s

template
i

′
) + Losswtm(s

template
i

′
) in which

Losssft(s
template
i

′
) = CE(P (u|si|+p), u|si|+p) ,

Losswtm(s
template
i

′
) =

∑m
j=1 CE(Pw(wj), wj) .

To demonstrate the effectiveness of WASA-LLM for SFT data, we conduct experiments using the
Self-Annotated Reddit Corpus (SARC) (Khodak et al., 2018) which is an SFT dataset. This dataset,
which is designed for sarcasm detection, includes 1.3 million sarcastic comments sourced from Red-
dit; Tab. 27 shows the details of this dataset. The dataset contains a column named ‘subreddit’ which
indicates the sub-forums dedicated to specific topics. Different subreddits are used to represent var-
ious data providers. Similar to the setting in Sec. 4, we select 10 data providers in the experiment.
We calculate the TF-IDF scores of all training points from each data provider and select those with
the top 50% of the TF-IDF scores (i.e., most representative sentences) for watermarking. We also
adopt GPT2-Large as the pre-trained model. For the sarcasm task’s template, we adopt the Question
Prompt (Liu et al., 2023b). Then, in terms of evaluating the source attribution accuracy, we ran-
domly select each data point as the input/prompt to the trained WASA-LLM and use the subreddit of
that data point as the source. The other evaluation settings are the same as that in Sec. 4.1.

Tab. 26 illustrates that a top-1 source attribution accuracy of 50.80% and a top-3 accuracy of 78.80%
can be achieved using our WASA-LLM. The performance is inferior compared to that observed in
generation tasks, primarily due to the increased challenge in learning mappings from texts to water-
marks because texts in the SFT dataset contain fewer tokens on average. Specifically, the mean token

31



1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2025

count per sequence in this dataset, including the template data, is approximately 18.4 which con-
trasts with the average of 512 tokens per sequence in unsupervised tasks. Despite this, the achieved
accuracy significantly surpasses the baseline of 10.00%. Furthermore, the model exhibits a decent
sarcasm prediction accuracy of 86.60% which even surpasses the performance of the original GPT2.
One of the reasons may be that certain subreddits are more likely to contain sarcastic comments and
our watermarking framework coincidentally captures this pattern. The results demonstrate that our
WASA framework is still effective for SFT data and can maintain the performance preservation prop-
erty.

Table 26: Comparison of performances of the original GPT2 model trained with unwatermarked
data and our WASA-LLM in terms of sarcasm prediction accuracy (‘pred acc’) and source attribution
accuracy (‘acc’ and ‘top-3’).

model pred acc. acc. top-3. training time

random 50.00 10.00 30.00 -
unwatermarked 84.80 - - 3h37m38s
WASA-LLM 86.60 50.80 78.80 4h32m17s

Table 27: Information on the Self-Annotated Reddit Corpus (SARC) dataset.

Training Evaluation

Comments 910K 101K
Unique tokens 464K 109K
Total tokens 9.5M 1M

F.6 RELATIVE POSITIONS OF GENERATED WATERMARKS

Figure 6: Distribution of the relative positions of the generated watermarks in the generated sen-
tence.

To further investigate the nature of our generated watermarks, we have analyzed the distribution of
the relative positions of the generated watermarks in the generated sentences. As shown in Fig. 6, the
generated watermarks are uniformly distributed within a sentence. This is because when we embed
watermarks into the selected sentences for LLM training, the position of the embedded watermark is
randomly selected. Therefore, after the LLM is trained, the position of the generated watermark in
the generated sentence is also uniformly distributed. This uniform distribution of watermarks makes
it harder for an adversary to remove the watermark, compared to the scenario where the watermarks
are at a fixed position.

F.7 APPLICATION IN CONTINUOUS TRAINING PIPELINE

Our WASA framework also naturally supports continuous training: since each data provider has
independent watermarks, we can seamlessly integrate any new data provider’s watermarked data into

32



1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2025

the current WASA-LLM by continuing the second-stage pre-training using those data. To empirically
demonstrate this, we conduct the following experiment: initially, we obtain a WASA-LLM through
second-stage pre-training of the Llama2-7B model using the data from 10 providers on the ArXiv
dataset (the same one as Table 1, Sec. 4.1). We then continue to perform second-stage pre-training
with data from 10 additional providers, each with new watermarks, thereby increasing the total
number of data providers to 20. The source attribution accuracy (top-3/top-5 accuracy) for the 10
additional providers is 84.20% (95.80%/98.40%), demonstrating that we can preserve high source
attribution accuracy with the continuous training pipeline.

F.8 IMPACT OF NUMBER OF WATERMARKS IN TRAINING DATA

Here, we will evaluate the impact of the number of watermarks in the training data on the source
attribution accuracy achieved by WASA-LLM. Following that of Sec. 3.1, we vary the percentage of
sentences selected for watermarking (i.e., top X% of the TF-IDF scores) and evaluate its impact on
our WASA-LLM obtained from second-stage pre-training of the GPT2 model on the ArXiv dataset.
Fig. 7 (left) shows that as the number of watermarks increases, the source attribution accuracy firstly
increases and then declines. This is because an overly small number of watermarks results in in-
sufficient data for learning an accurate texts-to-watermarks mapping; meanwhile, if watermarks are
added to an excessively large number of sentences, then some of the watermarked sentences may
not be representative of the texts from their data providers, which also increases the difficulty of
learning the mapping from the texts of the data providers to their unique watermarks (see Sec. 3.1).
In addition, Fig. 7 (right) shows that increasing the number of added watermarks in general leads to
worse text generation performances (i.e., larger perplexity) of the WASA-LLM. The detailed results
are provided in Tab. 28. Moreover, Fig. 8 shows a clearer visualization of the results in smaller
percentages.

Figure 7: Source attribution accuracy and perplexity achieved by WASA-LLM (i.e., obtained from
second-stage pre-training of the GPT2 model on the ArXiv dataset) vs. percentage of watermarked
sentences in the training data.

Table 28: Comparison of source attribution accuracy achieved by WASA-LLM (i.e., obtained from
second-stage pre-training of the GPT2 model on the ArXiv dataset) for different percentages of
watermarked sentences in the training data. The percentage of blocks that are watermarked is given
as well.

pct. sentences pct. blocks acc. top-3. perplexity

20% 88.25% 74.84 95.76 12.6570
40% 96.88% 74.16 95.45 12.9180
60% 98.86% 74.32 95.04 13.3096
80% 99.38% 73.48 95.40 14.1952
100% 100.00% 72.24 95.00 15.8465
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Figure 8: Source attribution accuracy and perplexity achieved by WASA-LLM (i.e., obtained from
second-stage pre-training of the GPT2 model on the ArXiv dataset) vs. percentage of watermarked
sentences in the training data on a smaller scale of 0.05%− 1% for a clearer visualization.

F.9 IMPACT OF LENGTHS OF CONDITIONED SENTENCE AND GENERATED SENTENCE

Recall that in our main experiments, we have used a sentence with 200 characters as the input/prompt
(i.e., the conditioned sentence) to our WASA-LLM, and let the WASA-LLM generate synthetic texts
with 100 tokens (Sec. 4.1). In this section, we vary the character lengths of both the conditioned sen-
tence and the generated synthetic texts, and evaluate their impact on the source attribution accuracy
achieved by WASA-LLM (i.e., obtained from second-stage pre-training of the GPT2 model on the
ArXiv dataset). The results in Tab. 29 show that longer conditioned sentences (i.e., inputs/prompts)
lead to better performances. Moreover, when the length of the conditioned sentences is fixed (at
200), increasing the length of the generated synthetic texts consistently reduces the number of force-
fully generated watermarks (App. F.3) while preserving the source attribution accuracy achieved by
WASA-LLM.

Table 29: Impact of the lengths of the conditioned sentences (inputs/prompts) and the generated syn-
thetic sentences on the source attribution accuracy achieved by WASA-LLM (obtained from second-
stage pre-training of the GPT2 model on the ArXiv dataset) where ‘len. cond.’ stands for the charac-
ter length of the conditioned sentences, ‘tokens syn.’ refers to the number of tokens in the generated
synthetic sentences, and ‘pct. wtm f’ denotes the percentage of forcefully generated watermarks.

len. cond. tokens syn. acc. top-3. pct. wtm f

100 100 63.92 89.96 15.2%
100 200 64.36 89.48 5.2%
200 100 74.84 95.76 8.6%
200 200 75.20 95.64 4.2%
200 300 74.24 95.40 2.2%
200 400 74.60 95.24 1.0%

F.10 IMPACT OF LENGTH OF WATERMARK

In our main experiments, we have adopted a watermark design that consists of 10 characters/tokens
(Sec. 3.1). However, our WASA framework allows for the use of watermarks with different lengths.
Here, we will test the impact of the length of the watermarks on the source attribution accuracy
achieved by WASA-LLM (obtained from second-stage pre-training of the GPT2 model on the ArXiv
dataset). The results in Tab. 30 show that for watermarks with 5, 10, and 15 characters, their source
attribution accuracies are comparable while the 5-character watermark achieves slightly better per-
formances. This is likely because when the watermark is shorter, the resulting watermark prediction
problem becomes relatively easier (i.e., the number of parameters in the last linear layer is smaller),
which may lead to better watermark prediction and generation. However, note that a long water-
mark is favored when there is a need to scale to a large number of data providers. Therefore, our
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WASA framework offers the flexibility to choose watermarks with different lengths, and the preferred
watermark length can be application-dependent.

Table 30: Source attribution accuracy achieved by WASA-LLM (obtained from second-stage pre-
training of the GPT2 model on the ArXiv dataset) using watermarks with different lengths.

len. watermarks acc. top-3.

5 characters 76.12 95.48
10 characters 74.84 95.76
15 characters 74.12 95.28

F.11 IMPACT OF NUMBER OF WATERMARK CHARACTERS

In our main experiments, we have used 6 invisible Unicode characters to form each character in
the 10-character watermark. Our WASA framework also allows for the use of watermarks such that
each character in the watermark can be chosen among a different number of available characters.
Tab. 32 shows the source attribution accuracy achieved by WASA-LLM (obtained from second-stage
pre-training of the GPT2 model on the ArXiv dataset) when each character in the watermark can be
chosen among only 2 available characters: U+200B: Zero Width Space and U+200C: Zero Width
NonJoiner. The results are comparable while the one with 2 available characters shows slightly
worse top-3 accuracy. This is likely because when fewer available characters are used, the water-
marks for different categories are more similar to each other, which may make top-3 classification
more difficult.

F.12 IMPACT OF AMOUNT OF DATA FOR SECOND-STAGE PRE-TRAINING TO OBTAIN
WASA-LLM

Here, we will evaluate the impact of using varying amounts of data from the ArXiv dataset for
our second-stage pre-training (Sec. 3.2) of the GPT2 model to obtain WASA-LLM. As discussed in
App. D.1, in our main experiments for the ArXiv dataset, we have used 33% of text data from every
category (i.e., data provider) to reduce computations. Here, we will vary this percentage to evaluate
its impact on both the source attribution accuracy and the text generation performance achieved
by our WASA-LLM. The results in Tab. 24 demonstrate that as more data is used, both the source
attribution accuracy and the text generation ability (i.e., perplexity) achieved by our WASA-LLM are
generally improved.

F.13 IMPACT OF NUMBER OF TRAINING EPOCHS

As we have discussed in App. D.2, we have trained our WASA-LLM for one epoch during the second-
stage pre-training (Sec. 3.2). Here, we will evaluate the performance of WASA-LLM after training
with more epochs. The results in Tab. 31 show that training with multiple epochs in general further
improves the performance. This demonstrates the potential of our WASA framework to achieve
even better source attribution accuracy (than those presented in our current experiments) with more
computations.

Table 31: Source attribution accuracy achieved by WASA-LLM (obtained from second-stage pre-
training of the GPT2 model on the ArXiv dataset) after training with more epochs.

n epochs acc. top-3.

1 74.84 95.76
2 76.96 96.00
3 75.88 95.88

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Table 32: Impact of the number of available characters (used to make up each character in the 10-
character watermark) on the source attribution accuracy achieved by WASA-LLM (obtained from
second-stage pre-training of the GPT2 model on the ArXiv dataset).

n available characters acc. top-3.

2 75.48 89.92
6 74.84 95.76

G CASE STUDIES

G.1 GENERATED TEXTS WITH IMPERCEPTIBLE WATERMARKS

We have discussed in Sec. 3.3 how our trained WASA-LLM can be used to generate synthetic texts
with embedded watermarks. Fig. 9 below shows an example of the watermarked texts generated by
our WASA-LLM, which verifies that the generated watermarks that are embedded into the generated
texts are indeed imperceptible to human eyes. Therefore, the readability of the generated texts will
not be affected much.

Figure 9: An example of our WASA-LLM-generated synthetic texts with embedded watermarks that
are imperceptible to human eyes.

G.2 GENERATED DATA AND ITS SOURCE

To facilitate a better demonstration of the performance of our WASA framework, we perform a case
study on the synthetic data generated by our WASA-LLM. The examples shown in Figs. 10 and 11 are
the generated texts from our WASA-LLM trained with the ArXiv dataset and the Booksum dataset,
respectively. They further verify the invisibility of the generated watermarks and demonstrate that
our framework preserves the quality of the generated texts.

G.3 GENERATED DATA WITH TWO SOURCE

Considering the special cases where the generated data is a combination of data from two providers,
our current WASA framework naturally handles them: We can use the generated top-k watermarks to
identify the k most likely data providers in order to account for cases where there are multiple data
providers.

To demonstrate our framework’s capability in this context, we have crafted several case
studies simulating examples of text that are combinations of two data providers. We
select two pieces of text generated by different data providers and manually concate-
nate them. Subsequently, we use the concatenated text as the prompt forWASA-LLM to
generate the top-3 watermarks. As an example in Fig. 12, we have crafted the texts
as the concatenation of the generated texts from two data providers gr-qc (with water-
mark ‘U+200DU+2064U+200BU+200BU+200CU+200 BU+200BU+200DU+2063U+200C’)

Figure 10: Generated text from ArXiv dataset (astro-ph category).
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Figure 11: Generated text from BookSum dataset (Adam Bede category).

and quant-ph (with watermark ‘U+2062U+2063U+200CU+2063U+2063U+20
63U+200CU+200CU+200BU+200D’). In such cases, our framework is able to produce the
watermarks corresponding to both data providers among the top-3 generated watermarks. Note that
in the above example and the next, we manually visualize the watermarks for illustrative purposes,
while in real cases, the watermarks remain invisible.

As another example, we have crafted the texts (i.e., shown in Fig. 13) as the concate-
nation of the generated texts from another two data providers astro-ph (with watermark
‘U+2063U+200DU+200CU+200CU+200BU+200B U+2062U+200CU+2063U+200B’) and cs.CV
(with watermark ‘U+200BU+2064U+200DU+200BU+200CU+200D U+2064U+2062U+2063
U+2064’). In this case, our framework is also able to generate the watermarks for both data providers
among the top-3 watermarks. These results demonstrate the potential of our top-k source attribution
to handle scenarios in which the generated data is a combination of multiple data providers.

Figure 12: Combined generated text from ArXiv dataset (gr-qc and quant-ph categories) with top-3
watermarking covering both watermarks.

Figure 13: Combined generated text from ArXiv dataset (astro-ph and cs.CV categories) with top-3
watermarking covering both watermarks.

H FREQUENTLY ASKED QUESTIONS

The paper assumes data providers are willing to embed watermarks in their data to track
usage, but in practice, they may prioritize data privacy over adding any extra information.
Firstly, the objective of this work is to protect the IP rights of the data providers under the setting that
there is a necessity to certify the source of online content produced by LLMs, as discussed in Sec.1.
Under this setting, the data providers are willing to have their identity disclosed and attributed to. In
practice, this setting may correspond to authors of academic papers who are willing to be identified
and cited for their work.
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Meanwhile, as discussed in App. 6, in our WASA framework, only the watermark can be seen in
the generated data, which does not imply personal information about the data providers. Therefore,
data privacy can be preserved as long as the mapping from watermarks to data providers is kept con-
fidential. In practice, if some data providers prioritize data privacy and do not want their identities
to be revealed, they may request the LLM owner to not decode their watermarks and reveal them as
sources to the public, in which case users will not be able to infer any private information from the
watermark itself.

From another perspective, given our proposed watermarking scheme, data providers will also be
able to check data provenance and see whether their watermarked data have been misused, which
serves as a protection of data privacy in a different sense.

It seems the removal of all invisible characters could render the watermarks ineffective.
Firstly, we have considered various scenarios where the generated watermark is modified or re-
moved in our paper (Sec. 4.2 and App. E.2). We have tested our watermark regeneration defense
against these scenarios to regenerate the attacked watermark and preserve a high source attribution
accuracy of 71.60% (top-3 93.76%), which is comparable to the original 74.84% (top-3 95.76%).
Thus, our watermark regeneration is an effective defense mechanism to address the straightforward
removal of watermarks.

Secondly, we would like to consider the usage of our framework where source attribution is per-
formed immediately as the LLM generates text together with the watermark. Under this setting, the
identification of the data provider of the generated text takes place right after LLM generation and
there would be no opportunity for attackers to modify the generated watermarks. In practice, this
setting may correspond to the scenario that when the user queries an LLM, the source is provided
along with the output of the LLM.

How does the evaluation, particularly the experimental setup correlate with realistic scenarios
where LLMs generate novel content? In real-world scenarios, source attribution is more likely
to be performed on LLM-generated content to find the source for the generation. In our evaluation,
the source attribution accuracy is also measured on the generated sentence of the LLMs, using the
sentences selected from the training datasets as inputs/prompts. Hence, our evaluation design aligns
with the real-world source attribution applications on both performing on synthetic data. Note that
we use the sentences from the training datasets as inputs/prompts to LLMs solely to decide the
ground-truth source for the generated content: On the one hand, we can determine the source of the
generated sentence directly as the source (training data provider) for the input/prompt (as validated
in App. E.3); On the other hand, if we choose inputs/prompts as those we do not know the source, it
would be more challenging to decide the source for the generated sentence and make the evaluation
of source attribution less reliable.

Importantly, we have adopted various datasets in our experiments that correspond to different real-
life use cases. The ArXiv and DBpedia datasets correspond to paper and knowledge attribution,
while the BookSum dataset refers to story attribution. The CC-News, IMDB, and FakeNews datasets
represent a more challenging use case: the attribution of word/expression usage.
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