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ABSTRACT

Image compression technology has become more important research topic. In re-
cent years, learning-based methods have been extensively studied and variational
autoencoder (VAE)-based methods using hyperprior-based context-adaptive en-
tropy model have been reported to be comparable to the latest video coding stan-
dard H.266/VVC in terms of RD performance. We think there is room for im-
provement in quantization process of latent features by adopting vector quantiza-
tion (VQ). Many VAE-based methods use scalar quantization for latent features
and do not exploit correlation between the features. Although there are methods
that incorporate VQ into learning-based methods, to the best our knowledge, there
are no studies that utilizes the hyperprior-based VAE with VQ because incorporat-
ing VQ into a hyperprior-based VAE makes it difficult to estimate the likelihood.
In this paper, we propose a new VAE-based image compression method using VQ
based latent representation for hyperprior-based context-adaptive entropy model
to improve the coding efficiency. The proposed method resolves problem faced
by conventional VQ-based methods due to codebook size bloat by adopting Lat-
tice VQ as the basis quantization method and achieves end-to-end optimization
with hyperprior-based context-adaptive entropy model by approximating the like-
lihood calculation of latent feature vectors with high accuracy using Monte Carlo
integration. Furthermore, in likelihood estimation, we model each latent feature
vector with multivariate normal distribution including covariance matrix param-
eters, which improves the likelihood estimation accuracy and RD performance.
Experimental results show that the proposed method achieves a state-of-the-art
RD performance exceeding existing learning-based methods and the latest video
coding standard H.266/VVC by 18.0 % for Kodak, 21.9 % for CLIC2022 and 39.2
% for Tecnick.

1 INTRODUCTION

Image compression technology has become more important than ever to achieve efficient data trans-
mission and storage due to the demand for of high-quality contents and the increase in the popularity
of video services. Various conventional image compression technologies have been standardized so
far (JPEG (Wallace, 1991; ITU, 1993), JPEG2000 (Taubman & Marcellin, 2002; ISO/TEC, 2004),
WebP (Google), H.264/AVC (Marpe et al., 2006; ISO/IEC, 2003), H.265/HEVC (Sullivan et al.,
2012; ISO/IEC, 2013), H.266/VVC (Bross et al., 2021; ISO/IEC, 2020), etc.). These technologies
consist of a combination of transform, quantization and entropy coding. Transform is a major part
of JPEG, H.265/HEVC and H.266/VVC which use DCT or DST, while JPEG2000 uses wavelet
transform, all of which are based on handcrafted linear transforms. These hand-crafted design are
limited in their ability to capture features for a variety of images.

In recent years, deep learning has made remarkable progress, and learning-based methods are be-
ing actively explored in the field of image compression. Most recent learning-based methods are
based on transform coding (Goyal, 2001). Many of these methods use convolutional neural network
(CNN)-based autoencoders in which the encoder transforms the input image into a latent repre-
sentation and then performs quantization and entropy coding, while the decoder reconstructs the
restored image. This approach achieves flexible nonlinear transforms that have higher potential to
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map pixels into a more compressible latent representation than the linear transforms used by clas-
sical image compression approaches. It can be divided into two types according to the metric used
for encoder optimization. One is the generative approach that directly maximizes subjective im-
age quality (Rippel & Bourdev, 2017; Santurkar et al., 2018; Agustsson et al., 2019; Mentzer et al.,
2020; Kudo et al., 2021). This approach aims to optimize the distribution of reconstructed images to
approach that of natural images by using generative adversarial networks. The other maximizes an
objective metric such as peak signal-to-noise ratio (PSNR). This approach solves the rate-distortion
(RD) optimization problem in the same way as the classical image compression described above.
This paper focuses on the latter approach as it is applicable to a wider range of applications. The lat-
ter approach is found in various proposals. Toderici et al. (2016; 2017) introduced recurrent neural
networks for feature extraction and Johnston et al. (2017) enhanced these networks to improve the
coding performance. Cai & Zhang (2018); Cai et al. (2018) directly trained the quantization. These
methods quantize the latent features as fixed-length codes.

By contrast, variational autoencoder (VAE)-based methods have been proposed that formulate the
optimization as the problem of minimizing the entropy of the quantized latent features as well as
the expected distortion of the reconstructed image with respect to the original. The first image
compression method using VAE was proposed by Theis et al. (2017) and Ballé et al. (2017). They
studied entropy models to approximate the actual distributions of the quantized latent features. To
improve the accuracy of the entropy model, a hyperprior-based context-adaptive entropy model was
proposed by Ballé et al. (2018); it has been the baseline in most subsequent research. Whereas
the actual distributions of each latent feature are fixed in (Theis et al., 2017; Ballé et al., 2017),
Ballé et al. (2018) approximated the entropy model as a zero-mean Gaussian distribution with scale
parameter for each latent feature to remove the spatial redundancy, where contexts are encoded as
side information. Based on this hyperprior-based context-adaptive entropy model, various methods
have been proposed to estimate the entropy model with higher accuracy. The autoregressive con-
text model is one of the technologies that has experienced significant performance improvements.
Minnen et al. (2018) and Lee et al. (2019) proposed to jointly utilize an autoregressive context model
and the mean and scale hyperpriors. Mentzer et al. (2018) and Chen et al. (2021) extended an au-
toregressive context model that utilizes channel neighbors with 3D Masked Convolution module.
In (Minnen & Singh, 2020) and (Zhu et al., 2022b), the channel-directed autoregressive model was
applied to reduce the computational complexity of the spatial-directed autoregressive model and
He et al. (2022) was further improved by dividing the model non-evenly into channel directions.
To further improve the entropy model, Liu et al. (2020) and Cheng et al. (2020) proposed a Gaus-
sian mixture model and developed a network architecture by adopting an attention module. As an-
other improvement perspective, Hu et al. (2020) proposed coarse-to-fine hyperprior modeling while
Yang et al. (2020) improved the performance by devising an inference process without changing the
training process. Ho et al. (2021) and Xie et al. (2021) focused on improving the network architec-
ture by adopting a normalizing flow module. Some methods have been reported to better the RD
performance of H.266/VVC, the latest video coding standard, which is not learning based, in terms
of the MS-SSIM metric, but are still comparable in the PSNR metric.

Vector quantization (VQ) is incorporated into learning-based methods to leverage perfor-
mance. Since VQ potentially offers better performance than scalar quantization in terms
of RD (Gray & Neuhoff, 1998; Gray, 1984; Chou et al., 1989), various studies have exam-
ined it (Shin & Lu, 1991; Antonini et al., 1992; Tatsaki et al., 1995; Shnaider & Paplinski, 2001;
Voinson et al., 2002; Salleh & Soraghan, 2007; Chiranjeevi & Jena, 2018; Nag, 2019). The chal-
lenge in applying VQ to learning-based compression methods is how to incorporate the likelihood
estimation of latent feature vectors into the optimization process. van den Oord et al. (2017) pro-
posed VQ-VAE which avoids likelihood calculations by assuming uniformity of the prior distribu-
tion of latent features and separately designing encoder/decoder and codebooks to perform gradi-
ent optimization. Razavi et al. (2019) and Fauw et al. (2019) extended VQ-VAE to a hierarchical
network structure. Williams et al. (2020) revised the quantization process while Xue et al. (2019)
combined optimization with supervised learning. However, all of the above methods do not per-
form well because the learning parameters underlying the encoder/decoder and codebook are de-
signed separately to achieve gradient optimization and/or the probability distribution is assumed to
be uniform. Agustsson et al. (2017) attempts end-to-end optimization by performing VQ using a
soft-to-hard annealing strategy. However, its learning suffers from unstable convergence, because it
approximates the prior distribution of the codebook with a histogram taken from the training process.
Zhu et al. (2022a) proposed a cascaded vector quantization with multi-codebooks to keep memory
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Figure 1: Operational diagrams of VAE-based image compression. U |Q and UΛ |QΛ represents
either quantization during training (producing variables with a tilde) or quantization during inference
(producing variables with a hat).

capacity and performance at high bitrates. However, due to the limitation on the vector dimension,
this approach does not fully utilize the potential performance of vector quantization. In addition,
to the best knowledge of the authors, no study has utilized the above-mentioned hyperprior-based
context-adaptive entropy model with VQ. Incorporating VQ into the hyperprior-based method and
optimizing them in an end-to-end manner has not been achieved, because incorporating VQ into a
hyperprior-based context-adaptive entropy model makes it difficult to estimate the likelihood.

In this paper, we propose a new VAE-based image compression method using VQ-based latent repre-
sentation for a hyperprior-based context-adaptive entropy model (named LVQ-VAE) with improved
coding efficiency. The proposed method has two main features. First we introduce Lattice VQ
for quantization, which resolves the codebook size bloat problem faced by conventional VQ-based
methods without coding efficiency degradation. At the same time, the proposed method achieves
end-to-end optimization with the hyperprior-based context-adaptive entropy model by using Monte
Carlo integration to approximate with high accuracy the likelihood calculation of latent feature vec-
tors. Second, in likelihood estimation, we model each latent feature vector as a multivariate normal
distribution including covariance matrix parameters, which improves the likelihood estimation ac-
curacy and RD performance. Zhu et al. (2022a) also models latent feature vectors as a multivariate
normal distribution, but this method models the features contained in each representative point as
a single distribution, whereas the proposed method models each feature vector, which eliminates
correlation among feature vectors and is expected to improve coding performance.

The contributions of this paper are summarized as follows:

• We incorporate VQ into VAE-based image compression method using hyperprior-based
context-adaptive entropy model while optimizing them for end-to-end manner, which leads
to obtain better RD performance that exceeds the limits possible with scalar quantization
without codebook size bloat.

• We improve the entropy model by modeling each latent feature vector as a multivariate nor-
mal distribution including covariance matrix parameters, which improves RD performance.

• We show that the proposed method achieves state-of-the-art RD performance compared
to existing learning-based methods and the latest video coding standard H.266/VVC with
regard to the PSNR metric.

2 VAE-BASED IMAGE COMPRESSION

Most recent VAE-based methods are based on the hyperprior model developed by Ballé et al. (2018)
as shown in Fig. 1 (a). This model consists of four parametric transforms:

• ga(x;ϕg): a feature encoder that transforms input image x into latent feature y, which is
quantized to form ŷ = Q(y),

• gs(ŷ;θg): a feature decoder that reconstructs image x̂ = gs(ŷ;θg),
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• ha(y;ϕh): a hyper-encoder that extracts latent representation z for context information,
which is quantized to form ẑ = Q(z),

• hs(ẑ;θh): a hyper-decoder that generates the context information for estimating the en-
tropy model pŷ|ẑ(ŷ | ẑ).

ϕg,θg,ϕh,θh are optimized parameters of each transform, which are generally composed of neural
networks such as CNNs. U |Q denotes a quantizer in a training phase (U ) and one in an infer-
ence phase (Q). In the training phase, quantizer U is approximated using additive uniform noise
as ỹ = U(y) = [y1 + u1, . . . , yN + uN ], where ui is sampled from univariate uniform distribu-
tion U(− 1

2 ,
1
2 ). This is because end-to-end learning requires the quantization to realize gradient-

based optimization. In addition to the above approximation, several other approximation techniques
have been studied, such as stochastic binarization (Toderici et al., 2016), universal quantization
(Choi et al., 2019), straight-through estimator (van den Oord et al., 2017), and soft-to-hard quan-
tization (Agustsson et al., 2017). In the inference phase, quantizer Q is actual quantization such as a
rounding operator. In this manuscript, we represent approximated data as a variable with a tilde and
quantized data as one with a hat as shown in Fig. 1.

The encoder compresses latent representation ŷ and ẑ by using entropy coding such as arithmetic
coding (Rissanen & Langdon, 1979) and transmits it as a bitstream. The entropy coding estimates
probability pŷ|ẑ(ŷ | ẑ) as zero-mean Gaussian N (0,σ2); its context information is scale parameter
σ = hs(ẑ;θh). To further improve this estimation, Minnen et al. (2018) and Lee et al. (2019)
jointly utilized the autoregressive model and the mean and scale parameters of Gaussian distribution
(Fig. 1 (b)), where Cm denotes a context prediction model conditioned on decoded features that are
composed of an autoregressive module such as masked convolutions (van den Oord et al., 2016). As
for pẑ(ẑ), the non-adaptive fixed density model called factorized prior is trained and shared between
the encoder and the decoder.

Finally, the learning process is formulated as RD optimization which minimizes the following loss
function.

L = R+ λ · D
= Ex∼px

[
− log pỹ|z̃(ỹ | z̃)− log pz̃(z̃)

]
+ λ · Ex∼px ∥x− x̃∥22 (1)

where px is the marginal distribution of natural images, and D represents the expected distortion
between the reconstructed image and the original, and R represents the entropy of ỹ and z̃ that
approximates the expected code length of the bitstream. λ is the Lagrange multiplier that controls
the RD trade-off.

3 PROPOSED METHOD

The proposed method has two key features:

1. We introduce Lattice VQ for quantization of the latent features y, as this achieves better
RD performance than scalar quantization without codebook size bloat.

2. We model each latent feature vector with a multivariate normal distribution including co-
variance matrix parameters and incorporate it into the autoregressive model to achieve
highly accurate likelihood estimation.

Figure 1 (c) shows the operational diagram of the proposed method. In the following, we will
describe a quantizer design based on Lattice VQ and then explain how to incorporate it into a
hyperprior-based context-adaptive entropy model.

3.1 QUANTIZER DESIGN BASED ON LATTICE VECTOR QUANTIZATION

We use Lattice VQ for quantizing latent feature y. Given N elements of features denoted by
y1, . . . , yN , the features are split into n-dimensional vectors v1, . . . ,v⌈N/n⌉ as follows.

vi = [yni−n+1, yni−n+2, . . . , yni] , 1 ≤ i ≤ ⌈N/n⌉ (2)
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Figure 2: A2 lattice

Then these n-dimensional vectors are divided into clusters, and each cluster is represented by its
centroid point.

Lattice VQ is a VQ that places representative points at the location to form a lattice. Lattice Λ ∈ Rn
is formed as a linear combination of basis vectors (Conway & Sloane, 1988):

Λ =

{
n∑
i

kibi | ki ∈ Z

}
(3)

where b1, . . . , bn are basis vectors for Rn, and a matrix with these basis vectors as column vectors
is also called the generating matrix which is uniquely defined for the structure of lattice, and ki is
an integer coefficient. For example, the 2-dimensional hexagonal lattice A2 is shown in Fig. 2. The
lattice points c ∈ Λ are the representative points of Lattice VQ. Let QΛ(v) be the nearest neighbor
of v in terms of Euclidean norm in the lattice:

QΛ(v) = {ci :∥v − ci∥ ≤ ∥v − cj∥, ci, cj ∈ Λ for all j ̸= i} (4)

The Voronoi region of lattice point ci is the set of all vectors mapped into this point as defined by

V(ci) = {v :∥v − ci∥ ≤ ∥v − cj∥, ci, cj ∈ Λ for all j ̸= i} (5)

Key features of Lattice VQ are follows:

1. A fast quantization method has been developed. Several lattices (A2, D4 (4-dimensional
checkerboard root lattice), E8 (8-dimensional Gosset’s root lattice), Λ24 (24-dimensional
Leech lattice), etc.) have fast quantization methods (Conway & Sloane, 1982; 1986;
Vardy & Be’ery, 1993), and there are also fast iterative methods such as (Agrell et al.,
2002) for arbitrary lattices.

2. Lattice VQ with a particular generator matrix such as A2, D4, E8, Λ24 is an optimal quan-
tizer minimizing the distortion for uniform distribution source.

In terms of effectively utilizing the potential of Lattice VQ, we set the vectorization axis in the
channel direction. There are two reasons for this. One is that the autoregressive model based on a
pixel-by-pixel update cannot be applied when the vectorization axis is set in the spatial direction.
The other is that most conventional VAE-based methods do not take account of correlations in the
channel direction. Although Minnen & Singh (2020); Zhu et al. (2022b); He et al. (2022) apply au-
toregressive models in the channel direction, the distribution of latent features is indirectly predicted
using features obtained by AR models. By contrast, the proposed method predicts the distribution
of latent features directly, which is expected to improve performance.

To perform end-to-end optimization with the gradient method, we employ the approxima-
tion method proposed by Lee et al. (2019), that is, we use straight-through estimator (STE)
(Courbariaux & Bengio, 2016) for a decoder and the additive noise (Ballé et al., 2018) for the en-
tropy model. Unlike when using additive noise for both as is common in most conventional meth-
ods, this method can eliminate train-test mismatch. Let UV0 be a n-dimensional random variable
uniformly distributed over the basic cell of the lattice V0 = V(0), the Voronoi region of the lattice
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point 0. We generate ui ∼ UV0 and perform the following process.

ṽi = UΛ(vi) =

{
QSTE

Λ (vi) for a decoder
vi + ui for an entropy model

(in training) (6)

v̂i = QΛ(vi) (in inference) (7)

where QSTE
Λ is the same as QΛ but its gradient is ∂

∂vi
ṽi = 1.

3.2 PROBABILITY MODEL

The probability entropy model for v̂ is represented as

pv̂|ẑ(v̂ | ẑ) =
⌈N/n⌉∏
i=1

pv̂i|ẑ(v̂i | v̂<i, ẑ) (8)

where v̂<i = [v̂1, v̂2, . . . , v̂i−1]. Each element of vectorized features v̂i is modeled as a multivariate
Gaussian with its own mean µi and covariance matrix Ci, where the mean and covariance matrix are
jointly predicted by the hyper-decoder hs(ẑ;θh) and autoregressive neural networks fψ consisting
of masked convolution:

pv̂i|ẑ(v̂i | v̂<i, ẑ) =
∫
v̂i+V0

N (µi,Ci)(x) dx (9)

where µi,Ci are estimated using fψ(v̂<i, hs(ẑ;θh)). As for the probability entropy model of ẑ, we
use the factorized density model that is the same method as used in the previous work (Ballé et al.,
2018).

3.2.1 COVARIANCE MATRIX ESTIMATION

It is necessary to estimate covariance matrix Ci to satisfy the condition of a positive definite sym-
metric matrix. It is known that the positive definite symmetric matrix can be generated by matrix
operation on an arbitrary matrix and its transpose. Here, network fψ(v̂<i, hs(ẑ;θh)) outputs mean
vector µi ∈ Rn and matrix Ai ∈ Rn×n for each vectorized feature:

fψ(v̂<i, hs(ẑ;θh)) =

[
µi
Ai

]
(10)

µi = [µ1, µ2, · · · , µn] (11)

Ai =


a1,1, a1,2, · · · , a1,n
a2,1, a2,2, · · · , a2,n

...
...

. . .
...

an,1, an,2, · · · , an,n

 (12)

Then, covariance matrix Ci is calculated as

Ci =
1

n
AT
i Ai + εI, (13)

where the second term stabilizes the estimation and ε is a small value. We set ε to 10−2 in our
experiment.

3.2.2 PROBABILITY CALCULATION

It is numerically difficult to compute the integration of Eq. (9) because the integration region v̂i+V0

is complex polytope in most lattices. Furthermore, with increasing dimensionality, the integral com-
putations become impractical in terms of computational complexity. To resolve this, we introduce a
Monte Carlo (MC) method (MacKay, 1998), which approximates integration as∫

v̂i+V0

N (µi,Ci)(x) dx ≈ 1

M

M∑
j=1

N (µi,Ci)(xj)

p(xj)
, (14)
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where xj is an n-dimensional point sampled from arbitrary probability density function p. The
method also has the advantage of being applicable to more complex probability distributions, since
end-to-end optimization is possible as long as the probability density function and its derivative can
be computed.

To further improve estimation accuracy, we adopt a Quasi-Monte Carlo (QMC) method
(Radovic et al., 1996), which uses low-discrepancy sequences such as Halton, Sobol’, and Faure
sequences as sampling points. The advantage of the QMC method is a faster rate of convergence
than the naive MC method. The QMC method has a rate of convergence close to O(1/M), whereas
the rate for the MC method is O(1/

√
M). Thus Eq. (14) is re-written as∫

v̂i+V0

N (µi,Ci)(x) dx ≈ V

M

M∑
j=1

N (µi,Ci)(xj) (15)

where V = 1
p(xj)

represents the volume of the Voronoi region. In the experiment section, we employ
Sobol’s sequence as sampling points and set the number of sampling points, M , to 256 in training
and 8192 in inference.

Since the MC/QMC method contains estimation error, the following two processes are introduced
during inference to prevent decoding failure. First, when calculating the cumulative probabilities
in both the encoder and the decoder, the cumulative probabilities are accumulated in order of the
centroid closest to each estimated mean vector, as long as the cumulative value does not exceed 1.
The feature vector is quantized to the nearest centroid with the smallest distance among calculated
centroids. Second, the encoder and the decoder use the fixed samples, namely, they use the same
(fixed) random seed when calculating the probability with the QMC method in order to match the
probability values of the encoder and the decoder.

4 EXPERIMENTS

We conducted simulations to verify the efficiency of the proposed method.

4.1 NETWORK ARCHITECTURE

Our network architecture is based on (Cheng et al., 2020) (See Appendix A.1 for details). N is
channel size corresponding to the network capacity, which is set according to the bitrate as described
below. As we use multivariate Gaussian model, the output of fψ requires N(n+ 1) channels.

4.2 EXPERIMENT CONDITIONS

We used Λ24 lattice (n = 24). The reason is that Λ24 gives the optimal representation for a uniform
distribution. Hence it is expected that the proposed method brings its latent features towards a
uniform distribution through a optimization process (A2, D4, E8 in Sec. 4.3.1 are used for the same
reason). We adopted a fast quantization method for LVQ, which does not need to store representative
points and offers a low complexity as described in Appendix A.2. We used a subset of ImageNet
dataset (Russakovsky et al., 2015), and randomly scaled and cropped them to the size of 192× 192
during training. We used Adam optimizer(Kingma & Ba, 2015) with a batch size of 16. The learning
rate was scheduled at 10−4 for the first 20 epochs, and reduced to 10−5 for the last 10 epochs. λ
was set to {256, 1024, 2048, 4096} and network channel size N was set to 144 for the lowest rate
model and 192 for three higher rate models. For evaluation, we tested the Kodak image dataset
(Kodak, 1993) consisting of 24 images (See Appendix B for other datasets). To evaluate the RD
performance, the bitrate is measured by bits per pixel (bpp), and the quality is measured by PSNR,
where bitrate and PSNR are calculated by averaging the encoding results for all 24 images. We plot
the RD curves and calculate the Bjontegaard delta bitrate (BDBR) (Bjontegaard, 2001) to compare
their coding efficiency. We compared the proposed method with VTM 15.0 (JVET), the reference
software of the latest video coding standard H.266/VVC, with intra profile and H.265/HEVC-based
encoder BPG (Bellard) and several of the learning-based methods. For VTM and BPG, the input
RGB images were converted into YUV444 format and encoded, then the reconstructed images were
converted into RGB and PSNR were calculated by averaging the MSE of each RGB value. For the
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Figure 3: Comparison of RD performance for Kodak
dataset for different number of dimensions and the
use or non-use of a covariance matrix in the proposed
method

Table 1: Comparison of BDBR for Kodak
dataset for different numbers of dimensions
and the use or non-use of a covariance matrix
in the proposed method. A2, D4, E8,Λ24 are
the optimal lattice quantizers for 2-, 4-, 8-
and 24-dimension as mentioned Sec. 3.1.

Dimension n C BDBR
1 (Z, scalar) - 0.0 % (anchor)

2 (A2) - 0.0 %
✓ -2.3 %

4 (D4) - -1.8 %
✓ -6.8 %

8 (E8) - -6.3 %
✓ -10.0 %

24 (Λ24) - -9.2 %
✓ -14.7 %
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Figure 4: RD performance for Kodak dataset

Table 2: Comparison of BDBR for Kodak
dataset

Method BDBR
BPG (4:4:4) 23.8 %

VTM 15.0 (4:4:4) 0.0 % (anchor)

Ballé et al. (2018) 29.8 %
Minnen et al. (2018) 11.4 %
Cheng et al. (2020) 0.5 %

Xie et al. (2021) 1.4 %
He et al. (2022) -6.4 %

Zhu et al. (2022a) -2.7 %

Proposed (Λ24) -18.0 %

learning-based methods, including the proposed method, we used RGB format as the input. For the
proposed method, the bitrate is calculated by the estimated values (− log2(p)).

4.3 RESULTS AND DISCUSSIONS

4.3.1 ABLATION STUDY

In order to clarify the effect of the number of dimensions n of Lattice VQ and the use of the estimated
covariance matrix in the proposed method, we additionally simulate in other dimensions (n = 1 (Z,
scalar quantization) , n = 2(A2), n = 4(D4), n = 8(E8)) and compared the performance with and
without the estimation of the covariance matrix. Without estimation of the covariance matrix, fψ
output 2N channels (n means and n scales for each feature vector) and squared scales were aligned
to the diagonal components of each matrix Ci; the other elements were set to 0.

The results of RD curves and BDBR are shown in Fig. 3 and Tab. 1. As for the number of di-
mensions, it can be shown that RD performance increases with the number of dimensions. This
is consistent with the property of VQ that the expected error decreases as the number of dimen-
sions increases, and there is the potential for further increases in gain with dimensionality increases.
Regarding the use of a covariance matrix, the results shows better performance when a covariance
matrix is used. This suggests the presence of correlation within the feature vector, which could be
eliminated by using a covariance matrix as mentioned Sec. 3.1.

8



Under review as a conference paper at ICLR 2023

BPG
0.106bpp, 30.028dB, 0.916

VTM 15.0
0.097bpp, 30.727dB, 0.926

Cheng et al. (2020)
0.110bpp, 31.050dB, 0.937

Proposed (Λ24)
0.081bpp, 32.288dB, 0.955

Original

Figure 5: Reconstructed images of kodim04 (bpp, PSNR, MS-SSIM)

4.3.2 RD PERFORMANCE

Fig. 4 and Tab. 2 show the results of comparison between the proposed method and existing methods
in terms of RD performance. The results show that the proposed method gave better RD performance
than all previous learning-based methods. Furthermore, the proposed method outperforms VTM
15.0 by 18.0 %.

4.3.3 QUALITATIVE EVALUATION

To evaluate the qualitative performance, we visualized the reconstructed images. Fig.5 shows re-
constructed images at the level of approximately 0.1 bpp. In Fig. 5, the proposed method maintains
more detail, such as the woman’s hair and the contours of teeth, than the other methods. Moreover,
it is observed that the other methods suffer from some artifacts and degradation.

5 CONCLUSION

This paper proposed a new VAE-based image compression method characterized by Lattice VQ for
improving the hyperprior-based context-adaptive entropy model approach. The proposed method
achieves end-to-end optimization with a hyperprior-based context-adaptive entropy model by ap-
proximating the likelihood calculation of latent feature vectors with high accuracy by using Monte
Carlo integration. Furthermore, the proposed method provides highly accurate likelihood estimation
by modeling the distribution parameters of latent feature vectors.

Experiments on public data sets showed that the proposed method achieves state-of-the-art RD
performance compared to existing learning-based methods and outperforms VTM 15.0, the ref-
erence software of the latest video coding standard H.266/VVC, by 18.0 % for Kodak, 21.9 % for
CLIC2022 and 39.2 % for Tecnick in the PSNR metric.

As a future work, we will address to reduce the complexity. This paper pursue maximizing coding
efficiency rather than reducing complexity. Therefore, compared to the latest methods, the process-
ing time due to the use of autoregressive models, etc. is large. In addition, in entropy coding, the
amount of calculation of the cumulative probability table increases exponentially with the number of
dimensions. These are prospective solutions in the following ways; the spatial autoregressive mod-
ule, which is mainly dominant in network processing, could be solved by introducing the parallel
computation mechanism such as (He et al., 2021) and entropy coding by restricting the number of
representative points and introducing cascade estimation such as (Zhu et al., 2022a).
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Figure 6: Network architecture

A IMPLEMENTATION DETAILS

A.1 NETWORK ARCHITECTURE

Our network architecture is based on (Cheng et al., 2020) and is illustrated in Fig. 6. We use residual
blocks and an attention module for both the feature encoder/decoder.

A.2 LOW COMPLEXITY LATTICE VECTOR QUANTIZATION

We used fast quantization method (Conway & Sloane, 1982) for A2, D4, E8 and (Conway & Sloane,
1986) for Λ24. These methods calculate the Euclidean norm for a several candidate points (ex. 256
points for Λ24) for each vector and selects the one with the smallest norm among them. These
methods have two advantages: one is that it does not need to keep representative points in memory,
and the other is that the quantization process can be performed at high speed without calculating the
distance to all quantized representative points as in the conventional VQ method.

B ADDITIONAL EXPERIMENTS

We also tested on the CLIC2022 test set (CLIC, 2022) consisting of 30 high resolution images,
and Tecnick image dataset (Asuni & Giachetti, 2014) consisting of 40 images with 1200 x 1200
resolutions.

RD performance results for CLIC2022 are shown in Fig. 7 and Tab. 3 and for Tecnick are shown in
Fig. 8 and Tab. 4

For both CLIC2022 and Tecnick, the proposed method also gave the state-of-the-art performance.
Especially for Tecnick, it showed relatively large performance gains compared to Kodak and
CLIC2022. This may be due to the fact that Tecnick has a lower texture component compared
to Kodak and CLIC2022. The proposed method tends to produce higher gains at lower rates than at
higher rates, which may have contributed to Tecnick’s higher performance.
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Figure 7: RD performance for CLIC2022 dataset

Table 3: Comparison of BDBR for
CLIC2022 dataset

Method BDBR
BPG (4:4:4) 40.9 %

VTM 15.0 (4:4:4) 0.0 % (anchor)

Ballé et al. (2018) 38.5 %
Minnen et al. (2018) 13.5 %
Cheng et al. (2020) -0.8 %

Proposed (Λ24) -21.9 %
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Figure 8: RD performance for Tecnick dataset

Table 4: Comparison of BDBR for Tecnick
dataset

Method BDBR
BPG (4:4:4) 45.8 %

VTM 15.0 (4:4:4) 0.0 % (anchor)

Ballé et al. (2018) 57.3 %
Minnen et al. (2018) 13.1 %
Cheng et al. (2020) -1.5 %

Proposed (Λ24) -39.2 %
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