
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TS-REASONER: ALIGNING TIME SERIES FOUNDATION
MODELS WITH LLM REASONING

Anonymous authors
Paper under double-blind review

ABSTRACT

Time series reasoning is crucial to decision-making in diverse domains, including
finance, energy usage, traffic, weather, and scientific discovery. While existing time
series foundation models (TSFMs) can capture low-level dynamic patterns and pro-
vide accurate forecasting, further analysis usually requires additional background
knowledge and sophisticated reasoning, which are lacking in most TSFMs but can
be achieved through large language models (LLMs). On the other hand, without
expensive post-training, LLMs often struggle with the numerical understanding
of time series data. Although it is intuitive to integrate the two types of models,
developing effective training recipes that align the two modalities for reasoning
tasks is still an open challenge. To this end, we propose TS-REASONER that
aligns the latent representations of TSFMs with the textual inputs of LLMs for
downstream understanding/reasoning tasks. Specifically, we propose a simple
yet effective method to curate diverse, synthetic pairs of time series and textual
captions for alignment training. We then develop a two-stage training recipe that
applies instruction finetuning after the alignment pretraining. Unlike existing works
that train an LLM to take time series as inputs, we leverage a pretrained TSFM and
freeze it during training. Extensive experiments on several benchmarks demon-
strate that TS-REASONER not only outperforms a wide range of prevailing LLMs,
Vision Language Models (VLMs), and Time Series LLMs, but also achieves this
with remarkable data efficiency, e.g., using less than half the training data.

1 INTRODUCTION

Time series analysis has long been fundamental to various real-world applications in finance, energy,
weather, traffic, and other domains (Prakarsha & Sharma, 2022; Xu et al., 2023; Nie et al., 2024). Its
ability to model dynamics and predict future states based on historical data makes it an indispensable
tool for informed decision-making and strategic planning. While numerical attributes form the bedrock
of time series analysis, human decision-making is often complemented by rich prior knowledge
and qualitative contextual information, including news articles, social media trends, and expert
assessments. This gap prevents analytical models from achieving a deeper, more contextualized
understanding of the events and dynamics driving the numerical data. By enabling machines to
understand both contextual information and numerical time series patterns, we can empower them as
automated systems that assist humans in gaining deeper insights into complex phenomena.

Recent advances in Time Series Foundation Models (TSFMs) have significantly enhanced the
understanding of time series data through large-scale pretraining. These models are capable of
generalizing across a wide variety of time series tasks and domains. Although TSFMs (Goswami
et al., 2024; Das et al., 2024) demonstrate strong modeling capabilities, most are pre-trained ex-
clusively on unimodal numerical time series and cannot therefore comprehend or integrate textual
information. On the other hand, large Language Models (LLMs) and Vision Language Models
(VLMs) can take texts and images as input context, and have demonstrated remarkable reasoning
and problem-solving abilities across various tasks (Wei et al., 2022; Yao et al., 2023; Hao et al.,
2023; Yu et al., 2024), sparking interest in transferring their capabilities to time series analysis.
Some studies (Gruver et al., 2023; Liu et al., 2024c; Jia et al., 2024) transform numerical time
series into string form and perform time series forecasting on LLMs by prompting them with the
strings. However, despite their strong reasoning abilities, LLMs struggle to capture temporal de-
pendencies due to their inherent lack of temporal understanding (Fons et al., 2024; Merrill et al.,
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2024) and limited ability to interpret numerical values. These limitations hinder their understanding
of time series data. As shown in the figure 1, TSFM and LLM have complementary strengths;
the former specializes in temporal understanding, while the latter excels at text understanding.

 Time Series
     Context  TSFM

TS-Reasoner

LLM

Struggle to reason text

Struggle to reason time 
series

Reason both text and 
time series

 Time Series
     Context

 Time Series
     Context

Title: Why pay for travel insurance? You may already be covered.
Content: Since many countries require COVID-19 tests to enter...

Question: Which of the following statements is incorrect?

Context

Time Series 

 TSFM

LLM

TS-Reasoner

: Skilled : Unskilled

Figure 1: Time series forecasting vs. reasoning. The time
series reasoning task requires both contextual reasoning (e.g.,
news) by LLMs and numerical understanding by TSFM.

To combine the complementary
strengths of TSFMs and LLMs while
overcoming their respective limita-
tions, we propose TS-REASONER, a
Time Series Large Language Model
(TSLLM) designed to enhance time
series reasoning by aligning a TSFM
with an LLM. Specifically, we first
employ the TSFM to extract rich
temporal representations from numer-
ical time series data. To effectively
incorporate this temporal information
into the LLM, TS-REASONER
introduces a TS-to-Text adapter, which projects the TSFM-extracted temporal features into the LLM’s
input embedding space. This enables seamless integration of the TSFM’s temporal understanding
with the LLM’s powerful linguistic and reasoning capabilities. Our training framework consists of
two stages: pretraining and fine-tuning. In the pretraining stage, we finetune TS-REASONER to
produce textual captions of input time series and achieve a fundamental alignment. To this end, we
propose a simple yet effective prompting strategy to curate high-quality captions for diverse time
series data using advanced LLMs/VLMs. In the fine-tuning stage, we further enhance the model’s
reasoning abilities through instruction tuning, ensuring robust performance in downstream tasks.
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Figure 2: Results on time series understanding and reason-
ing benchmarks. TS-REASONER demonstrates a consistent
advantage over the prevailing LLMs, VLMs, and TSLLMs.

Our work makes unique contributions
to a recent line of research combin-
ing TSFMs and LLMs. First, our for-
mulation sets up the connection be-
tween LLMs and TSFMs, facilitating
time series reasoning through the inte-
gration of rich contextual information
and LLM reasoning. Second, we ad-
dress a critical data bottleneck by a
simple yet effective time series cap-
tioning method, which diversifies the
training data for aligning LLMs and
TSFMs. Finally, we offer new em-
pirical insights into the strengths and
limitations of existing approaches.

We evaluate the understanding and reasoning capabilities of our approach on two standard benchmarks:
TimeSeriesExam (Cai et al., 2024a) and MTBench (Chen et al., 2025). TS-REASONER significantly
outperforms a wide range of baseline models, including LLMs, VLMs, and the TSLLMs, as shown
in Figure 2. Finally, comprehensive analyses, including extensive ablation studies, validate the
effectiveness of our key designs and establish the superiority of TS-REASONER in generalization
performance, scalability, and training data efficiency.

2 RELATED WORK

LLMs for Time Series. LLMs have recently garnered significant interest in time series analysis.
Traditional time series forecasting relies on statistical models (RB, 1990) or data-driven neural
networks (Liu et al., 2021; Lim et al., 2021; Wu et al., 2021; Zhou et al., 2022; Li et al., 2023b;
2024b) for tasks like weather and stock prediction. Recent efforts explore LLMs for this task, with
some designing prompts to elicit forecasting abilities (Cao et al., 2023; Chuang* et al., 2024). Others
focus on enabling LLMs to understand time series data by converting it into textual sequences or
aligning its embeddings with language model embeddings via prompting or semantic information (Jin
et al., 2023; Sun et al., 2023; Pan et al., 2024). In addition, multimodal vision-based LLMs are being
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investigated for time series prediction (Chen et al., 2024c; Zhong et al., 2025). Though LLMs exhibit
non-trivial performance on some forecasting tasks, Merrill et al. (Merrill et al., 2024) indicate that
LLMs struggle to reason time series. To tackle this challenge, several works (Chow et al., 2024;
Zhang et al., 2025a; Xie et al., 2024) propose to enable LLMs to understand the time series with
context. TS-REASONER lies in this direction, distinguishing itself by employing a pre-trained Time
Series Foundation Model to ground the LLM’s reasoning in robust temporal features.

Modality Alignment. Modality alignment methods are widely studied in the multimodal domain (Li
et al., 2022; Lai et al., 2024; Li et al., 2023a; Liu et al., 2024b). Inspired by the success of multimodal
alignment, recent works treat time series as another modality and align it to the LLM (Xie et al., 2024;
Zhang et al., 2025a). Though they achieve a certain degree of time series understanding, they focus
on narrow domains (e.g., electricity) and tasks (e.g., time series understanding), and train time series
encoders from scratch. In contrast, we adapt the successful training paradigm in VLMs, identify
and address the key challenges (e.g., Integration of characteristics of time series into LLMs, and the
shortage of time series-text pairs) faced in applying this paradigm to the unique modality of time
series, exploring pre-trained time series foundation models to exploit rich time series knowledge.

Time Series Foundation Models. Recent advancements in pre-training methods are significantly
contributing to the development of foundation models for time series analysis. Early efforts, such as
TST (Zerveas et al., 2021) and PatchTST (Nie et al., 2022), applied BERT-like masked pretraining
techniques, focusing on point-level and patch-level masking, respectively. A separate line of work,
exemplified by models like TimesFM (Das et al., 2024), Timer (Liu et al., 2024e), TTMS (Ekambaram
et al., 2024), Chronos (Ansari et al., 2024), and Time-MoE (Shi et al., 2024), Moirai (Liu et al.,
2024d), TimesBERT (Zhang et al., 2025b), and Sundial (Liu et al., 2025) demonstrates the advantages
of large-scale pre-training for improving forecasting performance. Exploring diverse pre-training
objectives, MOMENT (Goswami et al., 2024) leverages a T5 encoder to achieve strong downstream
multi-task capabilities. ChronoSteer (Wang et al., 2025a) also explores the alignment between TSFMs
and LLMs, yet it leverages the LLM’s revisions to enhance TSMF’s forecasting capability.

3 TS-REASONER FOR TEMPORAL REASONING

As illustrated in Figure 3, TS-REASONER is composed of (1) a pretrained TSFM that encodes
normalized, non-overlapping patches of input time series into compact embeddings; (2) a pretrained
LLM, and (3) a TS-to-Text adapter that projects the TSFM’s output embedding to the input space of
the LLM. The LLM concatenates the sequence of projected time series features with the sequence
of embeddings for input text tokens, with the former demarcated by special tokens “xtsyxts{y”. The
training of TS-REASONER consists of two stages: (1) a pretraining stage to align time series features
from the TSFM with the LLM, using time series caption data synthesized by an advanced LLM/VLM,
and (2) an instruction tuning stage to enhance complex reasoning capabilities on downstream tasks.

3.1 MODEL ARCHITECTURE

Given a natural language context X and a corresponding set of time series S “ tT0, T1, . . . , TKu, we
first project both into a shared embedding space. Specifically, for each time series Ti P RLi , where
Li is the length of the series, we first apply instance normalization to standardize its distribution
to zero mean and unit variance. This preprocessing step ensures that the model is robust to shifts
and scales in the input data. Subsequently, we partition the normalized time series into a sequence
of non-overlapping patches, each of a fixed length P . This patching strategy yields a sequence of
Ni “ tLi{P u patches, transforming the time series into a tensor T p

i P RNiˆP . These patches are
then encoded using the TSFM, which acts as our time series feature extractor. The TSFM processes
the sequence of patches and produces a sequence of embedding vectors:

ZT
i “ TSFMpT p

i q P RNiˆdts , (1)
where dts denotes the dimension of the time series embeddings. Concurrently, the natural language
context X is tokenized and fed into the pre-trained LLM’s embedding layer. This process converts
the textual input into a sequence of contextualized token embeddings:

ZL “ LLMembedpX q P RMˆdtext , (2)
where M is the number of tokens in the instruction, and dtext is the dimensionality of the LLM’s
hidden states. To align the dimension and semantics of embeddings between LLM and TSFM, we
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TS-to-Text 
Adapter

Pre-trained Large Language Model

The Answer is: C. The time series does show a sharp drop in 
temperature post-flood, but it does not indicate temperatures 
as low as -6°C for three consecutive days...

❄️

... ...

: Token Embedding : Time Series Embedding

You have an hourly temperature time series from 2021-12-21 to 
2022-01-06, with a corresponding weather report published on 
the final day. Here is the time series: <ts><ts/>.
Title: Winter Storm Event
A strong upper-level low moved into the Mid-Atlantic (Jan 2-3), 
preceding strong to severe storms. It brought 2-4 inches of rain 
and widespread flooding along the US-1 corridor in central 
North Carolina's Triangle region, with sustained 35-50 mph 
gradient winds. As the low passed, rain transitioned to several 
inches of snow in the northwest and far northern Piedmont.
Question: Which statement accurately reflects the temperature 
changes following the report?
A. Post-flood, temperatures sharply drop to -6℃ lows for three 
days due to a cold front.
B. After heavy rainfall, temperatures steadily rise, peaking at 
15℃ on January 6th.
C. Significant rainfall and flooding lead to sub-freezing 
temperatures and possible ice formation for days.
D. Temperatures are initially cooler, then rise above seasonal 
averages, potentially exceeding 20℃ by January 6th.

 Time Series
 Foundation 

Model

Template-
based pairs

Instruction Tuning Data 

LLM-generated 
caption pairs+

train
Time Series 

Aligned Model

Time Series
Reasoning Model 

Stage 1: Alignment

Stage 2: Instruction Tuning

Norm

Patchify

Tokenize

Embed
Context

Time Series

train

Model Training

Model Architecture

Figure 3: Overview of TS-REASONER architecture and training pipeline. To perform reasoning, a
time series is first encoded by a pretrained Time Series Foundation Model (TSFM). Its output features
are then projected into the LLM’s input embedding space by a trainable TS-to-Text Adapter and
subsequently processed by the LLM. The model is trained in two stages: (1) a pretraining stage
that aligns the TSFM outputs with the LLM inputs using both template-based (code-synthesized)
and LLM-generated captions, as described in §3.2, and (2) an instruction-tuning stage to improve
complex reasoning capabilities.

use a multilayer perceptron (MLP) as a TS-to-Text Adapter to transform the time series embedding
into the text embedding space:

HT
i “ MLPpZT

i q P RNiˆdtext , (3)

To form a unified input sequence for the LLM that accommodates multiple time series, we structure
the natural language instruction X to include K indicators, tK ¨ xtsyxts/yu. The i-th placeholder
xtsyxts/y marks the insertion point for the corresponding i-th time series Ti.
Let tHT

i P RNiˆdtext uKi“1 be the set of projected time series embeddings, The final input sequence
H is constructed by sequentially inserting the embedding to each xtsyxts/y with its corresponding
time series embedding sequence HT

i . This substitution process results in a composite sequence
where language and time series representations are interleaved. The total length of this fused
sequence is M `

řK
i“1 Ni. The final tensor fed to the LLM’s transformer layers is therefore:

H P RpM`
řK

i“1 Niqˆdtext . This strategy enables the LLM to process multiple, arbitrarily placed time
series within a single, coherent context and capture complex inter-series and text-series dependencies.
After the combination, the input embedding H is fed to LLM to produce the final prediction Y .

3.2 TRAINING RECIPE

Our training process consists of two sequential stages: the first stage aligns time series data with the
LLM to establish a foundational understanding of temporal-textual relationships, while the second
stage refines the LLM’s reasoning capabilities to interpret and analyze these aligned representations.
Throughout both stages, we keep the parameters of the TSFM frozen to preserve its pretrained
temporal knowledge, while allowing the LLM’s parameters to remain trainable, ensuring adaptive
learning without compromising the integrity of the encoded time series features.
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Basic Instruction: Create a detailed description 
of the time series in one paragraph.
Time Series Attributes: noise, period patterns, 
long-term trends, frequency, local anomalies...

This time series of daily 
product sentiment is 
non-stationary and ...

Time series
Instruction

Captions

Code

Time SeriesInstructions

-0.13, 0.05, -0.12, -0.24, -0.13, 0.08, 0.09, 0.28...

Time Series Sequence

Time Series Plot
Create a detailed description of the time 
series in one paragraph, including its trend, 
frequency properties, periodicity, noise, local 
variations, and other relevant characteristics.

Paraphrases
Alignment DataCaptions

daily public 
sentiment 
for a new 
product

Time 
Series 

Context

Figure 4: Workflow for our attribute-aware caption synthesis, designed to curate training data
for alignment in stage 1. It enriches basic instructions with key attributes and generates diverse
paraphrases, yielding the high-fidelity captions to train TS-REASONER effectively.

Stage 1: Pre-training for Language-Timeseries Alignment. In this stage, our primary objective is
to align temporal data with textual information. We initially leverage synthesized data from (Xie et al.,
2024), which provides predefined templates to describe time series attributes. However, while this
template-based data offers accurate numerical information, its focus on specific time series patterns
limits diversity, and the caption structure is monotonous. This lack of diversity can lead to overfitting
to the templates, encouraging the model to learn shallow patterns and resulting in poor generalization
ability (Dong et al., 2025; Choi et al., 2024). To alleviate this problem, we draw inspiration from
captioning techniques in multimodal LLMs (Chen et al., 2024a). We synthesize comprehensive
captions using advanced LLMs (e.g., GPT-4.1) to enrich our alignment data. Specifically, we collect
time series from two sources: (Merrill et al., 2024), which includes contextual information, and
synthetic data from Chronos (Ansari et al., 2024), which provides pure numerical time series.

Attribute-aware Captioning. Caption generation has been extensively investigated in visual do-
mains (Cheng et al., 2023; 2025; Chen et al., 2024b), playing a crucial role in multimodal alignment.
However, time series captioning remains largely underexplored, presenting a significant impediment
to achieving comprehensive alignment. To address this gap, we introduce a straightforward approach
for generating scalable time series captions, as shown in Figure 4.

Given a time series T with a temporal context C, we begin by defining a fundamental captioning
instruction, denoted as Ibase. To facilitate enhanced comprehension by LLMs, we transform the time
series into an image plot via Python code, ITS “ ΦpT q. As evidenced in Table 1 (Section 4.1),
presenting the time series as an image to advanced LLMs (e.g., GPT-4.1) demonstrates a substantial
advantage in understanding compared to providing it as a raw numerical series.

To enrich the generated captions, we first identify a set of G pertinent attributes of the time series,
denoted as ta1, a2, . . . , aGu (e.g., trend, frequency, periodicity, noise, local variations). These
attributes are then incorporated into the basic instruction, yielding an augmented instruction I 1 “

Ibase Y ta1, a2, . . . , aGu. To further promote caption diversity, we leverage the LLM to paraphrase I 1

into R distinct instructions, forming a candidate set of prompts P “ tI2
1 , I2

2 , . . . , I2
Ru. For each time

series T , a single prompt I2 is uniformly sampled from this set. The final caption is then generated
conditioned on the sampled prompt and the time series visualization:

Caption “ LLMpc|I2, ITSq, (4)
where I2 „ UpPq. The prompts are shown in the Figure 10 in Appendix E. We randomly sample
10K time series from each of two distinct sources: the Chronos synthetic dataset (Ansari et al., 2024),
which contains purely numerical time series, and a dataset of text-attributed time series from Merrill et
al. (Merrill et al., 2024), which provides contextual backgrounds. The construction of data offers two
benefits: (1) Pure time series data enables the model to build a foundational understanding of temporal
patterns by focusing solely on the intrinsic characteristics of the data. (2) Context-augmented time
series enhances domain-specific comprehension by linking numerical trends to real-world scenarios,
thereby improving the model’s ability to generalize across diverse applications.

Stage 2: Instruction Finetuning for Time Series Reasoning. To elevate the model’s capabilities
from foundational understanding to complex reasoning, we employ an instruction fine-tuning stage

5
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based on the instruction tuning dataset (Xie et al., 2024), which encompasses a wide range of Q&As
and instruction-following tasks. This training facilitates TS-REASONER with two critical abilities:
the fidelity to adhere to complex instructions and structured response formats, and the capacity for
nuanced, context-driven reasoning on time series-specific queries.

4 EXPERIMENTS

Datasets To assess the capabilities of TS-REASONER, we conduct comparative experiments against
various baselines on benchmarks tailored for time series reasoning. Our evaluation incorporates
TimeSeriesExam (Cai et al., 2024a), a comprehensive multiple-choice question answering dataset.
TimeSeriesExam is specifically engineered to systematically evaluate a model’s time series under-
standing and reasoning abilities across several key aspects: Pattern Recognition (PR), which addresses
identifying trends, cycles, and stationarity; Noise Understanding (NU), focused on recognizing noise
types such as white noise and random walks; Anomaly Detection (AD), for detecting unusual patterns;
Similarity Analysis (SA), which involves comparing the shape and distribution of two time series;
and Causality Analysis (CA), assessing the recognition of Granger Causality between time series.
Furthermore, we evaluate on MTBench (Chen et al., 2025), a large-scale benchmark for evaluating
time series reasoning in the real-world financial and weather domains, featuring questions that span
both short-term (7-day) and long-term (14-day) temporal horizons.

Baselines and Evaluation Metrics We compare our method against three types of baselines:
closed-source LLMs / VLMs, open-source LLMs / VLMs, and TSLLMs. Specifically, for closed-
source models, we include GPT-4o, GPT-4.1 (gpt, 2024; Achiam et al., 2023), Claude-Sonnet-
3.7 (The), and DeepSeek-Chat (Liu et al., 2024a). For open source LLM, we evaluated LLama-3.1-8B-
Instruct (Grattafiori et al., 2024), Qwen-2.5-7B-Instruct (Yang et al., 2024), GLM-4-9B-Chat (GLM
et al., 2024), InternLM3-8B-Instruct (Cai et al., 2024b), and Ministral-8B-Instruct (Jiang et al., 2024).
Time series are transformed into textual sequences of numbers for LLMs. For open-source VLM
models, we compare Qwen2.5-VL-7B (Bai et al., 2025), Phi-4-Multimodal-Instruct (Abouelenin
et al., 2025), Llama3-LLaVA-Next-8B (Li et al., 2024a), InternVL3-8B (Zhu et al., 2025), and
MiniCPM-V-2.6 (Yao et al., 2024). Time series are transformed into plots via code for VLMs. For
TSLLMs models, we compare with ChatTime-7B (Wang et al., 2025b), ChatTS-14B (Xie et al.,
2024), and we use the official training data and code to fine-tune a 7B model for a fair comparison.
As all benchmarks are multiple-choice Q&As, we use accuracy as the evaluation metric. See more
implementation details in Appendix A.

4.1 MAIN RESULTS

Table 1 presents the performance of all models on the two benchmarks. The best results are bolded, and
the second-best results are underlined. Based on the results, we have the following key observations:

(i) TS-REASONER achieves superior overall performance on all benchmarks among models of
the same size. Specifically, TS-REASONER demonstrates superior performance, surpassing the best-
performing LLM by 7.60% overall, the best VLM by 5.25% overall, and the TSLLM by 3.54% overall
on the TimeSeriesExam benchmark. Compared to the backbone model, TS-REASONER improves
on our backbone LLM performance by a substantial 16.29%. TS-REASONER also excels the best
baseline on MTBench by around 2%. In addition, TS-REASONER performs even competently with
ChatTS-14B, which has a larger base model. The notable improvement demonstrates the effectiveness
of our model in various time series reasoning scenarios by introducing the temporal information of
TSFM for the LLM.

(ii) TS-REASONER delivers consistent gains in most time series understanding and reasoning
subtasks. In particular, it surpasses the second best baseline with absolute improvements of 2.16%
in Pattern Recognition, 8.05% in Noise Understanding, 2.33% in Anomaly Detection, and 2.65%
in Similarity Analysis, while also yielding around 2% improvements on both financial and weather
reasoning tasks. These gains stem from two key factors: (1) aligning time series with text during
training substantially strengthens TS-REASONER’ understanding of time series patterns; and (2)
this improved understanding further enhances its ability to reason over time series in context when
combined with textual information.
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Table 1: Performance of LLMs, VLMs, TSLLMs, and proprietary models on time series understanding
and reasoning benchmarks. Our baselines also include ChatTS-14B, which uses a larger base model.

Model TimeSeriesExam (Cai et al., 2024a) MTBench (Chen et al., 2025)

PR NU AD SA CA OA Finance (long) Finance (short) Weather (long) Weather (short)

Proprietary models

DeepSeek-Chat 65.23 55.17 52.71 63.71 42.86 59.89 89.15 90.02 59.75 58.76
Claude-Sonnect-3.7 62.26 55.17 48.06 72.57 50.79 59.63 84.11 88.56 51.24 47.91
GPT-4o 59.03 55.17 53.49 62.83 31.75 55.96 84.30 82.69 48.07 48.22
GPT-4o (vision) 67.12 62.07 62.79 64.60 26.98 62.12 84.11 80.65 46.43 48.53
GPT-4.1 (vision) 69.81 68.97 68.22 75.22 41.27 67.89 93.41 91.45 56.04 55.35

Open-source Large Language Models

Llama-3.1-8B-Instruct 37.73 37.93 30.23 36.28 28.57 35.52 63.37 35.52 40.25 40.00
Qwen2.5-7B-Instruct 47.17 47.13 41.86 53.10 41.27 46.66 87.98 89.41 57.14 58.44
GLM-4-9B-chat 41.78 39.08 37.21 47.79 38.09 41.28 71.31 77.19 50.27 50.85
InternLM3-8B-Instruct 43.93 51.72 26.35 52.21 34.92 42.33 71.70 71.08 45.05 46.67
Ministral-8B-Instruct 43.13 37.93 39.53 44.25 36.51 41.55 46.32 50.71 39.15 40.93

Open-source Vision Language Models

Qwen2.5-VL-7B-Instruct 25.34 32.18 19.38 42.48 12.70 26.61 81.98 86.35 52.06 46.82
Phi-4-Multimodal-Instruct 36.39 34.48 30.23 38.94 14.28 33.68 70.35 74.54 48.35 49.77
Llama3-LLaVA-Next-8B 31.27 35.63 29.46 30.09 38.09 31.85 52.14 51.50 47.53 47.29
InternVL3-8B 50.13 52.87 43.41 54.87 38.09 49.01 88.95 90.00 53.71 54.88
MiniCPM-V-2.6 29.11 39.08 27.13 51.33 31.75 33.42 81.78 83.09 48.63 45.12

Time Series Large Language Models

ChatTime-7B 42.85 49.42 35.65 44.24 34.92 41.94 25.97 28.10 47.80 42.79
ChatTS -7B 50.13 50.57 50.38 61.95 34.92 50.72 87.60 88.01 58.92 58.75
ChatTS -14B* 59.30 54.02 51.16 62.83 41.27 56.36 89.22 91.22 59.61 59.22

TS-REASONER-7B (ours) 52.29 60.92 52.71 64.60 41.27 54.26 90.12 91.85 60.44 61.24
∆ Over Best 7B +2.16 +8.05 +2.33 +2.65 +0.00 + 3.54 + 1.17 + 1.85 + 1.52 + 2.49
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Figure 5: Data scaling and efficiency of TS-REASONER. The top (bottom) row illustrates how the
performance of TS-REASONER varies when increasing the training data for alignment (instruction
tuning). The columns correspond to sub-tasks in TimeSeriesExam. ChatTS-7B (Xie et al., 2024) is
included for reference, denoted by the gray triangle.

4.2 ANALYSIS OF DATA SCALING AND EFFICIENCY

Figure 5 presents our data scaling analysis on the TimeSeriesExam benchmark. TS-REASONER
demonstrates remarkable data efficiency compared to the ChatTS-7B baseline. For the alignment
stage, TS-REASONER achieves superior overall accuracy using just 60K samples, less than half
the data required by the baseline. This efficiency is even more stark in the instruction tuning stage,
where 10K samples suffice to outperform ChatTS-7B. This significant reduction in data dependency
stems from our pre-trained TSFM and effective alignment, which equips the LLM with a robust
temporal foundation. Consequently, TS-REASONER develops advanced reasoning capabilities with
a substantially smaller amount of data, marking a key advantage for practical deployments where
labeled data is scarce.

4.3 CHOICES OF CAPTIONING MODEL FOR ALIGNMENT

The quality of the generated captions is a critical factor in the efficacy of our time-series-language
alignment. To validate this, we conducted an experiment where we trained TS-REASONER us-
ing three distinct sets of captioning data, each generated by a model with varying capabilities:
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Figure 6: Performance of TS-REASONER and their associated LLM backbones (Qwen2.5 series).
The top row and bottom row report the performance on TimeSeriesExam and MTBench, respectively.
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Figure 7: Comparison of multimodal LLMs used to generate time
series captions for training TS-REASONER. Left: performance on
TimeSeriesExam. Right: Performance on MTBench.

the state-of-the-art GPT-4.1,
and two VLMs, InternVL3-
8B and Qwen2.5-VL-7B-
Instruct. As illustrated in
Figure 7, the results demon-
strate that the performance
of TS-REASONER is directly
correlated with the fidelity
of the captioning model.
A distinct performance
hierarchy emerges across
both benchmarks: the model
trained on GPT-4.1 captions
consistently outperforms the
one trained on InternVL3-8B
captions, which in turn surpasses the one trained on Qwen2.5-VL-7B-Instruct captions. The higher
performance gain from GPT-4.1 is attributed to its advanced capability in time series understanding.
It is not surprising that the captions generated by InternVL3-8B achieve higher performance than
Qwen2.5-VL-7B-Instruct, as its better time series understanding capability is shown in Table 1.

4.4 CHOICES OF TSFM AND LLM IN TS-REASONER

Different choices of TSFMs. To investigate the performance of TS-REASONER with dif-
ferent TSFMs, we replaced TimesFM (200M) with MOMENT-1-base (200M), a TSFM
of the same size, and re-evaluated its performance on the TimeSeriesExam benchmark.

Table 2: Comparison of TS-REASONER using different TSFMs on
the TimeSeriesExam benchmark.

Model PR NU AD SA CA OA
MOMENT 46.90 47.13 41.86 54.87 28.57 45.74
TimesFM 52.29 60.92 52.71 64.60 41.27 54.26

The results presented in Ta-
ble 2 reveal a substantial per-
formance degradation when
using MOMENT, with overall
accuracy falling from 54.26%
to 45.74%. The result is ex-
pected because TimesFM out-
performs Moment on various
time series forecasting benchmarks (Shi et al., 2024; Mulayim et al., 2024). This suggests that
TimesFM provides better time series representations, enabling TS-REASONER to better understand
and reason for the time series.

Different choices of LLMs. To investigate the scalability and robustness of our approach with
different LLM backbones, we evaluate TS-REASONER against across three distinct sizes of the

8
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Table 3: Ablation study results of different components in TS-REASONER.

Model TimeSeriesExam (Cai et al., 2024a) MTBench (Chen et al., 2025)

PR NU AD SA CA OA Finance (long) Finance (short) Weather (long) Weather (short)

TS-REASONER-7B (ours) 52.29 60.92 52.71 64.60 41.27 54.26 90.12 91.85 60.44 61.24
Ablation on Training Data

- LLM-caption 51.21 56.32 52.71 56.54 36.51 51.25 88.67 89.40 58.24 59.69
- Attributes 52.02 57.47 48.83 62.83 39.68 52.69 89.71 89.20 57.28 59.07

Ablation on Training Stages

- Stage 1 47.98 54.02 37.98 57.52 30.16 46.92 80.24 83.71 52.88 55.34
- Stage 2 33.42 28.73 13.95 25.67 1.59 25.81 88.07 86.76 56.86 58.60

Ablation on Model Architecture

- TSFM 51.48 52.87 51.16 63.71 38.09 51.76 89.43 89.70 58.65 60.62

Qwen-2.5-Instruct backbone: 0.5B, 3B, and 7B. The results, shown in Figure 6, confirm that TS-
REASONER is both highly effective and robustly scalable. We observe a clear positive scaling law
for both TS-REASONER and a baseline. More importantly, TS-REASONER maintains a consistent
and significant lead across all models, with Overall Accuracy improvements of +3.15% (29.49% vs.
26.34%), +9.70% (47.71% vs. 38.01%), and +7.61% (54.26% vs. 46.65%) for the 0.5B, 3B, and 7B
models, respectively. This demonstrates that our approach performs robustly across different LLM
backbones for complex time series reasoning.

4.5 ABLATION STUDIES

To further demonstrate the effectiveness of TS-REASONER, we conduct ablation studies to analyze
the impact of individual components. Table 3 summarizes our component-wise ablations from both
training and model architecture perspectives:

(1) Attribute-aware captioning is critical for robust language-timeseries alignment. (1) Removing
our attribute-aware captioning data entirely degrades overall accuracy by 3.01% on TimeSeriesExam
and 2% on MTBench. (2) Removing the attributes from the captioning instructions still results in a
performance drop of 1.57% and 2.09%, respectively. These results confirm that fine-grained details
are vital for learning nuanced temporal patterns. The quality of these captions is confirmed through a
quantitative analysis in Appendix C. We provide a qualitative case study in Appendix D to illustrate
how attribute-rich captions provide crucial details for model comprehension.

(2) Absence of any training stage significantly harms the performance. When removing stage 1
and training only with instruction tuning data, the performance on both benchmarks drops to a large
extent due to the weak time series understanding ability. Lack of stage 2 leads to a performance drop
by 28.45% on the TimeSeriesExam benchmark and 3.34% on MTBench. The significant performance
gap is attributed to the weak ability to understand time series instructions. We observe that removing
stage 1 (alignment) leads to a larger drop on MTBench, while removing stage 2 (instruction tuning)
causes a larger drop on TimeSeriesExam. This difference comes from the task characteristics of the
benchmarks: Removing Stage 1 hurts MTBench more because its tasks require reasoning across both
time series and textual news, a skill entirely dependent on the cross-modal alignment learned in Stage
1. In contrast, removing Stage 2 impacts TimeSeriesExam more severely because it directly tests the
model’s ability to follow specific analytical commands, which is precisely the skill taught in Stage 2.

(3) Pretrained TSFM is crucial for effective time series feature extraction. We remove the
pretrained TSFM and repurpose the TS-to-Text adapter to directly project time series patches into the
LLM’s embedding space. As shown in Table 3, this modification leads to a performance decrease
of 2.50% on the TimeSeriesExam benchmark and 1.31% on MTBench. This result underscores the
importance of the TSFM as a powerful temporal feature extractor.

5 CONCLUSION

We introduce TS-REASONER, a framework that advances the ability of LLMs to understand and
reason about time series via bridging with the TSFM. To mitigate the intrinsic semantic gap, we further
developed an attribute-aware captioning method that enriches time-series alignment data, fostering
a more robust alignment. Extensive experiments demonstrate that TS-REASONER substantially
outperforms a wide range of baselines on time series understanding and reasoning benchmarks.
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ETHICS AND REPRODUCIBILITY STATEMENTS

(1) Ethics: Our work aims to improve the time series understanding and reasoning ability, and the
experiments conducted in this paper adopt open-source data only for research purposes. It is far from
exceeding the understanding of humanity, which does not anticipate any ethical concerns with this
work.

(3) Reproducibility: Sections 3 and 4 describe our methods and experiments. Further experiment
details and results are available in Appendix C. Finally, we include our code repository in the
supplemental materials.
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A IMPLEMENTATION DETAILS

Table 4: Training details of TS-REASONER.

Stage-1 Stage-2
Patch Size 32 32
Dataset Captions Instructions
#Samples 120K 30K

TSFM TimesFM-1.0-200M
LLM Backbone Qwen2.5-7B-Instruct

Trainable Params. 7.3B 7.3B
Batch Size 64 32
Learning Rate: 1 ˆ 10´5 2 ˆ 10´5

Epoch 1 2

TS-REASONER uses the Qwen-2.5-7B-
Instruct as the LLM backbone across all the
experiments with an embedding dimension of
5120, and uses the TimesFM-1.0-200M (Das
et al., 2024) as our backbone TSFM with
an embedding dimension of 1080. All the
parameters of the backbone are finetuned
during training. The detailed derivation of
these time series embeddings from TimesFM
can be found in the Appendix B. All training
and inference procedures for TS-REASONER
were conducted locally on 8 × L40s GPUs.
Comprehensive training parameters are
further detailed in Table 4.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

B TIMESFM FOR TIME SERIES EMBEDDING

Given a time series T P RL, where L is the length of the time series. We first normalize it to have a
mean of zero and a variance of one. We then segment T into consecutive, non-overlapping patches
of fixed length P , resulting in a total of N “ tL{P u patches. This yields a patched time series
Tp P RNˆP .

Following the approach of (Das et al., 2024), j-th patch T j
p is passed through a residual block to

project it into the model dimension. This block is implemented as a two-layer MLP with a skip
connection, processing each patch independently. The input token for the j-th patch is computed as:

Ej
p “ InputResidualBlock

`

T j
p

˘

` PEj , (5)

where PEj is the position encoding for the j-th patch, as defined in the original transformer (Vaswani
et al., 2017). These encoded patch representations are then fed into an M -layer stacked Transformer
to produce the final sequence of time series features:

ZT “ StackedTransformerprEp0q
p , Ep1q

p , ..., EpNq
p sq, (6)

where ZT P RNˆdts and dts denotes the embedding dimension for each time series patch. Refer to
more details of TimesFM in (Das et al., 2024).

C CAPTION ANALYSIS

Table 5: Comparison of lexical diversity between
template-based pairs and LLM-generated pairs.

Metrics MTLD Ò Self-BLEU-4 Ó

Template-based pairs 42.95 0.82
LLM-generated pairs 133.30 0.45

A critical limitation of synthetic datasets
is the risk of models learning spurious cor-
relations from similar templates. To mit-
igate this, our attribute-aware generation
process is designed to produce captions
that are both lexically diverse. To quantita-
tively validate the richness of our approach,
we compare it against the template-based
method. We evaluate both lexical diversity
using the Measure of Textual Lexical Diversity (MTLD) (Bestgen, 2024) and Self-BLEU-4 (Zhu
et al., 2018) on a random sample of 1K captions from each dataset. The results presented in Table 5
show that our attribute-aware captions achieve an MTLD score of 133.30, a nearly 3 times increase
over the template-based score of 42.95. Furthermore, the Self-BLEU-4 score is almost halved from
0.82 to 0.45. This substantial improvement in lexical diversity confirms that our method generates a
significantly more expressive and diverse set of captions, crucial for training robust and generalizable
models.

To ensure comprehensive data coverage, we curated time series with context from a wide range of
domains. The distribution of these domains is visualized in Figure 8.

D QUALITATIVE ANALYSIS: A CASE STUDY

To qualitatively evaluate the distinct advantages of our approach, we conduct a case study comparing
three methods: (1) our proposed attribute-aware captioning, which leverages visual time series plots
and explicit attribute guidance; (2) a basic captioning baseline that operates on visual plots but lacks
attribute guidance; and (3)LLM prompted with the raw textual (numerical) time series data. Our
analysis, illustrated in Figure 9, yields two key insights.

(i) Attribute-Aware Captions Provide Semantically Richer Descriptions. A primary limitation
of basic captioning is its tendency to produce superficial, chronological narrations of the data. As
shown in Figure 9, the captioner describes the series’ movements (e.g., "the value increases, then
decreases sharply") but fails to extract deeper, underlying characteristics. While factually correct, this
description omits properties crucial for a comprehensive understanding. In contrast, our attribute-
aware captioning enriches this chronological account with critical semantic attributes. It not only
captures the temporal dynamics but also identifies and articulates the series’ overall trend, periodicity,
and noise level. This multifaceted analysis provides a more holistic understanding of the time series,
which is essential for TS-REASONER to conduct reasoning on downstream tasks.

15



810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Figure 8: Domain distribution of LLM-generated time series with context.

(ii) Visual Representation is Crucial for Capturing Global Temporal Patterns. When comparing
our visually-grounded method to an LLM processing raw numerical data, a significant gap emerges in
the ability to identify global patterns. The text-based LLM, while capable of discerning local features
like high-frequency oscillations or noise within a limited window, consistently fails to recognize the
overarching periodicity of the entire series. We hypothesize that this failure stems from the inherent
inefficiency of representing long numerical sequences as text. The exceeding length of input may
distract the LLM, preventing it from observing the complete pattern. Conversely, a time series plot
serves as a highly compressed, holistic representation. It enables the model to perceive the entire
sequence as a single input, making global structures like periodicity visually salient and readily
identifiable.

E PROMPTS FOR ATTRIBUTE-AWARE CAPTIONING

Below, we detail all the prompts we used. Figure 10 shows our captioning prompts.

F THE USE OF LARGE LANGUAGE MODELS

In this work, LLMs were only used to review and polish small sections of writing

LIMITATION

Our current experimental setup utilizes LLMs with up to 7B parameters, primarily due to existing
resource constraints. While we anticipate that our findings will extend to larger models, future work
should aim to validate these results with more substantial LLMs. Additionally, exploring alternative
architectural designs, such as different encoder architectures, and investigating more effective training
strategies for time series text alignment would be valuable avenues for future research. Future
research could also explore incorporating RL approaches to elicit reflection behaviors.
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Input: Create a detailed description of the time series in one paragraph. 

Output: The time series plot shows a fluctuating trend with distinct phases of increase and decrease 
over time. Initially, the series begins near zero and exhibits a sharp upward movement, peaking 
around the 10–20 time mark, where it reaches values greater than 1. This is followed by a volatile but 
generally declining trend that persists through to approximately the 60th time unit, dipping below -
1. From this low point, the series remains subdued and oscillates around a low mean until about time 
step 100. After that, a gradual upward recovery begins, with the series rising back toward positive 
values and ending slightly above zero near time step 130. The fluctuations suggest a non-stationary 
process with alternating periods of high volatility and relative stability.

Input with visualized time series: Create a detailed description of the time series in one 
paragraph, including its trend, frequency properties, periodicity, noise, local variations, and other 
relevant characteristics. 

Output: This time series displays a prominent, low-frequency pattern without a clear long-term 
linear trend. The series appears non-stationary, as its mean value shifts significantly over time, 
completing roughly one full oscillation over the observed interval of approximately 125 time units. 
The primary cycle involves a rise to a peak around time unit 20, followed by a decline to a trough 
near time unit 85, and a subsequent recovery. Superimposed on this dominant wave are higher-
frequency, smaller-amplitude fluctuations, which introduce considerable noise and give the line a 
jagged, irregular texture. The volatility seems relatively constant, although there are local variations 
in the magnitude and sharpness of these smaller oscillations. Strong positive autocorrelation is 
evident, as consecutive data points are closely related, resulting in a continuous, flowing path rather 
than random jumps.

Time Series

Input with textual time series: Here is a time series: [0.13, 0.05, -0.12, -0.24, ...]. Create a detailed 
description of the time series in one paragraph, including its trend, frequency properties, 
periodicity, noise, local variations, and other relevant characteristics. 

Output: The time series exhibits a strong quasi-periodic behavior without a discernible long-term 
trend, characterized by a distinct cycle of a sharp rise to a peak, a steep fall into a trough, and a 
subsequent gradual recovery. This dominant low-frequency pattern is superimposed with 
considerable high-frequency noise and local variations, resulting in fluctuations that make each cycle 
similar but not identical. Overall, the data represents a noisy cyclical signal, where a clear underlying 
periodicity is modulated by random, short-term movements.

Figure 9: Case study comparing time series captioning methods. Basic visual captioning (row 1)
gives a chronological description. Our attribute-aware visual captioning (row 2) provides a richer
description including key attributes. Textual time series captioning (row 3) identifies some attributes
but fails to capture the periodicity pattern.
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Instructions for prompting LLMs to generate time series captions.

1. Write a paragraph that analyzes the time series, covering its local behaviors, noise levels, periodic
structures, overall trend, frequency content, and any other characteristics you consider important.
2. Create a detailed description of the time series in one paragraph, including its trend, frequency properties,
periodicity, noise, local variations, and other relevant characteristics.
3. Provide a paragraph summarizing the time series characteristics such as noise, periodic patterns, long-
term trends, frequency behavior, local anomalies, and any other significant features.
4.Compose a detailed caption describing the frequency characteristics, noise, trends, local variations,
periodic structures, and any other meaningful patterns you observe in the time series.
5. Craft a one-paragraph summary of the time series, noting local fluctuations, periodic behavior, frequency
features, trend, noise content, and any other insights you find important.
6. Generate a descriptive paragraph detailing the time series’ key attributes, including frequency structure,
noise patterns, trend direction, local features, periodic elements, and other notable aspects.
7. Give a thorough one-paragraph explanation of the time series, addressing periodicity, noise, frequency
components, trend, local variations, and other relevant characteristics.
8. Write a narrative paragraph explaining the time series, focusing on noise, frequency characteristics,
periodicity, localized structures, the overall trend, and other important features you identify.
9. Summarize the time series in a paragraph, describing its fluctuations, recurring patterns, noise levels,
frequency-domain features, trend direction, and any additional traits you find significant.,
10. Develop a paragraph that captures the key features of the time series, such as frequency traits, trend,
noise, periodic components, local behaviors, and other characteristics worth noting.
11. Provide a one-paragraph caption analyzing the time series data in terms of noise, trend, periodicity,
local features, frequency-related behavior, and any additional characteristics of interest.
12. Create a rich paragraph description of the time series, including its trend, local anomalies, periodic
activity, noise artifacts, spectral content, and other important descriptive elements.
13. Write a descriptive paragraph for the time series, highlighting frequency properties, trend behavior,
periodic patterns, local structures, noise, and other characteristics you consider relevant.
14. Generate a compact yet thorough paragraph explaining the time series in terms of periodicity, trend
movement, noise level, frequency details, local dynamics, and any other key aspects.
15. Construct a one-paragraph analysis of the time series by examining its local variations, noise, trend,
periodic elements, frequency spectrum, and other notable features you deem important.
16. Write a summary paragraph that discusses the time series’ periodic features, trend behavior, local
patterns, noise levels, frequency domain signals, and other characteristics worth mentioning.,
17. Create a detailed one-paragraph commentary on the time series that outlines its noise characteristics,
periodicity, frequency content, trends, localized behaviors, and other useful insights.
18. Prepare a paragraph-long description of the time series covering its trend, noise, frequency-related
traits, local fluctuations, periodic structures, and any additional attributes of note.,
19. Offer a one-paragraph interpretation of the time series, highlighting its frequency features, periodic
nature, local patterns, noise, trend line, and any other important characteristics you observe.
20. Compose a detailed summary in one paragraph focusing on the time series’ periodic behavior, frequency
spectrum, localized fluctuations, overall trend, noise, and other relevant descriptive elements.

Figure 10: The list of instructions for attributes-aware time series captioning.
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