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Abstract

Test-Time Scaling (TTS) improves the performance of Large Language Models
(LLMs) by using additional inference-time computation to explore multiple reason-
ing paths through search. Yet how to allocate a fixed rollout budget most effectively
during search remains underexplored, often resulting in inefficient use of compute
at test time. To bridge this gap, we formulate test-time search as a resource al-
location problem and derive the optimal allocation strategy that maximizes the
probability of obtaining a correct solution under a fixed rollout budget. Within this
formulation, we reveal a core limitation of existing search methods: solution-level
allocation tends to favor reasoning directions with more candidates, leading to the-
oretically suboptimal and inefficient use of compute. To address this, we propose
Direction-Oriented Resource Allocation (DORA), a provably optimal method that
mitigates this bias by decoupling direction quality from candidate count and allo-
cating resources at the direction level. To demonstrate DORA’s effectiveness, we
conduct extensive experiments on challenging mathematical reasoning benchmarks
including MATH500, AIME2024, and AIME2025. The empirical results show that
DORA consistently outperforms strong baselines with comparable computational
cost, achieving state-of-the-art accuracy. We hope our findings contribute to a
broader understanding of optimal TTS for LLMs.

1 Introduction

As the challenges of scaling up computation and data resources for pretraining continue to grow,
scaling test-time computation has emerged as a critical paradigm for enhancing model performance
(Brown et al., 2024; Snell et al., 2024; Wu et al., 2025a). By allocating additional computation at
inference time, Test-Time Scaling (TTS) improves the performance of LLMs on complex tasks such
as mathematical reasoning by enabling deeper exploration of possible solutions (Qwen Team, 2024;
Kimi Team et al., 2025; DeepSeek-AI et al., 2025). One prominent approach to scaling test-time
computation is through search, where diverse candidate solutions are proposed and filtered using a
Process Reward Model (PRM) to guide the procedure (Chen et al., 2024b; Snell et al., 2024; Beeching
et al., 2024; Wu et al., 2025a; Liu et al., 2025). By pruning low-quality paths early and focusing
computation on more promising ones, these strategies help steer the search process toward trajectories
that are more likely to yield correct answers (Setlur et al., 2025b).

While these strategies yield promising performance gains, the question of how to optimally allocate
a fixed rollout budget across competing candidate trajectories remains underexplored. In practice,
existing strategies rely on human-designed heuristics (Figure 1): preserving certain number of high-
quality candidates (Beam Search) (Snell et al., 2024), promoting diversity (DVTS) (Beeching et al.,
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Figure 1: Comparison of different parallel Test-Time search strategies.

2024), or balancing exploration and exploitation (REBASE) (Wu et al., 2025a). While these intuitions
offer practical value, they lack a principled foundation and do not provide guarantees of optimality,
such as maximizing the probability of obtaining a correct solution. As a result, rollout budgets may
be allocated inefficiently, limiting the effectiveness of test-time computation.

To bridge this gap, we formulate test-time search as a resource allocation problem, where the goal is
to maximize the probability of obtaining a correct solution under a fixed rollout budget (Section 3.1).
Based on this formulation, we derive the theoretical form of the optimal allocation strategy and
revisit existing search methods through a unified lens. We show that, under the assumption that
candidate solutions are independent, several widely used strategies approximate the optimal allocation
corresponding to different assumptions about the reliability of the reward estimates. However, this
independence assumption does not hold in practice, as many candidates share the same underlying
reasoning direction (Bi et al., 2024; Hooper et al., 2025). Our theoretical analysis further shows that
solution-level allocation is suboptimal: it conflates direction quality with candidate count, biasing
the allocation toward overrepresented directions and leading to inefficient use of test-time compute
(Section 3.2).

To address this issue, we propose Direction-Oriented Resource Allocation (DORA), a provably
optimal method that corrects for this allocating bias by decoupling direction quality from candi-
date count and allocating resources at the direction level. To validate the effectiveness of DORA,
we evaluate it on the challenging mathematical benchmarks MATH500 (Hendrycks et al., 2021),
AIME2024 (AI-MO, 2024), and AIME2025 across a broad range of rollout budgets and policy
models. The empirical results show that DORA consistently outperforms strong baseline strategies
under comparable computational budgets, highlighting its ability to improve the effectiveness of each
rollout and enhance the overall efficiency of TTS.

2 Setup & Preliminaries

2.1 Problem Formulation

We formulate the parallel search process under a unified framework, defined by the tuple
(π,Q,O, V,N), where π(a | τ) is a policy model that generates an action a (reasoning step) given a
partial solution τ = (x, a1, . . . , ai), where x denotes the input problem; Q : τ 7→ [0, 1] is the Process
Reward Model (PRM), which scores the quality of a partial or complete solution; O : RN → NN

+
is the resource allocation strategy, dynamically assigning computational budget based on solution
scores; V is the voting method that aggregates final answers from completed solutions to select the
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most likely correct final answer (e.g., via majority voting, best-of-N, or weighted best-of-N); and N
is the total rollout budget of parallel explorations.

The parallel search process can be summarized as Algorithm 1. Specifically, the process iteratively
expands a set of partial solutions using the policy π, collects complete solutions, and redistributes the
rollout budget via the allocation strategy O based on intermediate rewards from Q. Once sufficient
complete solutions are gathered, the final answer is selected using the voting method V .

2.2 Parallel Search Method

We consider four parallel TTS methods which are popularly used in practice: Temperature Sampling
(Brown et al., 2024), Beam Search (Snell et al., 2024), Diverse Verifier Tree Search (DVTS) (Beeching
et al., 2024), and Reward Balanced Search (REBASE) (Wu et al., 2025a). As pointed out by Snell
et al. (2024), lookahead search is inefficient due to sequential sampling, so we do not include it or
other methods involving lookahead operations, such as Monte Carlo Tree Search (MCTS).

Based on the unified framework above, we now analyze these strategies from the perspective of
resource allocation. While sharing the same overall structure, they differ solely in their choice of
allocation function O(R), which determines how the total rollout budget N is distributed across
candidate solutions based on their PRM scores. We denote the number of rollouts assigned to the i-th
candidate τj as O(R)i, where O is the allocation function and R = {R1, . . . , Rk} is the vector of
PRM scores.

Temperature Sampling. This method performs sampling purely from the policy model, without
using reward information for rollout allocation. All candidates are treated equally, and each receives
one rollout. External reward signals may still be used at the final answer selection stage, e.g., through
best-of-N or weighted best-of-N voting.

OTemp(R)i = 1. (1)

Beam Search. Beam Search selects the top K = N/M candidates based on their PRM scores,
where M is the number of rollouts assigned per candidate (i.e., the beam width). Only the top-K
receive any rollout allocation, while the rest are discarded:

OBeam(R)i =

{
M, if i ∈ Top-K(R),

0, otherwise.
(2)

DVTS. To encourage exploration across diverse solution branches, DVTS partitions the k candidates
into K = N/M disjoint groups of size M , corresponding to independent subtrees. Within each
group, it performs a local Beam Search by selecting the candidate with the highest PRM score and
assigning it M rollouts. Only one candidate per group receives any resource, and groups do not share
information:

ODVTS(R)i =

{
M, if i = argmaxj∈G(i)Rj ,

0, otherwise,
(3)

where G(i) denotes the group containing candidate i.

REBASE. Instead of selecting a fixed number of candidates, REBASE distributes the total rollout
budget more smoothly based on the relative quality of each candidate to balance exploitation and
exploration. It applies a softmax over the PRM scores Ri to compute allocation weights, and assigns
rollouts proportionally:

OREBASE(R)i = round (N · wi) , where wi =
eRi/Tb∑
j e

Rj/Tb
. (4)

where Tb is a temperature parameter controlling the sharpness of the allocation.

3 Optimal Parallel Search for Test-Time Scaling

While previous parallel search methods enable efficient TTS by exploring multiple reasoning paths
simultaneously, their effectiveness critically depends on how the fixed compute budget (i.e., number
of rollouts) is allocated across candidate solutions. We focus on the following question:
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Given a fixed rollout budget, how should one allocate resources across candidate
reasoning paths to maximize performance (i.e., the success rate of achieving a
correct solution)?

We are the first to formulate this problem and study the associated parallel search strategies, setting
our work apart from previous parallel search studies (Wu et al., 2025a; Beeching et al., 2024; Jiang
et al., 2024). To address this, we introduce a Bayesian probabilistic model of solution correctness,
and derive an allocation strategy that maximizes expected success under a rollout budget constraint.

3.1 Theoretical Formulation of Optimal Resource Allocation

We aim to allocate a fixed rollout budget N across k candidate reasoning paths to maximize the
probability of solving the problem correctly, i.e., obtaining at least one successful solution. Let
pi ∈ [0, 1] denote the (unknown) success probability of the i-th candidate τi when sampled once.
Assumption 1. The success events of different candidate solutions are independent.

Under Assumption 1, the probability of obtaining at least one success under an allocation vector
B = {Bi}ki=1 is given by:

P(success) = 1−
k∏

i=1

(1− pi)
Bi . (5)

Since the true values of pi are unknown, we adopt a Bayesian modeling approach to capture the
uncertainty in their estimation. In practice, pi is often approximated using the Process Reward Model
(PRM) score Ri = Q(τi) (Wang et al., 2024a; Luo et al., 2024; Wang et al., 2024b; Setlur et al.,
2025a; Lee et al., 2025), which serves as a proxy for the probability of correctness. However, these
estimates are subject to considerable noise due to imperfections in the policy model, variations in
decoding temperature, and inherent sampling randomness. To model this uncertainty explicitly, we
treat each pi as a latent variable and place a Beta prior over it. Specifically, we normalize the PRM
score into wi ∈ (0, 1), and define:

pi ∼ Beta(κwi, κ(1− wi)), (6)

where κ > 0 controls the concentration of the prior around its mean. Larger values of κ correspond
to higher confidence in the PRM estimate wi, while smaller values encode greater uncertainty (see
Appendix C for more details).

Our goal is to maximize the probability of obtaining at least one successful solution. Under the
Bayesian model, this is equivalent to minimizing the expected joint failure:

min∑
Bi=N

E

[
k∏

i=1

(1− pi)
Bi

]
. (7)

This defines a convex optimization problem over the rollout allocation vector B = {Bi}ki=1. By
applying the Karush-Kuhn-Tucker (KKT) conditions, we characterize the limiting behavior of the
optimal allocation (see Appendix B.1 for details of proof):
Proposition 1 (Limiting Behavior of Optimal Allocation). Let O⋆(w)i denote the optimal rollout
allocation for candidate i, where w = {w1, . . . , wk} are the normalized PRM scores. Then:

• When κ → 0, the optimal allocation assigns one rollout to each of the top-min(k,N)
candidates with highest wi scores:

O⋆(w)i =

{
1, if i ∈ Top-min(k,N) of w,
0, otherwise,

with the remaining N −min(k,N) rollouts arbitrarily assigned.

• When κ→ ∞, the optimal allocation converges to a deterministic allocation that assigns
all rollouts to the highest-scoring candidate:

O⋆(w)i =

{
N, if i = argmaxj wj ,

0, otherwise.
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• When κ is fixed and finite, the optimal allocation approximately follows a shifted linear rule:

O⋆(w)i ≈ (N + kκ) · wi − κ.

Proposition 1 shows that the optimal allocation strategy evolves continuously with the confidence
parameter κ. When κ→ ∞, the Beta prior becomes highly concentrated around the PRM estimate
wi, reflecting strong confidence in its accuracy. In this case, the optimal solution assigns the entire
rollout budget to the top-ranked candidate, effectively recovering Beam Search with beam width
M = N (Equation 2) and fully exploiting the highest-scoring path.

Conversely, when κ → 0, the Beta prior becomes maximally uncertain, collapsing to a Bernoulli
mixture where each candidate has a binary chance of being correct or incorrect, with prior weight wi.
In this setting, relying heavily on any single PRM estimate becomes risky, as the scores provide no
meaningful guidance. To mitigate this risk, the optimal strategy spreads the rollout budget across
multiple candidates in proportion to their prior likelihoods. This reduces to sampling top candidates
according to a multinomial distribution over wi, a behavior closely aligned with temperature sampling
used in stochastic decoding.

When κ is fixed and finite, the optimal allocation takes a smoothed, uncertainty-aware form that
interpolates between the two extremes above. Specifically, the rollout budget is approximately
distributed according to a shifted linear rule (Proposition 1), which closely matches the REBASE
strategy (Equation 4). In this regime, the PRM scores are treated as informative but noisy, and the
allocation strategy balances exploration and exploitation accordingly.

In practice, due to sampling noise and imperfections in the policy model, PRM scores carry consider-
able uncertainty. Consistent with this observation, we find that REBASE, which allocates rollouts
in proportion to PRM scores, outperforms alternative strategies across a wide range of tasks (see
Figure 3). This supports the relevance of the κ→ 0 setting, which we adopt as the default throughout
the paper. Accordingly, we treat REBASE as the baseline solution-level allocation strategy in all
subsequent analysis.

3.2 Suboptimality of Solution-Level Allocation

While REBASE is optimal under the assumption of candidate independence (Assumption 1), this
condition often does not hold in practice. In particular, many candidate solutions share the same
underlying reasoning direction (Bi et al., 2024; Hooper et al., 2025), forming clusters of highly
correlated outputs. The solution-level nature of REBASE leads to skewed allocation when candidate
counts are imbalanced across reasoning directions.

To formalize this issue, we group candidate solutions into g reasoning directions. Let direction j
contain kj candidates, all sharing the same PRM score Rj , and let Ej denote the index set of these
candidates.

Under REBASE, rollout allocation is performed at the solution level, which implicitly induces a
direction-level allocation according to Eq. 4:

B(solution)
j =

∑
i∈Ej

N · eRj∑g
l=1 kle

Rl
= N · kje

Rj∑g
l=1 kle

Rl
. (8)

In contrast, the optimal allocation strategy would treat each reasoning direction as a single unit and
assign rollouts in proportion to the softmax over direction-level scores:

B(direction)
j = N · eRj∑g

l=1 e
Rl
. (9)

By comparing the induced solution-level allocation in Eq. 8 with the optimal direction-level allocation
in Eq. 9, we derive the following proposition (see Appendix B.2 for details of proof):
Proposition 2 (Suboptimality of Solution-Level Allocation). When Assumption 1 does not hold,
the solution-level allocation B(solution)

j is suboptimal: it does not match the optimal direction-level
allocationB(direction)

j unless all directions contain the same number of candidate solutions, i.e., kj = k
for all j.
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This result reveals a fundamental limitation of solution-level allocation: it implicitly favors reasoning
directions with more candidate solutions (Figure 2). This bias results in inefficient use of the rollout
budget, motivating our proposed method: Direction-Oriented Resource Allocation (DORA).
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Figure 2: Comparison between Solution-Level Resource Allocation and proposed Direction-Oriented
Resource Allocation (DORA).

3.3 Direction-Oriented Resource Allocation (DORA)

To address the bias introduced by solution-level allocation, we propose DORA, a method that adjusts
rollout allocation by identifying and correcting for structural redundancy among candidate solutions.
As illustrated in Figure 2, DORA incorporates semantic structure into the allocation process by softly
clustering solutions into shared reasoning directions and assigning rollouts proportionally at the
direction level, rather than treating each solution independently.

Given a set of candidate solutions {τ1, . . . , τk}, DORA first estimates which solutions share reasoning
structure by computing semantic embeddings ei ∈ Rd via a pretrained embedding model. These
embeddings are used to construct a cosine similarity matrix S ∈ Rk×k:

Sij =
e⊤i ej

∥ei∥ · ∥ej∥
. (10)

To avoid hard clustering and retain flexibility, we interpret the similarity between candidates as a soft
assignment over directions. Specifically, we apply a row-wise softmax over S with temperature Ts,
yielding an affinity matrix P ∈ Rk×k:

Pij =
eSij/Ts∑k

j′=1 e
Sij′/Ts

. (11)

The diagonal entry γi = Pii then measures the semantic uniqueness of solution τi, serving as a proxy
for the inverse size of the solution’s underlying direction.

Following the REBASE formulation in Eq. 4, we compute normalized quality weights wi from PRM
scores Ri = Q(τi) using a softmax with temperature Tb.

To incorporate semantic structure, we reweight each wi by its uniqueness:

w′
i =

wi · γi∑k
j=1 wj · γj

. (12)
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This downweights redundant solutions and redistributes resources toward distinct reasoning directions.

Finally, rollouts are allocated proportionally:

Bi = round(N · w′
i). (13)

DORA balances rollouts across semantically distinct reasoning directions, mitigating the redundancy
bias of solution-level methods like REBASE. As summarized in Theorem 1, DORA yields the optimal
direction-level allocation under mild assumptions (See Appendix B.3 for the full derivation).

Theorem 1 (Optimality of DORA). Assume candidate solutions are grouped into g reasoning
directions, where direction j consists of candidates indexed by Ej , and all candidates in Ej share the
same PRM score Rj . Then DORA recovers the optimal direction-level rollout allocation specified in
Eq. 9.

4 Experiments

4.1 Experimental Setup

We use Qwen2.5-Math-PRM-7B (Zhang et al., 2025) as our Process Reward Model (PRM) due to
its superior reward estimation performance (Zheng et al., 2024; Song et al., 2025). For the policy
models, we include Llama-3.2-1B-Instruct, Llama-3.2-3B-Instruct (AI, 2024), and Qwen2.5-1.5B-
Instruct (Yang et al., 2024), covering a range of model scales and architectures. Considering that
existing open-source PRMs are primarily trained on mathematical tasks, we focus our evaluation on
three challenging mathematical reasoning benchmarks: MATH500, AIME2024, and AIME2025. We
evaluate models under rollout budgets of 16, 32, 64, 128, and 256. Following Hochlehnert et al. (2025),
we repeat all experiments five times on MATH500 and ten times on AIME2024 and AIME2025,
reporting the average performance across all runs to reduce the impact of randomness and improve
the reliability of our conclusions. For reward assignment during rollouts, we use the final PRM score
at each step as the reward for that step. The final answer is selected using weighted majority voting,
where each trajectory is weighted by its final PRM score. We use these aggregation strategies since
they have been shown to outperform other methods of aggregating trajectories to determine the final
response (Beeching et al., 2024). See Appendix D.1 for experimental hyperparameters.

(a) (b)

Figure 3: Accuracy and Pass rate comparison under various rollout budgets on MATH500, AIME2024,
and AIME2025.
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Table 1: Comparison of FLOPs and inference latency (s) of different methods on MATH500 using
LLaMA-3.2-1B-Instruct. The best performance for each metric is highlighted in bold. Temperature
Sampling is excluded due to its significantly lower accuracy.

Method Rollout FLOPs Latency Accuracy
Policy Model PRM Embedding Model Total

Beam Search 256 3.58× 1014 2.50× 1015 0 2.86× 1015 345 63.6
DVTS 256 3.79× 1014 2.65× 1015 0 3.03× 1015 253 62.0
REBASE 256 3.88× 1014 2.72× 1015 0 3.11× 1015 490 67.4
DORA 64 8.45× 1013 5.92× 1014 2.16× 1014 8.92× 1014 124 68.7

4.2 Main Results

DORA is the most effective parallel search method. As shown in Figure 3 (a), DORA consis-
tently achieves the highest accuracy across all policy models and rollout budgets on the MATH500,
AIME2024, and AIME2025 benchmarks. This consistent superiority demonstrates DORA’s advan-
tage to make more efficient use of limited test-time compute compared to baseline strategies. To
better understand this advantage, we further analyze the pass rate (the number of correct solutions
among all sampled rollouts). As shown in Figure 3 (b), DORA consistently reaches more correct
solutions than other baselines, highlighting its effectiveness in exploring a broader set of high-quality
reasoning paths. Notably, the performance gap between DORA and REBASE widens as the rollout
budget increases. We hypothesize that this is due to growing redundancy in sampled solutions: with
more rollouts, a larger proportion of trajectories tend to converge to similar final solutions, making
REBASE’s solution-oriented allocation increasingly prone to overestimating certain reasoning direc-
tions. In contrast, DORA mitigates this issue by allocating rollouts at the direction level, allowing for
more accurate resource allocation.

4.3 Analysis

DORA is compute-optimal. Considering that DORA introduces an additional semantic similarity
step via an embedding model, we examine whether the associated computational overhead is justified
by the performance gains. To this end, we follow Snell et al. (2024), comparing the total FLOPs and
inference latency of each method, accounting for the computational cost of the policy model, PRM,
and embedding model. Table 1 reports both metrics alongside each method’s accuracy. The results
demonstrate that DORA is substantially more efficient than all baselines. Specifically, compared
to the strongest baseline, REBASE at 256 rollouts, DORA achieves higher accuracy using only 64
rollouts, with a 3.5× reduction in total FLOPs and a 4× speedup in inference latency. These findings
suggest that DORA achieves stronger performance with substantially less compute, demonstrating its
effectiveness as the most efficient test-time search method.

DORA provides larger gains on harder problems. Figure 4 shows that while DORA remains the
top-performing strategy across the entire MATH500 benchmark, the size of its advantage depends
sharply on difficulty. On easier Level 1–2 problems, most methods perform well given moderate
rollout budgets, so the accuracy curves for all methods converge closely. On the other hand, on harder
Level 3–5 problems, the gap between DORA and solution-level methods widens steadily with budget,
with DORA achieving a clear lead at higher rollout levels. We hypothesize that harder problems
amplify DORA’s strength as they typically require longer reasoning chains (Wu et al., 2025b), which
allows more opportunities for rollout allocation across search steps. As the number of allocation
rounds increases, a principled strategy like DORA counld compound its advantage by continually
prioritizing promising directions and avoiding wasted computation.

5 Related Work

LLM Test-Time Scaling. Scaling LLM test-time compute is an effective way to improve per-
formance (OpenAI, 2024). Prior work has explored various strategies, including sampling-based
methods with majority voting (Wang et al., 2023) and search-based techniques (Xie et al., 2023;
Khanov et al., 2024; Wan et al., 2024). More recently, search algorithms such as breadth-first and
depth-first search (Yao et al., 2023), and Monte Carlo Tree Search (MCTS) (Ma et al., 2023; Li
et al., 2022; Liu et al., 2023; Choi et al., 2023) have been applied to enhance reasoning. While
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Figure 4: Comparison of method accuracy on MATH500 across different difficulty levels.

these methods show promise, many rely on multi-step lookahead operations that are computationally
expensive and limit practical scalability (Snell et al., 2024). To improve efficiency, several studies
have proposed parallel search strategies (Snell et al., 2024; Beeching et al., 2024; Wu et al., 2025a).
These strategies demonstrate the effectiveness of parallel search at inference time. However, how to
allocate a fixed rollout budget most effectively during search remains underexplored.

Process Reward Models. Process reward models (PRMs) have emerged as a powerful tool for
improving the reasoning and problem-solving capabilities of large language models. By assigning
rewards to intermediate steps, PRMs enable finer-grained evaluation and more effective guidance
for multi-step reasoning. They have been shown effective in selecting low-error reasoning traces
and providing reward signals for reinforcement-style optimization (Uesato et al., 2022; Polu and
Sutskever, 2020; Gudibande et al., 2023). With their rapid development, benchmarks such as
ProcessBench (Zheng et al., 2024) and PRMBench (Song et al., 2025) have been introduced to
provide comprehensive evaluation protocols. Zhang et al. (2025) further offer practical guidelines for
training and deploying PRMs, releasing some of the strongest open-source PRMs to date, particularly
for mathematical reasoning.

Mathematical Reasoning with LLMs. Recent advances have significantly improved LLMs’
performance on mathematical tasks, driven by both training-time and test-time techniques. Training-
time methods include large-scale pretraining (OpenAI, 2023; Azerbayev et al., 2024; Shao et al.,
2024), supervised fine-tuning (Luo et al., 2023; Tang et al., 2024), and self-improvement via self-
generated solutions (Zelikman et al., 2022; Gulcehre et al., 2023; Setlur et al., 2024). Test-time
approaches leverage CoT prompting (Wei et al., 2022; Zhao et al., 2025), external tools (Gao et al.,
2023; Chen et al., 2023), and self-verification (Weng et al., 2023) to enhance reasoning without
changing model weights.

6 Conclusions

In this work, we formulate test-time search as a resource allocation problem and derive its optimal
solution under a Bayesian framework. Our theoretical analysis offers a unified perspective that
explains existing search methods as approximations under varying reward confidence. Furthermore,
we find that solution-level allocation favors directions with more candidates and results in suboptimal
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use of test-time compute. To address this, we propose DORA, a direction-oriented allocation
strategy that provably achieves optimality. Extensive experiments on three mathematical reasoning
benchmarks demonstrate that DORA consistently improves performance while reducing compute cost.
It achieves 3.5× fewer FLOPs and 4× lower latency compared to the strongest baseline REBASE.
These results highlight DORA’s ability to enhance both the effectiveness and efficiency of test-time
inference.

Limitations. While our study focuses on scenarios where a process reward model (PRM) is available
to evaluate partial trajectories, the underlying framework is not inherently tied to this specific
signal. In principle, DORA can incorporate alternative forms of intermediate feedback, such as
model confidence or likelihood-based heuristics, extending its applicability beyond PRM-supervised
domains. Another limitation is that our theoretical analysis assumes a low-confidence setting, which
may not fully capture the dynamics of confidence accumulation during multi-step reasoning. Adapting
the allocation strategy to account for increasing confidence over time presents a promising direction
for future work.
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A Details of Parallel Search Process

We present the detailed procedure of the Parallel Search Process in Algorithm 1.

Algorithm 1 Parallel Search Process
Require: Input problem x ∼ X , parameters (π,Q,O, V,N), step limit Tmax

Ensure: Final Answer
1: A0 ← {τj = x}Nj=1 ▷ Initial active partial solutions
2: Tfinal ← ∅ ▷ Collected complete solutions
3: for i = 0 to Tmax − 1 do
4: for all τj ∈ Ai do
5: Sample action a ∼ π(· | τj)
6: τj ← τj ◦ a
7: end for
8: Tfinal ← Tfinal ∪ {τj ∈ Ai | <EOS> ∈ τj} ▷ Add completed solutions
9: Ai ← Ai \ {τj ∈ Ai | <EOS> ∈ τj} ▷ Remove completed solutions

10: if |Tfinal| ≥ N then
11: break
12: end if
13: Compute PRM scores: Rj ← Q(τj) for each τj ∈ Ai

14: Compute rollout allocation: Bj ← O(R)j , where R = {R1, . . . , R|Ai|}
15: Ai+1 ← ∅
16: for j = 1 to |Ai| do
17: Add Bj copies of τj to Ai+1

18: end for
19: end for
20: return V (Tfinal) ▷ Select final answer from complete solutions

B Proof Section

B.1 Proof of Proposition 1

Let pi ∼ Beta(κwi, κ(1 − wi)), where wi ∈ (0, 1) is the normalized PRM score for candidate τi.
Allocating Bi rollouts to candidate i, the expected failure probability is

E

[
k∏

i=1

(1− pi)
Bi

]
=

k∏
i=1

E
[
(1− pi)

Bi
]
.

Using the identity for Beta-distributed pi, we have:

E
[
(1− pi)

Bi
]
=

Bi−1∏
r=0

κ(1− wi) + r

κ+ r
.

Taking the negative logarithm of the success probability, the equivalent optimization problem be-
comes:

min∑
Bi=N

k∑
i=1

Bi−1∑
r=0

− log

(
1− κwi

κ+ r

)
.

Using the identity
∑n−1

r=0
1

κ+r = ψ(κ+ n)− ψ(κ), where ψ is the digamma function, the objective
simplifies to:

L(B) =

k∑
i=1

κwi [ψ(κ+Bi)− ψ(κ)] .

Relaxing Bi ∈ N to Bi ∈ R≥0, we apply the method of Lagrange multipliers with constraint∑
iBi = N . The partial derivatives yield:

∂L

∂Bi
= κwi · ψ′(κ+Bi),
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where ψ′ is the trigamma function. The KKT condition implies that at optimality:

κwi · ψ′(κ+Bi) = λ, for all i with Bi > 0, and
∑

Bi = N.

We now analyze three asymptotic regimes of κ:

Case 1: Fixed finite κ > 0 Using the approximation ψ′(κ + Bi) ≈ 1
κ+Bi

when κ + Bi ≫ 1, the
optimality condition becomes:

κwi

κ+Bi
≈ λ ⇒ B⋆

i ≈ κwi

λ
− κ.

Summing both sides over i and enforcing
∑

iBi = N , we solve for λ ≈ κ/(N + kκ), yielding:

B⋆
i ≈ (N + kκ)wi − κ.

Case 2: κ→ ∞ In this regime, the Beta prior becomes increasingly concentrated at pi = wi. Hence,

E[(1− pi)
Bi ] → (1− wi)

Bi , and E

[
k∏

i=1

(1− pi)
Bi

]
→

k∏
i=1

(1− wi)
Bi .

To minimize failure probability, we solve:

min∑
Bi=N

k∑
i=1

Bi log(1− wi).

Since log(1− wi) < 0, this is minimized by allocating all rollouts to the candidate with the largest
wi, i.e.,

O⋆(w)i =

{
N, if i = argmaxj wj ,

0, otherwise.

Case 3: κ→ 0 In this regime, the Beta distribution becomes highly uncertain:

pi ∼ Beta(κwi, κ(1− wi)) −−−→
κ→0

{
1, with probability wi,

0, with probability 1− wi.

Hence,

E
[
(1− pi)

Bi
]
→

{
1− wi, if Bi > 0,

1, if Bi = 0.

Thus, the expected failure probability becomes:

k∏
i=1

E
[
(1− pi)

Bi
]
→

∏
i:Bi>0

(1− wi),

which depends only on whether a candidate receives at least one rollout, not how many. To minimize
failure, we must select a subset S ⊆ {1, . . . , k} with |S| ≤ N such that:∏

i∈S

(1− wi)

is minimized. This is achieved by choosing the top-s = min(k,N) candidates with the largest wi.
Then the optimal allocation is:

O⋆(w)i =

{
1, if i ∈ Top-s of wi,

0, otherwise,
with remaining N − s rollouts arbitrarily assigned.
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B.2 Proof of Proposition 2

In the κ→ 0 regime, Proposition 1 shows that the expected success probability is maximized by the
solution:

Bi ∝ wi, where wi =
eRi∑
j e

Rj
.

This corresponds to maximizing the log-utility objective:

L =

k∑
i=1

wi logBi.

To analyze the effect of structural redundancy, we group candidate solutions into g reasoning
directions. Let direction j contain kj candidates, each with identical score Rj , and index set Ej .

The optimal direction-aware allocation follows:

Qj :=
eRj∑g
l=1 e

Rl
, B(direction)

j := N ·Qj .

The corresponding log-utility is:

L(dir) =

g∑
j=1

Qj logB
(direction)
j = logN +

g∑
j=1

Qj logQj .

REBASE assigns each candidate i ∈ Ej rollout weight:

wi =
eRj∑g

l=1 kle
Rl
, so B(solution)

j =
∑
i∈Ej

Nwi = N · kje
Rj∑g

l=1 kle
Rl
.

This induces a direction-level distribution:

Q̂j :=
kje

Rj∑g
l=1 kle

Rl
.

The resulting utility is:

L(sol) =

g∑
j=1

Qj logB
(solution)
j = logN +

g∑
j=1

Qj log Q̂j .

The gap in log-utility is:

L(dir) − L(sol) =

g∑
j=1

Qj log
Qj

Q̂j

= KL(Q ∥ Q̂) ≥ 0.

Equality holds if and only if Qj = Q̂j for all j, i.e.,

eRj∑
l e

Rl
=

kje
Rj∑

l kle
Rl

⇒ kj = k for all j.

Thus, the solution-level allocation is suboptimal unless all reasoning directions contain the same
number of candidate solutions.

B.3 Proof of Theorem 1

Assume candidate solutions are partitioned into g reasoning directions, where direction j ∈ {1, . . . , g}
contains kj candidates indexed by Ej , and all candidates in Ej share the same PRM score Rj .

Under REBASE, softmax is computed at the solution level:

q̃i =
eRj∑g

l=1 kle
Rl
, for i ∈ Ej .
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Aggregating across each direction yields the induced direction-level distribution:

Q̂REBASE
j =

∑
i∈Ej

q̃i =
kje

Rj∑g
l=1 kle

Rl
.

To eliminate the bias from uneven candidate counts kj , DORA reweights each q̃i by the inverse of its
cluster size:

q̂i =
q̃i
kj
, for i ∈ Ej .

The normalization constant becomes:

Z =

k∑
i=1

q̂i =

g∑
j=1

∑
i∈Ej

q̃i
kj

=

g∑
j=1

kje
Rj

kj
∑g

l=1 kle
Rl

=

∑g
j=1 e

Rj∑g
l=1 kle

Rl
.

Normalizing gives the final corrected weight:

q̂final
i =

q̂i
Z

=
eRj

kj
∑g

l=1 e
Rl
, for i ∈ Ej .

Aggregating over direction j, the direction-level allocation becomes:

Q̂final
j =

∑
i∈Ej

q̂final
i = kj ·

eRj

kj
∑g

l=1 e
Rl

=
eRj∑g
l=1 e

Rl
= Qj .

Thus, the final allocation satisfies ∑
i∈Ej

Bi ∝ Qj ,

which exactly matches the optimal direction-level allocation given in Eq. 9.

C Details of Beta Distribution

The Beta distribution is a standard choice for modeling random variables on the unit interval, and its
parameters (α, β) = (κwi, κ(1− wi)) are interpretable: the mean is E[pi] = wi, and the variance is
inversely related to κ. Specifically:

• When κ is small, the distribution is diffuse and uncertain.

• When κ is large, the distribution is sharply peaked around wi, indicating high confidence.

Figure 5 visualizes the effect of different κ values with wi fixed at 0.7.

D Implementation Details

D.1 Experimental Hyperparameters

All experiments use temperature sampling with temperature = 0.8 and top_p = 1.0. We set the
token limit to 256 per step and 2048 tokens in total for each solution. For Beam Search and DVTS,
we use a beam width of 4 following Snell et al. (2024). For REBASE, we set its Tb to 0.1, consistent
with its original implementation. For DORA, we employ the open-source BGE-M3 embedding
model (Chen et al., 2024a) to compute semantic similarity between trajectories, chosen for its
lightweight architecture, strong empirical performance, and ability to handle long input sequences.
We set the Tb for quality scores to 0.1 (matching REBASE), and the semantic similarity temperature
Ts to 0.01. All experiments are executed in parallel on a cluster with 32 NVIDIA A100 GPUs (40G),
where each individual run is allocated to a single GPU.
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Figure 5: Effect of the concentration parameter κ on the Beta prior. All curves are plotted with fixed
mean wi = 0.7. Larger κ yields a more concentrated prior around wi, while smaller κ reflects greater
uncertainty.

D.2 Details of Prompt

Following Beeching et al. (2024), we employ the prompt below for LLM mathematical reasoning:

Solve the following math problem efficiently and clearly:

- For simple problems (two steps or fewer):
Provide a concise solution with minimal explanation.

- For complex problems (three steps or more):
Use this step -by-step format:

## Step 1: [Concise description]
[Brief explanation and calculations]

...
## Step 2: ...

Regardless of problem complexity , always conclude with:
Therefore , the final answer is: \boxed{answer }.

18


	Introduction
	Setup & Preliminaries
	Problem Formulation
	Parallel Search Method

	Optimal Parallel Search for Test-Time Scaling
	Theoretical Formulation of Optimal Resource Allocation
	Suboptimality of Solution-Level Allocation
	Direction-Oriented Resource Allocation (DORA)

	Experiments
	Experimental Setup
	Main Results
	Analysis

	Related Work
	Conclusions
	Details of Parallel Search Process
	Proof Section
	Proof of Proposition 1
	Proof of Proposition 2
	Proof of Theorem 1

	Details of Beta Distribution
	Implementation Details
	Experimental Hyperparameters
	Details of Prompt


