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Abstract

Protein structure prediction has emerged as a powerful tool for biologists and drug mak-
ers. However, the computational cost of state-of-the-art models such as AlphaFold limits
their scalability and makes training and fine-tuning prohibitively expensive. Although pre-
vious work has achieved considerable inference speedups by replacing the multiple sequence
alignment step with protein language models, the overall architecture of structure predic-
tion models, inherited from AlphaFold2, has remained largely unchanged. In this work, we
show that protein language model-based structure predictors can be dramatically simplified
at little to no loss in accuracy. Our model, MiniFold, consists of a redesigned Evoformer
and a lightweight structure module. We also propose two novel GPU kernels, tailored to
the proposed architecture. Equipped with the same ESM2 protein language model, Mini-
Fold is competitive with ESMFold on the standard CAMEO and CASP datasets while
achieving training and inference speedups of up to 20x, and significant reductions in peak
memory. Our results show that MiniFold is an effective solution for large-scale applica-
tions and resource-constrained environments. Our code and trained models are available at
https://github.com/jwohlwend/minifold.

1 Introduction

With advances in deep learning-based protein structure prediction, models such as Alphafold Jumper et al.
(2021) are now routinely used in biological discovery. These models take as input a protein sequence and
predict the 3-D coordinates of every atom in the protein. Yet, the significant computational cost associated
with these tools limits their use in large scale applications. As an illustration, consider the task of identifying
disease-relevant antibodies from patients’ blood. A sequenced antibody repertoire may contain tens of
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millions of unique clonotypes (i.e unique protein sequences) Briney et al. (2019). At a speed of just a few
seconds per sequence, scanning 10 millions sequences would require over a GPU year. In addition to virtual
screening, other applications, such as mutational scans, downstream fine-tuning, and the filtering of de novo
designs, where ESMFold is broadly utilized Campbell et al. (2024); Watson et al. (2023), would all benefit
from more efficient models. Importantly, efficient architectures can also accelerate the research life cycle in
a space that typically requires extensive computational resources.

Previous works have already recognized this challenge. ESMFold Lin et al. (2023) and OmegaFold Wu et al.
(2022) propose to replace the compute-heavy multiple sequence alignment (MSA) stage of AlphaFold with
a protein language model (PLM), while conserving most of the original folding trunk design. By bypassing
MSA generation, the time required for structure prediction can be reduced from minutes to seconds per
sequence. However, for the various use cases outlined above, the cost and throughput of high-quality PLM-
based folding models remain severely limiting, not to mention the largely unchanged cost of model training.
We hypothesized that further improvements to these models could be achieved by addressing the bottlenecks
inherited from AlphaFold. With the ESMFold architecture as a starting point, our goal was to create a more
efficient model by pinpointing critical performance components and reducing computational bottlenecks.

Despite its considerable number of parameters, the protein language model used in ESMFold only covers a
small percentage of the inference time (< 5%). Instead, the bulk of the compute is spent in the Evoformer
blocks (∼ 80%), dominated by triangular operations, and to a lesser degree in the structure module (∼ 15%),
dominated by the invariant point attention (IPA). Our goal, therefore, is to design an efficient protein struc-
ture prediction model that addresses these two bottlenecks. Of note, the concurrently published AlphaFold3
and Boltz-1 models retain most of the original Evoformer design Abramson et al. (2024); Wohlwend et al.
(2024), making optimization of this architecture highly desirable.

We present MiniFold, an efficient architecture for protein structure prediction which reduces an Evoformer
block to a single bidirectional triangular multiplicative operation and feed-forward layers, and replaces the
structure module with a lightweight transformer with pairwise bias. In addition, we introduce a hardware-
optimized implementation using newly devised GPU kernels to enhance both the throughput and memory
efficiency of the model. Specifically, our proposed kernel optimizations are applied to the triangular multi-
plicative updates and to the feed-forward layers in the revised Evoformer (Miniformer). We train MiniFold
using the same PLM used in ESMFold on a single node of 8x A100 GPU’s, and achieve competitive perfor-
mance on the standard CAMEO and CASP test sets Kryshtafovych et al. (2021; 2023). When compared
against the original architecture, MiniFold achieves 20x speedup and a significant reduction in peak memory
utilization. Our work further highlights the potential for PLMs to not only accelerate homology search but
also simplify downstream architectures, thereby enabling high-throughput protein structure prediction.

2 Related Works

Protein structure prediction The field of protein structure prediction has seen significant advancements
due to recent breakthroughs in deep learning methods. The current state-of-the-art model AlphaFold Jumper
et al. (2021); Abramson et al. (2024) consists of two main components: a multiple sequence alignment (MSA)
and template search, and a folding module responsible for decoding the MSA into a set of coordinates in 3-
dimensional space. The derived MSA and templates are used to construct an initial set of sequence-level and
pairwise-level representations. These are then fed to the folding module, more specifically to a pairwise track
which learns to predict the pairwise distances between amino acid residues as a distogram. Finally, a structure
module uses these pairwise embeddings to predict the 3D coordinates of each residue. RosettaFold Baek et al.
(2021) and UniFold Li et al. (2022) adopt a similar MSA-based workflow but with different architectures. An
important limitation of AlphaFold2, however, is its computational cost. Recently, protein folding models,
such as OmegaFold Wu et al. (2022) and ESMFold Lin et al. (2023), accelerate inference by replacing the
MSA database search with protein language models Rives et al. (2021); Meier et al. (2021); Lin et al. (2023);
Elnaggar et al. (2023); Chen et al. (2023). The input to these models requires only single sequences, which
is ideal for orphan proteins that do not have MSA. In contrast from PLM-based models that keep the same
architecture as AlphaFold2, we focus on improving the efficiency of the structure prediction model to further
improve its scalability. Concurrent to this work, the new AlphaFold3 and Boltz-1 models retain most of
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Figure 1: Our proposed MiniFold architecture. We use the ESM-2 protein language model to extract
sequence level embeddings as well as pairwise attention maps. These are concatenated and fed to the
Miniformer module which updates the pairwise embeddings using efficient triangular multiplicative update
operations and feed-forward layers. Finally, a structure realizer composed of a gated transformer produces
the full-atom coordinates from the pairwise and sequence embeddings.

the original Evoformer, both in the MSA module and in the similar Pairformer Abramson et al. (2024);
Wohlwend et al. (2024), which remains very relevant to our work.

Efficiency & scalability Strategies to improve the efficiency of neural networks typically fall under one
of four categories: pruning, quantization, GPU kernel optimization, and improvements in algorithmic com-
plexity. Each of these approaches have been extensively studied in the context of the Transformer architec-
ture Vaswani et al. (2017). One such example is the recently proposed Flash-attention Dao et al. (2022),
which provides major speedup and memory savings to attention based architecture using an IO-aware im-
plementation. Another example is Simple Recurrent Unit Lei (2021), which uses various GPU kernel opti-
mization techniques for acceleration. Katharopoulos et al. (2020); Wang et al. (2020) propose algorithmic
alterations that result in linear time complexity as a function of the input size. Yet, these methods are
not obviously applicable to protein folding models, which utilize unique neural layers and transformations.
Recognizing the importance of customized solutions to the model architecture at hand, our work aims to
optimize protein structure prediction models to accelerate their inference speed, and improve their capacity
to scale to long protein sequences. While recent work Cheng et al. (2022); Wang et al. (2022) has begun
to explore hardware-level optimization techniques to accelerate protein folding training, these are limited
by the current architecture. Chowdhury et al. (2022) propose a faster architecture in RGN2 but require
refinement through Alphafold2 to reach competitive performance, which negates the potential speed-up. In
contrast, our work focuses on both architecture-level and custom hardware-level optimizations to improve
speed and memory utilization while retaining accuracy.

3 Methods

Our MiniFold architecture is composed of three modules: a sequence embedding module, an efficient Evo-
former which we name Miniformer, and a lightweight structure module based on gated self-attention. Figure 1
illustrates the forward pass of our model. First, we encode the input protein sequence using the three-billion
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Figure 2: Our proposed Miniformer block. The input is a pairwise tensor of dimension (r, r, c). We first
compute the input gate as displayed in the bottom left panel. In the bi-directional matmul, we first chunk
the tensor along the channel dimension to create 4 sub-tensors of shape (r, r, c/4), and perform a pair of
tensor products, once over the vanilla tensors and once over their transpose. The two resulting tensors of
shape (r, r, c/4) are then concatenated and fed to the output gate. This is followed by a skip connection and
a two layer feed-forward network with a ReLU activation.

parameter ESM-2 language model Lin et al. (2023), which is a pre-trained 36 layer Transformer. The
embeddings at the last layer of ESM-2 are fed into a small feed-forward network and tiled into pairwise
representations such that every entry (i, j) is the concatenation of the vector representations of residues i
and j. In addition, we also feed the concatenation of all the network’s attention maps, and fine-tune the
last 2 layers of the protein language model, both of which accelerate convergence during the early stages of
training. This pair representation is then updated through 12 or 48 Miniformer blocks, where we propose the
use of a redesigned bi-directional triangular multiplicative layer. Finally, the output of the Miniformer and
the sequence embeddings from the protein language model are passed to a structure realizer which produces
the 3D coordinates. In contrast to previous work, we apply recycling over the pairwise blocks only. The
efficiency of our approach comes from the redesigned Miniformer blocks and the lighter structure realizer.
In the following sections, we provide a detailed overview of these design choices and their motivation.

3.1 From Evoformer to Miniformer

We propose several modifications to the Evoformer architecture. Our new design is shown in Algorithm 1.
First, we eliminate the sequence track and keep only the pairwise representation and update. While this
change does not have a substantial impact on speed, it dramatically reduces the number of parameters in the
Evoformer. Specifically, the sequence track in ESMFold holds over 600M parameters. When removed, less
than 25M parameters remain. Through ablating this change, we argue that the representational capacity
of the Evoformer is influenced by the depth and complexity of its operations rather than by its parameter
count.

Next, we eliminate the Triangular Attention blocks. There are two reasons for this change. First, this
operation produces attention maps that encode every node triplet, which results in substantial memory
consumption that scales poorly with sequence length. Secondly, early in our experiments, we found that the
expressive power of the Evoformer was driven by the triangular multiplicative blocks and not the triangular
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Figure 3: Our proposed transformer-based realizer. Pairwise embeddings are projected to an (r, r, b · h)
tensor, where b is the number of blocks and h the number of attention heads. We compute 8 blocks of
biased transformer layers, and the final sequence embeddings are used to predict a frame at each residue via
Gram-Schmidt and the angles via the Angle Resnet described in AlphaFold2.

attention. This is ideal because although the complexity of the multiplicative update is also cubic in sequence
length, the space complexity remains quadratic, resulting in a much cheaper operation in practice. Another
potential advantage of this change would be to scale up other parts of the model, such as the pairwise
embedding dimension, or the number of blocks. We leave this exploration for future work.

Finally, we propose a redesigned triangular multiplicative layer. We merge the incoming and outgoing blocks,
fusing the point operations across the two blocks and removing one of the skip connections. We use a down-
projection of the input dimension prior to the channel-wise matrix multiplication. We also modify the output
gating to be a function of the matrix multiplication output instead of a function of the layer’s input. This
final change unifies the input and output gating operations and allows for better GPU kernel design, as
explained in section 2.3. We refer to this layer as a bi-directional triangular update, which we combine with
a feed-forward network in each Miniformer block as shown in Algorithm 1.

3.2 From Structure Module to Realizer

The structure module in AlphaFold2 takes as input the pairwise representation from the Evoformer and out-
puts the full atom 3D coordinates. We sought to investigate the role of the structure module, hypothesizing
that most of the predictive capacity of the model already occurred in the Evoformer. In particular, for the
large scale applications mentioned such as virtual screening, it may not be necessary to compute the 3D
coordinates. Pairwise distances may be sufficient to identify stable folds, and discriminate for binders. Yet,
in order to substantially alter or omit the structure module, we would first need to ensure that its role is
primarily to realize the 3D coordinates that match the predicted distogram. Motivated by this hypothesis,
we hereby propose two alternatives for the structure module: a parameter-free multidimensional scaling
realizer (MDS) Mead (1992), and a fast transformer realizer.

Parameter-free MDS realizer In order to validate our hypothesis we first attempted to directly obtain
the coordinates from the predicted distogram, using MDS. To do so, we first determine the predicted distance
for each pair of residues by choosing the distance bin with the highest probability. Since the maximum
distance bin is 25Å, we fill the missing entries (i.e., pairs predicted to be farther than 25Å) by defining a
graph with nodes as Cα atoms and edges as distances under 25Å and run the all-pair shortest path algorithm
on this graph. This results in an approximate distance for missing entries. Given the approximated full
distance matrix, we then perform classical MDS to generate initial coordinates for the atoms. Because MDS
is sensitive to noise, the resulting coordinates generally do not satisfy the predicted distogram. Therefore,
we refine the coordinates through 10 iterations of stress majorization with an LBFGS optimizer. We provide
pseudo-code for this approach in algorithm 3. In the absence of a structure module, we also propose a
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change to the recycling strategy by directly recycling the argmax of the distogram to the Miniformer. More
specifically, we convert the maximum likelihood distance bin into a one-hot representation which we linearly
project and sum into the input to the Miniformer blocks. Only Cα atoms are considered in this setting.*

Transformer-based realizer While the MDS approach serves as a strong indicator of the role of the
structure module, the cost of running shortest path, MDS and gradient descent is substantial. This is not
necessarily an issue in a setting where pairwise distances are sufficient but can be a limitation when the
3D coordinates must be computed. We therefore thought to replace it by learning to perform MDS using a
neural network that is similar but more efficient than the existing IPA-based structure module. To achieve
this, we propose a transformer with biased attention, similar to what is used in the sequence track in the
original Evoformer 2. Starting with the initial pairwise representation z and the sequence embeddings s, we
first project z into a set of attention biases, with one bias matrix per transformer head. This bias is added to
the attention scores prior to the softmax. In contrast to the IPA, we do not iteratively update coordinates
in each block, but instead predict the 3D frames of each residue in one-shot after the final layer. To do so,
we found it helpful to construct the frame by predicting the coordinates of the N , Cα and C atoms and
applying Gram-Schmidt, instead of directly predicting a translation and quaternion at each position. In
line with casting the structure module as a realizer, the idea of only applying recycling in the Miniformer
blocks was kept to further improve training and inference speed. We predict side-chain atoms using 5 torsion
angles. All angles are predicted by their cosine and sine contributions as per Alphafold2, using feed-forward
layers on top of the sequence representation of the transformer.

3.3 Efficient GPU Inference Kernels

Recent work has shown that hardware-optimized implementations can yield substantial speedups by fusing
memory intensive operations into a single GPU kernel. Motivated by this success, we identified two promising
areas of improvement in the Miniformer architecture: the self-gating operation in the multiplicative update,
and the feed-forward layers where the hidden projection quadruples the input dimension. The main idea is
to fuse operations to avoid excessive memory transfers. We implement these new kernels using the Triton
library Tillet et al. (2019), which provides block-level control over memory transfers while abstracting away
the details of issuing tensor core operations.

Self-gating The following gating operation appears twice in each triangular update:

y = (Vz + b1) · sigmoid(Wz + b2)

Because all of these operations are applied entry-wise, and z is loaded twice, speedup and memory savings
could be obtained by fusing this operation in a single kernel. The key insight is that the hidden dimension
of z is small enough (i.e 128) that the GPU SRAM can partition z across its large input dimension only. As
such, we can reduce the number of reads and the number of intermediate writes saving both memory and
computing time. We provide pseudo-code in Algorithm 4 in the appendix.

Feed-forward The feed-forward layer is ubiquitous in model deep learning architectures. It consists of
an initial linear projection, followed by a non-linear activation (in our case a ReLU), and another linear
projection. This layer is an essential part of the Transformer architecture Vaswani et al. (2017), as well as
the folding blocks described above. This layer typically uses a hidden dimension that is larger than the input
and output dimensions. In our case, it is 4x the input dimension. Our goal here is to avoid materializing
the inner matrix, which can causes a substantial memory bottleneck:

y = (W2ReLU(W1z + b1) + b2)

Here, again we observe that GPU SRAM is sufficiently large to partition z across its large input dimension.
Each thread block loads several complete rows of z into SRAM and is responsible for producing several

* A similar MDS approach was independently developed by Sergey Ovchinnikov and presented at a talk during CASP14.
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Dataset Model TMscore RMSD lDDT RMSD-aa lDDT-aa Runtime (s/seq)
CAMEO MiniFold-12 0.825 3.220 0.837 3.946 0.764 0.359

MiniFold-48 0.846 2.781 0.859 3.479 0.786 0.807
ESMFold 0.837 2.888 0.856 3.611 0.784 11.402

OmegaFold 0.815 3.382 0.837 4.111 0.767 61.507
AlphaFold2 0.880 2.100 0.905 2.763 0.828 77.842

RosettaFold1 0.761 4.659 0.798 4.661 0.795 227.368
RosettaFold2 0.883 1.987 0.906 2.666 0.823 14.269

CASP14 MiniFold-12 0.616 7.126 0.663 7.827 0.608 0.531
MiniFold-48 0.641 6.452 0.692 7.154 0.636 1.390

ESMFold 0.656 6.100 0.699 6.850 0.638 12.844
OmegaFold 0.706 5.366 0.737 6.186 0.673 149.303
AlphaFold2 0.831 3.002 0.849 3.698 0.772 105.374

RosettaFold1 0.634 8.174 0.683 8.145 0.682 310.294
RosettaFold2 0.798 3.489 0.826 4.307 0.746 18.176

CASP15 MiniFold-12 0.617 9.424 0.703 10.393 0.650 0.510
MiniFold-48 0.657 8.174 0.736 9.035 0.679 1.312

ESMFold 0.659 8.172 0.755 9.116 0.688 10.484
OmegaFold 0.631 10.080 0.731 11.271 0.667 128.875
AlphaFold2 0.728 5.754 0.819 6.740 0.748 107.173

RosettaFold1 0.588 11.378 0.683 11.362 0.711 321.987
RosettaFold2 0.706 6.441 0.798 7.589 0.727 19.786

Table 1: Performance of MiniFold (12 and 48 layers) and baselines on the CAMEO, CASP14 and CASP15
datasets. We report the TMScore, RMSD, lDDT, RMSD All-atoms (RMSD-aa) and lDDT All-atoms (lDDT-
aa). Each metric is computed by taking the mean across the targets for each dataset, except for the RMSD
and RMSD All-atoms metrics where we use the geometric mean. The average runtime in seconds / sequence
is provided for each model and dataset. Runtimes exclude the generation of multiple sequence alignments
(MSA) for MSA-based models.

complete rows of y. This means that every thread block can loop over the expanded dimension of W1
without materializing any intermediates in HBM. Instead we load z once and proceed to loop over the output
dimension of W1 and accumulate the partial matrix multiplication of W1z into the output y. This strategy
results in memory usage that is only a function of the input and output, but not the inner representation.
We provide pseudo-code in Algorithm 5 in the appendix.

Layer-norm We observe that both kernels are always preceded by a Layer normalization. To further reduce
intermediate data transfers, we fuse the layer norm into the respective kernels. Unless stated otherwise, our
kernel results include the fusing of the layer norm.

3.4 Training objective

AlphaFold and ESMFold were trained using a combination of multiple objective functions including distogram
loss, FAPE loss, structural violation loss, confidence loss, etc. Similar to previous work, we construct equally
sized bins ranging from 2 to 25 Angstroms, and train the model to predict the pairwise distances between
each pair of residues, using a classification objective over the bins described above, with the common cross
entropy loss. We initially train using only this objective, and without enabling recyling or the sturcture
realizer. After this initial training stage of the Miniformer, we begin a second training stage where we enable
both the structure realizer and recycling. The model is supervised using the backbone and side-chain FAPE
losses, and the supervised chi losses as previously done in Alphafold2. We also train a pLDDT predictor on
top of the structure realizer with the same loss used in AlphaFold2. The model is trained for about 250K
steps during each training stage.
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Dataset MiniFold-12 MiniFold-12 MDS MiniFold-48 MiniFold-48 MDS
CAMEO 0.88 / 0.14 0.88 / 0.15 0.9 / 0.13 0.9 / 0.14
CASP14 0.73 / 0.22 0.74 / 0.24 0.77 / 0.22 0.78 / 0.25
CASP15 0.8 / 0.23 0.8 / 0.24 0.84 / 0.23 0.84 / 0.23
CAMEO 2.75 / 7.63 2.88 / 22.05 2.34 / 7.2 2.42 / 21.83
CASP14 6.24 / 13.75 11.34 / 23.31 6.19 / 13.6 8.22 / 21.98
CASP15 6.9 / 32.31 11.05 / 54.99 6.73 / 33.06 8.11 / 40.74

Table 2: Cα lDDT (top) and Cα RMSD (bottom) comparison between the lightweight structure module
and the MDS realizer on CAMEO, CASP14 and CASP15 datasets, for MiniFold with 12 and 48 miniFormer
blocks. Values correspond to median/sample standard deviation (n-1 normalization).

4 Experiments

We showcase the efficacy of our approach by comparing the structure prediction accuracy, inference speed,
and memory consumption of MiniFold against ESMFold in Table 1. We also provide comparisons against
Omegafold, and several MSA-based models: AlphaFold2, RosettaFold1, RosettaFold2 Jumper et al. (2021);
Baek et al. (2021); Lin et al. (2023); Wu et al. (2022). All models were run with 3 recycling rounds (for
a total of 4 forward passes), and the same MSA precomputed using the ColabFold service was used for all
MSA-based models Mirdita et al. (2022). Our detailed experimental setting can be found in the Appendix
E and validation curves can be found in appendix F.

4.1 Prediction Accuracy

4.1.1 Results

Accuracy We report the performance of MiniFold in Table 1, and some example predictions in Figure C.
Our results show that MiniFold is competitive with other protein language model-based structure prediction
models, matching ESMFold on the CAMEO and CASP15 datasets, at a fraction of the computational cost.
MiniFold is also competitive, though slightly weaker on CASP14. Of note, the 12 layer model is surprisingly
strong, only underperforming the full-sized model by a few lDDT points. MiniFold outperforms OmegaFold
on the CAMEO and CASP15 datasets. Of note, Appendix G shows that MiniFold and ESMFold both
perform comparably at different depth of sequence homologs, including orphan proteins with little to no
homologs.

As a limitation, the performance of both ESMFold and MiniFold remains weaker than AlphaFold2 and
RosettaFold2 on the CASP datasets. This is an expected result, which can be largely attributed to the
language model being less effective than MSA retrieval in extracting evolutionary context Lin et al. (2023).
While future work may consider training an MSA-based version of MiniFold that can be more directly
compared to these tools, we do not claim that all our observations are directly applicable to MSA based
models such as AlphaFold2. Instead, our results highlight that the architecture of pLM based structure
prediction models need not necessarily be the same as their MSA counterpart. Since MiniFold, similarly
to ESMFold, trails the performance of MSA based models, it may be beneficial to combine the speed of
MiniFold with the accuracy of a more computationally expensive method by applying them in succession to
achieve a good balance in a large scale screen.

We also report a comparison between the MDS and transformer-based structure realizers in Table 2. Sur-
prisingly, we find that the non-parametric MDS approach is just as effective as the transformer model in
recovering the Cα trace, though a small regression in RMSD is noticeable. Although using MDS is imprac-
tical because of its lengthy computation time, this result suggests that the underlying structure has already
been discovered by the pairwise track and that distogram supervision alone can be effective in predicting
protein structure. It also helps put into perspective the surprising effectiveness of a simple transformer com-
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Figure 4: Left panel: overall compute time as a function of the sequence length, computed over the 191
targets in the CAMEO test set. MiniFold is 10 to 20x faster and shows improved scaling as a function of
the input sequence length. Right panel: peak memory usage at different sequence lengths.

pared to equivariant architecture such as the IPA. Interestingly, AlphaFold3 reached a similar conclusion,
opting for a non-equivariant structure module.

Uncertainty estimation Current protein folding models provide pLDDT scores to quantify the uncer-
tainty of predicted structures. We also train a pLDDT predictor, which obtains a correlation of 0.76 on
CAMEO and 0.9 on CASP14. In addition, we demonstrate that the entropy of the predicted distogram is
a reasonable indicator of uncertainty. As shown in Figure 7, we find that predictions with lower entropy
(e.g., higher certainty) tend to have higher LDDT scores. The Pearson correlation between true LDDT and
distogram entropy is 0.60 on the CAMEO dataset and 0.9 on the CASP14 dataset. Although not as effective
as the pLDDT predictor, the distogram entropy is visibly a powerful measure of uncertainty.

4.2 MiniFold Efficiency

4.2.1 Experimental Setting

We perform a systematic analysis of the throughput and memory usage of our proposed MiniFold architecture.
We run MiniFold, ESMFold and OpenFold’s implementation of AlphaFold2 on the CAMEO test set, and
compute the throughput at different sequence lengths. Furthermore, we analyze the step-by-step progression
from the Evoformer used in the ESMFold model to our proposed Miniformer:

• Full: This is the original Evoformer baseline in the ESMFold implementation, which uses the trian-
gular updates from the OpenFold project Ahdritz et al. (2022). We test the full Evoformer has 48
folding blocks and 3 recycling steps.

• No sequence: We remove the sequence track, keeping only the pairwise track

• No attention: We remove the triangular attention, but keep the triangular update.

• Bi-directional: We fuse the outgoing and incoming layers and include the down-projection.

• Ours: We include our two optimized GPU kernels in the final Miniformer.

4.2.2 Results

As shown in Figure 4, When measuring speed end to end by running each tool over the CAMEO test set,
we observe considerable speedup over ESMFold and the reference OpenFold implementation(ignoring MSA
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Figure 5: Ablations for Miniformer memory (left) and time (right) improvement ratio. The full model (cyan
bar) corresponds to the original Evoformer implementation in ESMFold. Our Miniformer model (green
bar) with all optimization techniques (Removing sequence track and triangular attention, adding kernels,
bi-directional) achieves 10-20x improvement in throughput over Evoformer. The model results in significant
speedup and memory efficiency depending on the sequence length.

compute time), with speedups ranging from 10x for a length 400 protein up to 20x for a length 1000 protein.
We also report a controlled ablation on our proposed Miniformer.

Our results show that each of the steps proposed above contribute favorably to the model’s improved effi-
ciency. We note that the removal of the sequence track has minimal effect on inference speed, but reduces
the number of trainable parameters considerably (from 600M down to 23M in ESMFold). The removal of
the triangular attention and the use of a downward projection in the multiplicative update yield substantial
speedups, achieving nearly 5x improvement over the baseline. Our proposed kernels provide an another 2 to
3x speedup, leading to a total of 10 to 20x improvement in throughput for the full size model, with improved
scaling as a function of protein length.

The bottom panel of Figure 5 measures the peak memory usage during inference over different protein
lengths. Here, we see that our proposed kernels result in substantial savings, and that MiniFold improves
memory efficiency by nearly 10x for longer proteins. These results have important consequences regarding
inference as well as training, allowing larger batch sizes which can result in faster training times.

5 Conclusion

In this work, we propose a highly efficient architecture for protein structure prediction, and a hardware-
optimized implementation that results in considerable savings in both speed and memory while conserving
most of its expressive power and performance. Our results have important implications regarding the use of
protein structure prediction models for high throughput applications. On the other hand, we observe that
MiniFold, similar to ESMFold, has room for improvement before matching the results of Alphafold2 and the
all atom capabilities of RoseTTAFold All-Atom Krishna et al. (2024), AlphaFold3 Abramson et al. (2024)
and Boltz-1 Wohlwend et al. (2024). While our work builds from the success of PLM’s, future work could
aim to bridge the performance gap by expanding MiniFold to the use of multiple sequence alignments (MSA)
as input, and to explore methods to speed up the construction and utilization of these MSAs. The methods
described here could also be generalized to multi-chain complexes as well as full atom prediction. As such,
this work serves as a stepping stone towards the goal of matching AlphaFold3 and Boltz’s performance at a
fraction of the computational cost.
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A Architecture details

Algorithm 1 outlines the architecture of the miniFormer block, which takes as initial input the pairwise
representations z ∈ RL×L×c from the embedding module and updates it through triangular multiplicative
updates and transition layers.

Algorithm 1 Miniformer Block, related to Figure 2

Triangular({zij}, c = 128) :

1 : zij ← LayerNorm(zij) zij ∈ Rc

2 : aij , bij , cij , dij ← sigmoid(Linear(zij)) · Linear(zij) aij , bij , cij , dij ∈ Rc/4

3 : zij ← Concat (
∑

k aik · bjk,
∑

k cki · dkj) zij ∈ Rc/2

4 : zij ← LayerNorm(zij) zij ∈ Rc/2

5 : zij ← sigmoid(Linear(zij)) · Linear(zij) zij ∈ Rc

Transition({zij}, c = 128) :

1 : zij ← LayerNorm(zij) zij ∈ Rc

2 : zij ← ReLU(Linear(zij)) zij ∈ R4c

3 : zij ← Linear(zij) zij ∈ Rc

MiniformerBlock({zij}, c = 128) :

1 : zij ← zij + Triangular(zij) zij ∈ Rc

2 : zij ← zij + Transition(zij) zij ∈ Rc

Algorithm 2 outlines the architecture of the transformer-based realizer, which replaces the IPA-based struc-
ture module found in AlphaFold 2. The Gram-Schmidt, AngleResnet and ComputeAllAtomCoordinates
subroutines are as described in AlphaFold 2 Jumper et al. (2021). The algorithm takes as input the single
and pair representations s ∈ RL×cs and z ∈ RL×L×cs

Algorithm 2 Transformer-based realizer, related to Figure 3

TransformerRealizer({si}, {zij}, Nl = 8, H = 16, cs = 1024, cz = 128) :
1 : sinitial

i ← LayerNorm(sinital
i ) si ∈ Rcs

2 : si ← Linear(sinital
i )

3 : zij ← LayerNorm(zij) zij ∈ Rcz

4 : bNlh
ij ← Linear(zij) bNlh

ij ∈ RNlH

5 : For(l ∈ [1, ..., Nl])
6 : {si} ← {si}+ PairBiasedSelAttnl({si}, bl

ij)
7 : {si} ← {si}+ Transitionl({si})
# Get backbone frames
8 : Ni, Cai, Ci = Linear(si)
9 : Ti = Gram-Schmidt(Ni, Cai, Ci)
# Proceed as in AlphaFold2 Structure module
10 : αf

i = AngleResnet(sinital
i , si)

11 : T f
i , xa

i = ComputeAllAtomCoordinates(αf
i , Ti)

12 : Return(T f
i , xa

i , {si}, Ti, αf
i )
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Algorithm 3 outlines the procedure used to realize the distogram coordinates with a paramter-free method.
The ShortestPath subroutine uses some variation of the Floyd-Warshall algorithm.

Algorithm 3 Coordinate Realizer

def MDS(logits ∈ RN×N×64, dmax = 25Å, e ∈ R64) :
1 : Dij ←

∑64
b=1 argmax((logitsij)b · e− b)

2 : Dii ← 0

3 : Wij ←

{
1, if (Dij < dmax) & (i ̸= j)
0, otherwise

4 : D← ShortestPath(D⊙W)

5 : Jij ←

{
1
N , if (i ̸= j)
0, otherwise

6 : B← − 1
2 ∗ J ∗D◦2 ∗ J

7 : Λ, V← eigen-decomposition(B)
8 : Cα ← V⊙

√
Λ

9: for i ∈ [1, 2, 3]
10 : Cα ← LBFGS(D, Cα)
11 : Return Cα Cα ∈ RN×3

B Kernels

B.1 Algorithms

The following pseudocode outlines the Triton kernels implemented during model inference for the self-gating
and feed-forward subroutines. Our kernels show large improvements, even when compared to torch.compile.

Algorithm 4 Self-gating kernel. Each parallel kernel thread i is responsible for rows Ri and columns Ci of
the output matrix Y . Computes Y = Linear(V, X) · Sigmoid(Linear(W, X))

def SelfGating(X, V, W, Y, i, B):
1 : Xi ← X[Ri, :] Incurs one read operation forX
2 : Vi ← V [:, Ci]
3 : Wi ←W [:, Ci]
4 : Y 1

i ← DOT (Xi, Vi)
5 : Y 2

i ← DOT (Xi, Wi)
6 : Yi ← MUL(SIGMOID(Y 1

i ),Y 2
i )

7 : Y [Ri, Ci]← Yi Incurs one write operation forY

15



Published in Transactions on Machine Learning Research (04/2025)

Algorithm 5 Feed-forward kernel. Each parallel kernel thread i is responsible for rows Ri and all columns
of the output matrix Y . Computes Y = X + Linear(ReLU(Linear(X, V )), W )

def FFN(X, V, W, Y, i, B):
1: Xi ← X[Ri, :]) Incurs one read operation forX
2 : forj ∈ [1, ..., N//B]
3 : Vj ← V [:, Cj ] Here Cj is a block of B columns of V
4 : Wj ←W [Cj , :] Cj is also a block of B rows of W
5 : H ← RELU(DOT(Xi, Vj))
6 : Xi ← Xi + DOT(H, Wj)
7 : Y [Ri, :]← Xi Incurs one write operation forY

B.2 Latency measurements

Size Torch Torch-compile Ours
64.0 0.125465 0.139198 0.217369
128.0 0.074751 0.136619 0.218885
256.0 0.263739 0.135980 0.214086
512.0 1.004088 0.442307 0.218418
1024.0 3.891327 1.666970 0.868068
2048.0 18.806410 6.639621 3.469150

Table 3: Self-gating kernel latency (ms)

Size Torch Torch-compile Ours
64.0 0.047169 0.142224 0.126898
128.0 0.120064 0.135038 0.124615
256.0 0.403863 0.373916 0.180016
512.0 1.543569 1.366344 0.463024
1024.0 6.119958 5.369287 1.726875
2048.0 32.731358 23.447216 6.805521

Table 4: MLP kernel latency (ms)

C Predictions

Figure 6: Predicted structures for MiniFold (blue), ESMFold (red) and the ground truth PDB structure
(green). PDB ID from left to right: 7e5j, 7efs, 7rcz, 7dki.
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D Uncertainty prediction

Figure 7: The trained pLDDT predictor (left) and the entropy over the predicted distogram (right) correlate
with the true lDDT Cα as evaluated in the CAMEO dataset. CAMEO on top block and CASP14 on bottom
block. The R value was computed using the scipy.stats.linregress function and the spearman correlation ρ
was computed with stats.spearmanr with default parameters in python.

E Experimental Setting

Training and validation set Similarly to ESMFold, we constructed a training set from the AlphaFold
Protein Structure database. Varadi et al. (2023). We first cluster Uniref50 sequences Suzek et al. (2007) at
30% sequence similarity, and then select the structures with an average pLDDT score above 0.7. This results
in a high quality, diverse dataset of roughly 10 million structures. Interestingly, we found that training on
this distillation set alone was sufficient to achieve high accuracy. We randomly sample 10000 structure as
our fixed validation set for model selection and hyper-parameter optimization.

Benchmarks We evaluate MiniFold using CAMEO targets Haas et al. (2019) released between April 1,
2022 and June 31, 2022, for a total of 191 structures. Similar to ESMFold, we also evaluate on 51 structures
from the CASP14 targets, chosen to avoid overlaps with the ESMFold training set. We also use 47 targets
from CASP15 with structures made recently publicly available. The specific protein ID’s used for each
dataset can be found in appendix H.

Metrics We report the local distance difference test (lDDT) and root mean square deviation (RMSD)
for each dataset and model. We also report both full-atom metrics. A higher metric correspond to better
performance for lDDT, and lower is better for RMSD. When computing metrics we align the reference
sequence to the residues available in the structure using the USalign tool Zhang et al. (2022). We also ignore
ambiguous residues (X, U, B, Z) in the evaluation, as well as any missing atom in the target structure.

Hyper-parameters and training details We train MiniFold using 12 and 48 Miniformer blocks. We
train the models on a single node using 8x A100 GPU’s and a batch size of 16 per GPU for an effective
batch size of 128 similar to ESMFold. We use the Adam optimizer with a learning rate of 3e-5 for the tuned
PLM layers, 1e-4 for the structure module parameters and 1e-3 for all others for all parameters. We use a
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pairwise embedding dimension of 128 in the Miniformer, and a sequence embedding dimension of 1024 with
16 self-attention heads each of 64 dimensions in the structure realizer. Training is performed in two stages:
first by limiting to the embedder and miniFormer blocks and then by enabling recycling and the structure
realizer.

F Validation Curve

Figure 8: Validation curve as a function of training steps. Left panel: full scale, Right panel: zoomed-in.

G MSA Depth

We show the performance of ESMFold and MiniFold as a function of MSA depth, showing that MiniFold
performs comparably well on orphan proteins with shallow to no sequence homologs. Both models show
degradation when less evolutionary signal is available as was previously reported by Lin et al. (2023). This
figure was constructed by comparing the performance of the model against the depth of the MSA produced
by the colabfold MSA server on these sequences.

Figure 9: LDDT-Cα as a function of MSA depth (i.e known sequence homologs).
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H Targets

The following list contains the target id and corresponding chain (if applicable) used for evaluation.

H.1 CAMEO

7W74-A, 7PC6-A, 7L8N-A, 7VW0-B, 7E4S-A, 7QDV-A, 7K2Z-A, 7F6J-C, 7E1C-A, 7EA4-A, 7WKQ-A,
7PW1-A, 7EL8-A, 7X8V-A, 7U5Y-A, 7NTN-A, 7O9F-B, 7BGS-B, 7RCZ-A, 7WWR-A, 7TJ1-D, 7VOH-A,
7KO9-A, 7LGR-A, 7LVE-A, 7STT-A, 7QDW-A, 7ESO-A, 7EKZ-A, 7RXE-A, 7PUO-A, 7QU2-A, 7E1B-A,
7E52-A, 7E8K-B, 7VU7-A, 7VNO-A, 7ETR-A, 7TOC-A, 7TLF-I, 7QBG-E, 7WEW-A, 7ED1-A, 7ACY-B,
7RCW-A, 7VMC-B, 7BI4-A, 7EFS-D, 7E4J-A, 7WIN-B, 7TLF-G, 7TA5-A, 7PMO-G, 7EAD-A, 7KW6-A,
7Q51-A, 7OPY-F, 7S8T-J, 7MYV-B, 7S94-C, 7TKV-A, 7TA9-A, 7LQN-A, 7M5W-A, 7KPJ-E, 7RGV-A,
7EGT-B, 7MO6-B, 7E0V-C, 7E3T-A, 7P0H-A, 7O4O-A, 7U5F-D, 7BEW-A, 7NDE-A, 7P3I-B, 7THH-A,
7QBZ-A, 7BLL-A, 6Y0D-A, 7VU5-A, 7LH6-A, 7KDX-B, 7FIW-B, 7TBU-A, 7S2R-B, 7RW4-A, 7LK4-D,
7MKK-B, 7PHW-E, 7U4H-A, 7TT9-A, 7E04-A, 7LVF-A, 7PRD-A, 7A67-A, 7LI0-A, 7QSU-A, 7S5C-A,
7WJ9-A, 7T1Y-C, 7W1F-B, 7PUJ-A, 7R74-B, 7EHG-E, 7WGK-A, 7D66-C, 7VEE-A, 7MCC-A, 7EBQ-A,
7LSV-B, 7THW-A, 7SGN-C, 7LQM-D, 7ETR-C, 7F6L-B, 7A67-B, 7V9F-A, 7N40-C, 7LXK-A, 7QBP-A,
7V4S-A, 7F8A-A, 7JIZ-A, 7PUG-A, 7PZJ-A, 7QSS-A, 7WNW-B, 7DKI-A, 7JT9-A, 7KOB-A, 7N0E-A,
7Q05-E, 7E0L-A, 7MHU-A, 7B7T-A, 7TB5-A, 7WRK-A, 7VWT-A, 7LXS-A, 7VSP-C, 7BBZ-A, 7EBT-B,
7ON9-A, 7AAL-A, 7V8E-B, 7B9P-A, 7WRP-A, 7F3A-A, 7OS0-A, 7E4U-A, 7ERV-A, 7W26-A, 7SKC-A,
6ZPP-A, 7TXP-A, 7NUV-A, 7DUP-A, 7V9H-A, 7EYM-A, 7MWR-A, 7STZ-C, 7WWX-A, 7ED6-A, 7V6I-
A, 7EWU-B, 7BCB-B, 7E5J-A, 7TCR-C, 7REJ-A, 7ERP-B, 7PAB-A, 7R6P-A, 7EZG-A, 7E8J-A, 7TV9-C,
7OM4-B, 7NMI-B, 7E3Q-A, 7T03-A, 7FFA-A, 7VJS-A, 7EYL-A, 7R09-A, 7TMU-C, 7B0K-A, 7AB3-E,
7DT1-A, 7N40-B, 7RY7-A, 7EJG-C

H.2 CASP14

T1024, T1025, T1026, T1027, T1028, T1029, T1030, T1031, T1032, T1033, T1034, T1035, T1036s1, T1037,
T1038, T1039, T1040, T1041, T1042, T1043, T1044, T1045s1, T1045s2, T1046s1, T1046s2, T1047s1,
T1047s2, T1049, T1050, T1053, T1054, T1055, T1056, T1057, T1058, T1064, T1065s1, T1065s2, T1067,
T1070, T1073, T1074, T1076, T1078, T1079, T1080, T1082, T1089, T1090, T1091, T1099

H.3 CASP15

T1104, T1106s1, T1106s2, T1112, T1113, T1114s1, T1114s2, T1114s3, T1119, T1120, T1121, T1122, T1123,
T1124, T1125, T1132, T1133, T1134s1, T1134s2, T1137s1, T1137s2, T1137s3, T1137s4, T1137s5, T1137s6,
T1137s7, T1137s8, T1137s9, T1145, T1147, T1151s2, T1152, T1154, T1158, T1159, T1170, T1173, T1174,
T1176, T1178, T1179, T1185s1, T1185s2, T1185s4, T1187, T1188, T1194
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