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Abstract
Policy optimization (PO) is a key ingredient for modern reinforcement learning (RL). For con-

trol design, certain constraints are usually enforced on the policies to optimize, accounting for
stability, robustness, or safety concerns on the system. Hence, PO is by nature a constrained (non-
convex) optimization in most cases, whose global convergence is challenging to analyze in general.
More importantly, some constraints that are safety-critical, e.g., the closed-loop stability, or the
H∞-norm constraint that guarantees the system robustness, can be difficult to enforce on the con-
troller being learned as the PO methods proceed. In this paper, we study the convergence theory
of PO forH2 linear control withH∞ robustness guarantee. This general framework includes risk-
sensitive linear control as a special case. One significant new feature of this problem, in contrast
to the standardH2 linear control, namely, linear quadratic regulator (LQR) problems, is the lack of
coercivity of the cost function. This makes it challenging to guarantee the feasibility, namely, the
H∞ robustness, of the iterates. Interestingly, we propose two PO algorithms that enjoy the implicit
regularization property, i.e., the iterates preserve the H∞ robustness, as if they are regularized by
the algorithms. Furthermore, convergence to the globally optimal policies with globally sublinear
and locally (super-)linear rates are provided under certain conditions, despite the nonconvexity of
the problem. To the best of our knowledge, our work offers the first results on the implicit regular-
ization property and global convergence of PO methods for robust/risk-sensitive control.
Keywords: Reinforcement learning; H∞ robust control; policy optimization; implicit regulariza-
tion; global convergence

1. Introduction
Recent years have seen tremendous success of reinforcement learning (RL) in various sequential
decision-making applications (Silver et al., 2016; OpenAI, 2018; Vinyals et al., 2019) and continu-
ous control tasks (Lillicrap et al., 2015; Schulman et al., 2015b; Recht, 2019). Interestingly, most
successes hinge on the algorithmic framework of policy optimization (PO), umbrellaing policy gra-
dient (PG) methods (Sutton et al., 2000; Kakade, 2002), actor-critic methods (Konda and Tsitsiklis,
2000; Bhatnagar et al., 2009; Zhang et al., 2018), trust-region (Schulman et al., 2015a) and prox-
imal PO (Schulman et al., 2017) methods, etc. This inspires an increasing interest in studying the

This manuscript is a shorter version of the technical report Zhang et al. (2019a), with some of the technical results
and simulations simplified/removed. Interested readers are referred to Zhang et al. (2019a) for a more complete
treatment.
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convergence theory, especially global convergence to optimal policies, of PO methods; see recent
progresses in both classical RL contexts (Bhandari and Russo, 2019; Zhang et al., 2019b; Wang
et al., 2019; Agarwal et al., 2019; Shani et al., 2019), and continuous control benchmarks (Fazel
et al., 2018; Bu et al., 2019a; Malik et al., 2019; Tu and Recht, 2018; Zhang et al., 2019c).

In general, PO methods solve RL problems under the framework of constrained optimization
minK∈K J (K), where K is the parameter of the policy/controller, J (K) is the cost function the
agent needs to minimize, and K denotes the feasible set of K.1 For instance, in the standard contin-
uous control task, linear quadratic regulator (LQR), the controller is parameterized as ut = −Kxt,
the cost is J (K) :=

∑∞
t=0 E[x>t Qxt + u>t Rut], and K is the set of K such that the system is

stabilizing under K. Such a constrained optimization problem is generally nonconvex, even for the
simple LQR problems (Fazel et al., 2018; Bu et al., 2019a). To ensure the feasibility of K on the
fly as PO methods proceed, projection of the iterates onto K seems to be natural. However, such a
projection may not be computationally efficient or even tractable. For example, projection onto the
stability constraint in LQR problems can hardly be computed, as the set K therein is well known
to be nonconvex (Fazel et al., 2018; Bu et al., 2019b). Fortunately, such a projection is not needed
when PG-based methods are used to solve LQR, as J (K) therein has a coercive property, i.e., the
cost grows up to infinity as K approaches the boundary ofK (Bu et al., 2019a). Hence, the intuition
behind this avoidance of projection is that: as long as the cost is decreased along the iteration, the
iterates stay in K and remain stabilizing. Such a result is algorithm-agnostic, in the sense that it is
independent of the algorithms adopted, as long as they follow any descent directions of the cost.

Besides the stability constraint, another commonly used one in the control literature is theH∞-
norm constraint, which plays a fundamental role in robust control (Zhou et al., 1996; Skogestad and
Postlethwaite, 2007; Dullerud and Paganini, 2013; Apkarian et al., 2008) and risk-sensitive control
(Whittle, 1990; Glover and Doyle, 1988). Such a constraint can be used to guarantee robust sta-
bility/performance of the closed-loop systems when model uncertainty is present. Compared with
LQR under the stability constraint, control synthesis under the H∞ constraint leads to a funda-
mentally different optimization landscape, which has not been fully investigated yet. In this paper,
we take an initial step towards understanding the theoretical aspects of policy-based RL methods
on robust/risk-sensitive control problems with such a constraint. Specifically, we establish a con-
vergence theory for PO methods on H2 linear control problems with H∞ constraints, referred to
as mixed H2/H∞ state-feedback control design in the robust control literature (Glover and Doyle,
1988; Khargonekar and Rotea, 1991; Kaminer et al., 1993; Mustafa and Glover, 1990; Mustafa and
Bernstein, 1991; Mustafa, 1989; Apkarian et al., 2008). As the name suggests, the goal of mixed de-
sign is to find a robust stabilizing controller that minimizes an upper bound for theH2-norm, subject
to that the H∞-norm on a certain input-output channel is less than a pre-specified value. This gen-
eral framework also includes risk-sensitive linear control, modeled as linear exponential quadratic
Gaussian (LEQG) (Jacobson, 1973; Whittle, 1990) problems as a special case. In addition, this
framework is closely related to dynamic zero-sum LQ games (Başar and Bernhard, 1995).

Two challenges exist in the analysis of PO methods for mixed design problems. First, by def-
inition, H∞-norm constraint is defined in the frequency domain, and is hard to impose by directly
projecting onto K, especially when the system model is unknown in RL. Nevertheless, preserving
the H∞-norm constraint as the controller updates is critical in practice, as the violation of it can
be catastrophic for real systems. Second, more importantly, compared to LQR, the cost of mixed

1. Hereafter, we will mostly adhere to the terminologies and notational convention in the control literature, which are
equivalent to, and can be easily translated to those in the RL literature, e.g., cost v.s. reward, control v.s. action, etc.
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(a) Landscape of LQR (b) Landscape of MixedH2/H∞ Control

Figure 1: Comparison of the landscapes of LQR and mixed H2/H∞ control design that illustrates
the hardness of analyzing the latter. The dashed lines denote the boundaries of the constraint setsK.
For (a) LQR, K is the set of all linear stabilizing state-feedback controllers; for (b) mixed H2/H∞
control, K is set of all linear stabilizing state-feedback controllers satisfying an extraH∞ constraint
on some input-output channel. The solid lines represent the contour lines of the cost J (K). K and
K ′ denote the control gain of two consecutive iterates; F denotes the global optimizer.

design is no longer coercive, as illustrated in Figure 1(b) (and formally established later). Therefore,
the decrease of cost cannot guarantee the feasibility of the iterate, as the cost remains finite around
the boundary of K. There may not even exist a constant stepsize that induces global convergence to
the optimal policy. In this paper, we are able to show that two PO methods can indeed preserve the
robustness constraint along the iterations, and enjoy global convergence guarantees.

Contribution. Our key contributions are three-fold: First, we study the landscape of mixedH2/H∞
design problems, and propose three PG-based methods, inspired by those for LQR (Fazel et al.,
2018). Second, we prove that two of them (the Gauss-Newton and the natural PG) enjoy the im-
plicit regularization property, i.e., the iterates are automatically biased to satisfy the required H∞
constraint. Third, we establish the global convergence of those two PO methods to the globally opti-
mal policy with globally sublinear and locally (super-)linear rates under certain conditions, despite
the nonconvexity of the problem. To the best of our knowledge, our work appears to be the first
studying the implicit regularization properties of PO methods for learning-based control in general.

Due to space limitations, we refer to Zhang et al. (2019a) for a detailed review of the related
work on RL with robustness/safety/risk-sensitivity concerns, the overarching theme of this work.
Also, we defer the results for continuous-time settings to the longer report Zhang et al. (2019a).

2. Background

We first provide some background onH2 linear control withH∞ robustness guarantees.

2.1. Motivating Example: LEQG

We start with an example of risk-sensitive control, the infinite-horizon state-feedback linear expo-
nential quadratic Gaussian problem2 (Jacobson, 1973), which is motivating in that: i) the cost is
closely related to the well-known linear optimal control problems, e.g., LQR and state-feedback

2. Unless otherwise noted, we will just refer to this problem as LEQG hereafter.
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LQ Gaussian (LQG); ii) it illustrates the idea of mixed control design, especially introducing the
H∞-norm constraint, though implicit, that guarantees robustness.

Specifically, at time t ≥ 0, the agent takes an action ut ∈ Rd at state xt ∈ Rm, which leads the
system to a new state xt+1 by a linear dynamical system

xt+1 = Axt +But + wt, x0 ∼ N (0, X0), wt ∼ N (0,W ),

where A and B are matrices of proper dimensions, x0 ∈ Rm and wt ∈ Rm, ∀t ≥ 0 are independent
zero-mean Gaussian random variables with positive-definite covariance matrices X0 and W , re-
spectively. The one-stage cost of applying control u at state x is given by c(x, u) = x>Qx+u>Ru,
where Q and R are positive-definite matrices. Then, the long-term cost to minimize is

J := lim sup
T→∞

1

T

2

β
logE exp

[
β

2

T−1∑
t=0

c(xt, ut)

]
, (2.1)

where β > 0 describes the intensity of risk-sensitivity. We have proved in (Zhang et al., 2019a,
Sec. 2.1), which is part of our contribution therein, that LEQG can be equivalently written as a
constrained optimization problem over linear time-invariant (LTI) control gain K ∈ Rd×m

min
K
J (K) := − 1

β
log det(I − βPKW ), s.t. ρ(A−BK) < 1, ‖T (K)‖∞ < 1/

√
β, (2.2)

where T (K) is the closed-loop transfer function from the noise {wt} to the output {zt} with zt =
Q1/2xt +R1/2ut under stabilizing controller ut = −Kxt, and PK is the solution to some algebraic
Riccati equation.

Note that the feasible set for LEQG above is implicit in the original formulation (2.1), which,
though quite concise to characterize, is hard to enforce directly onto the control gain K, since it
is a frequency-domain characterization using the H∞-norm. In fact, this reformulation of LEQG
belongs to a general class problems, named mixedH2/H∞ control design with state-feedback.

2.2. Bigger Picture: MixedH2/H∞ Control Synthesis

Consider the following discrete-time linear dynamical system

xt+1 = Axt +But +Dwt, zt = Cxt + Eut, (2.3)

where xt ∈ Rm, ut ∈ Rd denote the states and controls, respectively, wt ∈ Rn is the disturbance,
zt ∈ Rl is the controlled output, and A,B,C,D,E are matrices of proper dimensions. It has been
shown in Kaminer et al. (1993) that LTI state-feedback controller (without memory) suffices to
achieve the optimal performance of mixed H2/H∞ design under the state-feedback information
structure. Hence, it suffices to consider only state-feedback controller parametrized as ut = −Kxt.

In accordance with Glover and Doyle (1988); Khargonekar and Rotea (1991); Başar and Bern-
hard (1995), we make the following assumption on the matrices A,B,C,D and E.

Assumption 2.1 The matrices A,B,C,D,E in (2.3) satisfy E>[C E] = [0 R] for some R > 0.

Hence, the transfer function from the disturbance wt to the output zt can be represented as

T (K) :=

[
A−BK D

(C>C +K>RK)1/2 0

]
. (2.4)
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Then, robustness of the controller can be ensured by the constraint on theH∞-norm, i.e., ‖T (K)‖∞ <
γ for some γ > 0. The intuition, which follows from small gain theorem (Zames, 1966), is that
the constraint on ‖T (K)‖∞ implies that the closed-loop system is robustly stable in that any sta-
ble transfer function ∆ satisfying ‖∆‖∞ < 1/γ may be connected from zt back to wt without
destablizing the system. For convenience, we define the feasible set of the mixed-design problem as

K :=
{
K
∣∣ ∣∣ ρ(A−BK) < 1, and ‖T (K)‖∞ < γ

}
. (2.5)

The objective of the mixed design problem is usually an upper bound of the H2 norm of the
closed-loop system. By a slight abuse of notation, let J (K) be the cost function. Several common
forms of J (K) in the literature can be found in (Zhang et al., 2019a, Sec. 2.2). Here we choose

J (K) = −γ2 log det(I − γ−2PKDD
>), (2.6)

where PK is the solution to the following Riccati equation

(A−BK)>P̃K(A−BK) + C>C +K>RK − PK = 0, (2.7)

with P̃K defined as

P̃K := PK + PKD(γ2I −D>PKD)−1D>PK . (2.8)

The cost in (2.6) is closely related to maximum entropy H∞-control (Mustafa and Glover,
1990), which, interestingly, also coincides with the closed-form cost of LEQG we have derived
in (2.2) (up to some changes of variables). Thus, studying (2.6) solves LEQG as a by-product. In
sum, the mixedH2/H∞ control design problem can be formulated as

min
K

J (K), s.t. K ∈ K, (2.9)

with J (K) and K defined in (2.6) and (2.5), respectively. Next, we develop policy optimization
methods for solving the mixedH2/H∞ control problem in (2.9).

3. Landscape and Algorithms

In this section, we investigate the optimization landscape of mixed H2/H∞ control design, and
develop policy optimization algorithms with convergence guarantees.

3.1. Optimization Landscape

We start by showing that the mixed-design problem in (2.9) is a nonconvex optimization problem
with a non-coercive cost.
Lemma 3.1 (Nonconvexity and No Coercivity of MixedH2/H∞ Design) The discrete-time mixed
H2/H∞ design problem (2.9) is nonconvex. Moreover, the cost function (2.6) is not coercive. Par-
ticularly, as K → ∂K, where ∂K is the boundary of the constraint set K, the cost J (K) does not
necessarily approach infinity.

Lemma 3.1, which is the basis of the illustration in Figure 1, is a combination of Lemmas 3.1 and
3.2 in Zhang et al. (2019a), whose proofs are deferred to §B therein. In particular, the proofs follow
by constructing examples showing that the constraint set K is nonconvex, and J (K) approaches
to a finite value as K → ∂K. Due to the nonconvexity, finding the global optimum using policy
gradient methods is NP-hard in general. The lack of coercivity further complicates the analysis for
the stability/feasibility of the iterates as the methods proceed, in contrast to that for LQR problems.

For algorithm design, we then derive the form of the policy gradient of J (K) within K.
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Lemma 3.2 (Policy Gradient for MixedH2/H∞ Design) The objective J (K) is differentiable
with respect to K for any K ∈ K. The policy gradient has the following form:

∇J (K) = 2
[
(R+B>P̃KB)K −B>P̃KA

]
∆K ,

with ∆K ∈ Rm×m being the unique solution to the Lyapunov equation

∆K = D(I − γ−2D>PKD)−1D> +AK∆KA
>
K , (3.1)

where AK := (I − γ−2PKDD
>)−>(A−BK), and P̃K is defined in (2.8).

Lemma 3.2 corresponds to Lemmas 3.3 and 3.4 in Zhang et al. (2019a), whose proofs are
provided in §B.4 and §B.5 therein. Note that in the proof, by the Bounded Real Lemma, see Lemma
2.7 in Zhang et al. (2019a), any K ∈ K ensures that AK is stabilizing and I − γ−2D>PKD > 0,
making ∆K ≥ 0 well defined as (3.1) admits a non-negative definite and unique solution in this
case. Lemma 3.2 also implies that if ∆K is full-rank, then ∇J (K) = 0 admits the unique solution
K = (R+B>P̃KB)−1B>P̃KA. This unique stationary point thus becomes the global optimum in
K. We formally establish it in the following corollary proved in §B.6 of Zhang et al. (2019a).

Corollary 3.3 Suppose that the discrete-time mixed H2/H∞ design admits a control gain so-
lution K∗ ∈ K, and for any stationary point K ∈ K such that ∇J (K) = 0, the pair

(
(I −

γ−2PKDD
>)−>(A− BK), D

)
is controllable. Then, such a solution is unique, and has the form

of K∗ = (R+B>P̃K∗B)−1B>P̃K∗A.

Note that for LEQG with D = W 1/2 > 0, the controllability condition in Corollary 3.3 is
satisfied for any K ∈ K. Therefore, the argument that stationary point implies global optimum
holds for LEQG naturally. Also, the controllability assumption above is standard for mixed design,
and has also been made in Mustafa and Bernstein (1991).

In order to find the global optimum under the conditions of Corollary 3.3, it suffices to find the
first-order stationary point, which can be obtained using first-order policy optimization methods.

3.2. Policy Optimization Algorithms

Consider three policy-gradient methods as follows. For simplicity, we defineEK := (R+B>P̃KB)K−
B>P̃KA, and use K and K ′ to denote the control gain before and after one-step of the update.

Policy Gradient: K ′ = K − η∇J (K) = K − 2ηEK∆K (3.2)

Natural Policy Gradient: K ′ = K − η∇J (K)∆−1K = K − 2ηEK (3.3)

Gauss-Newton: K ′ = K − η(R+B>P̃KB)−1∇J (K)∆−1K

= K − 2η(R+B>P̃KB)−1EK (3.4)

where η > 0 is the stepsize. The updates are motivated by and resemble the policy optimization
updates for LQR (Fazel et al., 2018; Bu et al., 2019a), but with PK therein replaced by P̃K . The
natural PG update is related to gradient over a Riemannian manifold; while the Gauss-Newton
update is one type of quasi-Newton update. In particular, with η = 1/2, the Gauss-Newton update
(3.4) can be viewed as the policy iteration update for infinite-horizon mixedH2/H∞ design.

4. Theoretical Results

In this section, we investigate the convergence of the PO methods proposed in §3.
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4.1. Implicit Regularization

The first key challenge in the convergence analysis for PO methods is to ensure that the iterates
remain feasible as the algorithms proceed, hopefully without the use of projection. This is especially
important in mixed design problems, as the feasibility here means robust stability, the violation of
which can be catastrophic in practical online control design. We formally define the concept of
implicit regularization to describe this feature.

Definition 4.1 (Implicit Regularization) For mixed H2/H∞ control design problem (2.9), sup-
pose an iterative algorithm generates a sequence of control gains {Kn}. If Kn ∈ K for all n ≥ 0,
this algorithm is called regularized; if it is regularized without projection ontoK for any n ≥ 0, this
algorithm is called implicitly regularized.

The concept of (implicit) regularization has been adopted in many recent studies on noncon-
vex optimization, including training neural networks (Allen-Zhu et al., 2018; Kubo et al., 2019),
phase retrieval (Chen and Candes, 2015; Ma et al., 2017), etc., referring to any scheme that biases
the search direction of gradient-based algorithms. Implicit here means that the iterates are regular-
ized/biased as if an explicit regularization (projection) is imposed. In fact, by Lemma 3.1, projection
onto K is in general intractable, as K is a nonconvex set. See more discussions on the use of this
terminology in (Zhang et al., 2019a, Remark 4.2).

As mentioned earlier, the iterates of PG for LQR are implicitly regularized, due to the coercivity
of the cost: any decrease of the cost ensures stay in the feasibility set. This holds for any descent
direction of the cost. Though coercivity does not hold in mixed design, interestingly, we show in the
following theorem that the updates following certain directions, the natural PG and Gauss-Newton
updates in (3.3)-(3.4), still enjoy the implicit regularization feature, with constant stepsize.

Theorem 4.2 (Implicit Regularization for Mixed Design) For any control gain K ∈ K, i.e.,
ρ(A − BK) < 1 and ‖T (K)‖∞ < γ, with ‖K‖ < ∞, suppose that the stepsize η satisfies:
for Natural policy gradient (3.3) η ≤ 1/(2‖R+B>P̃KB‖) and for Gauss-Newton (3.4): η ≤ 1/2.
Then the K ′ obtained from (3.3)-(3.4) also lies in K.

4.2. Global Convergence

We now focus on the convergence property of the two methods with implicit regularization. The
term global convergence here refers to two notions: i) the convergence performance of the algo-
rithms starting from any feasible initialization point K0 ∈ K; ii) convergence to the global optimal
policy under certain conditions. We formally establish the results in the following theorem.

Theorem 4.3 (Global Convergence for Discrete-Time Mixed Design) Suppose thatK0 ∈ K and
‖K0‖ < ∞. Then, under the stepsize choices3 in Theorem 4.2, both updates (3.3) and (3.4) con-
verge to the stationary pointsK whereEK = 0, such that the average of {‖EKn‖2F } over iterations
converges to 0 with O(1/N) rate. Also, if

(
(I − γ−2PKDD

>)−>(A−BK), D
)

is controllable at
the stationary point K, then such a convergence is towards the unique global optimal policy.

The proof of Theorem 4.3 is detailed in §5.2 in Zhang et al. (2019a). The controllability as-
sumption has been made in Corollary 3.3, and is satisfied automatically for LEQG problems with
D = W 1/2 > 0. Moreover, in contrast to the results for LQR (Fazel et al., 2018), only globally

3. In fact, for natural PG (3.3), it suffices to require the stepsize η ≤ 1/(2‖R+B>P̃K0B‖) for the initial K0.
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sublinear O(1/N), instead of linear, convergence rate can be obtained so far. This O(1/N) rate of
the (iteration average) gradient norm square matches the global convergence rate of gradient descent
and second order algorithms to stationary points for general nonconvex optimization (Cartis et al.,
2010, 2017; Khamaru and Wainwright, 2018).

Though sublinear globally, much faster rates of (super-)linear can be shown locally around the
optimum as below. Proof of the following theorem can be found in §5.3 in Zhang et al. (2019a). The
intuition of locally linear rates is that the property of gradient dominance (Polyak, 1963; Nesterov
and Polyak, 2006) holds locally around the optimum for mixed design problems. Such a property
has been shown to hold globally for LQR problems (Fazel et al., 2018), and also hold locally for
zero-sum LQ games (Zhang et al., 2019c). The Q-quadratic rate also echoes back the rate of Gauss-
Newton with η = 1/2 for LQR problems (Hewer, 1971; Bu et al., 2019a).

Theorem 4.4 (Local (Super-)Linear Convergence for Mixed Design) Suppose that the condi-
tions in Theorem 4.3 hold, and additionally DD> > 0. Then, under the stepsize choices as in
Theorem 4.3, both updates (3.3) and (3.4) converge to the optimal control gain K∗ with locally
linear rate, such that the objective {J (Kn)} converges to J (K∗) with a linear rate. In addition, if
η = 1/2, the Gauss-Newton update (3.4) converges to K∗ with a locally Q-quadratic rate.

Remark 4.5 (Comparison to Zhang et al. (2019c)) Due to the close relationship between mixed
design and zero-sum LQ games, see §6 in Zhang et al. (2019a), one may compare the convergence
results and find the rates here (globally sublinear and locally linear) not improved over Zhang et al.
(2019c). However, one key difference is that an extra projection step is required to guarantee the
stability of the system in Zhang et al. (2019c), which is essentially to regularize the iterates explic-
itly. More importantly, such a projection can only be calculated under more restrictive assumptions
(see Assumption 2.1 therein), which, though covering a class of LQ games, are not standard in ro-
bust control. Here, similar convergence results are established, without projections or non-standard
assumptions in robust control, thanks to implicit regularization. Moreover, we have established the
local “superlinear” rate for the Gauss-Newton update.

5. Concluding Remarks

In this paper, we investigated the convergence theory of policy optimization methods for H2 linear
control with H∞-norm robustness guarantees. Viewed as a constrained nonconvex optimization,
this problem was addressed by PO methods with provable convergence to the global optimal pol-
icy. More importantly, we showed that the proposed PO methods enjoy the implicit regularization
property, despite the lack of coercivity of the cost function. We note that due to the equivalence of
mixed design and zero-sum linear quadratic games, see §6 in Zhang et al. (2019a) and the references
therein, our results can be applied to study PO methods for LQ games as well. Moreover, our re-
sults, together with this connection to LQ games, pave the way for developing model-free versions
of our algorithms, which is left as our future work.
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