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Abstract
Current research focuses on utilizing intra-
document information for event extraction, but
it has limitations in capturing the complexity
and diversity of events because it overlooks
the relationships between documents. Addi-
tionally, current instance learning methods for
event extraction primarily focus on similarity-
based instance retrieval, failing to emphasize
comprehensive model learning, and a single
measure of similarity cannot fully reflect the se-
mantics of a document. To address these issues,
this paper proposes an event extraction model
based on multi-instance learning, exploring the
connections between documents through event
types and event arguments. We designed multi-
ple instance selection strategies and construc-
tion methods to enable the model to achieve a
more thorough understanding of events. Fur-
thermore, we implemented a two-stage train-
ing approach to optimize the model’s ability
to learn from instances obtained through dif-
ferent instances. Experiments conducted on
the RAMS and WIKIEVENTS datasets demon-
strate that our method surpasses the current
state-of-the-art models in terms of F1 scores,
validating its effectiveness and superiority.The
source code is available on GitHub.1

1 Introduction

Early work on document-level event extrac-
tion(DEE) focused on modeling each event inde-
pendently(Du et al., 2021; Li et al., 2021), neglect-
ing the global context. Recent studies have primar-
ily concentrated on the Cross-Sentence Argument
Role problem(Xu et al., 2022), exploring how to
effectively utilize intra-document information (Liu
et al., 2023; Huang et al., 2023). However, these
methods often overlook the intrinsic connections
between documents, failing to fully exploit the po-
tential information among the context.

There exists a significant amount of interrelated
information among document data. For example,

1https://github.com/shdmm00/MILE

Event type: Life.Die.deathcausedbyviolentevents

[...] It 's not clear if President Kennedy ever saw the 

message.Two weeks later, he would be assassinated

in Texas. [...]

Main Sentence

Same Type sentence

[...] The doctors at Russian Khmeimim airbase in 

Latakia province fought for Timoshenkov ’s life for 

over 24 hours, but he passed away on June 16, it 

added. [...]

Event type: Life.die.nonviolentdeath

Same Category Sentence

Ghazala Khan , whose son , U.S. Army Capt . 

Humayun Khan, was killed by a suicide bomber in 

Iraq in 2004. [...]

Figure 1: Examples of multi-level knowledge in cross-
document contexts for understanding death events.

in Figure 1, "President Kennedy was assassinated
in Texas" is categorized as a death caused by a vi-
olent event. For other documents mentioning the
same event type, such as "Humayun Khan" due to
a "suicide bomber," different causes of death are
proposed. Furthermore, same category events like
"Timoshenkov died 24 hours after being rescued"
provide supplementary information. the model can
learn multiple causes leading to death events, help-
ing it to comprehensively understand events and
enhance the precision of semantic capture.

Related studies indicate that multi-instance learn-
ing can enable models to capture the connections
between data. (Su et al., 2022) significantly en-
hanced model performance by retrieving similar in-
stances and performing label interpolation. (Chen
et al., 2022) improved model performance and gen-
eralization in low-resource settings by constructing
knowledge bases and retrieval mechanisms.

Although multi-instance learning has been
proven effective, it has not yet shown significant
results in document-level event extraction. (Zhao
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et al., 2023) selected a demonstration based on con-
text and argument roles in low-resource tasks, but
a single instance is prone to noise. (Du et al., 2022)
filtered templates related to the input document as
concatenated inputs. (Ren et al., 2023) used sim-
ilarity retrieval to find the most relevant samples.
These approaches have limitations in capturing the
complexity and diversity of events, as a single mea-
sure of similarity cannot comprehensively reflect
the semantics of a document, and document similar-
ity does not equate to event similarity. Furthermore,
effectively constructing and thoroughly learning
from multiple instances is more crucial than simply
retrieving instances.

To enhance the interconnections among docu-
ment data, this study proposes a Multi-Instance
Learning Event Extraction model. Specifically, af-
ter document encoding, instances are selected from
the instance vector database using various strate-
gies. Each instance interacts with the main data
through a cross-attention mechanism and is scored
by an instance selector. Ultimately, the selected in-
stances are concatenated with the main data. Using
different instance selection methods, a two-stage
training process was implemented to leverage the
information from the instances fully. The main
contributions of this paper are as follows:

1) We introduced Multi-Instance Learning to
the task of document-level event extraction and ex-
plored various instance construction and selection
methods, including the development of an instance
selector to optimize instance selection.

2) We implemented a two-stage training ap-
proach, enabling the model to adapt and fully
utilize the multidimensional information obtained
through different instance selection methods.

3) Experimental results on multiple chapter-level
datasets validated the effectiveness of this method,
with F1 scores surpassing current state-of-the-art
approaches.

2 Related work

Document-Level Event Extraction The primary
models for event extraction include discriminative
and generative models. Discriminative models use
event triggers for sequence labeling (Du and Cardie,
2020; Veyseh et al., 2021) or span-based predic-
tion (Zhang et al., 2020; Ebner et al., 2020; Liu
et al., 2023). (Zheng et al., 2019) introduced a
transformer-based architecture for serial prediction,
while (Wei et al., 2021) redefined the task as com-

prehension. (Ren et al., 2022) integrated argument
roles into encoding. (Xu et al., 2022) and (Yang
et al., 2023) combined AMR graphs to address
long-distance dependencies.

Generative models excel in event extraction by
producing richer outputs and capturing complex re-
lationships through iterative or parallel generation.
(Yang et al., 2021) proposed an encoder-decoder
framework for parallel extraction, while (Ma et al.,
2022) and (Zeng et al., 2022), along with (Li et al.,
2021) and (Du et al., 2021), investigated the use
of prompts for generation and framed the prob-
lem as conditional generation.(Huang et al., 2023)
addressed training inadequacies with a pre-filling
strategy.

Demonstration-based Learning. Inspired by
GPT-3’s contextual capabilities (Brown et al.,
2020), In-Context Learning enables models to learn
from few-shot demonstrations.(Lester et al., 2021)
explored instance prompt design, while (Zhao et al.,
2021; Lu et al., 2022) examined its impact on the
model. (Lee et al., 2022; Zhang et al., 2022) ex-
plored using demonstrations for NER tagging. (Su
et al., 2022; Li et al., 2023) employed KNN for
instance retrieval, and (Chen et al., 2022) created a
prompt-based knowledge base. Combining the ad-
vantages of generative models and multi-instance
learning, we propose our model.

3 Methodology

Given a document, the objective of event argument
extraction is to: 1) Identify arguments and their
roles{ arg1, arg2, . . . } within an event. 2) Classify
these arguments to populate predefined templates
for each event type E .

3.1 Model Architecture

We propose an end-to-end event extraction model
that leverages the capabilities of generative models
and incorporates instance-based learning methods.
Following the ontology by (Li et al., 2021), we
adopt argument templates defined therein. These
templates include numerical labels and slot map-
pings for each argument, which correspond to spe-
cific argument roles. As shown in Figure 2, each
input document Ci is concatenated with a template
Ti. This combined input is then processed by the
encoder to obtain the vector representation Hi as
follows:

Hi = Encoder([Ti;Ci]) (1)
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Figure 2: Illustration of the MILE. The input document, concatenated with event templates, is fed into the encoder
to obtain embeddings. Relevant instances are selected from a pre-constructed database and concatenated with the
embeddings for decoding. MILE uses a two-stage training approach: first, simple strategies for instance selection.
In the second stage, the encoder is fixed, and complex selection methods are employed.

Subsequently, from a pre-constructed instance
vector database, relevant instance vectors Si are se-
lected based on different selection strategies. These
selected instance vectors are then concatenated
with Hi and fed into the decoder to generate the
target event sequence Yi:

yij , hij = Decoder([Hi;Si;hi,j−1]) (2)

yij is the j-th token generated, and hij is the
hidden state at the j-th step of the decoder. When
constructing the input, we use <trg> to mark the
event trigger and <arg> to mark the arguments to
be filled.

3.2 Instance Vector Database Construction

We utilized FAISS(Johnson et al., 2019) to con-
struct an instance vector database. Each database
instance includes structured templates for the con-
text above and below, encoded with a fixed pre-
trained encoder to maintain data independence and
prevent learning correlations. Each instance s is
represented as:

s = ⟨instance⟩concat(T ;C;T ′) (3)

T ′ is the template for the context after padding.
Each instance is prepended with the ⟨instance⟩ tag.

We explored various retrieval strategies and ulti-
mately opted for the HNSW to ensure the efficiency
and accuracy of the retrieval process.

The database construction employs global data
utilization for diverse coverage and relevant sen-
tence selection focusing on trigger words to en-
hance precision. We also investigated the impact
of different instance construction methods, includ-
ing context-only and both template and context, on
model performance.

3.3 Instance Selection Strategies

Pre-selection Initially, we perform instance pre-
selection using embedded vectors of keywords
or segments, utilizing vector similarity to capture
deeper semantic relationships in texts. When per-
forming instance selection, we employ random se-
lection strategies to increase the diversity of re-
trieved instances and iterate through pre-selected
vector instance set. This approach ensures that the
model learns from a wide range of instances.

Similarity-Based Selection Our model employs
the FAISS database for efficient instance selection
based on similarity search, serving as a benchmark
for comparison in similarity selection methods.

Type-Based and Category-Based Selection
Document contexts contain multi-level knowledge,



and the type of event determines its semantic di-
rection. To ensure that the retrieved instances are
highly relevant to the input context, we select in-
stances with the same event type from the instance
database for target event types. Additionally, We
introduce category-based instance selection strate-
gies to select instances related to the same event
category, enhancing the model’s ability to distin-
guish between event types and improving its gener-
alization performance.

Argument Keyword-Based Selection For this
selection approach, we first analyze each instance
in the database using various prediction methods
to identify potential argument keywords, then ag-
gregate these keywords through a weighted sum to
form a comprehensive set of argument keywords.
This set combines results from multiple methods,
selecting instances with the most relevant argument
keywords to ensure high semantic relevance to the
target event. We calculate the confidence score of
each argument keyword based on its consistency
and frequency, and select instances containing key-
words with high confidence scores. The process is
represented by:

S = i |
M∑

m=1

αm · ind(k ∈ Km) > θ, k ∈ Ki (4)

where αm is the weight of the m-th prediction
method, M is the number of methods, and ind(k ∈
Km) is 1 if the keyword k is predicted by the m-th
method, and 0 otherwise. This approach ensures
that the argument keywords are evaluated based
on their importance and relevance across different
prediction methods, streamlining the selection of
instances highly relevant to the target event.

Hybrid Selection In addition to type-based and
argument keyword-based instance selection strate-
gies, we propose a hybrid selection strategy. This
strategy combines the advantages of both indi-
vidual strategies, enabling the model to select in-
stances from multiple perspectives, thereby improv-
ing the accuracy and relevance of event extraction.

3.4 Instance Scoring Selector

We designed an instance scoring selector that uses
a cross-attention mechanism to select the most opti-
mal instances during prediction, thereby providing
the model with the most relevant and useful in-
formation. First, we calculate the attention score

between the hidden state Hi of each instance se-
lected and the input instance. Next, we process
these attention scores through average pooling and
max pooling to obtain a score for each instance,
denoted as γ:

γ = PoolAM

(
softmax

(
Hi · S⊤√

dkey
·T

))
(5)

where PoolAM is a combined pooling operation
that integrates both average and max pooling. dkey
is the dimensionality of the Hi. Respectively, and
T denotes the temperature factor.

This design ensures the model considers both the
most relevant instances and overall relevance, with
the cross-attention mechanism better-capturing in-
stance relevance and usefulness compared to tradi-
tional methods.

3.5 Two-Phase Training Approach
To enhance the model’s learning effectiveness and
adaptability to various selected instances, we adopt
a two-phase training strategy.

In the first phase, we concentrate on training the
model with straightforward instance selection meth-
ods. The goal is to enable the model to recognize
and process the basic structure and semantics of
instances while adapting to their diversity and com-
plexity. In this phase, we optimize the following
negative log-likelihood loss function:

L = −
N∑
i=1

log p
(
Yi | Xi,S{type/arg}

i , θ
)

(6)

where Yi is the label of the i-th sample, and
Xi is the input document. θ represents the model
parameters, and S

{type/arg}
i denotes the instances

selected using type-based or argument keyword-
based instance selection methods.

In the second phase, we fix the encoder pa-
rameters and continue to optimize the same loss
function, while further training the model using
the complex instance selection set S{hybrid}

i . This
phase aims to enable the model to learn deeper se-
mantic relationships and complex event structures.

4 Experiment

4.1 Experimental Setup
Dataset and Evaluation Metrics We used two
datasets: RAMS (Ebner et al., 2020) with cross-
sentence arguments and one event per document,



and WIKIEVENTS (Li et al., 2021) with multi-
ple events annotated using the DARPA KAIROS
ontology.

For evaluation, we followed established crite-
ria. Span F1 requires exact span matches, poten-
tially misclassifying correct predictions. Thus, we
used Head F1 (based on the span’s head word) and
Coref F1 (crediting coreferential spans with gold-
standard arguments). For Wikievents, we report
Head F1 and Coref F1 for argument identification
(Arg IF) and classification (Arg CF).

Baselines We compare MILE several models in
three categories: (1) QA-based model: FEAE(Wei
et al., 2021), BERT-QA(Du and Cardie, 2020)
(2) Discriminative Model: BERT-CRF(Shi and
Lin, 2019), Two-Step(Zhang et al., 2020), BERT-
CRFTCD and Two-StepTCD(Ebner et al., 2020),
TSAR(Xu et al., 2022), SCPRG(Liu et al., 2023),
TARA(Yang et al., 2023) (3) Generation model:
BART-Gen(Li et al., 2021), (Chen et al., 2022),
EA2E(Zeng et al., 2022)

4.2 Main Result

We conducted the main experiments on the RAMS
and Wikievents datasets, aiming to evaluate the
model’s performance in argument identification
and classification tasks across different datasets.
Table 1 summarizes the experimental results on the
RAMS dataset, where MILE demonstrates supe-
rior performance compared to previous generative
models such as BART-Gen and TSAR, particu-
larly excelling in the Head F1. On the test set,
MILE achieved Span and Head F1 scores of 51.37
and 60.26 respectively, outperforming the current
leading model. A high Head F1 score indicates
that MILE can accurately recognize and classify
the most critical elements in events, demonstrating
the model’s powerful comprehension ability. Fur-
thermore, MILE’s outstanding performance in the
Head F1 score on the RAM dataset highlights its
capability in accurately identifying the core words
of event arguments.

Similarly, on the Wikievents dataset as detailed
in Table 2, MILE achieved 76.79 in argument iden-
tification (Arg IF), surpassing most comparative
models. The Coref F1 evaluation metric on the
Wikievents dataset adds an assessment of coreferen-
tial mentions, and a higher Coref F1 score indicates
that the model has a better capability in understand-
ing and linking the same or related entities in the
text.

Method Dev Test
Span F1 Head F1 Span F1 Head F1

BERT-CRF 38.1 45.7 39.3 47.1
BERT-CRF-TCD 39.2 46.7 40.5 48.0
Two-Step 38.9 46.4 40.1 47.7
Two-Step-TCD 40.3 48.0 41.8 49.7
FEAE - - 47.40 -
TSAR 49.23 56.76 51.18 58.53
SCPRG 50.53 57.66 52.32 59.66
BART-Gen - - 48.64 57.32
MILE (ours) 49.51 57.89 51.37 60.26

Table 1: Main results of RAMS.

Method Arg IF Arg CF
Head F1 Coref F1 Head F1 Coref F1

BERT-CRF 69.83 72.24 54.48 56.72
BERT-QA 61.05 64.59 56.16 59.36
BERT-QA-Doc 39.15 51.25 34.77 45.96
TSAR 76.62 75.52 69.70 68.79
SCPRG 77.26 76.10 70.92 70.08
TARA 78.64 76.71 73.33 71.55
BART-Gen 71.75 72.29 64.57 65.11
EA2E 74.62 75.77 68.61 69.70
(Chen et al., 2022) - - 68.04 -
MILE (ours) 76.31 76.79 70.53 71.33

Table 2: Main results of Wikievents.

As shown in the table, MILE has achieved sig-
nificant improvements compared to previous gen-
erative models and multi-instance learning models.
Thus, methods based on multi-instance learning
help the model to better understand and handle
semantic complexity, maintaining the consistency
and accuracy of information.

The underperformance of our model in some
evaluations compared to TARA can be explained:
1)TARA is a discriminative model, which is usu-
ally directly optimized for the prediction task and
may be more precise in specific tasks. 2) MILE
achieved comparable Coref scores to TARA, in-
dicating similar event understanding capabilities
between the two models, with only a deficiency
in boundary identification. 3) MILE focuses on
cross-document clues and does not consider long-
distance dependencies within a document as TARA
does. However, as a generative model, it has the po-
tential to more effectively leverage the capabilities
of large-scale pre-trained models.



Selection Method
N = 1 N = 2 N = 3 N = 4 N = 5 N = 6

SP1 HF1 SP1 HF1 SP1 HF1 SP1 HF1 SP1 HF1 SP1 HF1

Similarity 48.58 57.10 48.69 57.33 48.87 57.56 48.34 57.30 48.25 57.04 47.89 56.81

Type-Based 48.69 57.66 49.28 58.06 49.97 58.42 50.51 58.47 49.34 58.78 50.36 59.64

Keyword-Based 48.60 57.44 49.35 58.49 50.11 59.17 50.46 59.63 50.30 59.74 49.70 58.40

Category-Based 48.92 57.65 49.73 58.98 50.37 59.40 50.28 59.31 50.15 59.26 50.02 59.39

Hybrid 48.61 57.36 49.11 58.24 49.43 58.55 49.72 58.47 49.41 58.44 50.07 58.89

Table 3: Performance comparison across different selection methods and instance numbers.

Figure 3: Instance selection performance trends.

4.3 Discussion on Instance Integration

In this section, we analyzed the impact of instance
features on model performance. This revealed the
strengths and limitations of each strategy, as well as
the effects of instance dimensions and construction
methods on model efficacy.

Analysis of Selection and Quantity We thor-
oughly explored the impact of various instance se-
lection methods on model performance. Figure 3
illustrates the performance trends of five instance
selection methods under different numbers of in-
stances. It can be observed from the figure that
Type-Based and Keyword-Based selections gener-
ally perform well in most cases, while Similarity
selection perform poorly.

Table 3 shows the performance comparison
across different selection methods and instance
numbers. In Table 3, the Span F1 and Head F1
scores for the Type-based selection increased by
1.28 and 0.76 when the number of instances in-
creased from 1 to 3. Increasing from 1 to 3 in-
stances improved the performance of most selec-
tion methods, indicating that a moderate increase
helps the model better understand and extract event
information. However, increasing to 5 or 6 in-
stances, such as the Span F1 and Head F1 scores
of 50.36 and 59.64 for Type-based showed a flat-
tening growth trend. This suggests that too many
instances may introduce noise or cause overfitting,
indicating the need for a balance between instance
number and performance.

Instance-Dim
T + C + T

′
C + T

′
C

HF1 CF1 HF1 CF1 HF1 CF1

48∗ 65.81 65.49 65.81 66.00 64.87 65.02

96 69.86 70.55 70.53 71.33 70.18 70.96

128∗ 66.16 66.12 65.39 65.12 65.73 65.80

256 68.40 68.71 68.74 69.05 68.20 68.59

Table 4: The impact of Instance Dimension and Con-
struction. ∗ indicates pooling operation.

In selection methods comparative analysis, the
Type-based method performed best with 6 in-
stances, achieving Span F1 and Head F1 scores
of 50.36 and 59.64. This indicates that more in-
stances help capture event diversity, enhancing the
model’s generalization capability. Respectively, the
Keyword-Based achieved peak performance with
four instances, suggesting that an appropriate num-
ber of instances aids the model in capturing key
event arguments. The Category-Based performed
best with 3 instances, with Span F1 and Head F1
scores of 50.37 and 59.40, respectively, possibly
due to incorporating diversity while maintaining
event relevance. The Hybrid method performed
best with 6 instances, combining event types and
arguments to provide multi-dimensional informa-
tion, maintaining high performance in most scenar-
ios. Results using Similarity showed no significant
improvement and even declined, confirming that
relying solely on document similarity does not en-
hance model performance. These findings reveal
the strengths and limitations of different selection
strategies, providing valuable guidance for the de-
sign of more efficient models.

Dimensions and Construction This section in-
vestigates the impact of instance dimensions and
construction on model performance. Instance di-
mensions capture information at different docu-
ment levels. Dim 96 uses only the event sentence,



capturing directly related information, while Dim
256 uses the entire document, providing broader
context but potentially including irrelevant informa-
tion. Other dimensions, such as Dim 48 and Dim
128, are obtained through pooling of the aforemen-
tioned approaches, aiming to explore how different
information densities impact model performance.

The experimental results in Table 4 show that
when the instance dimension is Dim 96, the model
achieved the highest Head F1 score, which is 70.53,
indicating that focusing directly on the sentence
where events occur can minimize noise interfer-
ence and improve the model’s precision. With Dim
256, the model’s Head F1 score decreased to 68.74,
possibly because of excessive irrelevant informa-
tion. Intermediate dimensions obtained through
pooling (e.g., Dim 128) generally perform worse
than Dim 96 and Dim 256, with a Head F1 score of
66.16. This decline may be due to key information
loss during pooling or inconsistent information hi-
erarchy, making it difficult for the model to utilize
effectively.

This section explores the impact of instance con-
struction methods, comparing the effects of com-
plete construction T+C+T ′ with those containing
only contexts C or event contexts with output tem-
plates C + T ′. The experimental results show that
C + T ′ achieved the highest Coref F1 at 71.33, fol-
lowed by C alone at 70.96, and T+C+T ′ at 70.55.
This suggests that C + T ′ provides additional se-
mantic cues, enhancing the model’s understanding
of events. Moreover, the inclusion of empty tem-
plates T may have confused the decoder, resulting
in less favorable outcomes. These results highlight
the importance of selecting relevant instances, as
the right instance dimension and quantity signifi-
cantly influence model performance.

4.4 Analysis of Two-Stage Training

This section of the research investigates the ap-
plication and effectiveness of a two-stage training
method across various instance selection strategies,
followed by a detailed analysis of the experimental
results in Table 5.

Among the findings, the Category-Based + Hy-
brid combination demonstrated the best perfor-
mance with a Head F1 score of 76.31 and a Coref
F1 score of 76.79, indicating its superiority in event
head identification and coreference accuracy. This
may be attributed to the strategy’s high efficiency
in handling the relevance and complexity of events.

selection Method
Arg IF Arg CF

HeadF1 CorefF1 HeadF1 CorefF1
Similarity
+ Type-Based 73.59 73.87 67.80 68.23
+ Category-Based 73.62 73.91 67.88 68.34
+ Hybrid 72.48 72.75 66.92 67.29
Type-Based
+ Category-Based 76.02 75.18 69.75 69.91
+ Hybrid 76.31 75.13 69.99 70.15
Category-Based
+ Type-Based 75.08 75.24 69.12 69.28
+ Hybrid 75.88 76.79 70.48 71.33
Keyword-Based
+ Type-Based 74.56 74.72 69.07 69.23
+ Category-Based 74.64 74.80 69.16 69.32
+ Hybrid 75.09 75.25 70.51 70.77

Table 5: Impact of two-stage training on performance.

It considers the direct type of the event and in-
cludes related subcategories, providing richer con-
textual information for better event understanding
and description generation. By combining event
categories with a hybrid selection strategy, it com-
prehensively covers various situations and variants
related to the target event. In contrast, the Simi-
larity+Hybrid combination performed less effec-
tively, with Head F1 and Coref F1 scores of 72.48
and 72.75. This strategy may have struggled to
distinguish key information from noise due to the
limitations of similarity searches and the complex-
ity of the Hybrid approach, leading to decreased
performance. Additionally, while the Category-
Based + Hybrid optimized relevance and quality
through refined instance selection, the Similarity +
Hybrid may have introduced too much irrelevant
information, affecting the model’s accuracy.

Other combinations, such as Type-Based +
Category-Based and Keyword-Based + Hybrid,
also performed well, with Head F1 scores of 75.02
and 75.09. This suggests that considering both type
and keyword information helps the model capture
core elements and context more accurately. The
Argument Keyword Based + Hybrid strategy, in
particular, enhances the model’s ability to identify
event arguments by optimizing for important event
attributes.

The two-stage training method significantly in-
fluenced the model’s performance. The first stage
focused on identifying basic event structures, while
the second stage optimized the model with a hybrid
strategy to handle complex event relationships and
deeper semantic information.



Method
Arg IF Arg CF

Head F1 Coref F1 Head F1 Coref F1

MILE 76.31 76.79 70.53 71.33
w/o ISS 76.43 76.21 70.32 71.22
w/o TTA 75.09 75.47 69.56 70.25
w/o MIS 71.95 72.03 65.80 66.91

Table 6: Ablation Study on WikiEvents.

Method
Dev Test

Span F1 Head F1 Span F1 Head F1

MILE 49.51 57.89 51.37 60.26
w/o ISS 49.23 57.69 50.82 59.97
w/o TTA 48.10 56.22 50.51 59.63
w/o MIS 46.67 54.81 48.20 57.03

Table 7: Ablation Study on RAMS.

4.5 Ablation Experiments

In this section of the study, we explored the signif-
icance of model components through ablation ex-
periments conducted on the RAMS and Wikievents
datasets. The results in Table 6 showed that re-
moving the Instance Scoring Selector (ISS) and
Two-stage Training Approaches (TTA) led to slight
F1 score drops of 0.21 and 0.11 in Head F1 and
Coref F1 on WikiEvents. This suggests ISS con-
tributes to performance but isn’t crucial. Removing
TTA caused larger drops of 0.97 and 1.08 in Head
F1 and Coref F1. The most significant drop 4.42
in Coref F1, occurred after removing the Multi-
Instance learning Strategy MIS, highlighting its
key function in understanding complex semantics.

The ablation experiments on the RAMS dataset
revealed similar trends. Removing the ISS de-
creased Span F1 and Head F1 by 0.55 and 0.29.
Removing TTA led to larger declines of 0.86 and
1.63. The most significant drops, 2.17 and 3.23,
occurred after removing MIS, confirming its impor-
tance in complex semantic understanding. These
results show that MIS are crucial for enhancing
model performance across different datasets and
tasks. This suggests that the multi-instance learn-
ing approach enhances event extraction by direct-
ing the decoder to focus on key segments and better
capture critical elements.

4.6 Distributions in MILE

To validate the efficacy of our model, we compared
the attention maps generated by our model and

Figure 4: Comparison of attention maps between MILE
and the base model.

Figure 5: Attention distribution of MILE on two Type-
Based instances.

the base model. The results in Figure 4 indicated
that our model exhibits a more concentrated distri-
bution of attention on tokens related to the event.
Specifically, the attention map on the left (Ours)
demonstrates higher attention weights concentrated
at particular positions, which correspond to tokens
associated with the event, whereas the base model
on the right (Base), which is not trained using the
multi-instance strategy, displays a more scattered
and unfocused distribution of attention.

We plotted the attention distribution of the multi-
instance learning model on two Type-Based in-
stances in Figure 5. The attention maps for
Instance-1 and Instance-2 show a similar pat-
tern, indicating that consistent attention distribution
across same-type instances helps the model capture
critical event information more accurately.

5 Conclusion

This paper proposes a novel multi-instance learn-
ing method for document-level event extraction.
By encoding event documents and selecting di-
verse instances, this method explores semantic re-
lationships and enhances model learning. We val-
idated the effectiveness of different instance se-
lection methods. Our model, MILE, outperforms
existing methods on multiple datasets, excelling in
argument identification and classification.



Limitations

Although our method is effective for document-
level event extraction tasks, it has some limitations.
Using an instance vector database requires signifi-
cant storage space, especially when handling large
datasets. Preprocessing steps such as instance selec-
tion and vector generation are necessary for differ-
ent datasets, which can be cumbersome and time-
consuming, increasing the complexity of model
deployment and potentially limiting its application
in resource-constrained environments. Improper
instance selection may introduce noise, reducing
the model’s effectiveness. Future work will explore
autonomous instance selection, optimize selection
algorithms, and reduce dependence on large-scale
databases. We also plan to extend this method to
other information extraction tasks, such as relation
extraction and multilingual extraction.
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A Model size and computational budget

Our experiments were powered by an NVIDIA
GeForce RTX 4090 graphics card, boasting 24GB
of GDDR6X VRAM, which offered ample memory
for our deep learning tasks.

Our model training was conducted in two stage.
Table 8 shows the parameters for MILE in the two-
stage training. For our training, we opted for the
BARTlarge model because of its extensive param-
eterization and demonstrated effectiveness in ad-
vanced natural language processing tasks. In the
first phase, the model underwent full training with
a parameter size of 406M. In the second phase, the
encoder parameters were fixed, and the model was
trained with a parameter size of 203M.

Model Training Stage 1 Training Stage 2

Mile 406M 203M

Table 8: Parameters of the two-stage training parameters

B Hyperparameters Set

To ensure the replicability of our findings, we
meticulously recorded all pertinent training param-
eters, including learning rates and batch sizes. We
used grid search to find the optimal parameters.

Hyperparameters RAMS-1RAMS-2Wiki-1Wikis-2

Learning rate 4e-5 5e-5 4e-5 6e-5
Batch size 16 56 16 32
Epochs 8 6 20 16
Max Sequence Length 512 512 512 512
Max Output Length 72 72 71 71
Weight Decay 1e-5 1e-5 1e-5 1e-5
Gradient Clip 1.0 1.0 1.0 1.0
Accumulate Grad Batches 6 12 2 4
LR Scheduler linear linear linear linear
Freeze encoder True False True False

Table 9: Hyperparameters for two-stage training.

The key hyperparameters were explored within
the following search space:

1)The learning rate was searched within the
range of [4e-5, 6e-5], incrementing by 1e-5. 2)The
batch size was searched within the range of [8, 16]
in training stage 1, incrementing by 2, and within
the range of [32, 56] in training stage 2, increment-
ing by 16. 3) The number of epochs was searched
within the range of [6, 12] in RAMS, incrementing
by 1, and within the range of [12, 24] in Wikievents,
incrementing by 2. 2)The accumulate grad batches

was searched within the range of [1, 12], increment-
ing by 1. 2)The gradient clip batches was searched
within the range of [1.0, 5.0], incrementing by 0.5.
Table 9 shows the final selected values.


