
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053
054

Towards LLM Agents for Earth Observation

Anonymous Authors1

Abstract
Earth Observation (EO) provides critical plane-
tary data for environmental monitoring, disaster
management, climate science, and other scientific
domains. Here we ask: Are AI systems ready for
reliable Earth Observation? We introduce Uni-
vEARTH, a benchmark of 140 yes/no questions
from NASA Earth Observatory articles across 13
topics and 17 satellite sensors. Using Google
Earth Engine API as a tool, LLM agents can only
achieve an accuracy of 33% because the code
fails to run over 58% of the time. Taken together,
our findings identify significant challenges to be
solved before AI agents can automate earth obser-
vation, and suggest paths forward.

1. Introduction
In a range of academic disciplines from plant science to
anthropology, scientists routinely find the need to analyze
planetary data: data about land use, earth surface reflectance,
chlorophyll content, and so on. This planetary data is col-
lated and processed from a multitude of “Earth Observa-
tion” satellites , and the scientific process involves carefully
choosing the right sensor, product, location, and time.

Our goal in this paper is to explore AI systems that can
automate the task of earth observation in these scientific
workflows and thus accelerate the scientific process. While
specialized automatic systems for specific earth observation
tasks have been deployed for years (Watch, 2002; Giglio
et al., 2016; Wu et al., 2018), they lack the flexibility needed
for general-purpose, customized queries. Given recent ad-
vances in LLM-based AI agents, we ask: Are AI systems
ready for reliable Earth Observation?

With these desiderata in mind, we begin by introducing Uni-
vEARTH : a question-answering (QA) benchmark designed
to evaluate LLMs for earth observation. There are two chal-
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February 2017? 

Does the plume 
from 
Whakaari/White 
Island, New Zealand 
travel in a southern 
direction on January 
7, 2025? 

Does the Tuolumne River Basin show more snow 
on April 1, 2017 than on April 1, 2015? 

Does the urban area 
extent in Jakarta 
(centered at 6.2°S, 
106.8°E) decrease 
between 1989 and 
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Yes.

import ee

ee.Initialize()

# For April 1, 2015

snow2015 = ee.ImageCollection('MODIS/061/MOD10A1')

.filter(ee.Filter.date('2015-04-01', '2015-04-02'))

.first()

# For April 1, 2017

snow2017 = ee.ImageCollection('MODIS/061/MOD10A1')

.filter(ee.Filter.date(‘2017-04-01', ‘2017-04-02'))

.first()

... Snow cover in 2015 (%): 0.13 
Snow cover in 2017 (%): 45.28 

<thinking and execution>

<answer> Yes

Snow cover in 2015 (%): 0.13 
Snow cover in 2017 (%): 45.28 

Figure 1. We propose UnivEARTH for benchmarking AI agents
in Earth Observation.

lenges in building such a benchmark: (1) we need to know
the kind of questions that one might ask about earth obser-
vation data and the corresponding answers, and (2) we need
to ensure that the evidence or data needed to support the
answer exists and is available. Unlike existing benchmarks,
such data of questions, answers, and supporting evidence
is not freely available. We address this challenge by lever-
aging a unique public resource: articles from the NASA
Earth Observatory (NASA). Each article walks through con-
clusions derived from observations from satellite imagery.
We rigorously curate question-answer pairs from these arti-
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cles by: (1) leveraging LLMs alongside manually curated
QA examples, (2) verifying question answerability through
Google Earth Engine (GEE), and (3) careful independent re-
view of each example. The resulting dataset, UnivEARTH,
comprises 140 high-quality yes/no questions spanning 13
diverse topics and 17 different sensors and datasets.

We benchmark several off-the-shelf models, including
Claude-3.7-Sonnet, DeepSeek-V3, DeepSeek-R1, and o3-
mini. We include the option “Data is inconclusive” to allow
models to abstain from answering the question if they deem
the evidence insufficient. Note that simply answering the
question is not enough: we need models to ground their
answers in evidence. Thus, we ask models to generate code
that uses the Google Earth Engine (Gorelick et al., 2017)
Python API to answer the question. Unfortunately, current
models fail to produce executable code 58% of the time. As
such, in this grounded scenario, the best accuracy is a mere
33.0%. These results indicate that modern AI agents are not
ready for reliable earth observation tasks.

In sum, our work makes three key contributions:

• We curate an novel evaluation benchmark of Earth
Observation from authoritative sources, with verified
answers and guaranteed question answerability.

• We benchmark state-of-the-art LLMs and reveal sig-
nificant gaps in their ability to answer domain-specific
questions and generate reliable analysis as evidence.

2. Benchmark Construction
2.1. Data Source

EO science relies heavily on the analysis of remotely sensed
data to investigate changes and phenomena. This character-
istic makes it particularly suitable for automation through
AI agents that can process and analyze large volumes of
imagery data. However, benchmarking such AI capabilities
requires high-quality question-answer pairs that are both
scientifically sound and verifiable through available data
sources. To develop our benchmark, we identified NASA’s
Earth Observatory website (NASA) as an authoritative pri-
mary source. Since its inception in May 1998, this platform
has published articles covering diverse topics including air
quality, climate change, human impact monitoring, and nat-
ural events. These articles, authored by NASA Earth Obser-
vatory’s science writers, provide reliable scientific reporting
based on imagery analysis and research findings.

2.2. Data Collection and Validation

The curation pipeline comprises of three stages: collection,
verification, and review.

Data Collection. We downloaded NASA Earth Observatory

website articles with the cutoff time of March 10, 2025.
Then, we used Claude-3.5-Sonnet to analyze these article
texts and generated candidate yes/no question-answer pairs
with supporting sentences. We chose the yes/no question
format to facilitate evaluation, as assessing the correctness
of free-form questions is challenging in scientific domains.

Our prompting strategy had two key components: (1) Fil-
tering: We instructed the LLM to reject unsuitable articles,
including those regarding sensor specifications, general in-
troductions, or non-satellite imagery, transient observations
(e.g., wind speed, tides); (2) Format Standardization: We
prompted the LLM to focus on yes/no format with spatial
and/or temporal comparison. We also conducted an initial
editing pass of each question-answer pair to ensure location
precision. Additionally, since we asked LLMs to process
only text inputs and not images, we manually added new
questions based on figures included in the articles. This step
was crucial because many Earth Observatory articles convey
significant information through the included imagery.

Question Verification. We examined whether questions
derived from NASA articles can be answered using the data
available in Google Earth Engine (GEE) (Gorelick et al.,
2017). Background details on Google Earth Engine are
presented in Appendix-D. This was necessary because we
found that some articles describe phenomena using sensors
or products not available in GEE. 1 To filter out such ques-
tions, we wrote test implementations using the JavaScript
code editor on the Google Earth Engine platform, verified
dataset availability, and in some cases identified alternative
data sources that could answer similar questions. Thus, all
questions in our benchmark can be reasonably answered us-
ing the Google Earth Engine platform and available datasets.

Dataset Review. Following verification, we recruited re-
viewers to evaluate the quality and clarity of the questions.
These reviewers were asked to: (Q1) Provide a yes/no an-
swer to each question based on the text and image of the
article; (Q2) Assess whether the answer was supported by
the text in the corresponding NASA article; (Q3) Evaluate
whether the answer was supported by imagery in the article;
and (Q4) Assess if location information needs verification
through external sources. The fourth assessment point was
included because some questions, particularly those man-
ually edited or designed, required geographical review. In
these cases, reviewers were permitted to use Google Maps
to verify geo-locations. Please refer to Appendix-E for the
reviewer instruction document.

We recruited four reviewers, with each reviewer evaluating

1As an example, a June 2016 article discussed global average
carbon dioxide concentrations measured by the Orbiting Carbon
Observatory-2 (OCO-2) from September 2014 to September 2015.
The OCO-2 dataset is not available in GEE, making any question
from this article impossible to answer using the GEE API.
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half of the dataset. The initial review showed inter-reviewer
agreement rates of 90.1%, 73.2%, 78.9%, and 81.7% for Q1,
Q2, Q3, and Q4, respectively. The agreement rate is com-
puted as exact match. Following this initial assessment, we
iteratively revised ambiguous questions with each reviewer
until we reached complete agreement on Q1.

2.3. Dataset Statistics

Table 2 in the Appendix A presents statistics of Uni-
vEARTH. The dataset composition reflects both article
availability and sensor characteristics. Topic statistics are
based on the (potentially multiple) tags provided with each
article. The dominant topics are land, water, human pres-
ence and atmosphere, representative of the typical use-cases
of Earth Observation data. Example questions and support-
ing sentences are in Table 3 in the Appendix A.

2.4. Relevance to Science and Real-World Impact

UnivEARTH captures phenomena with significant real-
world relevance and active scientific interest. For instance,
one question focuses on the number of lakes on the Tibetan
Plateau based on a March 2025 article, directly connect-
ing to recent research on accelerated lake formation in this
critical region (Li et al., 2022; Lei et al., 2023; Zhou et al.,
2024a;b). The benchmark also covers other scientifically rel-
evant topics including chlorophyll concentration and climate
patterns in the Pacific Ocean (Wang et al., 2005), the trend
of disappearing lakes in Siberia (Smith et al., 2005), lake
surface albedo dynamics (Argaman et al., 2012), ground-
water depletion in the Indus Basin (Richey et al., 2015),
increasing global leaf area (Chen et al., 2019), and global
cropland expansion (Potapov et al., 2022). Thus our bench-
mark provides a sampling of questions that scientists may
want answered in the course of their research.

3. Benchmarking SoTA Agents with
UnivEARTH

In this section, we evaluate state-of-the-art LLM agents on
our benchmark dataset.

Experimental Setup. For each question, we provided
the LLM with three options: “Yes”, “No”, or “Inconclu-
sive”. The third option is to allow the LLM to abstain
when it is not sure (we evaluate models without this third
option in Appendix-B.1). Our primary metric was Ac-
curacy: the fraction of questions where the generated
answer matched the ground truth. We also measure the
Rejection Rate, i.e., the proportion of times the model
abstained, and the Selective Accuracy, which is the Ac-
curacy restricted to cases where the model did not ab-
stain. We benchmark LLM agents, including ChatGPT-
4o-mini (Hurst et al., 2024), ChatGPT-o3-mini, Claude-3.5-

Haiku, Claude-3.5-Sonnet, Claude-3.7-Sonnet (Anthropic,
2024), DeepSeek-V3 (Liu et al., 2024), DeepSeek-R1 (Guo
et al., 2025), Qwen2.5-72B-Instruct (Yang et al., 2024a),
Qwen2.5-Coder-32B-Instruct (Hui et al., 2024) , and Llama-
3.3-70B-Instruct (Grattafiori et al., 2024).

3.1. Answering Questions With Google Earth Engine

For question-answering with Google Earth Engine access,
we evaluated three frameworks: zero-shot, few-shot, and
reflexion-based approaches. In the zero-shot approach,
LLMs were instructed to first reason through the problem
and then generate appropriate code. For few-shot learning,
we provided LLM agents with three question-code exam-
ples in a multi-turn conversation format. These examples
were drawn from outside the benchmark dataset to prevent
contamination. In the reflexion framework (Shinn et al.,
2023), we implemented a 3-round reflection process where
each round’s question, code, execution results, and errors (if
any) were fed back to the LLM agent for reflection, which
informed the next round of code generation. After obtain-
ing code scripts, we ran them locally to determine answers,
which are parsed by GPT-4o-mini to derive the answers.

Since the models now have access to data, abstention doesn’t
make sense. However, there may still be scenarios where
the LLM fails to produce an answer: either the code was
incorrect, or the data requested by the code was not available
(because of sensor availability, revisit frequency, etc.). We
therefore replace abstention with failure, which captures
both these scenarios.

All statistics in Table 1 represent averages across 8 trials.
The best overall accuracy was only ∼33%. The reason for
this low accuracy was that for all LLMs, for the majority
of trials, the code failed to produce an answer (either failed
to run or accessed unavailable data). Even when the code
did run, it occasionally gave an incorrect answer (∼ 20% of
the time for the best models). This low accuracy suggests
that existing LLMs are not capable yet of producing code
for answering EO questions. One possible reason is that
this domain of coding questions is less well represented
in the pre-training data. UnivEARTH can thus serve as
a practically relevant out-of-domain evaluation for future
research into overcoming these limitations. Also, in Table 4
in the Appendix B we showed the results averaged over
three trials without Internet Access.

3.2. The Impact of Data Utilization

One of the key challenges with using Google Earth Engine
is the need to choose from over 400 imagery collections. We
therefore hypothesized that model’s ability to correctly make
this choice may be an important factor in their performance.

To test this hypothesis, we looked at the number of unique
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Table 1. Comparison of Language Models With Access to Google Earth Engine. The table shows performance across three different
metrics: accuracy (%), failure rate (%), and selective accuracy (%) for zero-shot (ZS), 3-shot (TS), and code reflexion (Rfx) scenarios. For
Accuracy, values greater than 25% and 30% are shown in bold and grayed , respectively.

Google Earth Engine Access

Accuracy (%) Failure Rate (%) Selective Accuracy (%)

Model ZS TS Rfx ZS TS Rfx ZS TS Rfx

4o-mini 8.3 13.1 5.8 89.1 83.2 90.3 68.5 72.2 54.5
o3-mini 25.7 33.0 25.1 70.0 60.7 69.7 81.0 78.9 81.5
Claude-3.5-Haiku 14.9 12.2 13.0 80.6 81.3 81.5 70.2 60.5 66.1
Claude-3.5-Sonnet 27.0 23.9 27.8 67.5 70.1 66.5 80.8 75.5 79.3
Claude-3.7-Sonnet 32.4 30.6 33.0 61.3 61.2 59.8 81.6 79.3 81.3
DeepSeek-V3 28.4 32.8 24.3 64.3 58.1 68.9 73.7 79.1 72.4
DeepSeek-R1 19.6 22.8 15.3 75.4 70.8 80.1 77.9 73.8 76.4
Qwen2.5-72B-Instruct 18.7 22.5 15.3 73.9 66.1 77.8 68.3 63.2 63.7
Qwen2.5-Coder-32B-Instruct 10.6 18.4 8.1 83.4 69.8 88.0 65.5 56.4 60.7
Llama-3.3-70B-Instruct 2.8 6.5 2.6 96.7 91.9 96.4 81.7 74.7 65.6
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Figure 2. Zero-shot accuracy is correlated with number of unique
imagery collections used (left) and negatively with the fraction of
times the “Wrong Asset Name” error is encountered (right).

imagery collections accessed by different LLM agents and
whether higher-performing models leverage a more diverse
range of data sources. As shown in Figure 2 (left), our anal-
ysis indeed reveals a strong correlation (r = 0.87) between
zero-shot accuracy and number of unique imagery collec-
tions queried. This suggests that superior models excel in
recalling and applying a wider range of effective imagery
collection names. Interestingly, Qwen2.5-72B-Instruct ap-
pears as an outlier, achieving nearly 20% accuracy while
utilizing relatively few imagery collections, perhaps because
it is more effective at using the collections it does access.

Why do models struggle with using the many Earth Engine
collections? We found that the underlying reason was their
failure to recall the correct name of the collection. This is
shown in Figure 2 (right): we observed a strong negative
correlation between model performance and the wrong as-
sert name error mode. This observation suggests that our
synthetic dataset which filters out incorrect code might help
improve the model’s ability to recall correct names.

4. Conclusion
Earth observation is critical for earth science, yet automating
these complex workflows remains challenging. Our evalua-
tion of state-of-the-art LLM agents through UnivEARTH
reveals significant limitations in their ability to perform sci-
entific Earth Observation tasks reliably, with even the best
models achieving only 49.0% accuracy without internet ac-
cess. When asked to produce evidence in the form of GEE
code, accuracy further drops to 33.0% because of models’
inability to correctly navigate the many data sources. This
shows that current AI systems fall short of reliably facili-
tating earth science applications. Nevertheless, our work
demonstrates a promising path forward: through fine-tuning
a smaller open-source model on specialized synthetic data,
we achieved 25.0% accuracy with Llama-3.1-8B – compara-
ble to larger commercial models at a much smaller computa-
tional cost. Our analysis reveals that performance correlates
strongly with knowledge of diverse Earth observation data
sources (r = 0.87), suggesting that domain expertise re-
mains crucial for these specialized scientific tasks.

Limitations. We acknowledge some limitations of Uni-
vEARTH . First, it comprises few (140) questions, similar
to prior work such as HumanEval (Chen et al., 2021). A
future version could benefit from an expanded question set.
Second, the current benchmark does not include unanswer-
able questions (Rajpurkar et al., 2018; Kim et al., 2022)
where the ground truth answer is “inconclusive”.

Impact Statement This paper presents work whose goal
is to advance the field of Machine Learning. There are many
potential societal consequences of our work, none which we
feel must be specifically highlighted here
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A. More Dataset Description

Table 2. Topics and Product Distribution in UnivEARTH . The left table shows the distribution of topics and their associated key words,
while the right table presents the distribution of satellite products following Google Earth Engine nomenclature.

Topic Count Key Words

Land 81 pools, disappearing lakes, seasonal greening,
hottest spots, vegetation

Water 47 lake, groundwater, evapotranspiration,
chlorophyll, sediment

Human pres-
ence

44 cropland, nighttime light, nitrogen dioxide,
urban expansion, farms

Atmosphere 29 cloud, aerosols, fog, carbon monoxide,
ozone

Heat 20 urban heat island, heat Wave, sea surface
temperatures

Life 15 flower, deforestation, urban growth
Floods 12 rainfall, flood
Severe storms 10 floodwaters, rainfall
Snow/ice 10 frozen lake, ice cover, winter snow
Fires 7 fire, burn scar, fire season
Drought 6 rainfall anomaly, soil moisture anomaly,

worst drought
Volcanoes 6 lava flows, plume
Water color 5 color changes, phytoplankton, bloom

Product Count

MODIS 53
Landsat 43
VIIRS 13
Sentinel-5 5
GRACE 4
TRMM 3
SMAP 3
Aura 2
CHIRPS 2
Combined 2
GPM 2
SeaWiFS 2
EO-1 1
GHSL 1
Hansen 1
Sentinel-1 1
Sentinel-6 1
TEMPO 1

Our dataset also comprises a large variety (∼ 17) of satellite sensors. MODIS (Moderate Resolution Imaging Spectrora-
diometer) observations are most numerous due to its daily temporal resolution and complementary morning and afternoon
observations from MODIS Terra and MODIS Aqua satellites. The second highest is Landsat (Land Remote-Sensing
Satellite), which has provided historical coverage dating to 1972, making it valuable for decade-long comparisons and
analyses, though its 16-day revisit time limits temporal resolution. VIIRS (Visible Infrared Imaging Radiometer Suite),
launched in 2012, offers daily observations with specialized capabilities for nighttime light intensity measurements. Note
that in Earth observation, we refer to the instrument as a sensor and its data products as products; for Google Earth Engine
(GEE), these are organized as imagery collections.

Other important sensors, though less frequently mentioned in the posts, include: TRMM (Tropical Rainfall Measuring
Mission) for precipitation monitoring; GRACE (Gravity Recovery and Climate Experiment) for gravity field measurements;
TOMS (Total Ozone Mapping Spectrometer) for atmospheric ozone monitoring; SMAP (Soil Moisture Active Passive)
for global soil moisture mapping; GLDAS (Global Land Data Assimilation System) for land surface modeling. These
sensors, while appearing less frequently in our dataset, play crucial roles in long-term Earth observation and environmental
monitoring.

B. Benchmarking SoTA Agents Against UnivEARTH
B.1. Baseline Without Internet Access

In Table 4 we showed the results averaged over three trials. We found that even the best model (i.e., in this case DeepSeek-R1)
cannot answer more than half of the questions correctly and that the majority of them are worse than random (33.3%).
Intriguingly, all models use the abstention option well: the accuracy on questions they do not abstain on is frequently more
than 70%. However, unfortunately, all LLMs abstained on the majority of questions (e.g., Claude-3.7-Sonnet abstained on
82% of questions). The one exception to this was DeepSeek-R1: It abstained the least and achieved the highest accuracy, but
still did not answer about half the questions.

B.2. Baseline With Web Search Access

To further assess benchmark difficulty, we examined performance when the LLM agent had access to internet-based
information sources but not Google Earth Engine. This condition helps establish whether task performance remains
challenging even with access to general online resources. During web search, the LLMs are prompted to generate web
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Table 3. Examples of UnivEARTH
Topic Example Supporting Sentences

Atmosphere Did nitrogen oxide concentra-
tions in the Northern Hemi-
sphere increase from 2019 to
2020?

The annual growth rate for 2020 was the highest scientists had
recorded since systematic annual methane measurements began
in 1983—an increase of 15 parts per billion, which was exceeded
again in 2021. 2

Life Does forest cover decrease in
Argentina’s Salta Province from
December 2000 to December
2019?

The images above show deforestation over a span of two decades
around the Salta Province of northern Argentina. The image from
December 18, 2000, shows a mix of cleared land and greener
areas. The image from December 24, 2019, shows much of the
forest replaced by large fields. 3

Human Presence Does Houston show higher
nighttime light intensity in De-
cember 2012 and 2013 com-
pared to the average light out-
put during the non-December
months from 2012 to 2014?

The map compares the nighttime light signals from December
2012 and 2013 to the average light output for the rest of 2012 to
2014. Green shading marks areas where light usage increased in
December. 4

Snow / ice Does Lake Erie have more ice
coverage compared to the other
Great Lakes in February 14,
2018 afternoon?

On the same date last year, total ice cover was 9.7 percent. Lake
Erie was the iciest of the five lakes, with 93.3 percent iced over. 5

Drought Does Somalia show higher soil
moisture in April 2019 com-
pared to the average April con-
ditions?

This map shows soil moisture anomalies in April 2019—an
expression of drought and how it affects conditions for growing
crops. Areas in green had more moisture in the upper layers
of soil than the norm for April, while areas in red had less. In
Somalia, rainfall was spotty, with just a few measuring stations
in the north recording significant accumulations in April. 6

search queries, and these queries are used to search online, with the results returned to the LLM for question answering.
We implemented this using the Serper API7 to retrieve snippets from the top ten Google Search results for each query.
To avoid information leakage, we exclude webpages with domains including ”nasa.gov” and ”earth.org” where the same
articles might be found. With search results available, six out of nine models performed better in both the two-option
scenario and three-option scenario in terms of correctness; selective correctness also increased across most models, except
for DeepSeek-R1. However, note that in a scientific application, grounding answers in uncurated webpages may not be
sufficiently rigorous.

C. More results with OpenEARTH
C.1. Performance

Table 6 presents the performance of our fine-tuned model across different training checkpoints. The results demonstrate
significant improvement, with overall accuracy reaching 25.0% after completing the training process. Even after just one
epoch of training on our synthetic dataset, the model achieves 17.6% accuracy—a great improvement over the 2.8% accuracy
of the much larger Llama-3.3-70B-Instruct model in zero-shot settings (Table 1). This substantial gain demonstrates the
effectiveness of domain-specific fine-tuning with synthetic data, despite the absence of human verification for every example.

With additional training epochs, the model’s performance continues to improve steadily. Interestingly, this improvement
primarily stems from a decreased failure rate rather than increased selective accuracy. This indicates that the model becomes
more proficient at executing code successfully and handling time availability scenarios – key capabilities for practical Earth
observation applications.

7https://serper.dev
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Table 4. Comparison of Language Models without Internet Access. 2 OPT: binary choice task (accuracy %); 3 OPT: three-option task
with rejection option (accuracy %, rejection %, and selective accuracy %).

No Internet

2 OPT 3 OPT

Model Accuracy Accuracy Rejection Selective Accuracy

ChatGPT
GPT-4o-mini 50.48 1.67 97.62 70.00
O3-mini 72.14 18.10 78.33 83.52

Claude
Claude-3.5-Haiku 71.43 23.10 69.76 76.38
Claude-3.5-Sonnet 83.81 41.90 54.29 91.67
Claude-3.7-Sonnet 81.43 17.14 82.38 97.30

DeepSeek
DeepSeek-V3 69.76 17.38 80.95 91.25
DeepSeek-R1 75.71 49.05 44.52 88.41

Qwen
Qwen2.5-72B-Instruct 60.24 2.84 97.16 100.00
Qwen2.5-Coder-32B-Instruct 51.43 0.71 99.29 100.00
Llama
Llama-3.3-70B-Instruct 67.86 27.86 66.19 82.39

D. Introduction to Google Earth Engine
Google Earth Engine (GEE) (Gorelick et al., 2017) is a cloud-based platform that enables users to perform geospatial
analysis at a planetary scale using Google’s computational infrastructure. It houses over 90 petabytes of analysis-ready
satellite imagery and more than 1,000 curated geospatial datasets spanning 50+ years of historical data, including imagery
from satellites such as Landsat, MODIS, and Sentinel, as well as climate and weather datasets, geophysical data, terrain
information, and land cover data. Researchers harness this technology for various Earth Observation and applications such
as forest mapping (Chen et al., 2017), drought monitoring (Sazib et al., 2018), crop yield estimation (Jaafar & Mourad,
2021), land use and land cover (Nasiri et al., 2022), evapotranspiration (Senay et al., 2022), shoreline analysis (Santra et al.,
2024), and water detection (Yue et al., 2023), etc.

Terminology. A sensor refers to a device that detects and measures physical properties (like reflectance, temperature, etc.),
such as optical cameras, radar, and spectrometers mounted on satellites or aircraft. A product is a processed dataset derived
from sensor data, typically preprocessed for calibration, quality control, and transformation into specific variables. In GEE
specifically, an imagery collection is a set of related images grouped together for analysis.

API Usage. GEE provides a JavaScript and Python API that enables users to access and filter the extensive data catalog,
apply algorithms for image processing and analysis, perform geospatial computations across multiple processors in parallel.
In this paper, the AI agents generate the Python code and execute it. The GEE API script calls the GEE server for the
computation. The results, mostly the final statistics, are sent back to the local agents for further deduction and answering.
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Table 5. Comparison of Language Models with Internet Access. 2 OPT: binary choice task (accuracy %); 3 OPT: ternary choice task
with rejection option (accuracy %, rejection %, and selective accuracy %).

Web Search

2 OPT 3 OPT

Model accuracy accuracy Rejection Selective Accuracy

ChatGPT
GPT-4o-mini 60.71 18.57 80.00 92.86
O3-mini 75.71 22.14 77.14 96.88

Claude
Claude-3.5-Haiku 65.71 20.00 75.71 82.35
Claude-3.5-Sonnet 85.00 32.86 65.71 95.83
Claude-3.7-Sonnet 78.57 27.14 72.86 100.00

DeepSeek
DeepSeek-V3 74.29 25.00 72.86 92.11
DeepSeek-R1 73.57 25.00 71.43 87.50

Qwen
Qwen2.5-72B-Instruct 75.71 33.57 64.29 94.00
Qwen2.5-Coder-32B-Instruct 60.71 7.86 92.14 100.00
Llama
Llama-3.3-70B-Instruct 75.71 30.71 65.71 89.58

Table 6. Performance of Our Trained Model Across Different Checkpoints. The table shows zero-shot performance with accuracy (%),
failure rate (%), and selective accuracy (%).

Checkpoint Accuracy Failure Selective Accuracy

1 17.63 72.63 57.74
2 19.24 68.04 54.30
3 23.26 64.78 58.87
4 25.04 61.07 57.61
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E. Reviewer instructions for UnivEARTH
Below, we detail the instructions given to the reviewers.

E.1. Goal

Given a question and an article about earth science, your task is to provide an answer.

E.2. Evaluation Questions

1. What is the answer to this question?
Please answer (A) Yes, (B) No, or (C) I don’t know, or data is not conclusive.

2. Is the answer to the question being supported by the text from the article?
Please copy and paste the relevant texts that you use to derive your answer from the article.

• Strongly Supported: The article explicitly states the answer or provides clear evidence.
• Moderately Supported: The article implies the answer, but requires some inference.
• Not Supported: The article contradicts the answer or provides no relevant information.

3. Is the answer to the question being supported by the image from the article?
If yes, please explain how the image supports the answer to the question.

• Strongly Supported: The article explicitly states the answer or provides clear evidence.
• Moderately Supported: The article implies the answer, but requires some inference.
• Not Supported: The article contradicts the answer or provides no relevant information.

4. Do you need to use Google Maps to check location information?
If yes, please explain why using Google Maps is required. Please answer (A) Yes, (B) No.

5. Other comments
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E.3. Examples 1

Example 1

Question: Does the Tuolumne River Basin have more snow on April 1, 2017 than on April 1, 2015?
URL: https://earthobservatory.nasa.gov/images/90073/sierra-snowpack-bigger-than-last-four-years-combined

1. What is the answer to this question?
You should answer (A) Yes

2. Is the answer to the question being supported by the text from the article?
You should answer Strongly Supported
You should copy the text ”New NASA data show that snowpack in Tuolumne River Basin—a major source of
water for San Francisco and California’s Central Valley—is currently greater than that of the four previous
years combined.” and paste it to the spreadsheet.

3. Is the answer to the question being supported by the image from the article?
You should answer Strongly Supported
You should explain the reason: ”The image shows greater snow water equivalent in April 1, 2017, compared to
April 1, 2015”

4. Do you need to use Google Maps to check location information?
You should answer No.

5. Other comments
You don’t have to write anything.

E.4. Example 2

Example 2

Question: Does Cape Lookout National Seashore show lower turbidity in the region centered at (34.659539,
-76.464976) than the region centered at (34.607982, -76.338262) on February 18, 2016?
URL: https://earthobservatory.nasa.gov/images/87627/on-the-lookout

1. What is the answer to this question?
You should answer (B) No

2. Is the answer to the question being supported by the text from the article?
You should answer Not Supported
You should write ”The text does not mention that”.

3. Is the answer to the question being supported by the image from the article?
You should answer Strongly Supported
You should explain the reason: ”The image shows that (34.659539, -76.464976) had less turbidity than another
region”

4. Do you need to use Google Maps to check location information?
You should answer Yes
You should explain the reason: ”Neither the image nor the text shows the two geolocations.”

5. Other comments
You don’t have to write anything.
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E.5. Example 3

Example 3

Question: Does Cape Lookout National Seashore show lower turbidity in the region centered at (34.659539,
-76.464976) than the region centered at (34.607982, -76.338262) on February 18, 2017?
URL: https://earthobservatory.nasa.gov/images/87627/on-the-lookout

1. What is the answer to this question?
You should answer (C) I don’t know, or data is not conclusive

2. Is the answer to the question being supported by the text from the article?
You should answer Not Supported
You should write ”The text talks about events in 2016, not 2017”.

3. Is the answer to the question being supported by the image from the article?
You should answer Not Supported
You should explain the reason: ”The time period is incorrect.”

4. Do you need to use Google Maps to check location information?
You should answer Yes
You should explain the reason: ”Neither the image nor the text shows the two geolocations.”

5. Other comments
You can write ”I think the question is wrong. Please take a look.”
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F. Related Work
LLMs for Scientific Applications. Scientific question answering has garnered significant attention, demonstrated by the
development of benchmarks across various domains. General scientific QA benchmarks assess reasoning across multiple
scientific disciplines (Saikh et al., 2022; Hendrycks et al., 2020; Wang et al., 2023; Liang et al., 2024; Feng et al., 2024;
Wang et al., 2024b), while specialized benchmarks focus on specific areas such as medicine and biology (He et al., 2020; Li
et al., 2024b), chemistry and material science (Jablonka et al., 2024; Alampara et al., 2024; Chen et al., 2025b), and remote
sensing (Wang et al., 2024a; Danish et al., 2024; Li et al., 2024a).

Many of these prior benchmarks rely on models’ internal knowledge, which may not be sufficiently rigorous in a scientific
domain. In contrast UnivEARTH demands grounding answers in empirical evidence derived from satellite imagery and
products, requiring more interpretable and explicit reasoning. In this vein, our work is similar to prior work on leveraging
existing tools or databases (M. Bran et al., 2024; Fossi et al., 2024; Campbell et al., 2025; Laurent et al., 2024), but requires
models to navigate a much larger repertoire of data sources (here, sensors and products). These capabilities are a necessary
first step if one seeks to automate discovery in the earth sciences, as prior work has sought to do for chemistry (Zheng et al.,
2025; Chen et al., 2025a), biology (Swanson et al., 2024), or material science (Strieth-Kalthoff et al., 2024).

Code Generation and Tool-Using AI. Outside of scientific applications, several benchmarks evaluate code generation
capabilities, including SWE-bench (Jimenez et al., 2023), SWT-Bench (Mündler et al., 2024), LiveCodeBench (Jain et al.,
2024), and SWE-bench Multimodal (Yang et al., 2024b). These benchmarks primarily focus on general software engineering
tasks rather than domain-specific scientific applications. In the context of data analysis, text-to-SQL benchmarks like
Spider (Yu et al., 2018), SEDE (Hazoom et al., 2021), BIRD (Li et al., 2023), and Spider 2.0 (Lei et al., 2024) evaluate
models’ ability to translate natural language questions into database queries. UnivEARTH extends this paradigm to the
Earth observation domain for accessing and analyzing satellite data.
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