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ABSTRACT

Many inverse problems—from coded aperture optics to undersampled MRI—
operate with unknown or poorly characterized sensing operators A. Yet most
sparse recovery methods assume A is precisely known, forcing costly calibration
or restrictive acquisition protocols. We address the more realistic setting in which
only limited number of observation–target pairs (y,x) are available, necessitating
joint operator learning and signal reconstruction. The core challenge is cross-
domain dispersion: local structures in the signal x are spread globally into mea-
surements y = Ax, while CNN architectures rely on local receptive fields. We
propose TRUST, a hybrid model that uses multi-resolution attention to recover
sparse support directly from measurements. Theoretically, under the standard RIP
conditions on A, we show that attention maps computed on y approximate those
computed on the true signal x, with error bounded by the RIP constant. Archi-
tecturally, a Vision Transformer encoder estimates global sparse support from y,
and attention-guided skip connections steer a U-Net decoder to concentrate recon-
struction capacity on support-consistent regions, coupling global contexts with lo-
cal details. TRUST resolves the mismatch between measurement dispersion and
the locality bias of CNN-only approaches. Across optical imaging, FastMRI, and
ImageNet benchmarks, it consistently surpasses strong baselines – both objec-
tively and subjectively – with marked reductions in hallucination artifacts. These
results establish attention-guided support estimation as a principled and effective
approach to high-quality reconstruction while jointly learning unknown sensing
operators, enabling robust performance on inverse problems where conventional
methods require the precise knowledge of forward models.

1 INTRODUCTION

The linear inverse problem is fundamental to modern signal processing, statistical modeling, and
machine learning. The typical model here is y = Ax +w, where we seek to recover an unknown
signal x ∈ Rn from a set of potentially noisy measurements y ∈ Rm using the sensing matrix
or the sensing operator A ∈ Rm×n. This problem arises in a wide range of scientific and engi-
neering applications, including magnetic resonance imaging (MRI), computed tomography (CT),
optical imaging, geophysics, astronomy and remote sensing, where observations are often limited,
incomplete, noisy or partially corrupted (Tibshirani, 1996; Vogel, 2002a; Tarantola, 2005a; Ribes
and Schmitt, 2008).

Classical approaches to solving inverse problems have been significantly advanced by the theory of
compressed sensing (CS) and associated sparse recovery methods (Candès et al., 2006b; Donoho,
2006; Candès et al., 2006a; Elad, 2010). These techniques leverage the fact that many natural signals
are sparse or compressible in specific transform domains, such as wavelets, gradients, or learned
dictionaries. Under suitable conditions on the sensing matrix A, CS guarantees accurate recovery of
sparse signals from far fewer measurements than traditionally required. The reconstruction problem
is typically posed as follows

min
x

∥x∥0 subject to ∥Ax− y∥2 ≤ ϵ or min
x

∥x∥1 subject to ∥Ax− y∥2 ≤ ϵ (1)

where the ℓ0- or ℓ1-norm promotes sparsity in x and the constraint enforces fidelity to the measure-
ments y. While these methods are mathematically principled and offer performance guarantees,
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they rely on accurate knowledge of the sensing operator A and assume linearity – assumptions that
often break down in more complex or nonlinear measurement settings.

Deep learning has recently emerged as a powerful data-driven alternative to mitigate the limitations
of classical approaches. In particular, convolutional neural networks (CNNs), notably encoder-
decoder architectures like U-Net (Ronneberger et al., 2015a) have shown strong performance in
tasks such as denoising (Zhang et al., 2017; 2018), super-resolution (Ledig et al., 2017) and compres-
sive image recovery (Mousavi et al., 2015). These models learn to map raw sensor measurements
directly to reconstructed signals, promising end-to-end inverse modeling, eliminating the need for
hand-crafted priors, and enabling greater adaptability to real-world variations. This is particularly
impactful in domains like synthetic aperture radar (SAR) and computational optics, where the for-
ward process involves nonlinear physics such as diffraction or phase retrieval that are analytically
intractable (Rivenson et al., 2018; Jin et al., 2017). These methods not only improve reconstruction
quality, but also generalize well when trained on realistic measurement-target pairs.

Despite these advances, cross-domain inverse problems—where measurement and target domains
are fundamentally different—remain a substantial challenge. For example, in optical systems, the
relationship between observations and desired reconstructions is often nonlinear and ambiguous.
Additionally, standard CNNs are inherently limited by their local receptive fields and spatial induc-
tive biases, making it difficult to capture the global context and long-range dependencies essential
for resolving such ambiguities. To overcome these limitations, researchers have begun exploring
transformer-based architectures, which leverage self-attention mechanisms to model global interac-
tions across spatial regions (Dosovitskiy et al., 2020; Chen et al., 2021). These models have shown
remarkable success in high-level vision tasks and are increasingly being adopted in low-level inverse
problems.

In this work, we introduce a novel architecture called TRUST, a transformer-driven U-Net for sparse
target recovery that integrates the Vision Transformer (ViT) with U-Net for optical image reconstruc-
tion. Unlike only convolution blocks that primarily rely on local filtering, the attention mechanism
successfully captures global dependencies across image patches, making them especially suited for
cross-domain reconstruction tasks. Extensive experiments demonstrate that TRUST consistently
outperforms traditional compressed sensing methods and state-of-the-art deep learning models.

2 PROBLEM DEFINITION

In this paper, we address the classical inverse problem y = Ax + w via sparse recovery as in
(1) under the challenging condition where the sensing operator A is unknown and we only have
access to a limited set of available observation-target pairs {x,y} as training data. Note that both
the measured data y and the target images x are commonly flattened into vectors for mathematical
convenience, although they originally represent structured two-dimensional spatial information.

Solving this ill-posed inverse problem using classical sparsity-driven methods would typically re-
quire first approximating the unknown operator A via dictionary learning techniques (Aharon et al.,
2006), followed by applying sparse recovery algorithms such as Orthogonal Matching Pursuit
(OMP) (Tropp and Gilbert, 2007) or the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA)
(Beck and Teboulle, 2009). However, this two-step approach is often inefficient, particularly in
complex or nonlinear sensing environments (Tarantola, 2005b; Vogel, 2002b). As an alternative,
we adopt modern deep learning-based strategies, specifically U-Net (Ronneberger et al., 2015a) and
the proposed TRUST architecture, which directly learn the inverse mapping from data. These mod-
els eliminate the need for explicit knowledge of the sensing matrix while simultaneously enabling
accurate reconstruction of sparse target signals (Mardani et al., 2019).

Throughout this paper, we motivate the development of the proposed TRUST network and illustrate
its working concept in the context of a practical noninvasive coded aperture multicore fiber microen-
doscope for brain imaging (Willett et al., 2007; Farahi et al., 2013), capable of capturing sub-micron
spatial image features.
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Figure 1: A multicore fiber coded aperture microendoscope. The fiber bundle contains around 6000 cores, has
a diameter of 270 µm, capable of capturing sub-micron image features.

3 TRUST

3.1 RELATED WORKS

Numerous efforts have been made to address the sparse recovery problem using deep learning. Early
pioneering approaches, such as ISTA-Net (Zhang and Ghanem, 2018) and ADMM-Net (Sun et al.,
2016), belong to the class of algorithm unrolling methods (Monga et al., 2021). These architectures
translate each iteration of a classical sparse optimization algorithm into a corresponding layer of
a neural network, allowing the model to learn key parameters while preserving the interpretability
of the original iterative structure. Although unrolling networks offer advantages in terms of inter-
pretability, parameter efficiency, and performance in structured or low-data regimes, they generally
fall short when applied to large-scale complex recovery tasks.

In contrast, more general-purpose architectures like U-Net have emerged as dominant solutions
in signal and image reconstruction. Originally designed for biomedical image segmentation, U-
Net’s encoder–decoder structure with skip connections allows it to effectively capture and integrate
multiscale features, making it well-suited for complex spatial reconstruction tasks (Ronneberger
et al., 2015b). Recent advancements such as TransUNet (Chen et al., 2021) further enhance U-Net’s
capabilities by incorporating attention mechanisms at the network bottleneck, leveraging the strength
of self-attention to model long-range dependencies and improve global context modeling. In the
opposite direction is the fully transformer-based encoder–decoder Restormer (Zamir et al., 2022),
which integrates attention mechanisms with multiscale architectures for image reconstruction.

A closer examination of the linear inverse problem y = Ax reveals a fundamental challenge: local
features in the signal x may become dispersed or diffused across the global observation y. This
is particularly true in compressed sensing, where measurements are often acquired in incoherent or
randomized domains to satisfy theoretical recovery guarantees. In such settings, reconstruction ar-
chitectures that primarily rely on local receptive fields—such as classical CNNs or even U-Net—can
struggle to recover globally consistent structure, especially when long-range dependencies are criti-
cal to disambiguate spatial information.

3.2 PROPOSED ARCHITECTURE

Motivated by these limitations, we propose TRUST, a hybrid architecture designed to combine the
strengths of both local and global modeling paradigms. As illustrated in Figure 2, TRUST employs
a Vision Transformer (ViT) to extract multiscale global attention features from the input, effectively
modeling long-range dependencies across the spatial domain. These features are then processed
through an adaptive pooling layer, which performs pixel-wise smoothing to enhance robustness and
feature continuity. Finally, a U-Net-inspired upsampling pathway incrementally refines the output,
progressively recovering fine spatial detail and enforcing structural coherence.

In the remainder of this section, we delve into the design rationale behind each component of the
TRUST architecture. We aim to provide a deeper understanding of their individual contributions
and their synergistic effect on the network’s overall performance in sparse recovery tasks.
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Figure 2: TRUST Architecture – Transformer-Driven U-Net for Sparse Target Recovery

3.3 ATTENTION CAN BE AN EXCELLENT ENCODER

Compared to traditional convolutional operations, the attention mechanism in Transformers offers
a significant advantage in modeling global contextual relationships across spatial features. At the
heart of this mechanism is the self-attention operation, defined as:

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (2)

where Q, K, and V denote the query, key, and value matrices, respectively, and dk is the dimen-
sionality of the key vectors. This formulation effectively performs a scaled dot-product similarity
– akin to a normalized cosine similarity – which allows the model to dynamically focus on salient
regions and capture long-range structural dependencies across the entire image.

We further demonstrate that self-attention applied directly to the measurement domain y can approx-
imate the attention features of the ground truth signal x, provided that the sensing matrix satisfies
the Restricted Isometry Property (RIP) (Candès and Tao, 2005). Specifically, if A satisfies the Re-
stricted Isometry Property (RIP) of order 2k with RIP constant δ2k ∈ (0, 1), then for all 2k-sparse
vectors z ∈ Rn, we have

(1− δ2k) ∥z∥22 ≤ ∥Az∥22 ≤ (1 + δ2k) ∥z∥22.

This implies that the geometry of sparse vectors is approximately preserved under the mapping A.
More precisely, the attention error between two representations in two different domains is bounded
by the RIP constant as follows (see the Appendix for the detailed derivation):∣∣y⊤y′ − x⊤x′∣∣ = ∣∣x⊤A⊤Ax′ − x⊤x′∣∣ ≤ δ2k.

Figure 3: Overlaying attention map of a sample collected from the microendoscope in Figure 1. From left to
right: response y, single head attention, aggregated multihead attention, and ground truth x.
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(a) ViT Feature Map (b) Feature Map after Pooling

Figure 4: Adaptive pooling layer function’s effect on a typical attention map.

As depicted in Figure 3, the attention map generated from y indeed highlights key spatial structures
and regions that closely resemble those in the original image x. This empirical observation aligns
with our theoretical analysis and confirms that the attention module not only facilitates contextual
reasoning, but also plays a critical role in sparse support recovery. These extracted attention features
serve as a powerful prior, guiding the subsequent reconstruction stages in our TRUST framework to
focus on the most informative regions of the measurement.

3.4 ADAPTIVE POOLING LAYER

Processing full-resolution attention maps is costly and misaligned with spatial hierarchies. We there-
fore insert an adaptive pooling layer for (i) dimensionality reduction and (ii) feature standardization:
it compresses the attention output to a coarser, semantically focused resolution and normalizes it to a
fixed size regardless of input shape (He et al., 2015). As shown in Figure 4, this distillation preserves
structure while yielding a compact representation, enabling more efficient and precise decoding.

3.5 U-NET-LIKE UPSAMPLING DECODER FOR DETAIL REFINEMENT

The decoder reconstructs high-resolution images from the pooled feature maps using a U-Net–style
design: each stage upsamples to restore spatial resolution, then applies Conv2D layers with ReLU to
refine structure and add nonlinearity. This stage-wise refinement progressively recovers fine details
that were compressed or diffused during encoding.

Figure 5: Different stages of decoding. From left to right: response y, stage 1, stage 2, stage 3, stage 4,
reconstructed image x̂, and ground truth x. Resolution is enhanced gradually from left to right.

As shown in Figure 5, we track feature maps through the decoder. The raw diffraction pattern is
transformed by attention and convolutions to reveal structure. At the first decoding stage, high-
frequency components emerge (strong activations in red/yellow). Subsequent layers increase spatial
resolution while reducing channels, reconstructing the signal’s hierarchy.

This visualization shows how the model bridges incoherent measurements and target images: the
Transformer captures global dependencies early, and the U-Net decoder restores local structure via
multiscale upsampling. Activation evolution indicates selective amplification of salient features
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Table 1: Unified results with task in the leftmost column. Metrics are mean ± std. Higher is better
for PSNR/SSIM; lower is better for MAE/MSE/FPR/Time. Best performance is in red. Per 16× 16
patch, we apply a fixed randomly Gaussian orthonormal transform and random keep 25% or 100%
pixels.

Dataset Model PSNR (dB)↑ SSIM↑ MAE↓ MSE↓ FDR (×10−2) ↓ Recon. Time (ms)↓

ImageNet (100% Preserved + Mask)

TRANSUNET 21.75± 2.89 0.539± 0.142 0.064± 0.025 0.008± 0.006 0.11± 0.2 9.7± 3.1
UNET 27.19± 4.01 0.922± 0.039 0.039± 0.025 0.003± 0.005 0.02± 0.000 4.3± 2.1
RESTORMER 28.27± 4.33 0.934± 0.028 0.036± 0.025 0.003± 0.004 0.007± 0.000 52.3± 4.1
TRUST 28.27± 4.33 0.934± 0.028 0.036± 0.025 0.003± 0.004 0.002± 0.000 4.4± 2.3

ImageNet (25% Preserved + Mask)

TRANSUNET 7.35± 1.93 0.120± 0.055 0.374± 0.097 0.202± 0.088 2.23± 2.6 9.5± 4.1
UNET 8.34± 2.05 0.174± 0.071 0.327± 0.088 0.163± 0.078 6.30± 6.61 4.4± 3.2
RESTORMER 13.52± 2.14 0.378± 0.134 0.166± 0.043 0.050± 0.025 3.9± 4.4 50.6± 3.9
TRUST 16.59± 1.94 0.347± 0.067 0.166± 0.096 0.042± 0.085 1.3± 1.9 4.5± 2.0

FastMRI Reconstruction

OMP 14.37± 4.34 0.145± 0.0395 0.138± 0.0923 0.109± 0.543 6.26± 3.22 ∼12,000
U-Net 21.70± 2.74 0.668± 0.0900 0.0506± 0.0174 0.0861± 0.0246 4.26± 4.99 6.3± 2.2
TransUNet 21.07± 2.34 0.6553± 0.0863 0.0396± 0.0178 0.0703± 0.0208 5.93± 6.21 13.2± 4.2
Restormer 23.72± 3.15 0.698± 0.0953 0.0411± 0.0160 0.0692± 0.0227 2.97± 4.74 63.4± 8.3
TRUST 24.81± 3.13 0.717± 0.0851 0.0353± 0.0133 0.0613± 0.0220 2.78± 4.33 11.2± 3.1

Optics Reconstruction

OMP 68.04± 2.03 0.279± 0.035 0.0435± 0.0062 0.0111± 0.0032 5.30± 1.03 ∼15,000
U-Net 70.76± 2.00 0.772± 0.053 0.0398± 0.012 0.00451± 0.0022 1.14± 0.16 7.1± 2.0
TransUNet 69.84± 1.92 0.636± 0.091 0.0440± 0.012 0.00911± 0.0040 2.61± 3.10 15.2± 3.9
Restormer 70.48± 2.13 0.715± 0.056 0.0405± 0.013 0.00823± 0.0041 0.907± 0.36 68.4± 7.3
TRUST 71.992± 1.94 0.814± 0.069 0.0253± 0.0073 0.00431± 0.0013 0.901± 0.22 12.2± 3.7

and suppression of noise, yielding high-fidelity reconstructions—combining global context with
localized detail critical for robust sparse inverse recovery.

4 EXPERIMENTS

We leverage transfer learning on our proposed TRUST architecture by incorporating the pretrained
’google/vit-base-patch16-224’ Vision Transformer as the encoder backbone (Dosovitskiy et al.,
2020). This strategic choice significantly accelerates training convergence and improves perfor-
mance for the specialized task of optical image reconstruction. Training was conducted on a setup
with four Tesla P400 GPUs (24 GB VRAM each), using a learning rate of 1×10−4 and a batch size
of 128 and the inference is on NVIDIA 4070. Given the modest computational resources, training
was extended over the course of one week to ensure stable convergence and optimal reconstruction
quality.

4.1 DATASETS AND EVALUATION METRICS

We evaluate TRUST on three datasets—masked ImageNet, a custom optical set from the multicore
fiber microendoscope (Figure 1), and single-coil knee FastMRI—covering both domain-specific
reconstruction and standard inverse imaging. We report MSE, MAE, PSNR, SSIM, and False
Discovery Rate (FDR) (Wang et al., 2004; Gonzalez and Woods, 2002); metric definitions and
preprocessing/sampling-mask details are provided in the Appendix.

4.2 IMAGENET RESULTS

For ImageNet experiments, we curated a dogs-and-cats subset for training and validation and re-
tained a disjoint holdout set for final testing. The training split contains 10,000 paired samples
(orthogonally transformed patches and their ground-truth originals), with 1,000 pairs for validation
and 1,000 for testing. All images were resized to 224 × 224 and partitioned into non-overlapping
16 × 16 patches; each patch was mapped by a fixed 256 × 256 orthonormal matrix, yielding a
controlled inverse problem in which the model reconstructs the original image from its transformed
representation. We then consider a harder setting: using the same fixed mask and randomly retains
25% of pixels per 16× 16 patch (i.e., randomly drops 75%), effectively compressing each patch to
8 × 8 and producing a 112 × 112 masked measurement image. Reconstruction is performed from
this masked domain back to the original resolution. Results for both settings are reported in Table 1
and Figure 6. Moreover, the trained model generalizes beyond the dogs-and-cats subset: it can re-
construct images from other semantic classes with the same forward operator and masking scheme,
without any additional training as shown in Figure 13.
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Figure 6: Different reconstruction results with corresponding SSIM and PSNR values. Top Row (left to right):
100% preserved maksed GT, GT, TransUnet {0.642, 18.638dB}, U-Net {0.682, 20.749dB}, Restormer
{0.697, 20.187dB} and TRUST {0.698, 21.786dB}. Bottom Row (left to right): 25% preserved maksed
GT, GT, TransUnet {0.312, 11.437dB}, U-Net {0.361, 12.301dB}, Restormer {0.371, 12.283dB} and
TRUST {0.393, 13.021dB}.

4.3 MRI RESULTS

To demonstrate the generalization capability of TRUST, we conducted additional experiments on the
FastMRI dataset – a large-scale benchmark jointly developed by Facebook AI Research and NYU
Langone Health for accelerated MRI reconstruction (Zbontar et al., 2018). This task fits the ill-posed
inverse problem described in Section 2, where the collected observation comes from an undersam-
pled k-space signal processed through a sparse sampling operator A. The degraded image, obtained
via inverse Fourier transform (IFFT), contains aliasing artifacts. The goal is to reconstruct a high-
quality ground truth image from this undersampled and noisy input (Lustig et al., 2007).We tested its
performance on the large-scale standardized FastMRI dataset. Table 1 summarizes the results across
36 randomly selected slices from 108 subjects, totaling approximately 3,000 test images, whereas
Figure 18 depicts a typical reconstruction sample.

Figure 7: Example of reconstruction results with corresponding SSIM and PSNR values. From left to
right: undersampled input y, target x, OMP {0.173, 15.682dB}, U-Net {0.610, 21.623dB}, TransUnet
{0.614, 21.956dB}, Restormer {0.623, 22.631dB}, and TRUST {0.629, 22.893dB}

.

4.4 OPTICS RESULTS

For the optical dataset, training images came from two neuron slides and testing from a third, unseen
slide: 10,000 response–target pairs for training and 5,000 for testing, all at an object-to-tip distance
of 100µm. This split tests generalization to new structures under matched conditions.

We compared TRUST with classical sparse recovery and deep learning baselines. U-Net and TRUST
were trained with a joint ℓ2+SSIM loss using matched hyperparameters/budgets; sensitivity to the
loss is discussed in Section 2.

From Table 1, TRUST surpasses U-Net and classical baselines on the 5,000-sample test set, yield-
ing fewer hallucinations/artifacts. Visually, U-Net hallucinates structure near the bottom-left in a
sample, while TRUST suppresses it and recovers a more faithful reconstruction.

7
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Figure 8: Example of reconstruction results with corresponding SSIM and PSNR values. From left to right:
response y, target x, OMP {0.325, 63.071dB}, U-Net {0.636, 66.712dB}, TransUnet {0.553, 66.351dB},
Restormer {0.625, 66.583dB}, and TRUST {0.671, 68.276dB}

.

4.5 ABLATION STUDY

We study three factors affecting TRUST’s reconstruction quality: (i) training loss, (ii) skip connec-
tions, and (iii) ViT pretraining. Unless noted, metrics are mean ± std over the test set.

Loss function. We compare ℓ2, ℓ2+ℓ1, and ℓ2+SSIM. While ℓ2 targets pixel fidelity and ℓ1
adds outlier robustness, SSIM optimizes structural similarity. As shown in Figure 9 and Table 2,
ℓ2+SSIM yields the best overall MSE/MAE, PSNR, SSIM, and FDR, consistent with perceptual-
loss findings (Zhao et al., 2016).

Figure 9: Reconstructions under different losses (SSIM, PSNR in dB). Left→right: y, ℓ2 {0.137, 48.756},
ℓ2+ℓ1 {0.251, 67.693}, ℓ2+SSIM {0.798, 73.012}, and x.

Table 2: Reconstruction performance under different training losses.

Loss Function MSE MAE PSNR (dB) SSIM FDR (×10−2)
ℓ2 0.111 ± 0.25 0.318 ± 0.073 49.69 ± 3.01 0.101 ± 0.0148 1.057 ± 0.64
ℓ2 + ℓ1 0.0101 ± 0.18 0.0797 ± 0.092 67.083 ± 2.15 0.243 ± 0.053 1.055 ± 0.41
ℓ2 + SSIM 0.00431 ± 0.0013 0.0253 ± 0.0073 71.992 ± 1.94 0.814 ± 0.069 0.901 ± 0.22

Skip connections. To assess encoder–decoder shortcuts, we disable skips at various stages. Fig-
ure 10 and Table 3 show that removing even one skip degrades all metrics—most around edges/high
frequencies—highlighting their importance during upsampling (Mao et al., 2016; He et al., 2016).

Figure 10: Removing skip connections (SSIM, PSNR in dB). Left→right: x, TRUST {0.862, 72.744}, mv
skip1 {0.610, 71.662}, mv skip1&2 {0.304, 67.832}, and no skip {0.654, 69.512}.
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Table 3: Impact of skip connections.

Configuration MSE MAE PSNR (dB) SSIM FDR (×10−2)
TRUST 0.00431 ± 0.0013 0.0253 ± 0.0073 71.992 ± 1.94 0.814 ± 0.069 0.901 ± 0.22
TRUST mv skip1 0.00441 ± 0.0027 0.0280 ± 0.011 71.082 ± 1.91 0.774 ± 0.065 1.223 ± 0.28
TRUST mv skip1 & skip2 0.00681 ± 0.0046 0.0468 ± 0.023 70.156 ± 2.18 0.610 ± 0.1322 3.034 ± 0.64
TRUST no skip 0.00540 ± 0.0021 0.0314 ± 0.011 70.990 ± 1.80 0.746 ± 0.062 1.640 ± 0.47

Pretraining. We train the attention encoder from scratch vs. initializing from
google/vit-base-patch16-224. Pretraining provides stronger, more general features
and improves convergence and downstream accuracy on limited-domain data (Chen et al., 2019),
with consistent gains across all metrics (Figure 11, Table 4).

Figure 11: Pretraining vs. scratch (SSIM, PSNR in dB). Left→right: target, w/o pretraining {0.606, 71.342},
w/ pretraining {0.862, 72.744}.

Table 4: Effect of ViT pretraining.

Method MSE MAE PSNR (dB) SSIM FDR (×10−2)
TRUST without Pretrained ViT 0.00601 ± 0.0034 0.0341 ± 0.014 70.583 ± 1.81 0.697 ± 0.072 2.093 ± 0.19
TRUST with Pretrained ViT 0.00431 ± 0.0013 0.0253 ± 0.0073 71.992 ± 1.94 0.814 ± 0.069 0.901 ± 0.22

5 CONCLUSION AND FUTURE WORK

In this paper, we introduced TRUST, a hybrid architecture that integrates a pretrained Vision Trans-
former (ViT) encoder with a U-Net decoder for high-quality sparse image reconstruction. Experi-
mental results show that TRUST consistently outperforms both classical and deep learning baselines,
achieving superior performance across standard metrics, including PSNR, SSIM, MSE, MAE, and
FDR, while significantly reducing hallucination artifacts.
TRUST’s effectiveness is attributed to its key architectural components: (i) a ViT-based attention
encoder that captures global dependencies early in the pipeline; (ii) skip connections that enable
multi-scale feature fusion; and (iii) a hierarchical decoder that refines coarse global representations
into high-resolution image details. Despite its advantages, TRUST introduces additional computa-
tional overhead due to its reliance on a pretrained transformer backbone, resulting in 2− 3× higher
inference time compared to U-Net under equivalent hardware conditions. Also, while this study
focuses on sparse optical image recovery, the underlying design principles of TRUST – attention-
guided global context modeling and hierarchical multiresolution decoding – are broadly applicable
(Touvron et al., 2021). Future work will explore TRUST extensions to various signal processing
tasks while also addressing the model’s computational complexity to improve efficiency and scala-
bility (Mehta and Rastegari, 2022).
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APPENDIX

A ERROR BOUND FOR THE ATTENTION MECHANISM

We assume that we have two tokens x and y, which are related via the linear constraint y = Ax. In
practice, most of the time we have some additional prior knowledge on the operator A (after all, we
typically design an appropriate A for the application at hand) such as:

• A is orthonormal square matrix; or

• A is tall matrix with orthonormal columns; or

• A is fat matrix satisfying the Restricted Isometry Property (RIP).

The attention mechanism is formulated as

Attention(Q,K,V) = softmax

(
QKT

√
dk

)
V (3)

Performing self attention on y yields the following:

Attention(y) = softmax
(
yTy√
dk

)
V = softmax

(
xTATAx√

dk

)
V. (4)

When A has orthonormal columns, it is clear that attention above yields the same value in either x
or y domain. In compressed sensing applications, A is most likely fat and the orthonormal property
of its columns breaks down. In this case, we need to rely on the RIP of A as follows: let A ∈ Rm×n

be a matrix satisfying the Restricted Isometry Property (RIP) of order 2k with constant δ2k ∈ (0, 1).
That is, for all 2k-sparse vectors z ∈ Rn, we have

(1− δ2k)∥z∥22 ≤ ∥Az∥22 ≤ (1 + δ2k)∥z∥22.

Let x,x′ ∈ Rn be two normalized vectors with supports of size at most k, i.e., both are k-sparse
and ∥x∥22 = ∥x′∥22 = 1. Then, their sum or difference support together has size at most 2k. In other
words, x + x′ and x − x′ are 2k-sparse. We aim to bound the following difference between the
original and transformed inner product:∣∣x⊤A⊤Ax′ − x⊤x′∣∣ .
The polarization identity combined with the RIP condition yields:

∥A(x+ x′)∥22 = ∥Ax∥22 + 2x⊤A⊤Ax′ + ∥Ax′∥22,
∥A(x− x′)∥22 = ∥Ax∥22 − 2x⊤A⊤Ax′ + ∥Ax′∥22.

Subtracting these two identities gives:

∥A(x+ x′)∥22 − ∥A(x− x′)∥22 = 4x⊤A⊤Ax′.

Similarly, if A is the identity matrix, we have:

∥x+ x′∥22 − ∥x− x′∥22 = 4x⊤x′.

Imposing RIP on x+ x′ and x− x′ produces∣∣∥A(x+ x′)∥22 − ∥x+ x′∥22
∣∣ ≤ δ2k∥x+ x′∥22,∣∣∥A(x− x′)∥22 − ∥x− x′∥22
∣∣ ≤ δ2k∥x− x′∥22.
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Combining the two and applying the triangle inequality, we can finally obtain the following bound:∣∣x⊤A⊤Ax′ − x⊤x′∣∣ = 1

4

∣∣(∥A(x+ x′)∥22 − ∥A(x− x′)∥22
)
−
(
∥x+ x′∥22 − ∥x− x′∥22

)∣∣
≤ 1

4

(∣∣∥A(x+ x′)∥22 − ∥x+ x′∥22
∣∣+ ∣∣∥A(x− x′)∥22 − ∥x− x′∥22

∣∣)
≤ δ2k

4

(
∥x+ x′∥22 + ∥x− x′∥22

)
=

δ2k
4

(
2∥x∥22 + 2∥x′∥22

)
=

δ2k
2

(
∥x∥22 + ∥x′∥22

)
=

δ2k
2

(1 + 1)

= δ2k.

Figure 12 illustrates the average effect of sparsity and fat random Gaussian matrices on atten-
tion/similarity averaged over 100 totally random trials. As expected, A’s with orthonormal columns
yield exactly the same attention. On the other hand, we confirm that we are still able to obtain close
approximation of the attention level with fat random Gaussian sensing matrices A’s.

Figure 12: Simulation of similarity between attention on x and y = Ax
for various sensing matrices A’s.
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B EVALUATION METRICS

To evaluate the reconstruction quality of our models, we employ both standard image similarity
metrics and a custom hallucination-aware metric:

Root Mean Squared Error (RMSE). RMSE measures the square root of the average squared
differences between predicted and ground truth pixel values:

RMSE =

√√√√ 1

N

N∑
i=1

(xi − x̂i)2,

where xi and x̂i are the ground truth and predicted pixel values, respectively.

Peak Signal-to-Noise Ratio (PSNR). PSNR quantifies the reconstruction fidelity relative to the
maximum pixel intensity:

PSNR = 20 · log10
(

MAX
RMSE

)
,

where MAX is the maximum possible pixel value (assumed to be 1.0 after normalization).

Structural Similarity Index Measure (SSIM). SSIM evaluates perceptual image similarity by
comparing local patterns of luminance, contrast, and structure. The score ranges from −1 to 1, with
1 indicating perfect structural alignment.

False Positive Region Score (FPR). We define a hallucination-sensitive metric called the False
Positive Region (FPR) score to quantify spurious regions generated by the model. A pixel is consid-
ered hallucinated if it satisfies:

xhat > thigh and xtrue ≤ tlow,

The FPR score is computed as the fraction of hallucinated pixels over the entire image:

FPR =
|{i : xhat,i > thigh ∧ xtrue,i ≤ tlow}|

N
.

C EXTENDED SPARSE RECOVERY RESULTS

All the models listed below were trained with approximately same hyper-parameters as specified in
the paper, and the stop condition is when reaching the nearly same loss values. This setup ensures a
fair comparison under similar consistent conditions.

C.1 EXTENDED RESULTS ON IMAGENET

We found that even the model is trained on cat/dogs dataset, still it can recover other category
images.

Figure 13: Other category reconstruction example
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Figure 14: Large gird reconstruction by TRUST

C.2 EXTENDED RESULTS ON SPARSE RECOVERY OF OPTICS DATA

In this section, we present a more comprehensive comparison of model performance on sparse re-
covery tasks using the optical imaging dataset.

Figures 15, 16, and 17 illustrate qualitative reconstruction results across various models, while the
quantitative metrics are summarized in Table 5. The data clearly show that TRUST consistently
outperforms all competing neural network architectures, achieving superior reconstruction fidelity
across all evaluation criteria.

As expected, traditional sparse recovery methods deliver the weakest performance, producing re-
constructions with significant artifacts and loss of structural detail. Among deep learning models,
the fully transformer-based Restormer yields competitive results but exhibits a consistent tendency
to under-predict fine-scale features, leading to a higher missing probability error. This suggests that
despite its strong global modeling capabilities, Restormer may struggle to capture the fine-grained
spatial details necessary for precise optical reconstruction.

These results reinforce the advantage of TRUST’s hybrid architecture, which leverages both global
attention mechanisms and localized multi-scale refinement to achieve accurate and perceptually
faithful image recovery.

Figure 15: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left
to right: response y, target x, OMP {0.301, 68.723dB}, and U-Net {0.779, 71.691dB}. Bottom row, from
left to right: TransUnet {0.672, 67.236dB}, Restormer {0.752, 71.762dB}, and TRUST {0.862, 72.744dB}

.
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Figure 16: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left
to right: response y, target x, OMP {0.325, 63.071dB}, and U-Net {0.636, 66.712dB}. Bottom row, from
left to right: TransUnet {0.553, 66.351dB}, Restormer {0.625, 66.583dB}, and TRUST {0.671, 68.276dB}

.

Figure 17: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left
to right: response y, target x, OMP {0.244, 58.232dB}, and U-Net {0.513, 62.105dB}. Bottom row, from
left to right: TransUnet {0.409, 61.812dB}, Restormer {0.542, 62.503dB}, and TRUST {0.592, 63.427dB}

.

C.3 EXTENDED RESULTS ON SPARSE RECOVERY OF FASTMRI DATA

This section presents an extended comparison of sparse recovery performance on the FastMRI
dataset across four deep neural network architectures.

Figures 18, 19, and 20 showcase representative examples of MRI image reconstruction under typical
k-space undersampling scenarios. The corresponding quantitative results are summarized in Table 6,
which reports the mean and standard deviation of recovery performance across approximately 3,000
test images.

Consistent with earlier findings, our proposed hybrid model TRUST outperforms all competing
approaches in both objective and subjective measures. It achieves higher reconstruction quality as

17
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Table 5: Average recovery performance on the optics dataset: mean ± standard deviation

Method MSE MAE PSNR (dB) SSIM FDR (×10−2)

OMP 0.0111 ± 0.0032 0.0435 ± 0.0062 68.04 ± 2.03 0.279 ± 0.035 5.30 ± 1.03
U-Net 0.00451 ± 0.0022 0.0398 ± 0.012 70.76 ± 2.00 0.772 ±0.053 1.14 ± 0.16
TransUNet 0.00911 ± 0.0040 0.0440 ± 0.012 69.84 ± 1.92 0.636 ±0.091 2.61 ± 3.1
Restormer 0.00823 ± 0.0041 0.0405 ± 0.013 70.48 ± 2.13 0.715 ±0.056 0.907 ± 0.36
TRUST 0.00431 ± 0.0013 0.0253 ± 0.0073 71.992 ± 1.94 0.814 ± 0.069 0.901 ± 0.22

measured by standard metrics and produces visibly more faithful image details – highlighting the
effectiveness of TRUST’s architecture in capturing both global structure and fine-grained spatial
information in complex medical imaging tasks.

Figure 18: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from
left to right: undersampled input y, target x, OMP {0.173, 15.682dB}, U-Net {0.610, 21.623dB}. Bot-
tom row, from left to right: TransUnet {0.614, 21.956dB}, Restormer {0.623, 22.631dB}, and TRUST
{0.629, 22.893dB}

.

D MODEL AND COMPUTATIONAL COMPLEXITY COMPARISON

In this section, we provide a brief supplemental comparison of the model complexity and com-
putational efficiency of four competing deep neural network architectures: TRUST, TransUNet,
Restormer, and U-Net.
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Figure 19: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from
left to right: undersampled input y, target x, OMP {0.2430, 12.812dB}, U-Net {0.612, 18.844dB}. Bot-
tom row, from left to right:: TransUnet {0.635, 19.593dB}, Restormer {0.636, 20.271dB}, and TRUST
{0.687, 21.593dB}

.

Table 6: Average recovery performance on the FastMRI dataset: mean ± standard of deviation

Method MSE MAE PSNR (dB) SSIM FDR(×10−2)
OMP 0.109 ± 0.543 0.138 ± 0.0923 14.37 ± 4.34 0.145 ± 0.0395 6.26 ± 3.22
U-Net 0.0861 ± 0.0246 0.0506 ± 0.0174 21.70 ± 2.74 0.668 ± 0.0900 4.26 ± 4.99
TransUNet 0.0703 ± 0.0208 0.0396 ± 0.0178 21.07 ± 2.34 0.6553 ± 0.0863 5.93 ± 6.21
Restormer 0.0692 ± 0.0227 0.0411 ± 0.0160 23.72 ± 3.15 0.698 ± 0.0953 2.97 ± 4.74
TRUST 0.0613 ± 0.0220 0.0353 ± 0.0133 24.81 ± 3.13 0.717 ± 0.0851 2.78 ± 4.33

While the TRUST model demonstrates strong performance across all tasks presented in previous
sections, its reliance on the ViT-base backbone results in a relatively high parameter count of approx-
imately 9 million, which is comparable to TransUNet. In contrast, Restormer maintains a smaller
footprint at 3 million parameters, and U-Net remains the most lightweight, with only 2 million
parameters.

In terms of training complexity, TRUST, TransUNet, and U-Net exhibit similarly efficient training
behavior. Using the modest hardware configuration described earlier, each model completes 50
epochs of training in approximately 24 hours. By comparison, Restormer is significantly more
computationally demanding: under the same conditions, it progresses through only 8 epochs in a
24-hour period, highlighting its heavier training requirements.
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Figure 20: Example of reconstruction results with corresponding SSIM and PSNR values. Top row, from left
to right: undersampled input y, target x, OMP {0.5230, 19.083dB}, U-Net {0.586, 21.693dB}, TransUnet
{0.871, 22.631dB}, Restormer {0.877, 26.568dB}, and TRUST {0.889, 30.602dB}

.

For inference speed, U-Net is the fastest, generating images in roughly 0.006 seconds per frame, ow-
ing to its simple architecture. TRUST and TransUNet take slightly longer, averaging 0.013 seconds
per image, while Restormer, with its deeper and more complex architecture, requires approximately
0.06 seconds per image.

Despite these computational trade-offs, we would like to make the following final note: the TRUST
model has not yet been fully optimized. Our long-term goal is to deploy TRUST for real-time image
reconstruction directly from optical system measurements. The current results suggest that reducing
the computational load of the ViT-based encoder is a promising direction. In future work, we aim
to explore more lightweight, task-specific attention modules that can serve as efficient substitutes
for the full transformer block – potentially preserving or improving performance while significantly
decreasing computational overhead.
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This work adheres to the ICLR Code of Ethics. Our study uses (i) a curated subset of publicly avail-
able natural images (ImageNet) and (ii) a de-identified, publicly released MRI dataset (FastMRI)
under its terms of use; no personally identifiable information is included, and no attempt at re-
identification was made. We also use in-house microscopy images of fixed neuron slides that do not
contain human-subject information. Consequently, this research does not involve human-subjects
experiments and does not require IRB approval. We disclose potential risks: learned inverse models
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may produce visually plausible but incorrect reconstructions (hallucinations) that could be harmful
if used for clinical decision-making or high-stakes applications. To mitigate this, we (a) evaluate
false positive structures (FDR) in addition to PSNR/SSIM, (b) report failure cases and limitations,
and (c) strongly caution against deployment without domain validation and regulatory review. The
datasets are used in accordance with their licenses; no sensitive attributes are inferred, and we do
not train or release models to recognize protected classes. We declare no conflicts of interest and no
sponsorship that could unduly influence the results.

F REPRODUCIBILITY STATEMENT.

We took several steps to facilitate reproducibility. The paper specifies the sensing setups (fixed or-
thonormal transforms and subsampling masks), data preprocessing (uniform 224×224 resizing and
patching), model architecture (ViT encoder + U-Net-like decoder), training objectives (ℓ2+SSIM),
and evaluation metrics (PSNR, SSIM, MAE, MSE, FDR) in the main text (Section 4) and Appendix
(implementation details, hyperparameters, and ablation protocols). We will provide an anonymous
repository in the supplementary materials containing: scripts to prepare datasets, exact masks and
sensing matrices used, model/config files, training and evaluation code with fixed random seeds, and
commands to reproduce tables and figures. For theoretical components, all assumptions are stated
and proofs are included in the Appendix. For each dataset, we reference the license/terms and de-
scribe preprocessing steps and splits. Checkpoints for the main TRUST model and baselines will be
released after the review period to ensure bitwise reproducibility of reported numbers.

G USE OF LARGE LANGUAGE MODELS

We made limited use of a large language model (LLM) strictly for language editing (grammar,
wording, and flow) of author-written text. The LLM was not used to generate research ideas, meth-
ods, analyses, results, figures, tables, or code. All technical contributions, experimental designs, and
conclusions are by the authors. Prompts contained only author-written text and non-sensitive bib-
liographic metadata; no private data, patient information, raw images, or dataset items were shared
with the LLM. All suggestions from the LLM were reviewed and verified by the authors, and any
inaccuracies were corrected. This disclosure is provided in the interest of transparency and research
integrity.
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