

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 TRUST – TRANSFORMER-DRIVEN U-NET FOR SPARSE TARGET RECOVERY

Anonymous authors

Paper under double-blind review

ABSTRACT

Many inverse problems—from coded aperture optics to undersampled MRI—operate with unknown or poorly characterized sensing operators \mathbf{A} . Yet most sparse recovery methods assume \mathbf{A} is precisely known, forcing costly calibration or restrictive acquisition protocols. We address the more realistic setting in which only limited number of observation–target pairs (\mathbf{y}, \mathbf{x}) are available, necessitating *joint operator learning and signal reconstruction*. The core challenge is cross-domain dispersion: local structures in the signal \mathbf{x} are spread globally into measurements $\mathbf{y} = \mathbf{Ax}$, while CNN architectures rely on local receptive fields. We propose **TRUST**, a hybrid model that uses multi-resolution attention to recover sparse support directly from measurements. Theoretically, under the standard RIP conditions on \mathbf{A} , we show that attention maps computed on \mathbf{y} approximate those computed on the true signal \mathbf{x} , with error bounded by the RIP constant. Architecturally, a Vision Transformer encoder estimates global sparse support from \mathbf{y} , and attention-guided skip connections steer a U-Net decoder to concentrate reconstruction capacity on support-consistent regions, coupling global contexts with local details. TRUST resolves the mismatch between measurement dispersion and the locality bias of CNN-only approaches. Across optical imaging, FastMRI, and ImageNet benchmarks, it consistently surpasses strong baselines – both objectively and subjectively – with marked reductions in hallucination artifacts. These results establish attention-guided support estimation as a principled and effective approach to high-quality reconstruction while jointly learning unknown sensing operators, enabling robust performance on inverse problems where conventional methods require the precise knowledge of forward models.

1 INTRODUCTION

The linear inverse problem is fundamental to modern signal processing, statistical modeling, and machine learning. The typical model here is $\mathbf{y} = \mathbf{Ax} + \mathbf{w}$, where we seek to recover an unknown signal $\mathbf{x} \in \mathbb{R}^n$ from a set of potentially noisy measurements $\mathbf{y} \in \mathbb{R}^m$ using the sensing matrix or the sensing operator $\mathbf{A} \in \mathbb{R}^{m \times n}$. This problem arises in a wide range of scientific and engineering applications, including magnetic resonance imaging (MRI), computed tomography (CT), optical imaging, geophysics, astronomy and remote sensing, where observations are often limited, incomplete, noisy or partially corrupted (Tibshirani, 1996; Vogel, 2002a; Tarantola, 2005a; Ribes and Schmitt, 2008).

Classical approaches to solving inverse problems have been significantly advanced by the theory of compressed sensing (CS) and associated sparse recovery methods (Candès et al., 2006b; Donoho, 2006; Candès et al., 2006a; Elad, 2010). These techniques leverage the fact that many natural signals are sparse or compressible in specific transform domains, such as wavelets, gradients, or learned dictionaries. Under suitable conditions on the sensing matrix \mathbf{A} , CS guarantees accurate recovery of sparse signals from far fewer measurements than traditionally required. The reconstruction problem is typically posed as follows

$$\min_{\mathbf{x}} \|\mathbf{x}\|_0 \quad \text{subject to} \quad \|\mathbf{Ax} - \mathbf{y}\|_2 \leq \epsilon \quad \text{or} \quad \min_{\mathbf{x}} \|\mathbf{x}\|_1 \quad \text{subject to} \quad \|\mathbf{Ax} - \mathbf{y}\|_2 \leq \epsilon \quad (1)$$

where the ℓ_0 - or ℓ_1 -norm promotes sparsity in \mathbf{x} and the constraint enforces fidelity to the measurements \mathbf{y} . While these methods are mathematically principled and offer performance guarantees,

054 they rely on accurate knowledge of the sensing operator \mathbf{A} and assume linearity – assumptions that
 055 often break down in more complex or nonlinear measurement settings.
 056

057 Deep learning has recently emerged as a powerful data-driven alternative to mitigate the limitations
 058 of classical approaches. In particular, convolutional neural networks (CNNs), notably encoder-
 059 decoder architectures like U-Net (Ronneberger et al., 2015a) have shown strong performance in
 060 tasks such as denoising (Zhang et al., 2017; 2018), super-resolution (Ledig et al., 2017) and compres-
 061 sive image recovery (Mousavi et al., 2015). These models learn to map raw sensor measurements
 062 directly to reconstructed signals, promising end-to-end inverse modeling, eliminating the need for
 063 hand-crafted priors, and enabling greater adaptability to real-world variations. This is particularly
 064 impactful in domains like synthetic aperture radar (SAR) and computational optics, where the for-
 065 ward process involves nonlinear physics such as diffraction or phase retrieval that are analytically
 066 intractable (Rivenson et al., 2018; Jin et al., 2017). These methods not only improve reconstruction
 067 quality, but also generalize well when trained on realistic measurement-target pairs.
 068

069 Despite these advances, cross-domain inverse problems—where measurement and target domains
 070 are fundamentally different—remain a substantial challenge. For example, in optical systems, the
 071 relationship between observations and desired reconstructions is often nonlinear and ambiguous.
 072 Additionally, standard CNNs are inherently limited by their local receptive fields and spatial induct-
 073 tive biases, making it difficult to capture the global context and long-range dependencies essential
 074 for resolving such ambiguities. To overcome these limitations, researchers have begun exploring
 075 transformer-based architectures, which leverage self-attention mechanisms to model global interac-
 076 tions across spatial regions (Dosovitskiy et al., 2020; Chen et al., 2021). These models have shown
 077 remarkable success in high-level vision tasks and are increasingly being adopted in low-level inverse
 078 problems.
 079

080 In this work, we introduce a novel architecture called TRUST, a transformer-driven U-Net for sparse
 081 target recovery that integrates the Vision Transformer (ViT) with U-Net for optical image reconstruc-
 082 tion. Unlike only convolution blocks that primarily rely on local filtering, the attention mechanism
 083 successfully captures global dependencies across image patches, making them especially suited for
 084 cross-domain reconstruction tasks. Extensive experiments demonstrate that TRUST consistently
 085 outperforms traditional compressed sensing methods and state-of-the-art deep learning models.
 086

2 PROBLEM DEFINITION

087 In this paper, we address the classical inverse problem $\mathbf{y} = \mathbf{Ax} + \mathbf{w}$ via sparse recovery as in
 088 (1) under the challenging condition where *the sensing operator \mathbf{A} is unknown and we only have*
 089 *access to a limited set of available observation-target pairs $\{\mathbf{x}, \mathbf{y}\}$ as training data*. Note that both
 090 the measured data \mathbf{y} and the target images \mathbf{x} are commonly flattened into vectors for mathematical
 091 convenience, although they originally represent structured two-dimensional spatial information.
 092

093 Solving this ill-posed inverse problem using classical sparsity-driven methods would typically re-
 094 quire first approximating the unknown operator \mathbf{A} via dictionary learning techniques (Aharon et al.,
 095 2006), followed by applying sparse recovery algorithms such as Orthogonal Matching Pursuit
 096 (OMP) (Tropp and Gilbert, 2007) or the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
 097 (Beck and Teboulle, 2009). However, this two-step approach is often inefficient, particularly in
 098 complex or nonlinear sensing environments (Tarantola, 2005b; Vogel, 2002b). As an alternative,
 099 we adopt modern deep learning-based strategies, specifically U-Net (Ronneberger et al., 2015a) and
 100 the proposed TRUST architecture, which directly learn the inverse mapping from data. These mod-
 101 els eliminate the need for explicit knowledge of the sensing matrix while simultaneously enabling
 102 accurate reconstruction of sparse target signals (Mardani et al., 2019).
 103

104 Throughout this paper, we motivate the development of the proposed TRUST network and illustrate
 105 its working concept in the context of a practical noninvasive coded aperture multicore fiber microen-
 106 doscope for brain imaging (Willett et al., 2007; Farahi et al., 2013), capable of capturing sub-micron
 107 spatial image features.
 108

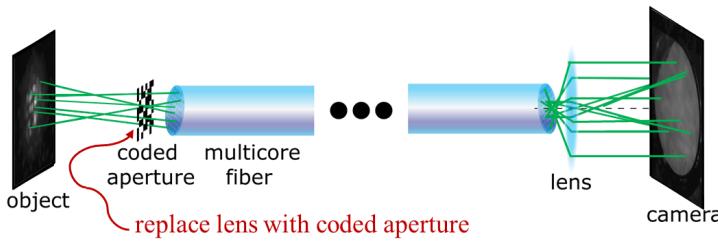


Figure 1: A multicore fiber coded aperture microendoscope. The fiber bundle contains around 6000 cores, has a diameter of $270\ \mu\text{m}$, capable of capturing sub-micron image features.

3 TRUST

3.1 RELATED WORKS

Numerous efforts have been made to address the sparse recovery problem using deep learning. Early pioneering approaches, such as ISTA-Net (Zhang and Ghanem, 2018) and ADMM-Net (Sun et al., 2016), belong to the class of algorithm unrolling methods (Monga et al., 2021). These architectures translate each iteration of a classical sparse optimization algorithm into a corresponding layer of a neural network, allowing the model to learn key parameters while preserving the interpretability of the original iterative structure. Although unrolling networks offer advantages in terms of interpretability, parameter efficiency, and performance in structured or low-data regimes, they generally fall short when applied to large-scale complex recovery tasks.

In contrast, more general-purpose architectures like U-Net have emerged as dominant solutions in signal and image reconstruction. Originally designed for biomedical image segmentation, U-Net’s encoder–decoder structure with skip connections allows it to effectively capture and integrate multiscale features, making it well-suited for complex spatial reconstruction tasks (Ronneberger et al., 2015b). Recent advancements such as TransUNet (Chen et al., 2021) further enhance U-Net’s capabilities by incorporating attention mechanisms at the network bottleneck, leveraging the strength of self-attention to model long-range dependencies and improve global context modeling. In the opposite direction is the fully transformer-based encoder–decoder Restormer (Zamir et al., 2022), which integrates attention mechanisms with multiscale architectures for image reconstruction.

A closer examination of the linear inverse problem $\mathbf{y} = \mathbf{A}\mathbf{x}$ reveals a fundamental challenge: *local features in the signal \mathbf{x} may become dispersed or diffused across the global observation \mathbf{y}* . This is particularly true in compressed sensing, where measurements are often acquired in incoherent or randomized domains to satisfy theoretical recovery guarantees. In such settings, reconstruction architectures that primarily rely on local receptive fields—such as classical CNNs or even U-Net—can struggle to recover globally consistent structure, especially when long-range dependencies are critical to disambiguate spatial information.

3.2 PROPOSED ARCHITECTURE

Motivated by these limitations, we propose TRUST, a hybrid architecture designed to combine the strengths of both local and global modeling paradigms. As illustrated in Figure 2, TRUST employs a Vision Transformer (ViT) to extract multiscale global attention features from the input, effectively modeling long-range dependencies across the spatial domain. These features are then processed through an adaptive pooling layer, which performs pixel-wise smoothing to enhance robustness and feature continuity. Finally, a U-Net-inspired upsampling pathway incrementally refines the output, progressively recovering fine spatial detail and enforcing structural coherence.

In the remainder of this section, we delve into the design rationale behind each component of the TRUST architecture. We aim to provide a deeper understanding of their individual contributions and their synergistic effect on the network’s overall performance in sparse recovery tasks.

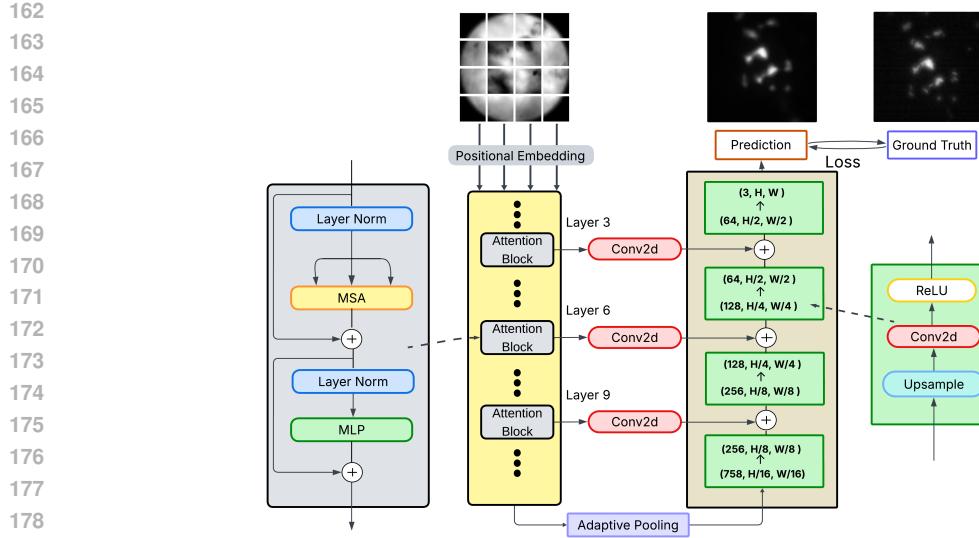


Figure 2: TRUST Architecture – Transformer-Driven U-Net for Sparse Target Recovery

3.3 ATTENTION CAN BE AN EXCELLENT ENCODER

Compared to traditional convolutional operations, the attention mechanism in Transformers offers a significant advantage in modeling global contextual relationships across spatial features. At the heart of this mechanism is the self-attention operation, defined as:

$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}} \right) \mathbf{V} \quad (2)$$

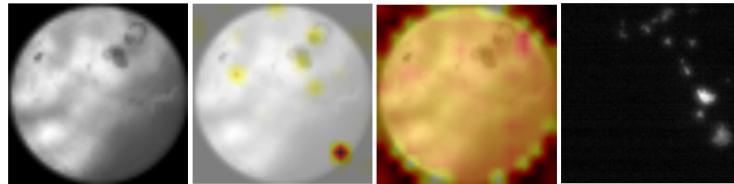
where \mathbf{Q} , \mathbf{K} , and \mathbf{V} denote the query, key, and value matrices, respectively, and d_k is the dimensionality of the key vectors. This formulation effectively performs a scaled dot-product similarity – akin to a normalized cosine similarity – which allows the model to dynamically focus on salient regions and capture long-range structural dependencies across the entire image.

We further demonstrate that self-attention applied directly to the measurement domain \mathbf{y} can approximate the attention features of the ground truth signal \mathbf{x} , provided that the sensing matrix satisfies the Restricted Isometry Property (RIP) (Candès and Tao, 2005). Specifically, if \mathbf{A} satisfies the Restricted Isometry Property (RIP) of order $2k$ with RIP constant $\delta_{2k} \in (0, 1)$, then for all $2k$ -sparse vectors $\mathbf{z} \in \mathbb{R}^n$, we have

$$(1 - \delta_{2k}) \|\mathbf{z}\|_2^2 \leq \|\mathbf{A}\mathbf{z}\|_2^2 \leq (1 + \delta_{2k}) \|\mathbf{z}\|_2^2.$$

This implies that the geometry of sparse vectors is approximately preserved under the mapping \mathbf{A} . More precisely, the attention error between two representations in two different domains is bounded by the RIP constant as follows (see the Appendix for the detailed derivation):

$$|\mathbf{y}^\top \mathbf{y}' - \mathbf{x}^\top \mathbf{x}'| = |\mathbf{x}^\top \mathbf{A}^\top \mathbf{A} \mathbf{x}' - \mathbf{x}^\top \mathbf{x}'| \leq \delta_{2k}.$$

Figure 3: Overlaying attention map of a sample collected from the microendoscope in Figure 1. From left to right: response \mathbf{y} , single head attention, aggregated multihead attention, and ground truth \mathbf{x} .

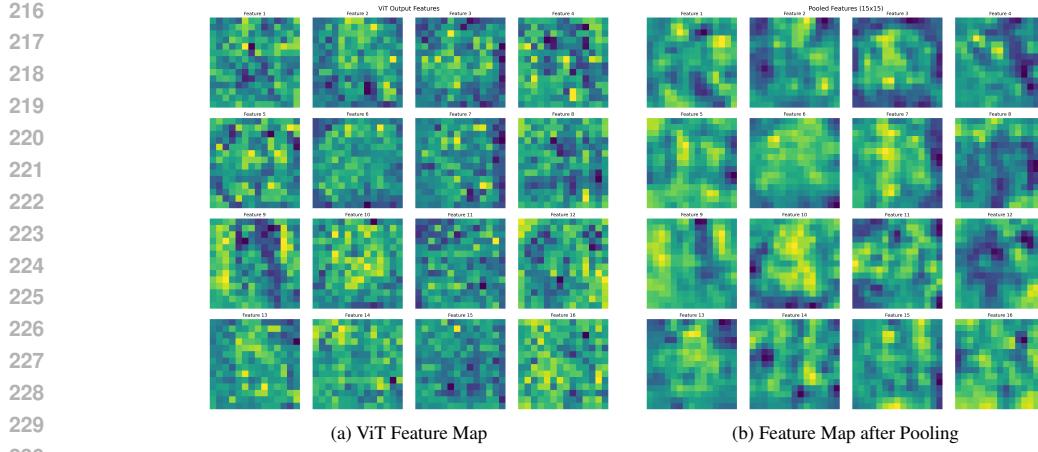


Figure 4: Adaptive pooling layer function’s effect on a typical attention map.

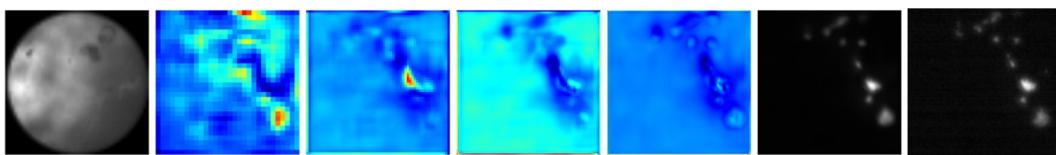
As depicted in Figure 3, the attention map generated from y indeed highlights key spatial structures and regions that closely resemble those in the original image x . This empirical observation aligns with our theoretical analysis and confirms that the attention module not only facilitates contextual reasoning, but also plays a critical role in sparse support recovery. These extracted attention features serve as a powerful prior, guiding the subsequent reconstruction stages in our TRUST framework to focus on the most informative regions of the measurement.

3.4 ADAPTIVE POOLING LAYER

Processing full-resolution attention maps is costly and misaligned with spatial hierarchies. We therefore insert an *adaptive pooling* layer for (i) dimensionality reduction and (ii) feature standardization: it compresses the attention output to a coarser, semantically focused resolution and normalizes it to a fixed size regardless of input shape (He et al., 2015). As shown in Figure 4, this distillation preserves structure while yielding a compact representation, enabling more efficient and precise decoding.

3.5 U-NET-LIKE UPSAMPLING DECODER FOR DETAIL REFINEMENT

The decoder reconstructs high-resolution images from the pooled feature maps using a U-Net-style design: each stage upsamples to restore spatial resolution, then applies Conv2D layers with ReLU to refine structure and add nonlinearity. This stage-wise refinement progressively recovers fine details that were compressed or diffused during encoding.

Figure 5: Different stages of decoding. From left to right: response y , stage 1, stage 2, stage 3, stage 4, reconstructed image \hat{x} , and ground truth x . Resolution is enhanced gradually from left to right.

As shown in Figure 5, we track feature maps through the decoder. The raw diffraction pattern is transformed by attention and convolutions to reveal structure. At the first decoding stage, high-frequency components emerge (strong activations in red/yellow). Subsequent layers increase spatial resolution while reducing channels, reconstructing the signal’s hierarchy.

This visualization shows how the model bridges incoherent measurements and target images: the Transformer captures global dependencies early, and the U-Net decoder restores local structure via multiscale upsampling. Activation evolution indicates selective amplification of salient features

270 Table 1: Unified results with task in the leftmost column. Metrics are mean \pm std. Higher is better
 271 for PSNR/SSIM; lower is better for MAE/MSE/FPR/Time. Best performance is in **red**. Per 16×16
 272 patch, we apply a fixed randomly Gaussian orthonormal transform and random keep 25% or 100%
 273 pixels.

Dataset	Model	PSNR (dB)↑	SSIM↑	MAE↓	MSE↓	FDR ($\times 10^{-2}$)↓	Recon. Time (ms)↓
ImageNet (100% Preserved + Mask)	TRANSUNET	21.75 \pm 2.89	0.539 \pm 0.142	0.064 \pm 0.025	0.008 \pm 0.006	0.11 \pm 0.2	9.7 \pm 3.1
	UNET	27.19 \pm 4.01	0.922 \pm 0.039	0.039 \pm 0.025	0.003 \pm 0.005	0.02 \pm 0.000	4.3 \pm 2.1
	RESTORMER	28.27 \pm 4.33	0.934 \pm 0.028	0.036 \pm 0.025	0.003 \pm 0.004	0.007 \pm 0.000	52.3 \pm 4.1
	TRUST	28.27 \pm 4.33	0.934 \pm 0.028	0.036 \pm 0.025	0.003 \pm 0.004	0.002 \pm 0.000	4.4 \pm 2.3
ImageNet (25% Preserved + Mask)	TRANSUNET	7.35 \pm 1.93	0.120 \pm 0.055	0.374 \pm 0.097	0.202 \pm 0.088	2.23 \pm 2.6	9.5 \pm 4.1
	UNET	8.34 \pm 2.05	0.174 \pm 0.071	0.327 \pm 0.088	0.163 \pm 0.078	6.30 \pm 6.61	4.4 \pm 3.2
	RESTORMER	13.52 \pm 2.14	0.378 \pm 0.134	0.166 \pm 0.043	0.050 \pm 0.025	3.9 \pm 4.4	50.6 \pm 3.9
	TRUST	16.59 \pm 1.94	0.347 \pm 0.067	0.166 \pm 0.096	0.042 \pm 0.085	1.3 \pm 1.9	4.5 \pm 2.0
FastMRI Reconstruction	OMP	14.37 \pm 4.34	0.145 \pm 0.0395	0.138 \pm 0.0923	0.109 \pm 0.543	6.26 \pm 3.22	\sim 12,000
	UNet	21.70 \pm 2.74	0.668 \pm 0.0900	0.0506 \pm 0.0174	0.0861 \pm 0.0246	4.26 \pm 4.99	6.3 \pm 2.2
	TransUNet	21.07 \pm 2.34	0.6553 \pm 0.0863	0.0396 \pm 0.0178	0.0703 \pm 0.0208	5.93 \pm 6.21	13.2 \pm 4.2
	Restormer	23.72 \pm 3.15	0.698 \pm 0.0953	0.0411 \pm 0.0160	0.0692 \pm 0.0227	2.97 \pm 4.74	63.4 \pm 8.3
Optics Reconstruction	TRUST	24.81 \pm 3.13	0.717 \pm 0.0851	0.0353 \pm 0.0133	0.0613 \pm 0.0220	2.78 \pm 4.33	11.2 \pm 3.1
	OMP	68.04 \pm 2.03	0.279 \pm 0.035	0.0435 \pm 0.0062	0.0111 \pm 0.0032	5.30 \pm 1.03	\sim 15,000
	UNet	70.76 \pm 2.00	0.772 \pm 0.053	0.0398 \pm 0.012	0.00451 \pm 0.0022	1.14 \pm 0.16	7.1 \pm 2.0
	TransUNet	69.84 \pm 1.92	0.636 \pm 0.091	0.0440 \pm 0.012	0.00911 \pm 0.0040	2.61 \pm 3.10	15.2 \pm 3.9
Restormer	TRUST	70.48 \pm 2.13	0.715 \pm 0.056	0.0405 \pm 0.013	0.00823 \pm 0.0041	0.907 \pm 0.36	68.4 \pm 7.3
	TRUST	71.992 \pm 1.94	0.814 \pm 0.069	0.0253 \pm 0.0073	0.00431 \pm 0.0013	0.901 \pm 0.22	12.2 \pm 3.7

286
 287 and suppression of noise, yielding high-fidelity reconstructions—combining global context with
 288 localized detail critical for robust sparse inverse recovery.

290 4 EXPERIMENTS

292 We leverage transfer learning on our proposed TRUST architecture by incorporating the pretrained
 293 'google/vit-base-patch16-224' Vision Transformer as the encoder backbone (Dosovitskiy et al.,
 294 2020). This strategic choice significantly accelerates training convergence and improves performance
 295 for the specialized task of optical image reconstruction. Training was conducted on a setup
 296 with four Tesla P400 GPUs (24 GB VRAM each), using a learning rate of 1×10^{-4} and a batch size
 297 of 128 and the inference is on NVIDIA 4070. Given the modest computational resources, training
 298 was extended over the course of one week to ensure stable convergence and optimal reconstruction
 299 quality.

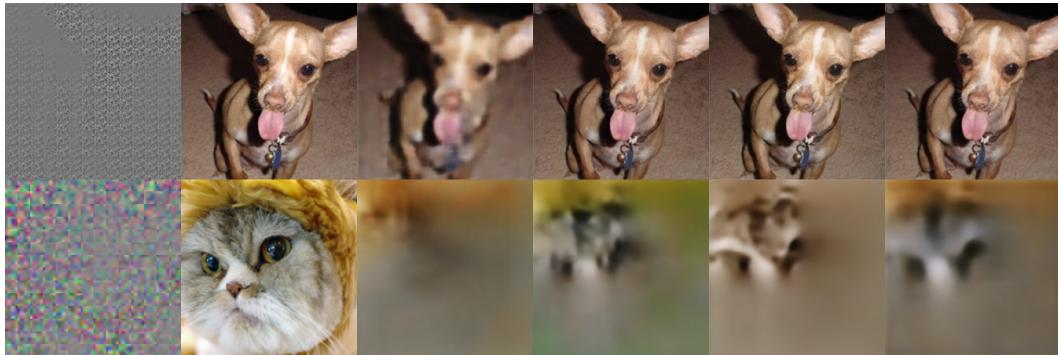
301 4.1 DATASETS AND EVALUATION METRICS

303 We evaluate TRUST on three datasets—masked ImageNet, a custom optical set from the multicore
 304 fiber microendoscope (Figure 1), and single-coil knee FastMRI—covering both domain-specific
 305 reconstruction and standard inverse imaging. We report MSE, MAE, PSNR, SSIM, and False
 306 Discovery Rate (FDR) (Wang et al., 2004; Gonzalez and Woods, 2002); metric definitions and
 307 preprocessing/sampling-mask details are provided in the Appendix.

308 4.2 IMAGENET RESULTS

310 For ImageNet experiments, we curated a dogs-and-cats subset for training and validation and re-
 311 tained a disjoint holdout set for final testing. The training split contains 10,000 paired samples
 312 (orthogonally transformed patches and their ground-truth originals), with 1,000 pairs for validation
 313 and 1,000 for testing. All images were resized to 224×224 and partitioned into non-overlapping
 314 16×16 patches; each patch was mapped by a fixed 256×256 orthonormal matrix, yielding a
 315 controlled inverse problem in which the model reconstructs the original image from its transformed
 316 representation. We then consider a harder setting: using the same fixed mask and randomly retains
 317 25% of pixels per 16×16 patch (i.e., randomly drops 75%), effectively compressing each patch to
 318 8 \times 8 and producing a 112×112 masked measurement image. Reconstruction is performed from
 319 this masked domain back to the original resolution. Results for both settings are reported in Table 1
 320 and Figure 6. Moreover, the trained model generalizes beyond the dogs-and-cats subset: it can re-
 321 construct images from other semantic classes with the same forward operator and masking scheme,
 322 without any additional training as shown in Figure 13.

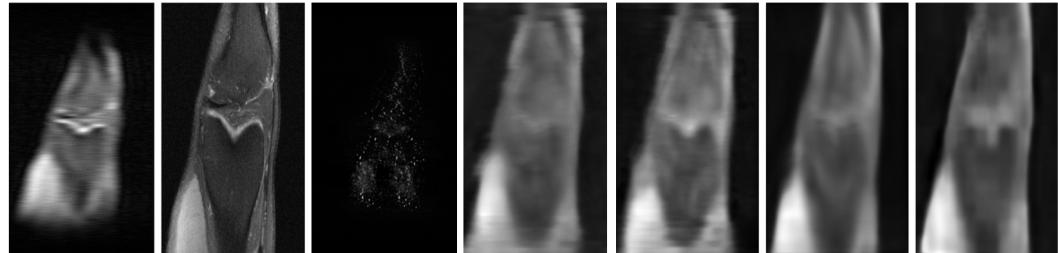
323



324
325
326
327
328
329
330
331
332
333
334
335
336 Figure 6: Different reconstruction results with corresponding SSIM and PSNR values. **Top Row** (left to right):
337 100% preserved masked GT, GT, TransUnet {0.642, 18.638dB}, U-Net {0.682, 20.749dB}, Restormer
338 {0.697, 20.187dB} and TRUST {0.698, 21.786dB}. **Bottom Row** (left to right): 25% preserved masked
339 GT, GT, TransUnet {0.312, 11.437dB}, U-Net {0.361, 12.301dB}, Restormer {0.371, 12.283dB} and
340 TRUST {0.393, 13.021dB}.

341 4.3 MRI RESULTS

342 To demonstrate the generalization capability of TRUST, we conducted additional experiments on the
343 FastMRI dataset – a large-scale benchmark jointly developed by Facebook AI Research and NYU
344 Langone Health for accelerated MRI reconstruction (Zbontar et al., 2018). This task fits the ill-posed
345 inverse problem described in Section 2, where the collected observation comes from an undersam-
346 pled k-space signal processed through a sparse sampling operator \mathbf{A} . The degraded image, obtained
347 via inverse Fourier transform (IFFT), contains aliasing artifacts. The goal is to reconstruct a high-
348 quality ground truth image from this undersampled and noisy input (Lustig et al., 2007). We tested its
349 performance on the large-scale standardized FastMRI dataset. Table 1 summarizes the results across
350 36 randomly selected slices from 108 subjects, totaling approximately 3,000 test images, whereas
351 Figure 18 depicts a typical reconstruction sample.



354 Figure 7: Example of reconstruction results with corresponding SSIM and PSNR values. From left to
355 right: undersampled input \mathbf{y} , target \mathbf{x} , OMP {0.173, 15.682dB}, U-Net {0.610, 21.623dB}, TransUnet
356 {0.614, 21.956dB}, Restormer {0.623, 22.631dB}, and TRUST {0.629, 22.893dB}

366 4.4 OPTICS RESULTS

367 For the optical dataset, training images came from two neuron slides and testing from a third, unseen
368 slide: 10,000 response-target pairs for training and 5,000 for testing, all at an object-to-tip distance
369 of 100 μm . This split tests generalization to new structures under matched conditions.

370 We compared TRUST with classical sparse recovery and deep learning baselines. U-Net and TRUST
371 were trained with a joint ℓ_2 +SSIM loss using matched hyperparameters/budgets; sensitivity to the
372 loss is discussed in Section 2.

373 From Table 1, TRUST surpasses U-Net and classical baselines on the 5,000-sample test set, yield-
374 ing fewer hallucinations/artifacts. Visually, U-Net hallucinates structure near the bottom-left in a
375 sample, while TRUST suppresses it and recovers a more faithful reconstruction.

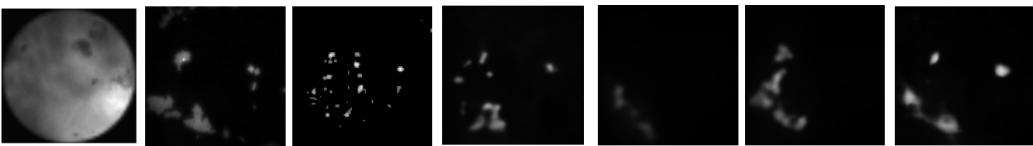


Figure 8: Example of reconstruction results with corresponding SSIM and PSNR values. From left to right: response y , target x , OMP {0.325, 63.071dB}, U-Net {0.636, 66.712dB}, TransUnet {0.553, 66.351dB}, Restormer {0.625, 66.583dB}, and TRUST {0.671, 68.276dB}

4.5 ABLATION STUDY

We study three factors affecting TRUST’s reconstruction quality: (i) training loss, (ii) skip connections, and (iii) ViT pretraining. Unless noted, metrics are mean \pm std over the test set.

Loss function. We compare ℓ_2 , $\ell_2 + \ell_1$, and $\ell_2 + \text{SSIM}$. While ℓ_2 targets pixel fidelity and ℓ_1 adds outlier robustness, SSIM optimizes structural similarity. As shown in Figure 9 and Table 2, $\ell_2 + \text{SSIM}$ yields the best overall MSE/MAE, PSNR, SSIM, and FDR, consistent with perceptual-loss findings (Zhao et al., 2016).

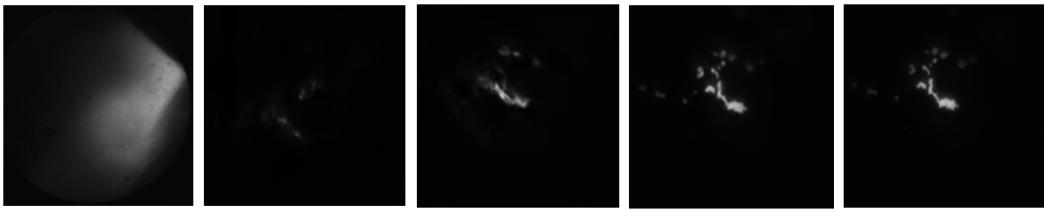


Figure 9: Reconstructions under different losses (SSIM, PSNR in dB). Left→right: y , ℓ_2 {0.137, 48.756}, $\ell_2 + \ell_1$ {0.251, 67.693}, $\ell_2 + \text{SSIM}$ {0.798, 73.012}, and x .

Table 2: Reconstruction performance under different training losses.

Loss Function	MSE	MAE	PSNR (dB)	SSIM	FDR ($\times 10^{-2}$)
ℓ_2	0.111 ± 0.25	0.318 ± 0.073	49.69 ± 3.01	0.101 ± 0.0148	1.057 ± 0.64
$\ell_2 + \ell_1$	0.0101 ± 0.18	0.0797 ± 0.092	67.083 ± 2.15	0.243 ± 0.053	1.055 ± 0.41
$\ell_2 + \text{SSIM}$	0.00431 ± 0.0013	0.0253 ± 0.0073	71.992 ± 1.94	0.814 ± 0.069	0.901 ± 0.22

Skip connections. To assess encoder–decoder shortcuts, we disable skips at various stages. Figure 10 and Table 3 show that removing even one skip degrades all metrics—most around edges/high frequencies—highlighting their importance during upsampling (Mao et al., 2016; He et al., 2016).

Figure 10: Removing skip connections (SSIM, PSNR in dB). Left→right: x , TRUST {0.862, 72.744}, mv skip1 {0.610, 71.662}, mv skip1&2 {0.304, 67.832}, and no skip {0.654, 69.512}.

Table 3: Impact of skip connections.

Configuration	MSE	MAE	PSNR (dB)	SSIM	FDR ($\times 10^{-2}$)
TRUST	0.00431 \pm 0.0013	0.0253 \pm 0.0073	71.992 \pm 1.94	0.814 \pm 0.069	0.901 \pm 0.22
TRUST mv skip1	0.00441 \pm 0.0027	0.0280 \pm 0.011	71.082 \pm 1.91	0.774 \pm 0.065	1.223 \pm 0.28
TRUST mv skip1 & skip2	0.00681 \pm 0.0046	0.0468 \pm 0.023	70.156 \pm 2.18	0.610 \pm 0.1322	3.034 \pm 0.64
TRUST no skip	0.00540 \pm 0.0021	0.0314 \pm 0.011	70.990 \pm 1.80	0.746 \pm 0.062	1.640 \pm 0.47

Pretraining. We train the attention encoder from scratch vs. initializing from `google/vit-base-patch16-224`. Pretraining provides stronger, more general features and improves convergence and downstream accuracy on limited-domain data (Chen et al., 2019), with consistent gains across all metrics (Figure 11, Table 4).

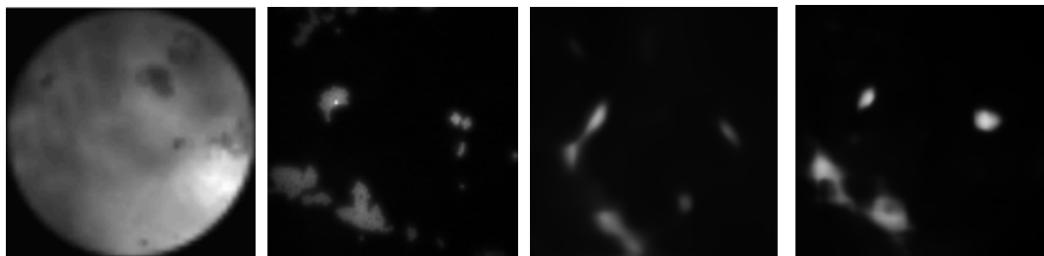


Figure 11: Pretraining vs. scratch (SSIM, PSNR in dB). Left→right: target, w/o pretraining {0.606, 71.342}, w/ pretraining {0.862, 72.744}.

Table 4: Effect of ViT pretraining.

Method	MSE	MAE	PSNR (dB)	SSIM	FDR ($\times 10^{-2}$)
TRUST without Pretrained ViT	0.00601 \pm 0.0034	0.0341 \pm 0.014	70.583 \pm 1.81	0.697 \pm 0.072	2.093 \pm 0.19
TRUST with Pretrained ViT	0.00431 \pm 0.0013	0.0253 \pm 0.0073	71.992 \pm 1.94	0.814 \pm 0.069	0.901 \pm 0.22

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced TRUST, a hybrid architecture that integrates a pretrained Vision Transformer (ViT) encoder with a U-Net decoder for high-quality sparse image reconstruction. Experimental results show that TRUST consistently outperforms both classical and deep learning baselines, achieving superior performance across standard metrics, including PSNR, SSIM, MSE, MAE, and FDR, while significantly reducing hallucination artifacts.

TRUST’s effectiveness is attributed to its key architectural components: *(i)* a ViT-based attention encoder that captures global dependencies early in the pipeline; *(ii)* skip connections that enable multi-scale feature fusion; and *(iii)* a hierarchical decoder that refines coarse global representations into high-resolution image details. Despite its advantages, TRUST introduces additional computational overhead due to its reliance on a pretrained transformer backbone, resulting in 2 – 3 \times higher inference time compared to U-Net under equivalent hardware conditions. Also, while this study focuses on sparse optical image recovery, the underlying design principles of TRUST – attention-guided global context modeling and hierarchical multiresolution decoding – are broadly applicable (Touvron et al., 2021). Future work will explore TRUST extensions to various signal processing tasks while also addressing the model’s computational complexity to improve efficiency and scalability (Mehta and Rastegari, 2022).

486 REFERENCES
487

488 Michal Aharon, Michael Elad, and Alfred Bruckstein. K-svd: An algorithm for designing over-
489 complete dictionaries for sparse representation. *IEEE Transactions on Signal Processing*, 54(11):
490 4311–4322, 2006.

491 Amir Beck and Marc Teboulle. A fast iterative shrinkage-thresholding algorithm for linear inverse
492 problems. *SIAM Journal on Imaging Sciences*, 2(1):183–202, 2009.

493 Emmanuel J Candès and Terence Tao. Decoding by linear programming. *IEEE Transactions on
494 Information Theory*, 51(12):4203–4215, 2005.

495 Emmanuel J Candès, Justin Romberg, and Terence Tao. Robust uncertainty principles: Exact signal
496 reconstruction from highly incomplete frequency information. *IEEE Transactions on Information
497 Theory*, 52(2):489–509, 2006a.

498 Emmanuel J. Candès, Justin K. Romberg, and Terence Tao. Stable signal recovery from incomplete
499 and inaccurate measurements. *Communications on Pure and Applied Mathematics: A Journal
500 Issued by the Courant Institute of Mathematical Sciences*, 59(8):1207–1223, 2006b.

501 Jieneng Chen, Yongyi Lu, Qihang Yu, Xiangde Luo, Ehsan Adeli, Yan Wang, Le Lu, Alan L. Yuille,
502 and Yuyin Zhou. TransUNet: transformers make strong encoders for medical image segmentation.
503 *arXiv preprint arXiv:2102.04306*, 2021. URL <https://arxiv.org/abs/2102.04306>.

504 Sheng Chen, Kai Ma, and Yefeng Zheng. Med3d: Transfer learning for 3d medical image analysis.
505 *arXiv preprint arXiv:1904.00625*, 2019.

506 David L Donoho. Compressed sensing. *IEEE Transactions on Information Theory*, 52(4):1289–
507 1306, 2006.

508 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
509 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. An
510 image is worth 16x16 words: transformers for image recognition at scale. *arXiv preprint
511 arXiv:2010.11929*, 2020.

512 Michael Elad. *Sparse and Redundant Representations: from Theory to Applications in Signal and
513 Image Processing*. Springer Science & Business Media, 2010.

514 S Farahi, Y Guan, K Wagner, and et al. Deep tissue fluorescence microscopy with a multimode
515 fiber. *Optics Express*, 21(20):24566–24575, 2013.

516 Rafael C Gonzalez and Richard E Woods. *Digital Image Processing*. Prentice Hall, 2nd edition,
517 2002.

518 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Spatial pyramid pooling in deep con-
519 volutional networks for visual recognition. *IEEE Transactions on Pattern Analysis and Machine
520 Intelligence*, 37(9):1904–1916, 2015.

521 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
522 nition. In *Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition
(CVPR)*, pages 770–778, 2016.

523 Kyong Hwan Jin, Michael T McCann, Emmanuel Froustey, and Michael Unser. Deep convolutional
524 neural network for inverse problems in imaging. *IEEE Transactions on Image Processing*, 26(9):
525 4509–4522, 2017.

526 Christian Ledig, Lucas Theis, Ferenc Huszár, Jose Caballero, Andrew Cunningham, Alejandro
527 Acosta, Andrew Aitken, Alykhan Tejani, Johannes Totz, Zehan Wang, et al. Photo-realistic sin-
528 gle image super-resolution using a generative adversarial network. In *Proceedings of the IEEE
529 Conference on Computer Vision and Pattern Recognition*, pages 4681–4690, 2017.

530 Michael Lustig, David Donoho, and John M Pauly. Sparse MRI: the application of compressed
531 sensing for rapid MR imaging. *Magnetic Resonance in Medicine*, 58(6):1182–1195, 2007. doi:
532 10.1002/mrm.21391.

540 Xinbo Mao, Chunhua Shen, and Yu-Bin Yang. Image restoration using very deep convolutional
 541 encoder-decoder networks with symmetric skip connections. *Advances in Neural Information
 542 Processing Systems (NeurIPS)*, 29, 2016.

543 Morteza Mardani, Enhao Gong, Joseph Cheng, and et al. Deep generative adversarial neural net-
 544 works for compressive sensing mri. *IEEE Transactions on Medical Imaging*, 38(1):167–179,
 545 2019.

546 Sachin Mehta and Mohammad Rastegari. MobileViT: light-weight, general-purpose, and mobile-
 547 friendly vision transformer. In *Proceedings of the International Conference on Learning Repre-
 548 sentations (ICLR)*, 2022.

549 Vishal Monga, Yuelong Li, and Yonina C. Eldar. Algorithm unrolling: interpretable, efficient deep
 550 learning for signal and image processing. *IEEE Signal Processing Magazine*, 38(2):18–44, 2021.

551 Ali Mousavi, Ankit B. Patel, and Richard G. Baraniuk. A deep learning approach to structured
 552 signal recovery. In *53rd Annual Allerton Conference on Communication, Control, and Computing
 553 (Allerton)*, pages 1336–1343. IEEE, 2015.

554 Alejandro Ribes and Francis Schmitt. Linear inverse problems in imaging. *IEEE Signal Processing
 555 Magazine*, 25:84–99, 2008.

556 Yair Rivenson, Yibo Zhang, Harun Günaydin, Da Teng, and Aydogan Ozcan. Phase recovery and
 557 holographic image reconstruction using deep learning in neural networks. *Light: Science &
 558 Applications*, 7(2):17141–17141, 2018.

559 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-net: convolutional networks for biomedical
 560 image segmentation. In *International Conference on Medical Image Computing and Computer-
 561 Assisted Intervention (MICCAI)*, pages 234–241. Springer, 2015a.

562 Olaf Ronneberger, Philipp Fischer, and Thomas Brox. U-Net: convolutional networks for biomed-
 563 ical image segmentation. In *Medical image computing and computer-assisted intervention–
 564 MICCAI*, pages 234–241. Springer, 2015b.

565 Jian Sun, Huibin Li Li, and Zongben Xu. Deep ADMM-Net for compressive sensing MRI. *Advances
 566 in Neural Information Processing Systems*, 29, 2016.

567 Albert Tarantola. *Inverse Problem Theory and Methods for Model Parameter Estimation*. Society
 568 for Industrial and Applied Mathematics, 2005a.

569 Albert Tarantola. *Inverse Problem Theory and Methods for Model Parameter Estimation*. SIAM,
 570 2005b.

571 Robert Tibshirani. Regression shrinkage and selection via the lasso. *Journal of the Royal Statistical
 572 Society Series B: Statistical Methodology*, 58:267–288, 1996.

573 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 574 Hervé Jégou. Training data-efficient image transformers & distillation through attention. In
 575 *International Conference on Machine Learning*, pages 10347–10357. PMLR, 2021.

576 Joel A Tropp and Anna C Gilbert. Signal recovery from random measurements via orthogonal
 577 matching pursuit. *IEEE Transactions on Information Theory*, 53(12):4655–4666, 2007.

578 Curtis R. Vogel. *Computational Methods for Inverse Problems*. Society for Industrial and Applied
 579 Mathematics, 2002a.

580 Curtis R. Vogel. *Computational Methods for Inverse Problems*. SIAM, 2002b.

581 Zhou Wang, Alan C Bovik, Hamid R Sheikh, and Eero P Simoncelli. Image quality assessment:
 582 from error visibility to structural similarity. *IEEE Transactions on Image Processing*, 13(4):600–
 583 612, 2004. doi: 10.1109/TIP.2003.819861.

584 Rebecca Willett, Roummel Marcia, and Justin M. Nichols. Coded aperture imaging: principles,
 585 progress, and prospects. *IEEE Signal Processing Magazine*, 25(1):61–70, 2007.

594 Syed Waqas Zamir, Aditya Arora, Salman Khan, Munawar Hayat, Fahad Shahbaz Khan, and Ming-
595 Hsuan Yang. Restormer: efficient transformer for high-resolution image restoration. *Proceedings*
596 *of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pages 5728–5739,
597 2022.

598 Jure Zbontar, Florian Knoll, Anuroop Sriram, Tim Murrell, Zizhao Huang, Matthew J Muckley,
599 Aaron Defazio, Rachel Stern, Patricia Johnson, Michael Bruno, et al. FastMRI: an open dataset
600 and benchmarks for accelerated MRI. In *Advances in Neural Information Processing Systems*
601 (*NeurIPS*), 2018.

602 Jian Zhang and Bernard Ghanem. ISTA-Net: interpretable optimization-inspired deep network for
603 image compressive sensing. *Proceedings of the IEEE Conference on Computer Vision and Pattern*
604 *Recognition*, pages 1828–1837, 2018.

605 Kai Zhang, Wangmeng Zuo, Yunjin Chen, Deyu Meng, and Lei Zhang. Beyond a Gaussian denoiser:
606 Residual learning of deep CNN for image denoising. *IEEE Transactions on Image Processing*,
607 26(7):3142–3155, 2017.

608 Kai Zhang, Wangmeng Zuo, and Lei Zhang. FFDNet: Toward a fast and flexible solution for CNN-
609 based image denoising. *IEEE Transactions on Image Processing*, 27(9):4608–4622, 2018.

610 Hang Zhao, Orazio Gallo, Iuri Frosio, and Jan Kautz. Loss functions for image restoration with
611 neural networks. *IEEE Transactions on Computational Imaging*, 3(1):47–57, 2016.

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648 APPENDIX
649650 A ERROR BOUND FOR THE ATTENTION MECHANISM
651652 We assume that we have two tokens \mathbf{x} and \mathbf{y} , which are related via the linear constraint $\mathbf{y} = \mathbf{Ax}$. In
653 practice, most of the time we have some additional prior knowledge on the operator \mathbf{A} (after all, we
654 typically design an appropriate \mathbf{A} for the application at hand) such as:
655656

- 657 • \mathbf{A} is orthonormal square matrix; or
- 658 • \mathbf{A} is tall matrix with orthonormal columns; or
- 659 • \mathbf{A} is fat matrix satisfying the Restricted Isometry Property (RIP).
660

661 The attention mechanism is formulated as
662

663
$$\text{Attention}(\mathbf{Q}, \mathbf{K}, \mathbf{V}) = \text{softmax} \left(\frac{\mathbf{Q}\mathbf{K}^T}{\sqrt{d_k}} \right) \mathbf{V} \quad (3)$$

664

665 Performing self attention on \mathbf{y} yields the following:
666

667
$$\text{Attention}(\mathbf{y}) = \text{softmax} \left(\frac{\mathbf{y}^T \mathbf{y}}{\sqrt{d_k}} \right) \mathbf{V} = \text{softmax} \left(\frac{\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}}{\sqrt{d_k}} \right) \mathbf{V}. \quad (4)$$

668

669 When \mathbf{A} has orthonormal columns, it is clear that attention above yields the same value in either \mathbf{x}
670 or \mathbf{y} domain. In compressed sensing applications, \mathbf{A} is most likely fat and the orthonormal property
671 of its columns breaks down. In this case, we need to rely on the RIP of \mathbf{A} as follows: let $\mathbf{A} \in \mathbb{R}^{m \times n}$
672 be a matrix satisfying the Restricted Isometry Property (RIP) of order $2k$ with constant $\delta_{2k} \in (0, 1)$.
673 That is, for all $2k$ -sparse vectors $\mathbf{z} \in \mathbb{R}^n$, we have
674

675
$$(1 - \delta_{2k}) \|\mathbf{z}\|_2^2 \leq \|\mathbf{Az}\|_2^2 \leq (1 + \delta_{2k}) \|\mathbf{z}\|_2^2.$$

676

677 Let $\mathbf{x}, \mathbf{x}' \in \mathbb{R}^n$ be two normalized vectors with supports of size at most k , i.e., both are k -sparse
678 and $\|\mathbf{x}\|_2^2 = \|\mathbf{x}'\|_2^2 = 1$. Then, their sum or difference support together has size at most $2k$. In other
679 words, $\mathbf{x} + \mathbf{x}'$ and $\mathbf{x} - \mathbf{x}'$ are $2k$ -sparse. We aim to bound the following difference between the
680 original and transformed inner product:
681

682
$$|\mathbf{x}^T \mathbf{A}^T \mathbf{A} \mathbf{x}' - \mathbf{x}^T \mathbf{x}'|.$$

683

684 The polarization identity combined with the RIP condition yields:
685

686
$$\begin{aligned} \|\mathbf{A}(\mathbf{x} + \mathbf{x}')\|_2^2 &= \|\mathbf{Ax}\|_2^2 + 2\mathbf{x}^T \mathbf{A}^T \mathbf{Ax}' + \|\mathbf{Ax}'\|_2^2, \\ \|\mathbf{A}(\mathbf{x} - \mathbf{x}')\|_2^2 &= \|\mathbf{Ax}\|_2^2 - 2\mathbf{x}^T \mathbf{A}^T \mathbf{Ax}' + \|\mathbf{Ax}'\|_2^2. \end{aligned}$$

687

688 Subtracting these two identities gives:
689

690
$$\|\mathbf{A}(\mathbf{x} + \mathbf{x}')\|_2^2 - \|\mathbf{A}(\mathbf{x} - \mathbf{x}')\|_2^2 = 4\mathbf{x}^T \mathbf{A}^T \mathbf{Ax}'.$$

691

692 Similarly, if \mathbf{A} is the identity matrix, we have:
693

694
$$\|\mathbf{x} + \mathbf{x}'\|_2^2 - \|\mathbf{x} - \mathbf{x}'\|_2^2 = 4\mathbf{x}^T \mathbf{x}'.$$

695

696 Imposing RIP on $\mathbf{x} + \mathbf{x}'$ and $\mathbf{x} - \mathbf{x}'$ produces
697

698
$$\begin{aligned} |\|\mathbf{A}(\mathbf{x} + \mathbf{x}')\|_2^2 - \|\mathbf{x} + \mathbf{x}'\|_2^2| &\leq \delta_{2k} \|\mathbf{x} + \mathbf{x}'\|_2^2, \\ |\|\mathbf{A}(\mathbf{x} - \mathbf{x}')\|_2^2 - \|\mathbf{x} - \mathbf{x}'\|_2^2| &\leq \delta_{2k} \|\mathbf{x} - \mathbf{x}'\|_2^2. \end{aligned}$$

699

Combining the two and applying the triangle inequality, we can finally obtain the following bound:

$$\begin{aligned}
 |\mathbf{x}^\top \mathbf{A}^\top \mathbf{A} \mathbf{x}' - \mathbf{x}^\top \mathbf{x}'| &= \frac{1}{4} \left| (\|\mathbf{A}(\mathbf{x} + \mathbf{x}')\|_2^2 - \|\mathbf{A}(\mathbf{x} - \mathbf{x}')\|_2^2) - (\|\mathbf{x} + \mathbf{x}'\|_2^2 - \|\mathbf{x} - \mathbf{x}'\|_2^2) \right| \\
 &\leq \frac{1}{4} \left((\|\mathbf{A}(\mathbf{x} + \mathbf{x}')\|_2^2 - \|\mathbf{x} + \mathbf{x}'\|_2^2) + (\|\mathbf{A}(\mathbf{x} - \mathbf{x}')\|_2^2 - \|\mathbf{x} - \mathbf{x}'\|_2^2) \right) \\
 &\leq \frac{\delta_{2k}}{4} (\|\mathbf{x} + \mathbf{x}'\|_2^2 + \|\mathbf{x} - \mathbf{x}'\|_2^2) \\
 &= \frac{\delta_{2k}}{4} (2\|\mathbf{x}\|_2^2 + 2\|\mathbf{x}'\|_2^2) \\
 &= \frac{\delta_{2k}}{2} (\|\mathbf{x}\|_2^2 + \|\mathbf{x}'\|_2^2) \\
 &= \frac{\delta_{2k}}{2} (1 + 1) \\
 &= \delta_{2k}.
 \end{aligned}$$

Figure 12 illustrates the average effect of sparsity and fat random Gaussian matrices on attention/similarity averaged over 100 totally random trials. As expected, \mathbf{A} 's with orthonormal columns yield exactly the same attention. On the other hand, we confirm that we are still able to obtain close approximation of the attention level with fat random Gaussian sensing matrices \mathbf{A} 's.

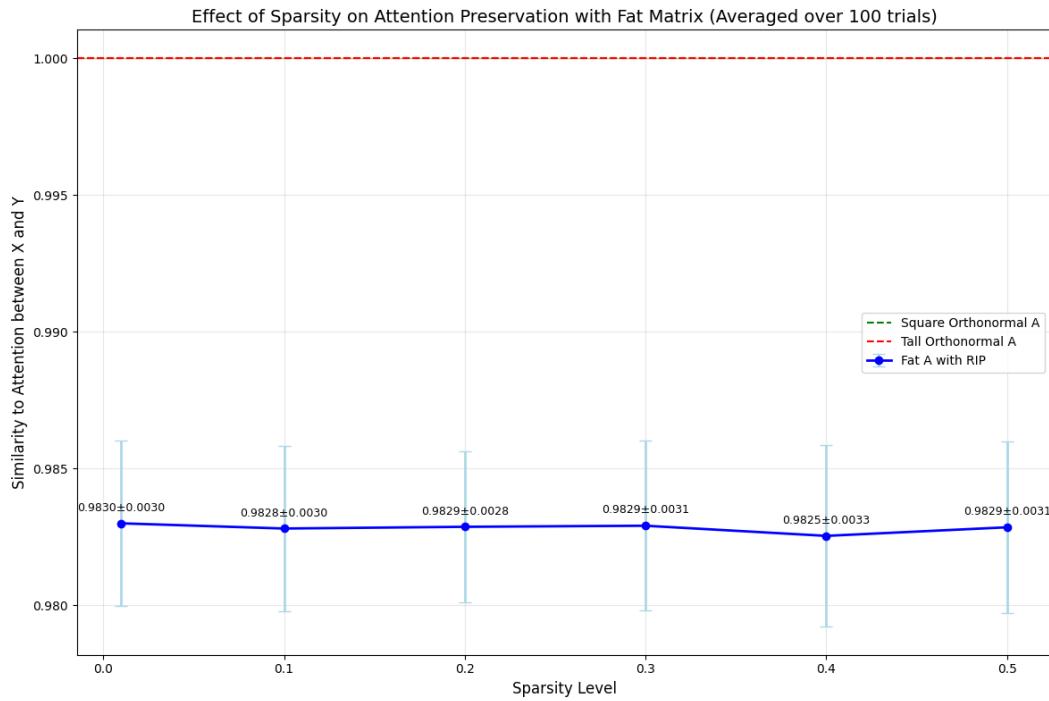


Figure 12: Simulation of similarity between attention on \mathbf{x} and $\mathbf{y} = \mathbf{A}\mathbf{x}$ for various sensing matrices \mathbf{A} 's.

756 **B EVALUATION METRICS**
757758 To evaluate the reconstruction quality of our models, we employ both standard image similarity
759 metrics and a custom hallucination-aware metric:
760761 **Root Mean Squared Error (RMSE).** RMSE measures the square root of the average squared
762 differences between predicted and ground truth pixel values:
763

764
$$\text{RMSE} = \sqrt{\frac{1}{N} \sum_{i=1}^N (x_i - \hat{x}_i)^2},$$

765
766

767 where x_i and \hat{x}_i are the ground truth and predicted pixel values, respectively.
768769 **Peak Signal-to-Noise Ratio (PSNR).** PSNR quantifies the reconstruction fidelity relative to the
770 maximum pixel intensity:
771

772
$$\text{PSNR} = 20 \cdot \log_{10} \left(\frac{\text{MAX}}{\text{RMSE}} \right),$$

773
774

775 where MAX is the maximum possible pixel value (assumed to be 1.0 after normalization).
776777 **Structural Similarity Index Measure (SSIM).** SSIM evaluates perceptual image similarity by
778 comparing local patterns of luminance, contrast, and structure. The score ranges from -1 to 1 , with
779 1 indicating perfect structural alignment.
780781 **False Positive Region Score (FPR).** We define a hallucination-sensitive metric called the False
782 Positive Region (FPR) score to quantify spurious regions generated by the model. A pixel is consid-
783 ered hallucinated if it satisfies:

784
$$x_{\text{hat}} > t_{\text{high}} \quad \text{and} \quad x_{\text{true}} \leq t_{\text{low}},$$

785

786 The FPR score is computed as the fraction of hallucinated pixels over the entire image:
787

788
$$\text{FPR} = \frac{|\{i : x_{\text{hat},i} > t_{\text{high}} \wedge x_{\text{true},i} \leq t_{\text{low}}\}|}{N}.$$

789
790

791 **C EXTENDED SPARSE RECOVERY RESULTS**
792793 All the models listed below were trained with approximately same hyper-parameters as specified in
794 the paper, and the stop condition is when reaching the nearly same loss values. This setup ensures a
795 fair comparison under similar consistent conditions.
796797 **C.1 EXTENDED RESULTS ON IMAGENET**
798800 We found that even the model is trained on cat/dogs dataset, still it can recover other category
801 images.
802808 **Figure 13: Other category reconstruction example**
809

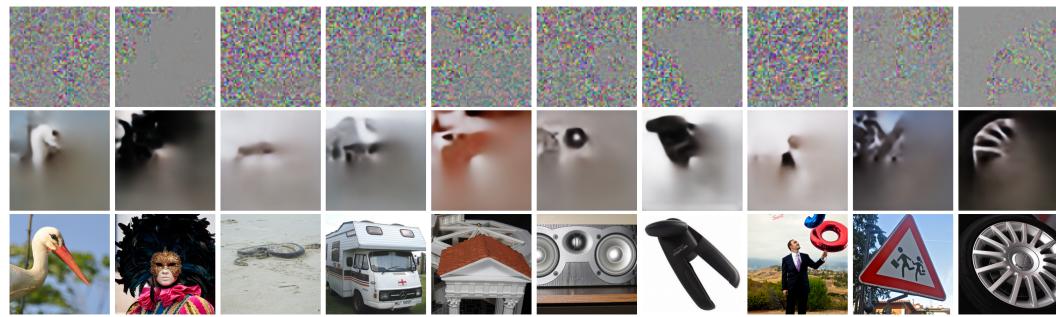


Figure 14: Large gird reconstruction by TRUST

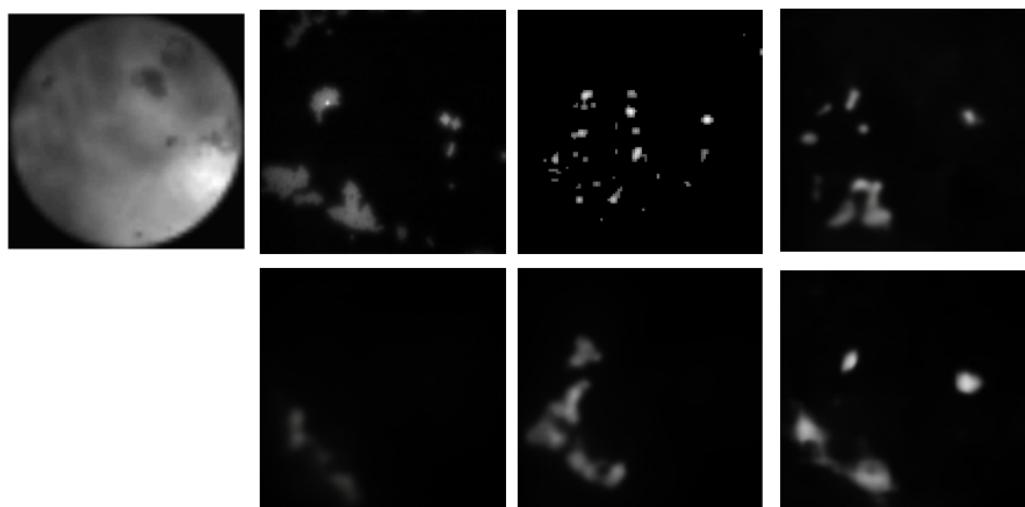
823 C.2 EXTENDED RESULTS ON SPARSE RECOVERY OF OPTICS DATA

825 In this section, we present a more comprehensive comparison of model performance on sparse re-
 826 covery tasks using the optical imaging dataset.

827 Figures 15, 16, and 17 illustrate qualitative reconstruction results across various models, while the
 828 quantitative metrics are summarized in Table 5. The data clearly show that TRUST consistently
 829 outperforms all competing neural network architectures, achieving superior reconstruction fidelity
 830 across all evaluation criteria.

831 As expected, traditional sparse recovery methods deliver the weakest performance, producing re-
 832 constructions with significant artifacts and loss of structural detail. Among deep learning models,
 833 the fully transformer-based Restormer yields competitive results but exhibits a consistent tendency
 834 to under-predict fine-scale features, leading to a higher missing probability error. This suggests that
 835 despite its strong global modeling capabilities, Restormer may struggle to capture the fine-grained
 836 spatial details necessary for precise optical reconstruction.

837 These results reinforce the advantage of TRUST’s hybrid architecture, which leverages both global
 838 attention mechanisms and localized multi-scale refinement to achieve accurate and perceptually
 839 faithful image recovery.



858 Figure 15: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left
 859 to right: response y , target x , OMP $\{0.301, 68.723dB\}$, and U-Net $\{0.779, 71.691dB\}$. Bottom row, from
 860 left to right: TransUnet $\{0.672, 67.236dB\}$, Restormer $\{0.752, 71.762dB\}$, and TRUST $\{0.862, 72.744dB\}$

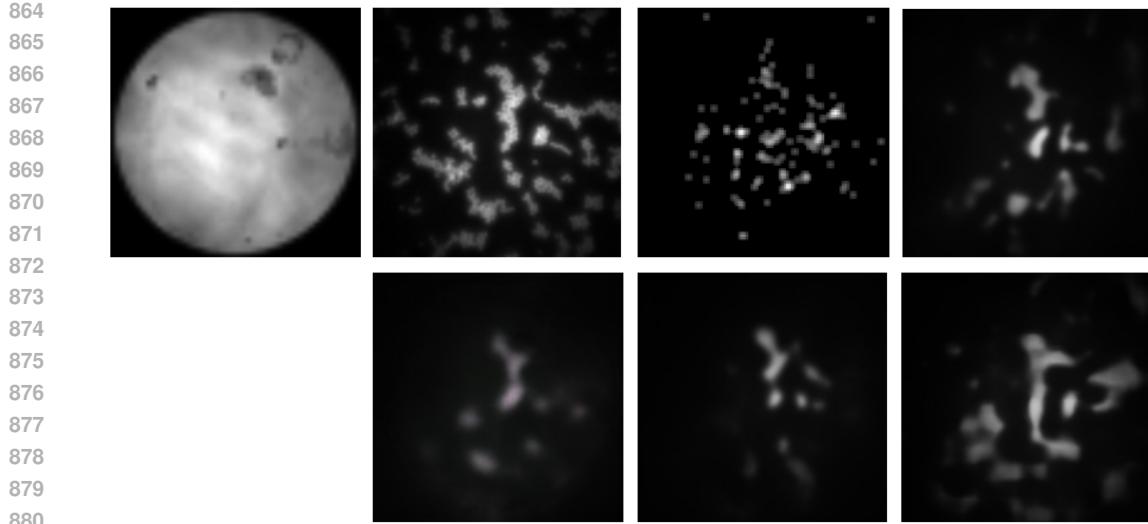


Figure 16: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left to right: response y , target x , OMP {0.325, 63.071dB}, and U-Net {0.636, 66.712dB}. Bottom row, from left to right: TransUnet {0.553, 66.351dB}, Restormer {0.625, 66.583dB}, and TRUST {0.671, 68.276dB}

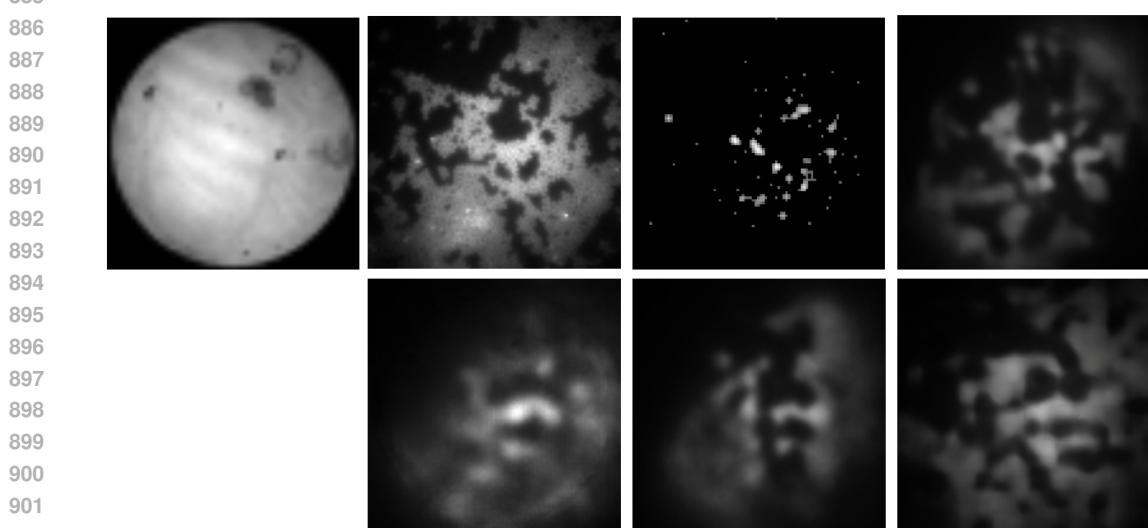


Figure 17: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left to right: response y , target x , OMP {0.244, 58.232dB}, and U-Net {0.513, 62.105dB}. Bottom row, from left to right: TransUnet {0.409, 61.812dB}, Restormer {0.542, 62.503dB}, and TRUST {0.592, 63.427dB}

C.3 EXTENDED RESULTS ON SPARSE RECOVERY OF FASTMRI DATA

This section presents an extended comparison of sparse recovery performance on the FastMRI dataset across four deep neural network architectures.

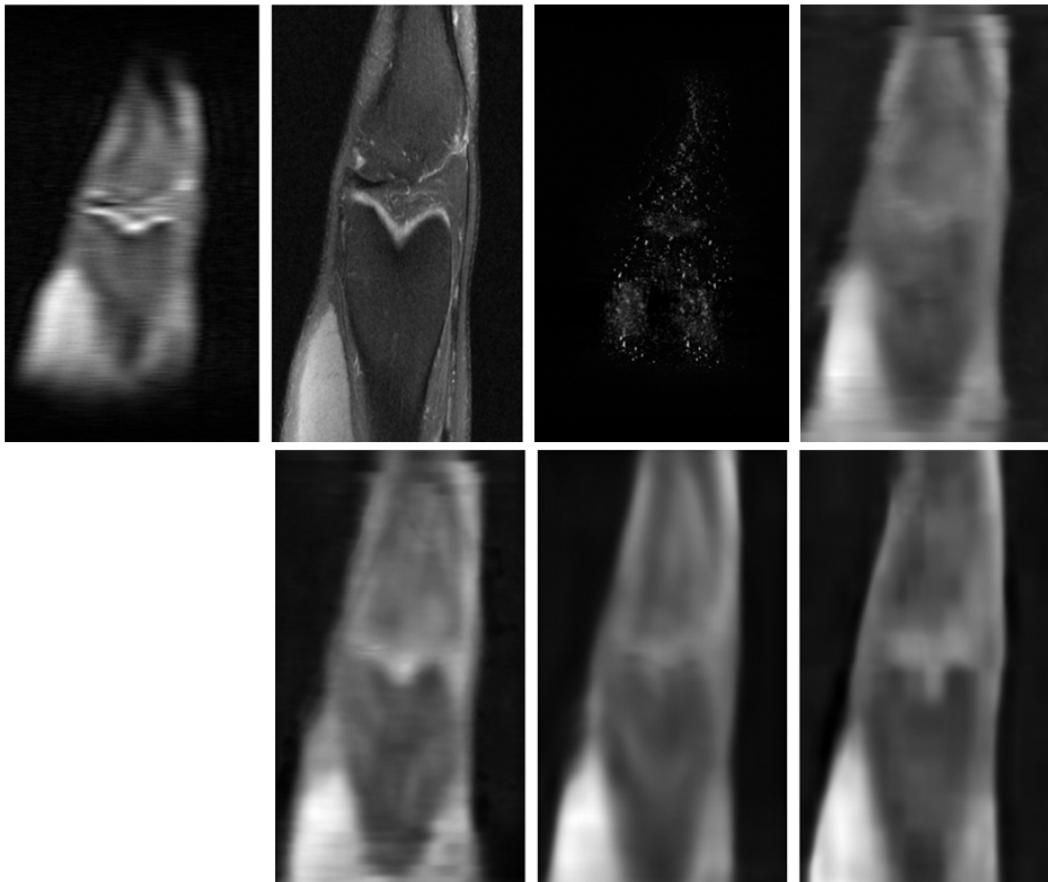
Figures 18, 19, and 20 showcase representative examples of MRI image reconstruction under typical k-space undersampling scenarios. The corresponding quantitative results are summarized in Table 6, which reports the mean and standard deviation of recovery performance across approximately 3,000 test images.

Consistent with earlier findings, our proposed hybrid model TRUST outperforms all competing approaches in both objective and subjective measures. It achieves higher reconstruction quality as

918 Table 5: Average recovery performance on the optics dataset: mean \pm standard deviation
919

920 Method	921 MSE	922 MAE	923 PSNR (dB)	924 SSIM	925 FDR ($\times 10^{-2}$)
OMP	0.0111 ± 0.0032	0.0435 ± 0.0062	68.04 ± 2.03	0.279 ± 0.035	5.30 ± 1.03
U-Net	0.00451 ± 0.0022	0.0398 ± 0.012	70.76 ± 2.00	0.772 ± 0.053	1.14 ± 0.16
TransUNet	0.00911 ± 0.0040	0.0440 ± 0.012	69.84 ± 1.92	0.636 ± 0.091	2.61 ± 3.1
Restormer	0.00823 ± 0.0041	0.0405 ± 0.013	70.48 ± 2.13	0.715 ± 0.056	0.907 ± 0.36
TRUST	0.00431 ± 0.0013	0.0253 ± 0.0073	71.992 ± 1.94	0.814 ± 0.069	0.901 ± 0.22

926
927
928 measured by standard metrics and produces visibly more faithful image details – highlighting the
929 effectiveness of TRUST’s architecture in capturing both global structure and fine-grained spatial
930 information in complex medical imaging tasks.



931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961 Figure 18: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from
962 left to right: undersampled input y , target x , OMP $\{0.173, 15.682dB\}$, U-Net $\{0.610, 21.623dB\}$.
963 Bottom row, from left to right: TransUNet $\{0.614, 21.956dB\}$, Restormer $\{0.623, 22.631dB\}$, and TRUST
964 $\{0.629, 22.893dB\}$.
965
966
967
968

D MODEL AND COMPUTATIONAL COMPLEXITY COMPARISON

969
970 In this section, we provide a brief supplemental comparison of the model complexity and com-
971 putational efficiency of four competing deep neural network architectures: TRUST, TransUNet,
972 Restormer, and U-Net.

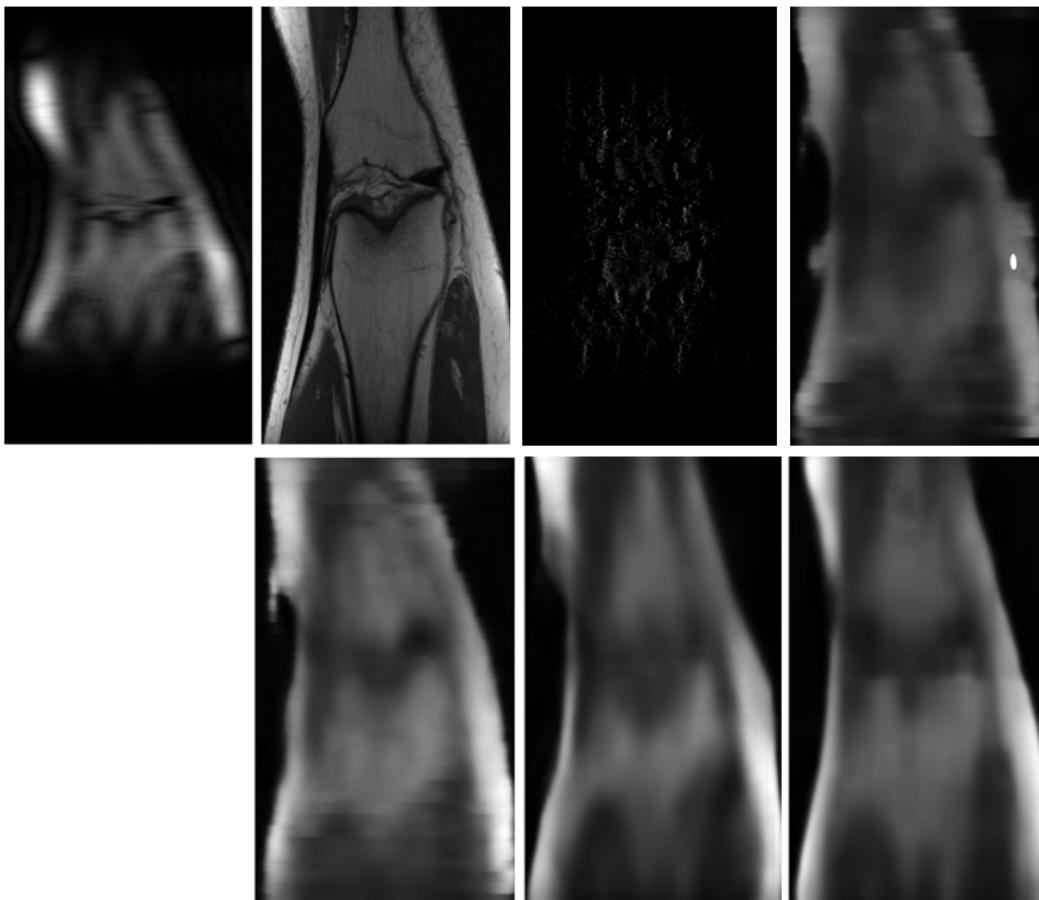


Figure 19: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left to right: undersampled input y , target x , OMP $\{0.2430, 12.812dB\}$, U-Net $\{0.612, 18.844dB\}$. Bottom row, from left to right: TransUNet $\{0.635, 19.593dB\}$, Restormer $\{0.636, 20.271dB\}$, and TRUST $\{0.687, 21.593dB\}$

Table 6: Average recovery performance on the FastMRI dataset: mean \pm standard of deviation

Method	MSE	MAE	PSNR (dB)	SSIM	FDR($\times 10^{-2}$)
OMP	0.109 ± 0.543	0.138 ± 0.0923	14.37 ± 4.34	0.145 ± 0.0395	6.26 ± 3.22
U-Net	0.0861 ± 0.0246	0.0506 ± 0.0174	21.70 ± 2.74	0.668 ± 0.0900	4.26 ± 4.99
TransUNet	0.0703 ± 0.0208	0.0396 ± 0.0178	21.07 ± 2.34	0.6553 ± 0.0863	5.93 ± 6.21
Restormer	0.0692 ± 0.0227	0.0411 ± 0.0160	23.72 ± 3.15	0.698 ± 0.0953	2.97 ± 4.74
TRUST	0.0613 ± 0.0220	0.0353 ± 0.0133	24.81 ± 3.13	0.717 ± 0.0851	2.78 ± 4.33

While the TRUST model demonstrates strong performance across all tasks presented in previous sections, its reliance on the ViT-base backbone results in a relatively high parameter count of approximately 9 million, which is comparable to TransUNet. In contrast, Restormer maintains a smaller footprint at 3 million parameters, and U-Net remains the most lightweight, with only 2 million parameters.

In terms of training complexity, TRUST, TransUNet, and U-Net exhibit similarly efficient training behavior. Using the modest hardware configuration described earlier, each model completes 50 epochs of training in approximately 24 hours. By comparison, Restormer is significantly more computationally demanding: under the same conditions, it progresses through only 8 epochs in a 24-hour period, highlighting its heavier training requirements.

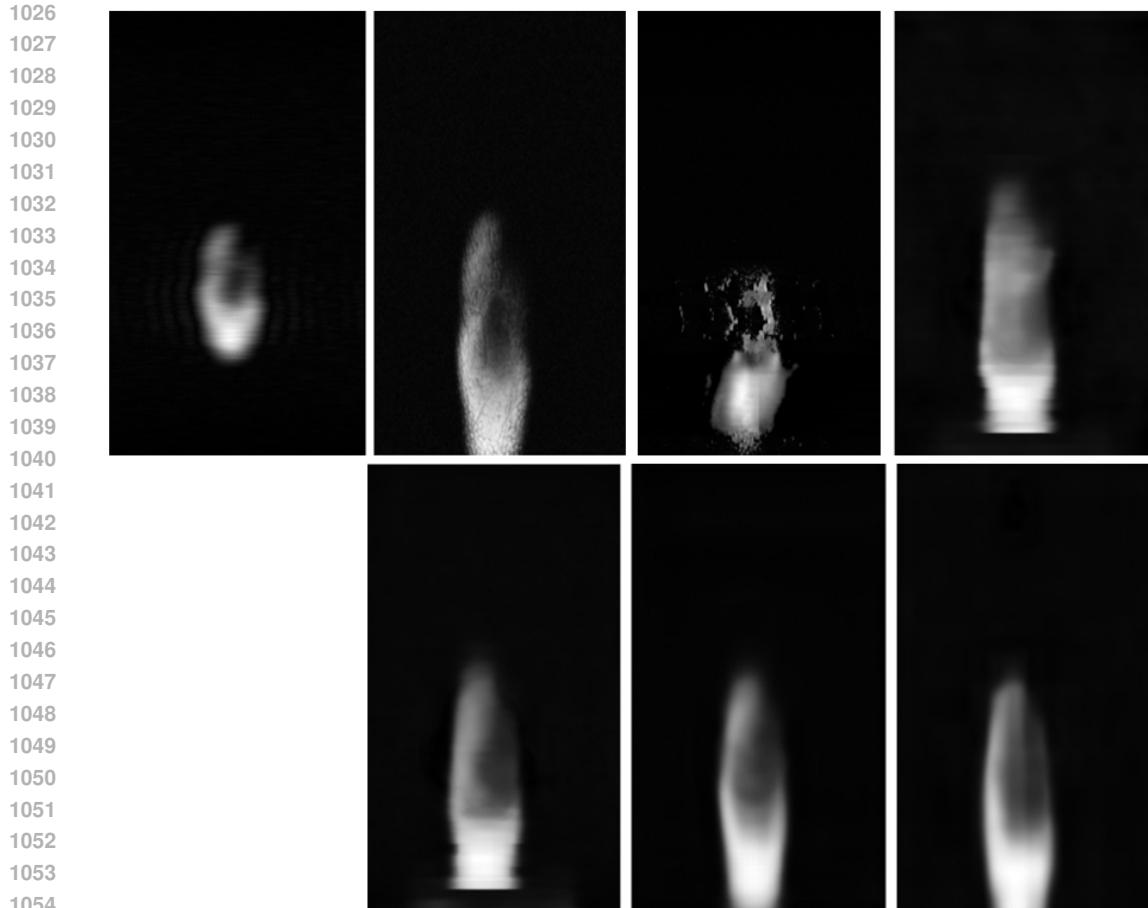


Figure 20: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left to right: undersampled input y , target x , OMP {0.5230, 19.083dB}, U-Net {0.586, 21.693dB}, TransUNet {0.871, 22.631dB}, Restormer {0.877, 26.568dB}, and TRUST {0.889, 30.602dB}

For inference speed, U-Net is the fastest, generating images in roughly 0.006 seconds per frame, owing to its simple architecture. TRUST and TransUNet take slightly longer, averaging 0.013 seconds per image, while Restormer, with its deeper and more complex architecture, requires approximately 0.06 seconds per image.

Despite these computational trade-offs, we would like to make the following final note: the TRUST model has not yet been fully optimized. Our long-term goal is to deploy TRUST for real-time image reconstruction directly from optical system measurements. The current results suggest that reducing the computational load of the ViT-based encoder is a promising direction. In future work, we aim to explore more lightweight, task-specific attention modules that can serve as efficient substitutes for the full transformer block – potentially preserving or improving performance while significantly decreasing computational overhead.

E ETHICS STATEMENT.

This work adheres to the ICLR Code of Ethics. Our study uses (i) a curated subset of publicly available natural images (ImageNet) and (ii) a de-identified, publicly released MRI dataset (FastMRI) under its terms of use; no personally identifiable information is included, and no attempt at re-identification was made. We also use in-house microscopy images of fixed neuron slides that do not contain human-subject information. Consequently, this research does not involve human-subjects experiments and does not require IRB approval. We disclose potential risks: learned inverse models

1080 may produce visually plausible but incorrect reconstructions (hallucinations) that could be harmful
 1081 if used for clinical decision-making or high-stakes applications. To mitigate this, we (a) evaluate
 1082 false positive structures (FDR) in addition to PSNR/SSIM, (b) report failure cases and limitations,
 1083 and (c) strongly caution against deployment without domain validation and regulatory review. The
 1084 datasets are used in accordance with their licenses; no sensitive attributes are inferred, and we do
 1085 not train or release models to recognize protected classes. We declare no conflicts of interest and no
 1086 sponsorship that could unduly influence the results.

1087

1088 F REPRODUCIBILITY STATEMENT.

1089

1090 We took several steps to facilitate reproducibility. The paper specifies the sensing setups (fixed or-
 1091 thonormal transforms and subsampling masks), data preprocessing (uniform 224×224 resizing and
 1092 patching), model architecture (ViT encoder + U-Net-like decoder), training objectives (ℓ_2 +SSIM),
 1093 and evaluation metrics (PSNR, SSIM, MAE, MSE, FDR) in the main text (Section 4) and Appendix
 1094 (implementation details, hyperparameters, and ablation protocols). We will provide an *anonymous*
 1095 repository in the supplementary materials containing: scripts to prepare datasets, exact masks and
 1096 sensing matrices used, model/config files, training and evaluation code with fixed random seeds, and
 1097 commands to reproduce tables and figures. For theoretical components, all assumptions are stated
 1098 and proofs are included in the Appendix. For each dataset, we reference the license/terms and de-
 1099 scribe preprocessing steps and splits. Checkpoints for the main TRUST model and baselines will be
 1100 released after the review period to ensure bitwise reproducibility of reported numbers.

1101

1102 G USE OF LARGE LANGUAGE MODELS

1103

1104 We made limited use of a large language model (LLM) strictly for *language editing* (grammar,
 1105 wording, and flow) of author-written text. The LLM was not used to generate research ideas, meth-
 1106 ods, analyses, results, figures, tables, or code. All technical contributions, experimental designs, and
 1107 conclusions are by the authors. Prompts contained only author-written text and non-sensitive bib-
 1108 liographic metadata; no private data, patient information, raw images, or dataset items were shared
 1109 with the LLM. All suggestions from the LLM were reviewed and verified by the authors, and any
 1110 inaccuracies were corrected. This disclosure is provided in the interest of transparency and research
 1111 integrity.

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133