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ABSTRACT

Link prediction is a fundamental problem in graph data. In its most realistic setting,
the problem consists of predicting missing or future links between random pairs of
nodes from the set of disconnected pairs. Graph Neural Networks (GNNs) have
become the predominant framework for link prediction. GNN-based methods treat
link prediction as a binary classification problem and handle the extreme class
imbalance—real graphs are very sparse—by sampling (uniformly at random) a
balanced number of disconnected pairs not only for training but also for evaluation.
However, we show that the reported performance of GNNs for link prediction in
the balanced setting does not translate to the more realistic imbalanced setting and
that simpler topology-based approaches are often better at handling sparsity. These
findings motivate Gelato, a similarity-based link-prediction method that applies (1)
graph learning based on node attributes to enhance a topological heuristic, (2) a
ranking loss for addressing class imbalance, and (3) a negative sampling scheme
that efficiently selects hard training pairs via graph partitioning. Experiments show
that Gelato is more accurate and faster than GNN-based alternatives.

1 INTRODUCTION

Machine learning on graphs supports various structured-data applications including social network
analysis (Tang et al.l [2008; [Li et al.l 2017;|Qiu et al., 2018a), recommender systems (Jamali and
Ester, [2009; Monti et al., 2017; [Wang et al., [2019a)), natural language processing (Sun et al., 2018a;
Sahu et al., 2019; Yao et al.,[2019), and physics modeling (Sanchez-Gonzalez et al., | 2018}; |Ivanovic
and Pavonel 2019; |da Silva et al.| 2020). Among the graph-related tasks, one could argue that link
prediction, which consists of predicting missing or future links (Lt and Zhou, 201 1; Martinez et al.,
2016), is the most fundamental one. This is because link prediction not only has many concrete
applications (Qi et al.l 2006; [Liben-Nowell and Kleinberg, [2007)) but can also be considered an
(implicit or explicit) step of the graph-based machine learning pipeline (Martin et al., 2016} Bahulkar
et al.| 2018; Wilder et al.l 2019)—as the observed graph is usually noisy and/or incomplete.

Graph Neural Networks (GNNs) (Kipf and Welling| 2017; [Hamilton et al., 2017} [Velickovi¢ et al.|
2018) have emerged as the predominant paradigm for machine learning on graphs. Similar to their
great success in node classification (Klicpera et al., 2018} |Wu et al.,[2019; Zheng et al., 2020) and
graph classification (Ying et al.,[2018; Zhang et al., 2018a); Morris et al., 2019), GNNs have been
shown to achieve state-of-the-art link prediction performance (Zhang and Chen, 2018} [Liu et al.,
2020; [Pan et al., 2022} [Yun et al.l [2021; (Chamberlain et al., |2023; [Wang et al.,|2023). Compared
to classical approaches that rely on expert-designed heuristics to extract topological information
(e.g., Common Neighbors (Newman, 2001), Adamic-Adar (Adamic and Adar, 2003)), Preferential
Attachment (Barabasi et al., 2002))), GNNs can naturally incorporate attributes and are believed to
be able to learn new effective heuristics directly from data via supervised learning.

However, we argue that the evaluation of GNN-based link prediction methods paints an overly
optimistic view of their model performance. Most real graphs are sparse and have a modular structure
(Barabasi, 2016} [Newman), 2018). In CORA and CITESEER (citation networks), less than 0.2% of the
node pairs are links/positive (see and modules arise around research topics. Yet GNN-based
link prediction methods are evaluated on an artificially balanced test set that includes every positive
pair but only a small sample of the negative ones chosen uniformly at random (Hu et al.| 2020). Due
to modularity, the majority of negative pairs sampled are expected to be relatively far from each other
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(i.e. across different modules) compared to positive pairs. As a consequence, performance metrics
reported for this balanced setting, which we call biased testing, differ widely from the ones observed
for the more challenging unbiased testing, where the test set includes every disconnected pair of
nodes. In particular, we have found that unsupervised topological heuristics are more competitive in
the unbiased setting, often outperforming recent GNN-based link prediction methods. This finding
has motivated us to rethink the design of link prediction methods for sparse graphs.

A key hypothesis of our work is that effective unbiased link prediction in sparse graphs requires a
similarity metric that is able to distinguish positive pairs from hard negative ones. More specifically,
link prediction should be seen as a “needle in the haystack™ type of problem, where extreme class
imbalance makes even the most similar pairs still more likely to be negative. Existing GNN-based
approaches fail in this sparse regime due to (1) their use of a binary classification loss that is highly
sensitive to class imbalance; (2) their biased training that mimics biased testing; (3) their inability to
learn effective topological heuristics directly from data.

The goal of this paper is to address the key limitations of GNNs for link prediction mentioned above.
We present Gelato, a novel similarity-based framework for link prediction that combines a topological
heuristic and graph learning to leverage both topological and attribute information. Gelato applies
a ranking-based N-pair loss and partitioning-based negative sampling to select hard training node
pairs. Extensive experiments demonstrate that our model significantly outperforms state-of-the-art
GNN-based methods in both accuracy and scalability. [Figure T| provides an overview of our approach.
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Figure 1: Gelato applies graph learning to incorporate attribute information into the topology. The
learned graph is given to a topological heuristic that predicts edges between node pairs with high
Autocovariance similarity. The parameters of the MLP are optimized end-to-end using the N-pair
loss over node pairs selected via a partitioning-based negative sampling scheme. Experiments show
that Gelato outperforms state-of-the-art GNN-based link prediction methods.

To summarize, our contributions are: (1) We scrutinize the evaluation of supervised link prediction
methods and identify their limitations in handling class imbalance; (2) we propose a simple, effective,
and efficient framework to combine topological and attribute information for link prediction; (3)
we introduce an N-pair link prediction loss that we show to be more effective at addressing class
imbalance; and (4) we propose an efficient partitioning-based negative sampling scheme that improves
link prediction generalization in the sparse setting.

2 LIMITATIONS IN SUPERVISED LINK PREDICTION EVALUATION

Supervised link prediction is often formulated as a binary classification problem, where the positive
(or negative) class includes node pairs connected (or not connected) by a link. A key difference
between link prediction and other classification problems is that the two classes in link prediction
are extremely imbalanced since most graphs of interest are sparse (see [Table T). However, the class
imbalance is not properly addressed in the evaluation of existing supervised approaches.

Existing link prediction methods (Kipf and Welling, 2016;|Zhang and Chenl [2018};|Chami et al.|[2019;
Zhang et al.,|[2021}; (Cai et al., 2021} |Yan et al., 2021} |Zhu et al.| 2021} [Chen et al., [2022; [Pan et al.,
2022) are evaluated on a test set that contains all positive test pairs and only an equal number of
random negative pairs. Similarly, the Open Graph Benchmark (OGB) ranks predicted links against a
very small sample of random negative pairs. We term these approaches biased testing as they highly
overestimate the ratio of positive pairs in the graph. This issue is exacerbated in most real graphs,
where community structure (Newman), 2006) causes random negative pairs to be particularly easy
to identify—as they likely involve members of different communities. Evaluation metrics based on
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these biased test sets provide an overly optimistic measurement of the actual performance in unbiased
testing, where every negative pair is included in the test set. In fact, in real applications where positive
test edges are not known a priori, it is impossible to construct those biased test sets to begin with.

Regarding evaluation metrics, Area Under the Receiver Operating Characteristic Curve (AUC) and
Average Precision (AP) are the two most popular evaluation metrics for supervised link prediction
(Kipf and Welling| 2016;Zhang and Chenl 2018;|Chami et al., |2019; |Zhang et al.,|2021}; |Cai et al.,
2021} |Yan et al.} 2021; Zhu et al., 2021} |Chen et al., [2022} [Pan et al., 2022)). We first argue that, as in
other imbalanced classification problems (Davis and Goadrich} 2006; Saito and Rehmsmeier} [2015),
AUC is not an effective evaluation metric for link prediction as it is biased towards the majority class
(non-edges). On the other hand, AP and other rank-based metrics such as Hits@k—used in OGB (Hu
et al., [2020)—are effective for imbalanced classification but only if evaluated on an unbiased test.

Example: Consider an instance of Stochastic Block Model (Karrer and Newman, [2011)) with 10
blocks of size 1k, intra-block density 0.9, and inter-block density 0.1. The number of inter-block
negative pairs is 10 x 1k x (10 — 1) x 1k x (1 — 0.1)/2 = 40.5M, while the number of intra-block
negative pairs, which have high topological similarities like the ground-truth positive pairs and are
much harder to contrast against, is 10 x 1k x 1k x (1 —0.9)/2 = 0.5M. Biased testing would select
less than 0.5M/(0.5M + 40.5M) < 2% of the test negative pairs among the (hard) intra-block ones.

The above discussion motivates a more representative evaluation setting for supervised link prediction.
We argue for the use of rank-based evaluation metrics—AP, Precision@Fk (Lt and Zhou, 2011)),
and Hits@Fk (Bordes et al.| [2013)—with unbiased testing, where positive edges are ranked against
hard negative node pairs. These metrics have been widely applied in related problems, such as
unsupervised link prediction (Li and Zhoul 2011} |Ou et al.l2016; Zhang et al., 2018bj | Huang et al.,
2021), knowledge graph completion (Bordes et al.l 2013} |Yang et al., |2015; |Sun et al., 2018b),
and information retrieval (Schiitze et al., |2008)), where class imbalance is also significant. In our
experiments, we will illustrate how these evaluation metrics combined with unbiased testing provide
a drastically different and more informative performance evaluation compared to existing approaches.

3 METHOD

The limitations of supervised link prediction methods, including GNNS, to handle unbiased testing
in sparse graphs motivate the design of a novel link prediction approach. First, preliminary results
(see Table[6)) have shown that topological heuristics such as Common Neighbors are not impacted
by class imbalance. That is due to the fact that these heuristics are sensitive to small differences in
structural similarity between positive and hard negative pairs while not relying on any learning—and
thus not being affected by biased training. However, different from GNNs, topological heuristics are
unable to leverage node attribute information. Our approach addresses this limitation by integrating
supervision into a powerful topological heuristic to leverage attribute data via graph learning.

Notation and problem. Consider an attributed graph G = (V, E, X), where V is the set of n
nodes, F is the set of m edges (links), and X = (1, ..., xn)T € R™*" collects r-dimensional node
attributes. The topological (structural) information of the graph is represented by its adjacency matrix
A € R™™" with Ay, > 0if an edge of weight A,,,, connects nodes v and v and A,,, = 0, otherwise.
The (weighted) degree of node w is given as d,, = ), Ay, and the corresponding degree vector
(matrix) is denoted as d € R™ (D € R™*™). The volume of the graph is vol(G) = >, d,,. Our goal
is to infer missing links in G based on its topological and attribute information, A and X.

Model overview. [Figure I|provides an overview of our link prediction model. It starts by selecting
training node pairs using a novel partitioning-based negative sampling scheme. Next, a topology-
centric graph learning phase incorporates node attribute information directly into the graph structure
via a Multi-layer Perceptron (MLP). We then apply a topological heuristic, Autocovariance (AC), to
the attribute-enhanced graph to obtain a pairwise score matrix. Node pairs with the highest scores are
predicted as (positive) links. The scores for training pairs are collected to compute an N-pair loss.
Finally, the loss is used to train the MLP parameters in an end-to-end manner. We named our model
Gelato (Graph enhancement for link prediction with autocovariance). Gelato represents a different
paradigm in supervised link prediction combining a graph encoding of attributes with a topological
heuristic instead of relying on node embeddings.
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3.1 GRAPH LEARNING

The goal of graph learning is to generate an enhanced graph that incorporates node attribute informa-
tion into the topology. This can be considered as the “dual” operation of message-passing in GNNSs,
which incorporates topological information into attributes (embeddings). We argue that graph learning
is the more suitable scheme to combine attributes and topology for link prediction since it does not
rely on the GNN to learn a topological heuristic, which we have verified empirically to be a challenge.

Specifically, our first step of graph learning is to augment the original edges with a set of node pairs
based on their (untrained) attribute similarity (i.e., adding an e-neighborhood graph):

E=E+{(wv) ] sza,a,) > e} (1)

where s(-) can be any similarity function (we use cosine in our experiments) and ¢,, is a threshold
that determines the number of added pairs as a ratio 7 of the original number of edges m.

A simple MLP then maps the pairwise node attributes into a trained edge weight for every edge in E:
Wyy = MLP([z4; 2,]; 0) )

where [z,,; x,] denotes the concatenation of z,, and x,, and € contains the trainable parameters. For
undirected graphs, we instead use the following permutation invariant operator (Chen et al., 2014):

Wyy = MLP([7y + 245 |20 — 24 ]];0) 3)

The final edge weights of the enhanced graph are a weighted combination of the topological weights,
the untrained weights, and the trained weights:

Auv = aAuv + (1 - a)(ﬂwuv + (1 - 6)5(.’1)1“1)1,)) (4)

where « and /3 are hyperparameters. The enhanced adjacency matrix A is then fed into a topological
heuristic for link prediction introduced in the next section. Note that the MLP is not trained directly
to predict the links, but instead trained end-to-end to enhance the input graph given to the topological
heuristic. Also note that the MLP can be easily replaced by a more powerful model such as a GNN,
but the goal of this paper is to demonstrate the general effectiveness of our framework and we will
show that even a simple MLP leads to significant improvement over the base heuristic.

3.2 TOPOLOGICAL HEURISTIC

Assuming that the learned adjacency matrix A incorporates structural and attribute information,

Gelato applies a topological heuristic to A. Specifically, we adopt Autocovariance, which has been
shown to achieve state-of-the-art link prediction results for non-attributed graphs (Huang et al., 2021)).

Autocovariance is a random-walk-based similarity metric. Intuitively, it measures the difference
between the co-visiting probabilities for a pair of nodes in a truncated walk and in an infinitely long

walk. Given the enhanced graph G, the Autocovariance similarity matrix R € R™*™ is given as

D~ -~ dd"

R=—=(D"A) - —— o)
vol(G) vol*(@)

where ¢ € Ny is the scaling parameter of the truncated walk. Each entry R,,,, represents a similarity

score for node pair (u,v) and top similarity pairs are predicted as links. Note that R,,,, only depends

on the ¢-hop enclosing subgraph of (u, v) and can be easily differentiated with respect to the edge

weights in the subgraph. In fact, Gelato could be applied with any differentiable topological heuristics

or even a combination of them. In our experiments (Section , we will show that Autocovariance

alone enables state-of-the-art link prediction performance without requiring any learning.

Scaling up Gelato with batching and sparse operations. Naively implementing Gelato using
dense tensors is infeasible, due to the quadratic VRAM requirement (R € RIVIx |V|l. To address
this limitation, we store A as a sparse matrix. Then, instead of directly computing (D~!A)* from

(resulting on a dense |V| x |V| matrix), we compute

P = Po(D'A), ke{l1,2,..,t} (6)
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Figure 2: Scaling up Gelato using batching and sparse tensors. Given a batch of nodes (Vyqicn), we
operate only on a slice (Fp) of the enhanced and normalized transition matrix (D_lA) to compute the
Autocovariance matrix slice R for pairs containing nodes in Vj4.,. This is implemented efficiently
using dense-sparse tensor multiplication, as the transition matrix is expected to be sparse.

DN 73T
R = D~ Pt - d;i =
vol(G) vol“(G)

N

where Py = (5_1Z)ij, for all ¢ € Vigten, Wwhere Vigien consists of the nodes in the current batch. To
put it simply, this operation substitution allows us to compute a sequence of ¢ multiplications between

adense P, € RIP@hIXIVI matrix and a sparse matrix (5*111) € RIVIxIVIinstead of a dense matrix
power operation, (D~ A)?. The overall VRAM usage is reduced from O(|V'|?) to O(|batch| - |V]).

Next, we introduce how to train our model parameters with supervised information.

3.3 N-PAIR LOSS

Supervised link prediction methods rely on the cross entropy loss (CE) to optimize model parameters.
However, CE is known to be sensitive to class imbalance (Byrd and Lipton, 2019)). Instead, Gelato
applies the N-pair loss (Sohn, [2016)) that is inspired by the metric learning and learning-to-rank
literature (McFee and Lanckriet, 2010; [Cakir et al.,2019; Revaud et al., 2019; |Wang et al., 2019b)) to
train the parameters of our graph learning model from highly imbalanced unbiased training data.

The N-pair loss (NP) contrasts each positive training edge (u,v) against a set of negative pairs
N (u,v). It is computed as follows:

L) = - Z logexp(R

(u,v)EE

exp(Ruy)
uv) + Z(p,q)GN(u,v) exp(Ryq)

®)

Intuitively, L(6) is minimized when each positive edge (u, v) has a much higher similarity than its
contrasted negative pairs: Ry, > Rypq, V(p, ¢) € N(u,v). Compared to CE, NP is more sensitive to
negative pairs that have comparable similarities to those of positive pairs—they are more likely to be
false positives. While NP achieves good performance in our experiments, alternative losses from the
learning-to-rank literature (Freund et al.,|2003} |Xia et al., [2008} |Bruchl 2021) could also be applied.

3.4 NEGATIVE SAMPLING

To minimize distribution shifts between training and test, negative samples N (u, v) must be generated
using unbiased training. This means that N (u, v) is a random subset of all disconnected pairs in
the training graph, and | N (u,v)]| is proportional to the ratio of negative pairs. In this way, we
enforce N (u,v) to include hard negative pairs. However, due to graph sparsity (see this



Under review as a conference paper at ICLR 2024

approach does not scale to large graphs as the total number of negative pairs would be O(|V|?> — |E|).
Supervised methods for link prediction bypass this challenge by sampling a small number of negative
pairs uniformly at random but most of these pairs are expected to be easy (see Section[2).

To efficiently generate a small number of hard negative pairs, Gelato applies a simple yet novel
negative sampling scheme based on graph partitioning (Fortunato, 2010). The idea is to select negative
samples inside partitions as they are expected to have similarity values comparable to positive pairs.
We apply METIS (Karypis and Kumar, [1998) to obtain p partitions G, = (V,, E,, X,,),V, C
V,E, C E, X, C X,suchthat V' =J/_, V; and |V;| = |V|/p. Then, we apply unbiased training
only within each partition, reducing the number of sampled negative pairs to |E~| = Y7 |Vi|? — | E;|.
In the remainder of the paper, we refer to this approach as partitioned training. We claim that this
procedure filters (easy) pairs consisting of nodes that would be too far away in the network topology
from training while maintaining the more informative (hard) pairs that are closer and topologically
similar according to METIS. We include in the Appendix (See a performance comparison
between Gelato trained using unbiased training against partitioned training.

4 EXPERIMENTS

In this section, we provide empirical evidence for our claims regarding supervised link prediction and
demonstrate the accuracy and efficiency of Gelato. Our implementation is anonymously available at
https://anonymous.4open.science/r/Gelato/.

4.1 EXPERIMENT SETTINGS
Datasets. Our method is evaluated on four attributed graphs commonly used for link prediction

(Chami et al.,[2019; Zhang et al.,|2021} [Yan et al.,[2021; Zhu et al., 2021} (Chen et al.| 2022; [Pan et al.|
2022 Hu et al., [2020). shows dataset statistics.

Table 1: A summary of dataset statistics.

#Nodes #Edges #Attrs  Avg. degree  Density

CORA 2,708 5,278 1,433 3.90 0.14%
CITESEER 3,327 4,552 3,703 2.74 0.08%
PUBMED 19,717 44,324 500 4.50 0.02%
OGBL-DDI 4,267 1,334,889 0 500,5 7.33%
OGBL-COLLAB 235,868 1,285,465 128 8.2 0.0046%

Baselines. For GNN-based link prediction, we include four state-of-the-art methods published in the
past two years: Neo-GNN (Yun et al.,2021)), BUDDY (Chamberlain et al.l 2023, and NCN / NCNC
(Wang et al.||2023)), as well as the pioneering work—SEAL (Zhang and Chen, |2018). For topological
link prediction heuristics, we consider Common Neighbors (CN) (Newman, |2001), Adamic Adar
(AA) (Adamic and Adar, |2003), and Autocovariance (AC) (Huang et al.| 202 I)—the base heuristic in
our model.

Hyperparameters. For Gelato, we tune the proportion of added edges 7 from {0.0, 0.25, 0.5, 0.75,
1.0}, the topological weight a from {0.0, 0.25, 0.5, 0.75}, and the trained weight 8 from {0.25, 0.5,
0.75, 1.0}. All other settings are fixed across datasets: MLP with one hidden layer of 128 neurons,
AC scaling parameter ¢t = 3, Adam optimizer (Kingma and Bal |2015) with a learning rate of 0.001, a
dropout rate of 0.5, and unbiased training without downsampling. To maintain fairness in our results,
we also tuned the baselines and exposed our procedures in detail in the Appendix [C| For all models,
including Gelato, the tuning process is done in all datasets, with the exception of OGBL-COLLAB.

Data splits for unbiased training and unbiased testing. Following Kipf and Welling|(2016)); |Zhang
and Chen| (2018));/Chami et al.| (2019); Zhang et al.|(2021); (Chen et al.[(2022); |Pan et al.| (2022), we
adopt 85%/5%/10% ratios for training, validation, and testing. Specifically, for unbiased training and
unbiased testing, we first randomly divide the (positive) edges F of the original graph into £,

train>
E;L iig» and E;;St for training, validation, and testing based on the selected ratios. Then, we set the

negative pairs in these three sets as (1) E;,,;,, = E- + Ef ..+ Ef ., Q) E, .. = E~ + E}_,

rain a a
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and (3) E,.,; = E~, where E is the set of all negative pairs (excluding self-loops) in the original
graph. Notice that the validation and testing positive edges are included in the negative training set,
and the testing positive edges are included in the negative validation set. This setting simulates the
real-world scenario where the test edges (and the validation edges) are unobserved during validation
(training). For negative sampling, we repeat the dividing procedure above for each generated

partition G;. The final sets are unions of individual sets for each partition: Ett(/m_n =U, E;éz_m ,
- _p pt/- +/= _ P gpt/—
Eaiia = Uizo Evaria;» and By = Ui—o Erest, -

Evaluation metrics. We adopt hits@k —the ratio of positive edges individually ranked above kth
place against all negative pairs—as our evaluation metric since it represents a good notion of class
distinction under heavily imbalanced scenarios in information retrieval, compatible with the intuition
of link prediction as a similarity-based ranking task.

4.2  PARTITIONED SAMPLING AND LINK PREDICTION AS A SIMILARITY TASK

This section provides empirical evidence for some of the claims made regarding limitations in the
evaluation of supervised link prediction methods (see Section[2). It also demonstrates the effectiveness
of Gelato to distinguish true links from hard negative node pairs in sparse graphs.

Negative sampling for harder pairs. Based on the hardness of negative pairs, the easiest scenario
is the biased testing, followed by unbiased testing and partitioned testing—i.e. with negative pairs
inside partitions. This can be verified by which compares the predicted scores of NCN
against the similarities computed by Gelato on the test set of CITESEER. Biased testing, the easiest
and most unrealistic scenario, shows a good separation between positive and negative pairs both in
NCN and Gelato. For unbiased testing, which is more realistic, Gelato is better at distinguishing
positive and negative pairs. Finally, partitioned testing present a particular challenge but Gelato still
ranks most positive pairs above negative ones. Other GNN-based link prediction approaches have
shown similar behaviors to NCN.

Gelato - Biased Gelato - Unbiased Gelato - Partitioned
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Figure 3: Comparison between the probability density functions of predicted similarities/scores by
Gelato and NCN (state-of-the-art GNN), on the test set in three different regimes (biased, unbiased,
and partitioned). Negative pairs are represented in red, and positive pairs are represented in blue.
Gelato consistently distinguishes between positive and negative pairs across all testing regimes, while
NCN struggles as negative pairs become harder.

Similarity-based link prediction. shows densities normalized by the size of positive and
negative sets, respectively. However, in real-world sparse graphs, the number of negative pairs is
much larger than that of positive ones. To better understand the ranking of positive pairs over negative
pairs, we also show the same plot with densities normalized by the total number of all pairs in[Figure §|
in the Appendix [E] The results show that for unbiased and partitioned testing, ranking positive pairs
over hard negative pairs is especially challenging due to their overwhelming number, i.e. positive
pairs are “needles in a haystack™. This provides evidence that classifiers, such as GNNs for link
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prediction, are not suitable for finding decision boundaries in these extremely imbalanced settings,
which motivates the design of Gelato as a similarity ranking model trained using an N-pair loss.

4.3 LINK PREDICTION PERFORMANCE

summarizes the link prediction performance in terms of the mean and standard deviation of
hits@1000 for all methods. We also include in the Appendix the results of M RR (Mean Reciprocal
Rank) and AP (Average Precision) (see Tables 6] and [7).

Table 2: Link prediction performance comparison (mean = std hits @ 1000) for all datasets consid-
ered. Gelato consistently outperforms GNN-based methods, topological heuristics, and two-stage
approaches combining attributes/topology. For CORA, CITESEER, OGBL-DDI and PUBMED results
we used unbiased training, while for OGBL-COLLAB negative sampling is used, for scalability reasons.
The top three models are colored by First, Second and Third.

CORA CITESEER PUBMED OGBL-DDI  OGBL-COLLAB
SEAL 0.0 7.25° s 075 259"
Neo-GNN = 6.96£4.24  542+0.13 163032 0.76° 0.85"
GNN BUDDY 481072 586+0.34  OOM 074001  27.66+0.24

NCN 411+122 784+1.13 0.06+x0.1 0.82+0.02 7.16 £1.42
NCNC 6.58+£0.58 8.72+2.08 1.04+£0.09 0.89 +0.09 0.44 £0.37

CN 417+0.00 44+0.00 036+0.00 0.8+0.00 2.4 +0.00

Topological
oo AA 6.64+000 44+000 1.13£0.00 079+000  4.88+0.00
AC  1120£0.00 1429+0.00 3.81+0.00 0.78+0.00 12.89 +0.00

Gelato 16.62+031 19.78+0.23 4.18+0.19 0.78 +0.00 30.92"

“ Run only once as each run takes >24 hrs; *** Each run takes >1000 hrs; OOM: Out Of Memory.

First, we want to highlight the drastically different performance of GNN-based methods compared
to those found in the original papers (Zhang and Chenl 2018} |Yun et al.,|2021; |Chamberlain et al.,
2023; Wang et all 2023). Some of them underperform even the simplest topological heuristics
such as Common Neighbors under unbiased testing. Moreover, Autocovariance, which is the base
topological heuristic applied by Gelato and does not account for node attributes, outperforms all the
GNN-based baselines for the majority of the datasets. These results support our arguments from
Section [2] that evaluation metrics based on biased testing can produce misleading results compared to
unbiased testing. The overall best-performing GNN model is NCNC, which generalizes a pairwise
topological heuristic (Common Neighbors) using message-passing. NCNC only outperforms Gelato
on OGBL-DDI but Autocovariance achieves even better results. This is an indication that further
hyperparameter search will likely improve Gelato’s results for this dataset. This is particularly critical
in the case of OGBL-DDI, as it is the only dataset considered that does not contain natural node
features. Overall, Gelato outperforms the best GNN-based method by 138%, 125%, 156%, and 11%
for COrRA, CITESEER, PUBMED, and OGB-COLLAB, respectively. Moreover, Gelato outperforms its
base topological heuristic (Autocovariance) by 48%, 39%, 10%, and 139% for CORA, CITESEER,
PUBMED, and OGB-COLLAB, respectively. Additional results are provided in the Appendix [F}

5 RELATED WORK

Topological heuristics for link prediction. The early link prediction literature focuses on
topology-based heuristics. This includes approaches based on local (e.g., Common Neighbors
(Newman, [2001), Adamic Adar (Adamic and Adar, 2003)), and Resource Allocation (Zhou et al.|
2009)) and higher-order (e.g., Katz (Katz, [1953), PageRank (Page et al.,|1999), and SimRank (Jeh
and Widom, 2002)) information. More recently, random-walk based graph embedding methods,
which learn vector representations for nodes (Perozzi et al,2014; |Grover and Leskovec, 2016; [Huang
et al.l 2021), have achieved promising results in graph machine learning tasks. Popular embedding
approaches, such as DeepWalk (Perozzi et al.||2014) and node2vec (Grover and Leskovec| 2016),
have been shown to implicitly approximate the Pointwise Mutual Information similarity (Qiu et al.|
2018b)), which can also be used as a link prediction heuristic. This has motivated the investigation
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of other similarity metrics such as Autocovariance (Delvenne et al.l 2010; Huang et al.|[2021;2022).
However, these heuristics are unsupervised and cannot take advantage of data beyond the topology.

Graph Neural Networks for link prediction. GNN-based link prediction addresses the limitations
of topological heuristics by training a neural network to combine topological and attribute information
and potentially learn new heuristics. GAE (Kipf and Welling} 2016) combines a graph convolution
network (Kipf and Welling,|2017) and an inner product decoder based on node embeddings for link
prediction. SEAL (Zhang and Chenl 2018) models link prediction as a binary subgraph classifica-
tion problem (edge/non-edge), and follow-up work (e.g., SHHF (Liu et al., 2020), WalkPool (Pan
et al.| 2022))) investigates different pooling strategies. Other recent approaches for GNN-based link
prediction include learning representations in hyperbolic space (e.g., HGCN (Chami et al., [2019)),
LGCN (Zhang et al., [2021))), generalizing topological heuristics (e.g., Neo-GNN (Yun et al.} 2021)),
NBFNet (Zhu et al.,[2021)), and incorporating additional topological features (e.g., TLC-GNN (Yan
et al., 2021)), BScNets (Chen et al.,2022)). ELPH and BUDDY (Chamberlain et al., 2023) apply
hashing to efficiently approximate subgraph-based link prediction models, such as SEAL, using
a message-passing neural network (MPNN) with distance-based structural features. More recent,
NCNC (Wang et al., |2023) combines the Common Neighbors heuristic with an MPNN achieving
state-of-the-art results. Motivated by the growing popularity of GNNs for link prediction, this work
investigates key questions regarding their training, evaluation, and ability to learn effective topological
heuristics directly from data. We propose Gelato, which is simpler, more accurate, and faster than the
state-of-the-art GNN-based link prediction methods.

Graph learning. Gelato learns a graph that combines topological and attribute information. Our
goal differs from generative models (You et al., 2018; [Li et al., 2018 |Grover et al., [2019), which
learn to sample from a distribution over graphs. Graph learning also enables the application of GNNs
when the graph is unavailable, noisy, or incomplete (Zhao et al.;2022). LDS (Franceschi et al.| [ 2019)
and GAug (Zhao et al.,2021) jointly learn a probability distribution over edges and GNN parameters.
IDGL (Chen et al.| |2020) and EGLN (Yang et al., 2021) alternate between optimizing the graph
and embeddings for node/graph classification and collaborative filtering. [Singh et al.| (2021)) proposes
two-stage link prediction by augmenting the graph as a preprocessing step. In comparison, Gelato
effectively learns a graph in an end-to-end manner by minimizing the loss of a topological heuristic.

6 CONCLUSION

This work sheds light on key limitations in the evaluation of supervised link prediction methods
due to the widespread use of biased testing. This has created a consensus within the graph machine
learning research community that (1) GNNs are the most promising approach for link prediction,
casting topological heuristics obsolete; and (2) link prediction is now an easy problem due to recent
advances in deep learning. Our paper challenges both of these assumptions. We show that, when
evaluated properly, link prediction in sparse graphs is still a hard problem. In particular, GNNs for
link prediction are not effective at handling sparse graphs due to the extreme class imbalance. This
has motivated the design of Gelato, a novel link prediction framework introduced in this work.

Gelato is a similarity-based link prediction method that combines graph learning and autocovariance
to leverage attribute and topological information. To better handle the class imbalance, Gelato applies
an N-pair loss instead of cross-entropy. Finally, to efficiently sample hard negative pairs, we introduce
a partitioning-based negative sampling scheme. Extensive experiments show that Gelato is more
accurate and scalable than state-of-the-art GNN-based solutions across different datasets.
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A ANALYSIS OF LINK PREDICTION EVALUATION METRICS WITH DIFFERENT
TEST SETTINGS

Example: Consider a graph with 10/ nodes, 100K edges, and 99.9M disconnected (or negative)
pairs. A (bad) model that ranks 1M false positives higher than the true edges achieves 0.99 AUC and
0.95 in AP under biased testing with equal negative samples.

Figures [4a] and [4b|show the receiver operating characteristic (ROC) and precision-recall (PR) curves
for the model under biased testing with equal number of negative samples. Due to the downsampling,
only 100k (out of 99.9M) negative pairs are included in the test set, among which only 100k/99.9M x
IM =~ 1k pairs are ranked higher than the positive edges. In the ROC curve, this means that once
the false positive rate reaches 1k/100k = 0.01, the true positive rate would reach 1.0, leading to
an AUC score of 0.99. Similarly, in the PR curve, when the recall reaches 1.0, the precision is
100k/(1k 4 100k) ~ 0.99, leading to an overall AP score of ~0.95.

By comparison, as shown in when the recall reaches 1.0, the precision under unbiased testing is
only 100k/(1M + 100k) = 0.09, leading to an AP score of ~0.05. This demonstrates that evaluation
metrics based on biased testing provide an overly optimistic measurement of link prediction model
performance compared to the more realistic unbiased testing setting.

(a) ROC (b) PR under biased testing (¢) PR under unbiased testing
1.0 1.0 1.0 4 _
0.99 AP = 0.05
o 08 0.8 0.8
c
2 o6 §o6 §o06
k= ) @
2 8 3
2 0.4 £ 0.4 L 04
[
2
Fo2 0.2
—— AUC = 0.99 —— AP =0.95
04 01
00.010.2 0.4 06 08 1.0 0 02 04 06 08 10 0 02 04 06 08 10
False positive rate Recall Recall

Figure 4: Receiver operating characteristic and precision-recall curves for the bad link prediction
model that ranks 1M false positives higher than the 100k true edges. The model achieves 0.99 in
AUC and 0.95 AP under biased testing, while the more informative performance evaluation metric,
Average Precision (AP) under unbiased testing, is only 0.05.

B ABLATION STUDY

Here, we collect the results with the same hyperparameter setting as Gelato and present a com-
prehensive ablation study in Specifically, Gelato—MLP (AC) represents Gelato without
the MLP (Autocovariance) component, i.e., only using Autocovariance (MLP) for link prediction.
Gelato—NP (UT) replaces the proposed N-pair loss (unbiased training) with the cross entropy loss
(biased training) applied by the baselines. Finally, Gelato—NP+UT replaces both the loss and the
training setting.

We observe that removing either MLP or Autocovariance leads to inferior performance, as the
corresponding attribute or topology information would be missing. Further, to address the class
imbalance problem of link prediction, both the N-pair loss and unbiased training are crucial for the
effective training of Gelato.

We also present results for Gelato using different ranking-based loss functions. In particular, we
choose between Precision @k, pairwise hinge, pairwise exponential, and pairwise logistic losses as
candidates for replacing the N-pair loss based on [Chen et al.| (2009). The results are shown in[Table 4]
demonstrating that there is no clear winner considering the hits@1000 metric in the two datasets
used (CORA and CITESEER).
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Table 3: Results of the ablation study based on AP scores. Each component of Gelato plays an
important role in enabling state-of-the-art link prediction performance.

CORA CITESEER PUBMED
Gelato—MLP 243 +0.00 2.65+0.00 2.50+0.00
Gelato—AC 1.94+0.18 391+0.37 0.83+0.05
Gelato—NP+UT 298 +0.20 196+0.11 235+0.24
Gelato—NP 1.96 +0.01 1.77+0.20 2.32+0.16
Gelato—UT 3.07+0.01 195+0.05 2.52+0.09
Gelato 3.90+0.03 4.55+0.02 2.88%0.09

Table 4: Comparison between N-pair loss (Gelato) against the Precision@K (PK), pairwise hinge
(PH), pairwise exponential (PE), and pairwise logistic (PL) losses considering the hits@1000 metric.

CORA CITESEER

Gelato-PK  1632+0.19 19.19 +0.99
Gelato-PH  18.09 +0.48 16.56 £0.13
Gelato-PE 16.82 +0.48 15.9+0.34
Gelato-PL  18.03+0.38 17.14 £0.66
Gelato 16.62£0.31  19.89 +0.24

C DETAILED EXPERIMENT SETTINGS

Positive masking. For unbiased training, a trick similar to negative injection (Zhang and Chen,[2018)
in biased training is needed to guarantee model generalizability. Specifically, we divide the training
positive edges into batches and during the training with each batch Ej, we feed in only the residual
edges E — Ej, as the structural information to the model. This setting simulates the testing phase,
where the model is expected to predict edges without using their own connectivity information. We
term this trick positive masking.

Other implementation details. We add self-loops to the enhanced adjacency matrix to ensure that
each node has a valid transition probability distribution that is used in computing Autocovariance.
The self-loops are added to all isolated nodes in the training graph for all datasets. Following the
postprocessing of the Autocovariance matrix for embedding in [Huang et al.|(2021)), we standardize
Gelato similarity scores before computing the loss. We optimize our model with gradient descent
via autograd in pytorch (Paszke et al.|[2019). We find that the gradients are sometimes invalid
when training our model (especially with the cross-entropy loss), and we address this by skipping
the parameter updates for batches leading to invalid gradients. Finally, we use prec@100% on the
(unbiased) validation set as the criteria for selecting the best model from all training epochs. The
maximum number of epochs for CORA/CITESEER and OGBL-DDI/OGBL-COLLAB is set to be
100 and 250, respectively. For partitioned testing, we apply METIS (Karypis and Kumarl, [1998) as
our graph partitioning algorithm, due to its scalability and a balanced number of nodes per partition.

Experiment environment. We run our experiments in an a2-highgpu-1g node of the Google Cloud
Compute Engine. It has one NVIDIA A100 GPU with 40GB HBM2 GPU memory and 12 Intel Xeon
Scalable Processor (Cascade Lake) 2nd Generation vCPUs with 85GB memory.

Reference of baselines. We list link prediction baselines and their reference repositories we use
in our experiments in Note that we had to implement the batched training and testing for
several baselines as their original implementations do not scale to unbiased training and unbiased
testing without downsampling.
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Table 5: Reference of baseline code repositories.

Baseline Repository
SEAL (Zhang and Chen, |2018) https://github.com/facebookresearch/SEAL_OGB
Neo-GNN (Yun et al.,|2021) https://github.com/seongjunyun/Neo—GNNs

BUDDY (Chamberlain et al.|[2023) https://github.com/melifluos/subgraph-sketching
NCN /NCNC (Wang et al.|[2023) https://github.com/zexihuang/random-walk-embedding
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D LINK PREDICTION ADDITIONAL RESULTS

Table 6: Link prediction performance comparison (mean + std AP) for all datasets considered. Gelato
consistently outperforms GNN-based methods, topological heuristics, and two-stage approaches
combining attributes/topology, being at least in the top-3 best-performing models in all datasets. For
CORA, CITESEER, OGBL-DDI and PUBMED results we used unbiased training, while for OGBL-
COLLAB partitioned sampling is used, for scalability reasons. The top three models are colored by
First, Second and Third.

CORA CITESEER PUBMED OGBL-DDI OGBL-COLLAB

SEAL 2217 243 s 352 47.43°
Neo-GNN  2.15+151 1.71+0.06 121014  24.42° 31.86°
GNN BUDDY 1.20+025 1.72+0.08 OOM  21.59+1.02 47.13+0.22

NCN 1.82+049 2.79+0.21 0.06+0.07 44.75+0.07 41.38+0.44
NCNC  2.88+0.16 3.23+0.44 1.54+0.01 44.9+0.05 27.67+3.3

CN 1.10+0.00 0.74+0.00 0.36+0.00 24.76+0.00 24.18 +0.00

Topological
Hooe AA 207000 124000 2.50+0.00 2525+0.00 3428+ 0.00
AC 2434000 2.65+000 2.50=0.00 29.42=0.00 37.92+0.00
Gelato 390003 4.55+0.02 2.88+0.00 29.42+0.00 42.53"

" Run only once as each run takes >24 hrs.

Table 7: Link prediction performance comparison (mean * std MRR). Gelato shows competitive
performance, despite its simplicity, being in the top-3 best-performing models in almost all datasets.
We highlight that Gelato is the best-performing method in PUBMED and OGBL-COLLAB, the hardest
evaluation regimes since we consider the unbiased testing scenario for both datasets. The top three
models are colored by First, Second and Third.

CORA CITESEER PUBMED OGBL-DDI OGBL-COLLAB
SEAL 0.0204" 0.235" s 0.0071" 4.9441"
Neo-GNN  0.2216 +£0.101  0.0969 + 0.0285  0.0001 + 0.0001 0.0098" 0.3435"
GNN BUDDY  0.136 £0.0607  0.121 +0.0026 OOM 0.0094 + 0.0003  1.2285 + 0.0576

NCN 0.1216 +£0.0551  0.1989 + 0.0515  0.0005 = 0.0007  0.0117 £ 0.002  0.1343 + 0.0588
NCNC  0.4606 + 0.1867 0.2934 + 0.1746  0.0002 + 0.00004  0.0171 + 0.0133  0.011 £ 0.0042

Topological CN 0.1816 £ 0.00 0.0933 £0.00  0.0001 +0.0000  0.0103 +0.00 0.4767 = 0.00
Heuristics AA 0.1764 £ 0.00 0.1154 £0.00  0.0001 +0.0000  0.0104 +0.00 0.0333 £ 0.00
AC 0.3069 + 0.00 0.1245 + 0.00 0.0006 = 0.00 0.0084 + 0.00 0.7692 + 0.00

Gelato 0.2558 = 0.0001  0.1424 = 0.0028  0.0009 = 0.0003  0.0084 + 0.001 6.1422°

" Run only once as each run takes >24 hrs.

E GELATO - UNBIASED VS PARTITIONED

Figure [35] shows partitioned sampling is a good proxy to obtain splits that are both realistic and
scalable through the evolution of the hits@1000 metric evaluated on partitioned test on Cora. It
is possible to verify that there is almost no performance performance gap between partitioned and
unbiased training.

F ADDITIONAL LINK PREDICTION MODEL COMPARISON

Despite its simplicity, Gelato is consistently among the best link prediction models considering
hitsQk and prec@k. We demonstrate the competitive results of Gelato against the GNN-based
models by varying k in Figures[6|and[7]
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Figure 5: Comparison between Gelato trained using unbiased sampling against partitioned sampling

on Cora (p = 10, = 250 nodes per partition), in which we verify that there’s almost no performance

gap between both models, but the partitioned sampling approach trains 2.8x times faster than the

unbiased sampling approach. The speedup increases with the number of partitions.
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Figure 6: Link prediction comparison in terms of hitsQk using Cora, CiteSeer, OGBL-DDI and
OGBL-Collab. All datasets were split using unbiased sampling, except OGBL-Collab, which was
split using partitioned sampling. Gelato obtains the best performance on Cora and OGBL-Collab by

a large margin and remains competitive on CiteSeer and OGBL-DDI, a dataset in which all methods
struggle.

G NON-NORMALIZED PARTITIONED SAMPLING RESULTS

We recreate Figure [ with non-normalized densities to show the extreme difference in the number of
negative and positive pairs.
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Figure 7: Link prediction comparison in terms of prec@¥k using Cora, CiteSeer, OGBL-DDI and
OGBL-Collab. All datasets were split using unbiased sampling, except OGBL-Collab, which was
split using partitioned sampling. Gelato obtains the best performance on Cora and OGBL-Collab by
a large margin and remains competitive on CiteSeer and OGBL-DDI, a dataset in which all methods
struggle.
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Figure 8: The non-normalized version of the Figure Negative pairs are represented in red, and
positive pairs are represented in blue. For unbiased and partitioned testing, negative pairs are
significantly more likely than positive ones—due to graph sparsity—even for the largest values of
similarity or scores. For this reason, for any decision boundary chosen, distinguishing positive pairs
from negative ones is like finding “needles in a haystack”.

H TIME COMPARISON

In we compare the time per epoch between Gelato and our two main competitors: BUDDY
and NCN (the faster version of NCNC). It is possible to notice a few patterns: Gelato suffers with
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graphs with a very large number of nodes, whereas NCN gets worse results in denser networks (due
to the CommonNeighbors dependency), despite being the fastest. Buddy relies on storing hashes,
which results in an OOM error when running PubMed on the unbiased training scenario.

Table 8: Estimated time (in seconds) per epoch.

BUDDY NCN Gelato

Cora 0.4s 3.5s 3s
CiteSeer 926s 4.6s 2.6s
PubMed OOM 5.0s 49s
OGBL-DDI 720s 30s 0.5s
OGBL-Collab 127s 21s 5400s

I BIASED TRAINING RESULTS

We present results for Gelato trained and evaluated in the unbiased / partitioned test in Table 9] for the
small datasets. The results show a performance degradation for most models in almost all datasets,
especially for BUDDY and NCN. SEAL, NeoGNN, and Gelato have better robustness obtaining even
better results comparatively in some scenarios.

J CLUSTERING TIMES

We chose METISKarypis and Kumar|(1998)) as our graph partitioning method due to its scalability
and the fact it produces partitions with a similar number of nodes. METIS runs as a pre-processing
step in our pipeline to enable partitioned sampling, in which we consider only negative pairs
within each partition. We display in Table[I0] the clustering time for each dataset and the number
of partitions considered using the METIS implementation available in the torch-sparse (https:
//github.com/rustyls/pytorch_sparse) Python package.

K GNN RESULTS

We substitute the MLP module of Gelato with a GNN module using GIN Xu et al.|(2018)) (GelatoGIN).
The results are displayed in[9] depicting an overfitting scenario that is more pronounced in GelatoGIN
considering prec@Qk results.

L SENSITIVITY ANALYSIS AND LEARNING HYPERPARAMETERS

We conduct a sensitivity analysis of both a and 3 hyperparameters considering AP on validation
as the reported metric, reported in Figure[TI0] The other two hyperparameters are set to 7 = 0 and
T = 3 in both scenarios. We show that there is a smooth transition between the values of AP obtained
through different hyperparameters, facilitating hyperparameter search.

Table 9: We show present results (mean + std MRR) for GNN methods versus Gelato trained in
biased training splits and evaluated on unbiased (Cora and CiteSeer) and partitioned (DDI) splits.
The top three models are colored by First, Second and Third.

CORA CITESEER OGBL-DDI
SEAL 0.0637" 0.1602" 0.0067"
NeoGNN  0.0505 +0.0145  0.2312 + 0.0796 0.0544"
GNN  BUDDY  0.1776 + 0.0 0.12+0.0 0.0059 + 0.0
NCN  0.0012+0.0012 0.0126 +0.0176 0.0006 + 0.0001
Gelato 0.2564 + 0.0069 0.1418 = 0.0011  0.0084 + 0.0

* Run only once as each run takes >24 hrs.
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Table 10: METIS clustering time for each dataset in seconds. METIS executes scalable and fast
graph partitioning adding negligible running time to the pre-processing step.

# Partitions  Time (s)

Cora 10 0.07
CiteSeer 10 0.03
PubMed 100 0.16
OGBL-DDI 20 0.42
OGBL-Collab 1300 1.91
CiteSeer
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Figure 9: Performance comparison (prec@k) between Gelato (in blue) against GelatoGIN (in green),
which replaces the MLP module by GIN. The dashed line represents the performance on training,
while the full line represents the performance on test. We can see that despite eventually obtaining
better results on training (CiteSeer), this performance is not matched by the test results, demonstrating
overfitting.
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Figure 10: Sensitivity analysis of « and (3 considering A P metric. .
We also present in[Figure T1|results treating both v and 3 as learnable parameters, showing that this

procedure does not improve the precQ@k or hitsQFk results. The values found for the hyperparameters
were a = 0.5670 and 5 = 0.4694 on Cora and o = 0.5507 and 3 = 0.4555 on CiteSeer.
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Figure 11: Results of prec@¥k (top) and hitsQEk (bottom) of Gelato (in (in blue)) against Gelato with
« and [ as learning parameters (in green). In both datasets and metrics considered, the learned o and
[ obtained worse values than the values found by the grid search hyperparameter tuning strategy.
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