
Augmenting Language Agents with Parametric
Memory

Tianjun Yao1 Yongqiang Chen1,2 Yujia Zheng2 Zhiqiang Shen3 Pan Li3 Kun Zhang1,2

1Mohamed bin Zayed University of Artificial Intelligence
2Carnegie Mellon University 3Georgia Institute of Technology

Abstract

Large Language Models (LLMs) have demonstrated strong reasoning abilities,
yet existing agent frameworks remain constrained by two limitations. First, they
typically operate at the per-instance level, confining signals to individual problems
and overlooking transferable patterns across tasks. Second, while some approaches
attempt to incorporate global information through external memory, these are non-
parametric in nature, and thus capture only shallow interactions across instances,
failing to uncover deeper regularities. To overcome these limitations, we pro-
pose ParamAgent, a language agent framework that leverages a domain-adaptive
parametric memory to internalize knowledge across samples into model param-
eters. In addition to capturing cross-sample regularities, ParamAgent provides
twofold flexibility: (i) the parametric module can supply different forms of knowl-
edge depending on various domains, and (ii) the same module can be integrated
with different base LLMs, making ParamAgent broadly applicable. Moreover,
ParamAgent naturally promotes diversity of outputs by adjusting the sampling
temperature of the parametric module. Experiments on programming, math rea-
soning, and multi-hop question answering benchmarks show that ParamAgent
consistently outperforms state-of-the-art baselines, surpassing the best baseline by
up to 7.90%, 9.41%, and 24.30% respectively.

1 Introduction

Large language models (LLMs) [6, 10, 31] have exhibited striking progress in complex reasoning
tasks. Their ability to interleave reasoning with actions has led to the development of autonomous
language agents that treat an LLM as the core policy[37, 28, 43, 42, 49, 22, 38, 32, 15, 46]. For
example, Chain-of-Thought (CoT) prompting [37] elicits explicit intermediate steps that improve
reasoning performance on complex tasks. Self-Refine [22] introduces an iterative self-feedback loop,
enabling models to progressively refine their outputs and achieve higher-quality results. Subsequent
work expands agents’ search and feedback mechanisms: Reflexion [28] stores verbalized feedback
in episodic memory (i.e., a long-term memory of the agent’s self-reflections accumulated across
iterations) and yields noticable gains; Tree-of-Thoughts (ToT) [42] explores multiple reasoning paths
via tree search; LATS integrates Monte-Carlo Tree Search for long-horizon planning [49, 7].

Despite the effectiveness of self-reflection, recent work has identified a lack of diversity in
the reflective signals as the limitation [19]. To address this, [19] has proposed DoT and DoT-
bank, which enhance reflective diversity through prompt-level variation and retrieval-based
cross-sample trajectories. Similarly, many previous work propose to use textual log as external
memory to enrich the reflective inputs, therefore enhancing the reasoning ability of language
agent [5, 27, 34, 27, 48, 36]. These results confirm that introducing diverse reflective information can
substantially improve the agent’s reasoning process. However, prompt-based approaches cannot

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: ResponsibleFM.

capture cross-sample regularities, and retrieval-based methods using external memory may be
constrained by the limited number and coverage of stored samples. This naturally raises the question:

How can we further expand reflective diversity to achieve stronger reasoning performance?
To overcome these limitations, we propose ParamAgent, a language-agent framework that leverages
parametric knowledge. ParamAgent introduces an external module M∗ (where ∗ denotes different
knowledge types across domains) to internalize cross-sample information. When solving a new
problem, the agent queries M∗ to obtain population-level insights rather than purely instance-level
feedback. For example, Mr can synthesize common error patterns for programming and math tasks,
while Mp generates semantic decomposition units for multi-hop question answering (Sec. 3). As the
parametric knowledge is encoded directly into the parameters of M∗ through training, the module
captures cross-sample regularities and produces reflective signals that differ fundamentally from
self-reflection and retrieval-based trajectories. This parametric module introduces an additional layer
of diversity into the reflective inputs. As we will show in Sec. 4, this additional form of diversity
works jointly with reflection-based frameworks and further enhances the agent’s reasoning ability.
Beyond diversity, ParamAgent offers two forms of flexibility. First, M∗ can generate different types
of knowledge, from population-level reflective feedback to structured semantic units. Second, the
same parametric module can be paired with different base LLMs, making ParamAgent broadly
applicable across architectures and domains.

We evaluate ParamAgent on math reasoning problems, programming, and multi-hop QA. In each
domain, ParamAgent significantly outperforms state-of-the-art methods. Concretely, our approach
surpasses the best baseline by up to 7.90% on programming, 9.41% on math reasoning, and 24.30%
on multi-hop QA. Our contributions can be summarized as follows:

• We identify key limitations in existing agent frameworks and propose leveraging parametric
knowledge to capture cross-sample interactions, thereby augmenting the reasoning process.

• We propose ParamAgent, a language agent that equips a parametric module to capture cross-
sample regularities, and further introduce ParamAgent-plus, an enhanced variant that integrates
multiple forms of memory modules.

• The parametric module M∗ is capable of synthesizing multiple forms of knowledge that support
adaptation to a wide range of domains, and it can be flexibly integrated with different base LLMs
in the agents.

• Through extensive experiments on programming, math reasoning, and multi-hop QA, ParamAgent
consistently outperforms state-of-the-art baselines, surpassing the second best by up to 7.90%,
9.41%, and 24.30% respectively.

2 Preliminaries

We consider a pretrained Language Model (LM) pθ with parameters θ that operates on token
sequences. Let x = (x[1], . . . , x[lx]) denote the input sequence and y = (y[1], . . . , y[ly]) the
output sequence. The LM decodes autoregressively, i.e., pθ(y | x) =

∏ly
i=1 pθ

(
y[i] | x, y[1:i−1]

)
,

and, more generally, with an auxiliary prompt π (e.g., instructions, exemplars, tool feedback, etc.),
pθ(y | x, π) =

∏ly
i=1 pθ

(
y[i] | x, π, y[1:i−1]

)
. We use z1, . . . , zn to denote intermediate thoughts,

and r1, . . . , rk to denote self-reflections. A node in a search tree is written as s = [x, z1:i].

Input–Output (IO) prompting The LM is prompted with task instructions and/or few-shot IO
pairs and directly produces the final output: y ∼ pθ(· | x, πIO).

Chain-of-Thought (CoT) To handle x 7→ y, CoT [37] instructs the model to first generate a
sequence of thoughts and then the answer: zi ∼ pθ(· | x, z1:i−1), y ∼ pθ(· | x, z1:n). In practice,
[z1:n, y] is sampled as a single contiguous sequence.

Reflexion Reflexion [28] augments the prompt with episodic self-reflections r1:k from the previous
k iterations. The agent then generates new solutions conditioned on the previous feedbacks: y ∼
pθ(· | x, r1:k). Intuitively, ri provides textual semantic gradient signals [28, 45], indicating common
errors to avoid and corrective cues.

2

(a) An output example of Mr on programming
task using HumanEval dataset.

(b) An output example of Mp on multi-hop QA task using
HotpotQA dataset.

Figure 1: Illustration of the output produced by M∗

Diversity of Thoughts (DoT) DoT [19] enhances the diversity of reflection feedback by using
explicit prompt-level instructions to generate a set of diversified reflections {ri}ki=1, thereby reducing
redundancy and improving coverage of solutions. The decoding objective remains: y ∼ pθ(· |
x, r1:k).

Tree-of-Thought (ToT) and LATS ToT [42]lifts CoT into a search over partial solutions
s = [x, z1:i]. New thoughts are proposed via CoT-style sampling zi ∼ pθ(· | x, z1:i−1), while
DFS/BFS is used to explore the search tree. LATS [49] extends this view with Monte-Carlo Tree
Search (MCTS) [7], repeatedly selecting, expanding, simulating, and backpropagating values over
nodes s, thereby constructing high-value trajectories of thoughts leading to a more probable correct y.

3 Augmenting Language Agents with Parametric Knowledge

In this section, we show how ParamAgent leverages parametric knowledge to augment LLM-
based agents. Depending on the domain, ParamAgent employs different forms of parametric
knowledge. Speficically, (1) A reflection-oriented module Mr to synthesize model-based reflection
for programming and math, and (2) A decomposition-oriented module Mp to produce semantic units
for multi-hop QA. The detailed pseudo-code can be found in Appendix B, a shorter version can be
found in Algorithm 1.

3.1 Global-Local Reflection

To incorporate cross-sample reflective signals beyond instance-specific cues, we propose a
global–local reflection mechanism. The key idea is to combine self-reflections derived from episodic
memory with global reflections synthesized by a parametric module Mr.

Training Mr. We obtain Mr by fine-tuning a pretrained LLM on a curated dataset where reflective
feedback is provided as supervision. Through this process, the module internalizes population-level
patterns into its model parameters, and learns to synthesize model-based reflections and corrective
cues. We provide more details regarding the dataset curation and training in Appendix D.2. An
example output from Mr is shown in Figure 1a.

Formulation. Having obtained Mr, ParamAgent conditions jointly on two sources of feedback:

y ∼ pθ(· | x, r1:k, rgk), rgk ∼ pψ(· | x), (1)

where r1:k denotes k self-reflections collected across iterations, and rgk is the global reflection
generated by Mr at the k-th iteration.

Usage. In each episode, Mr samples a global reflection rgk, which is injected into the prompt
alongside self-reflections from the memory. A low sampling temperature is used in the first round

3

to ensure informative feedback, while later rounds adopt a higher temperature to promote diversity.
Importantly, rgk is used only as a transient input and is not stored in memory; the episodic memory
only maintains self-reflections generated by the agent itself.

3.2 Semantic Decomposition

Algorithm 1: Pseudocode for ParamAgent

Require: Dataset D, base LM pθ , parametric module M∗
with params ψ, max iterations Tmax

1: M← ∅ ▷ Initialize memory
2: for x ∈ D do
3: for t = 1 to Tmax do

4: T ←

{
0.2 if t = 1

1.0 otherwise
5: Gt−1 ∼ pψ(· | x;T) ▷ rgt−1 or Z
6: r1:t−1 ← RETRIEVEREFLECTIONS(M, x)
7: yt ∼ pθ(· | x, r1:t−1, Gt−1)
8: if EVALUATE(yt, x) then
9: break

10: else
11: rt ← GENERATESELFREFLECTION(yt)
12: M←M∪ {(x, rt)} ▷ Store reflection
13: end if
14: end for
15: end for

Beyond reflections, the parametric mod-
ule can also generate structured knowl-
edge. Inspired by chunking and the
working memory model from cognitive
science [23, 2], we introduce Mp to
decompose complex multi-hop queries
into compact semantic units that guide
reasoning, one such example is illus-
trated in Figure 1b.

Training Mp. Similar to Mr, we fine-
tune a pretrained LLM where semantic
decompositions (e.g., entities, relations,
constraints, answer types, etc.) serve as
the training signal. Details are deferred
in Appendix D.2.

Formulation. ParamAgent then con-
ditions jointly on the original query x,
the semantic units Z, and a set of self-
reflections r1:k derived from prior at-
tempts, with the final answer produced
as:

y ∼ pθ(· | x, Z, r1:k). (2)

By combining self reflection with model-based semantic decomposition, the agent benefits from both
local reflective feedback and global structural guidance.

Usage. Similarly, at the first round, Mp generates semantic units under a low temperature, and the
temperature is increased in the remaining rounds to promote diversity.

3.3 Relation to Previous Studies

Global-local reflection Our design is inspired by Reflexion [28], which improves reasoning through
iterative interaction between an actor Ma, an evaluator Me, and a self-reflection module Msr. The
actor generates candidate outputs, the evaluator provides feedback based on task-specific signals, and
the self-reflection module produces natural language feedback that is appended to the context of the
next trial. In ParamAgent, we propose a new module Mr, which encodes cross-sample similarities
into the model parameters, allowing the module to generate higher-quality reflections that facilitate
the reasoning process of the language agent.

Semantic decomposition A key advantage of ParamAgent lies in its flexibility: the method can
provide different forms of knowledge depending on the task. For multi-hop QA, we introduce seman-
tic decomposition, which is conceptually related to CoT prompting. In standard CoT, intermediate
thoughts zi are elicited directly by the base LM. In contrast, our framework employs a dedicated
parametric module Mp, which generates a structured set of intermediate thoughts Z that guide the
reasoning process. Furthermore, we show that semantic decomposition can be seamlessly combined
with reflection-based framework. Together they complement each other, yielding richer guidance to
augment reasoning.

4 Experiments

In this section, we detail our experimental setup and present results across programming, math
reasoning, and multi-hop QA. We then conduct more in-depth empirical analyses of our proposed

4

method. More experimental results are included in Appendix D, including experiments with 70B
scale LLMs.

4.1 Setup

Datasets We evaluate our framework across three domains. For programming, we use Hu-
manEval [8] and MBPP [1]. For math reasoning, we adopt the MATH dataset [13], which covers
competition-level problems of varying difficulty across seven subjects. For multi-hop QA, we use
HotpotQA [41] and 2WikiMultiHopQA [14], which require reasoning across multiple passages.
Further details about each dataset, as well as how we perform dataset splits are provided in later
sections.

Evaluation For programming tasks, we follow prior work [28, 19] and report Pass@1. During
generation, only visible or synthetic test cases are used, while final evaluation is conducted on hidden
test cases; a score of 1 is assigned if all tests pass and 0 otherwise. For math reasoning and multi-hop
QA, we report 0–1 accuracy on subsampled testsets.

Baselines We compare against: (1) Base, the underlying LLM agent without reflection; (2) Re-
flexion [28], which uses episodic self-reflections; (3) DoT [19], which augments Reflexion with
prompt-level diversity. (4) DoT-bank [19], which further incorporate a memory bank to enrich the
reflective feedbacks. (5) In addition, we develop a baseline that uses only the parametric module
to generate reflections or semantic units, referred to as model-based reflection or model-based CoT.
This baseline utilizes M∗ purely as a parametric sampler, without performing self-reflection. The
pseudocode can be found in Appendix B. Our full model ParamAgent incorporates both episodic
memory and parametric memory for iterative reasoning, yielding stronger and more diverse feedback
signals. Finally, we also explore an extended variant ParamAgent-plus, where we further intro-
duce a memory bank similar to DoT. This extension allows the agent to combine episodic memory,
parametric memory, and cross-sample memory, offering a comprehensive integration of different
knowledge sources.

To ensure a comprehensive evaluation, we employ three backbone LLMs with varying levels of
reasoning capability: (1) Llama-3.1-8B [11], a strong open-source reasoning model; (2) Mistral-
7B-v0.2 [18], a competitive medium-sized model with efficient inference; and (3) Qwen2-1.5B-
instruct [3], a TogetherAI’s hosted version of Qwen2 1.5B, fine-tuned into an instruction-following
variant. This selection of backbones allows us to examine how our approach performs across
different model sizes and reasoning strengths. We also provide results with stronger base LLMs
in Appendix D.4, showing that even when the parametric module remains an 8B model, it can still
provide noticable gains to agents built on 70B-scale LLMs.

Hyperparameters Across all experiments, we fix the number of reflection iterations to 5 for both
baseline methods and our proposed approach. For ParamAgent and its variants, we set the sampling
temperature to T = 0.2 during the first iteration, and T = 1.0 in the subsequent iterations to promote
diversity. For LoRA finetuning of the parametric modules, we use a rank of r = 128, scaling factor
α = 32, a learning rate of 2e− 5, and train for 3 epochs.

Parametric module The parametric module is designed to internalize population-level knowledge
across tasks t ∈ D. We first construct a dataset {(ti,mi)}ni=1 by prompting an LLM on synthetic
data or a subset of the training set to enumerate failure modes or semantic units, where n is typically
around 104. Mr or Mp is then obtained by finetuning a pretrained LLM using LoRA [16], encoding
this knowledge into its parameters. In our experiments, we instantiate the module with Llama-3.1-
8B. More details on the setup, dataset construction, training procedure, and implementation of the
parametric module are deferred to Appendix D.2.

4.2 Programming

Datasets We evaluate our framework on two widely used programming benchmarks: Hu-
manEval [8] and MBPP [1]. HumanEval consists of Python programming problems that test func-
tional correctness using hidden unit tests, while MBPP covers beginner to intermediate-level Python
problems designed for program synthesis.

5

Table 1: Performance on HumanEval and MBPP datasets. Bold denotes the best result, and underline
marks the second best. ↑ and ↓ indicate the absolute improvement or decrease relative to the Base
method. For clarity, the prompt token usage of the Base method is normalized to 1. Table 2 and
Table 3 use the same notation, which we omit from the captions due to space constraints.

Dataset Method Llama-3.1-8B Mistral-7B-v0.2 Qwen2-1.5B
Pass@1 #Prompt Tokens Pass@1 #Prompt Tokens Pass@1 #Prompt Tokens

HumanEval

Base 59.15 1.00 32.93 1.00 41.46 1.00
Model-based Reflection 78.05 ↑ 18.90 9.15 68.29 ↑ 35.36 23.73 68.91 ↑ 27.45 6.77
Reflexion 76.22 ↑ 17.07 9.29 51.22 ↑ 18.29 28.54 49.39 ↑ 7.93 18.30
DoT 73.17 ↑ 14.02 17.45 46.95 ↑ 14.02 43.06 56.56 ↑ 15.10 15.26
DoT-bank 79.56 ↑ 20.41 24.71 54.26 ↑ 21.33 61.62 60.10 ↑ 18.64 31.28
Ours 82.93 ↑ 23.78 19.18 67.07 ↑ 34.14 70.38 66.46 ↑ 25.00 33.45

MBPP

Base 47.61 1.00 24.94 1.00 42.06 1.00
Model-based Reflection 52.90 ↑ 5.29 31.93 47.86 ↑ 22.92 20.98 52.89 ↑ 10.83 25.35
Reflexion 58.69 ↑ 11.08 37.18 28.46 ↑ 3.52 14.02 47.61 ↑ 5.55 26.95
DoT 61.21 ↑ 13.60 51.83 19.79 ↓ 5.15 25.45 47.37 ↑ 5.31 21.48
DoT-bank 64.82 ↑ 17.21 69.41 24.68 ↓ 0.26 60.09 53.38 ↑ 11.32 60.95
Ours 67.00 ↑ 19.39 86.39 51.64 ↑ 26.70 36.88 54.90 ↑ 12.84 66.86

Table 2: Performance on MATH dataset.

Dataset Method Llama-3.1-8B Mistral-7B-v0.2 Qwen2-1.5B
Acc #Prompt Tokens Acc #Prompt Tokens Acc #Prompt Tokens

MATH

Base 48.20 1.00 12.23 1.00 8.99 1.00
Model-based Reflection 45.81 ↓ 2.39 2.58 13.31 ↑ 1.08 2.82 16.91 ↑ 7.92 2.84
Reflexion 58.99 ↑ 10.79 23.33 19.78 ↑ 7.55 27.67 21.94 ↑ 12.95 18.39
DoT 64.38 ↑ 16.18 34.17 23.25 ↑ 11.02 40.51 22.30 ↑ 13.31 31.99
DoT-bank 73.02 ↑ 24.82 83.92 35.61 ↑ 23.38 122.92 24.37 ↑ 15.38 76.71
ParamAgent 67.99 ↑ 19.79 57.01 28.06 ↑ 15.83 92.91 22.30 ↑ 13.31 70.07
ParamAgent-plus 75.45 ↑ 27.25 111.32 38.96 ↑ 26.73 196.18 25.97 ↑ 16.98 144.25

Results From Table 1, we can observe that: (1) Model-based Reflection, which relies solely
on parametric reflection without using self-reflection, already achieves substantial gains or per-
forms comparably to the baseline methods across different LLM backbones. This indicates that
parametric knowledge alone can provide useful reflective signals, effectively guiding the agent
toward higher-quality solutions. (2) Furthermore, ParamAgent, which integrates both instance-
specific self-reflections and model-based parametric reflections, achieves consistent improvements
across most datasets and base models. This highlights the complementary benefits of combining
feedback at different granularities: local signals capturing trial-specific errors and global signals
capturing population-level patterns. (3) Notably, although DoT-bank also leverages global-level
reflective feedback, it underperforms compared to ParamAgent in most scenarios. This highlights
that retrieval-based memory modules are less effective than model-based parametric modules in
capturing deep relational patterns across tasks. (4) Finally, ParamAgent is also cost-effective, its
token consumption is on par or lower than DoT-bank while delivering stronger performance.

4.3 Math Reasoning

Datasets For mathematical reasoning, we evaluate on the MATH dataset [13], which consists of
competition-level problems spanning seven subjects: Prealgebra, Algebra, Number Theory, Counting
and Probability, Geometry, Intermediate Algebra, and Precalculus. To construct our evaluation set,
we randomly sample 40 problems from each subject in testset, ensuring that the problems cover
diverse topics and allows us to comprehensively assess the performance of different methods across
varying topics.

Results From Table 2, we can make several observations. (1) Compared with model-based reflection
alone, instance-level self-reflection proves more effective for math reasoning. However, when
model-based reflective feedback is incorporated, ParamAgent consistently improves over Reflexion
across all 3 backbone LLMs, and outperforms DoT on all LLM backbones. (2) Furthermore,
ParamAgent-plus, which incorporates all levels of memory modules, achieves state-of-the-art
results across all 3 backbone LLMs. This clearly demonstrates the added value of parametric
knowledge: by combining episodic memory, parametric memory, and cross-sample memory, the
agent gains access to richer and more complementary feedback signals, enabling stronger performance
on competition-level mathematical reasoning tasks.

6

Table 3: Performance on HotpotQA and 2WikiMultiHopQA datasets.
Dataset Method Llama-3.1-8B Mistral-7B-v0.2 Qwen2-1.5B

Acc #Prompt Tokens Acc #Prompt Tokens Acc #Prompt Tokens

HotpotQA

Base 57.67 1.00 45.00 1.00 43.66 1.00
Model-based CoT 61.67 ↑ 4.00 1.46 54.33 ↑ 9.33 1.46 48.10 ↑ 4.44 1.44
Reflexion 71.33 ↑ 13.66 4.13 62.33 ↑ 17.33 4.67 50.03 ↑ 6.37 6.22
DoT 66.67 ↑ 9.00 7.10 58.33 ↑ 13.33 8.97 49.32 ↑ 5.66 58.05
DoT-bank 72.00 ↑ 14.33 13.28 66.33 ↑ 21.33 19.35 52.02 ↑ 8.36 109.54
ParamAgent 78.33 ↑ 20.66 22.25 69.67 ↑ 24.67 34.99 64.66 ↑ 21.00 14.69

2WikiMultiHopQA

Base 40.33 1.00 21.00 1.00 40.33 1.00
Model-based CoT 54.67 ↑ 14.34 1.39 46.33 ↑ 25.33 1.21 40.66 ↑ 0.33 1.19
Reflexion 78.67 ↑ 38.34 5.47 61.33 ↑ 40.33 5.86 51.00 ↑ 10.67 6.56
DoT 66.67 ↑ 26.34 7.03 52.13 ↑ 31.13 6.40 47.83 ↑ 7.50 30.55
DoT-bank 80.33 ↑ 40.00 12.49 74.66 ↑ 53.66 8.10 50.49 ↑ 10.16 54.92
ParamAgent 88.67 ↑ 48.34 10.41 81.33 ↑ 60.33 14.43 63.33 ↑ 23.00 17.39

4.4 Multi-hop QA

Datasets We use a subset of samples from HotpotQA and 2WikiMultiHopQA for the evaluation.
Specifically, for HotpotQA, from the training set, we randomly sample 100 examples for each
difficulty level (easy, medium, and hard), resulting in 300 test samples. For 2WikiMultiHopQA, we
focus on 4 representative categories: bridge comparison, comparison, compositional, and inference.
We randomly draw 75 examples from each category, leading to a total of 300 test samples.

Results From Table 3, we can draw several conclusions. (1) Model-based CoT outperforms the Base
method by a large margin across all three backbones. This indicates that decomposed semantics, when
used as structured intermediate thoughts, facilitating the reasoning ability of the underlying LLM. (2)
Although Model-based CoT underperforms compared to stronger baselines such as Reflexion and
DoT-bank, ParamAgent achieves significant improvements over all state-of-the-art methods, even
without incorporating a memory bank. This demonstrates the complementary advantages of semantic
decomposition compared with reflective feedback, and highlights the effectiveness of combining
them within a unified framework.

4.5 Additional Analysis

4.5.1 Quantifying the Diversity of Reflections

Setup We study to what extent the reflection trajectories produced by ParamAgent differ from
those of other baselines. To this end, we maintain the complete reflection history for each sample
and embed each reflection using the OpenAI text-embedding-3-small model. We focus on the
HumanEval dataset for this analysis. Concretely, for N samples, and for each backbone LLM, we
obtain a 2D tensor of shape R

∑N
i=1 ni×F , where ni denotes the number of reflection iterations for

sample i, and F is the embedding dimension. We then perform k-means clustering [21] over all
reflections and apply the elbow method [30] to determine the optimal clustering number K∗. This
provides a quantitative measure of the semantic diversity of reflective feedback across methods.
Additionally, for each K, we compute the silhouette score to evaluate clustering quality.

Results As shown in Figure 2, ParamAgent achieves an optimal clustering number of K∗ = 39,
substantially larger than that of Reflexion, DoT and DoT-bank. This indicates that the reflective
outputs of Reflexion lack diversity, whereas the parametric feedback of ParamAgent introduces
significantly richer and more varied reflective signals. Moreover, across all clustering numbers K,
the silhouette score of ParamAgent is consistently higher than those of competing methods. This
suggests not only that ParamAgent generates more diverse reflections, but also that these reflections
form more coherent semantic groups.

4.5.2 Effect of Reflection Format from Mr on Programming Tasks

Setup In this section, we conduct an ablation study on the content of the reflections produced by
Mr for programming tasks. As introduced in Section 3, for a given programming task t, Mr samples
two complementary components: (1) textual reflective feedback describing potential pitfalls, and (2)
code snippets implementing possible buggy solutions to illustrate failure modes. To analyze their

7

Reflections DoT DoT-Bank Ours
Methods

0

10

20

30

40

Va
lu

es

K=11

K=32 K=33

K=39

0.061

0.171 0.173

0.240

Optimal K
Silhouette Score

(a) Optimal clustering number K∗ across methods and the
corresponding Silhouette scores.

(b) Silhouette score for every clustering
number K ∈ [2, 60].

Figure 2: Quantitative analysis of reflection diversity: (a) optimal clustering numberK∗; (b) silhouette
scores for different K.

contributions, we post-process the outputs from Mr by removing one of the components. We then
evaluate the resulting variants on the HumanEval dataset.

Llama3.1-8B Mistral-7B-v0.2 Qwen2-1.5B
0.5

0.6

0.7

0.8

Pa
ss
@
1

78.05

68.29
66.46

80.49

66.05 65.83

72.56

54.27

59.76

ParamAgent
w/o Impl
w/o Pitfalls

(a) Ablation study on the reflection format of Mr on
programming task.

Llama3.1-8B Mistral-7B-v0.2 Qwen2-1.5B
0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pa
ss

@
1

(%
) 70.12

49.08
52.17

78.05

60.25
63.04

78.05

68.29 68.91

79.88
74.85 75.03

Iter@1 Iter@3 Iter@5 Iter@10

(b) Ablation study on iteration numbers of Model-
based Reflection on programming task.

Figure 3: Ablation studies.

Results From Figure 3a, we can observe that: (1) The textual reflective feedback (w/o Impl) proves
to be more important across different backbone LLMs. When only buggy code implementations
are preserved without natural language descriptions, the performance sometimes even degrades,
as observed in Llama-3.1-8B. (2) When only textual reflective feedback is kept, both Mistral-7B-
v0.2 and Qwen2-1.5B show moderate drops in accuracy. This suggests that including buggy code
implementations also provides useful complementary signals. Overall, these results indicate that
outputting both natural language reflections and buggy code examples is a robust design choice.

4.5.3 Effect of Iteration Number on Model-based Reflection

Setup In the main experiments, we fixed of iterations to 5 for fairness. Here we vary the iteration
count of Model-based Reflection in {1, 3, 10} to examine how diversity affect the model performance.

Results As shown in Figure 3b, running only a single iteration yields subpar performance, indicating
that providing one informative reflection (T = 0.2) is insufficient. Performance improves steadily as
the iteration number increases significantly, even without an episodic memory buffer. This highlights
that the diversity introduced by the parametric memory is crucial and effective for performance gains.

4.5.4 Effect of Auxiliary Datasets

Setup In our experiments, we use GPT-4o-mini to construct auxiliary datasets containing reflective
signals and semantic units. To isolate the influence of using a stronger LLM during supervision
generation, we additionally employ Llama3.1-8B to produce the same supervision and evaluate its

8

impact on the parametric module. We conduct assessments on both the HumanEval and HotpotQA
benchmarks.

Table 4: Performance on HumanEval and HotpotQA
with Llama-3.1-8B generated synthetic datasets.

Method HumanEval HotpotQA
Pass@1 Acc

Base 59.15 57.67
Model-based Reflection / CoT 78.05 ↑ 18.90 61.67 ↑ 4.00

Reflexion 76.22 ↑ 17.07 71.33 ↑ 13.66

DoT 73.17 ↑ 14.02 66.67 ↑ 9.00

DoT-bank 79.56 ↑ 20.41 72.00 ↑ 14.33

ParamAgent 78.05 ↑ 18.90 76.33 ↑ 18.66

ParamAgent-plus 86.59 ↑ 27.44 83.33 ↑ 25.66

ParamAgent 82.93 ↑ 23.78 78.33 ↑ 20.66

Results As shown in Table 4, we observe
two key findings. (1) relative to GPT-4o-
mini, ParamAgent exhibits a performance
drop when supervised with Llama3.1-8B.
This is due to the supervision generated
by a more capable LLM (e.g., reflective
signals) is generally more accurate.

(2) Despite this drop, our method still sur-
passes other state-of-the-art baselines by a
substantial margin. These results highlight
two important conclusions: (1) the para-
metric memory provides additional diver-
sity to the reflective process, which in turn
enhances the agent’s reasoning capability;
and (2) higher-quality auxiliary datasets
can further improve the parametric module, particularly benefiting smaller models.

5 Related Work

We discuss the most relevant work below, with additional related work in Appendix A.

LLM Reasoning LLMs have demonstrated emergent abilities to perform multi-step reasoning
when prompted appropriately. for instance, CoT prompting elicits the model to generate explicit
intermediate reasoning steps and significantly improves performance on complex tasks [37]. Self-
Consistency [35] further improves CoT by sampling multiple reasoning paths and aggregating them
via majority voting, which increases robustness. ReAct [43] is a seminal approach that interleaves
reasoning steps with actions (e.g., tool uses or environment queries) in an interactive decision-making
loop, allowing the model to both “think” and “act” step-by-step. Other methods focus on iterative
self-feedback, highlighting that reasoning is a process, not a one-shot [22, 28]. ParamAgent follows
this iterative reasoning paradigm but avoids sophisticated search procedures.

External Memory in LLMs Memory has become central for agents tackling multi-step reason-
ing [47]. Short-term mechanisms such as Self-Refine [22] use the model’s own recent outputs as
transient memory for iterative refinement, while Reflexion [28] maintains episodic logs of errors
and reflections to guide retries within a task. These approaches however, reset once a new problem
begins. To address this limitation, external memory has been proposed to augment agentic reason-
ing [5, 27, 34, 27, 48, 36, 17, 40, 9, 19]. These methods mainly rely on non-parametric memory,
either through textual logs or retrieval databases. By contrast, ParamAgent introduces a external
parametric memory module M∗, which retrieves the knowledge from model-based sampler rather
than recalling raw traces, enabling it to generate population-level knowledge that can be adapted to
different domains.

6 Conclusions

We propose ParamAgent, a language agent framework that introduces a parametric module to move
beyond instance-level reflection. By encoding cross-sample regularities into model parameters,
ParamAgent internalizes global patterns and synthesizes population-level insights in a generative
manner. Across programming, mathematical reasoning, and multi-hop QA, ParamAgent delivers
substantial performance gains over state-of-the-art baselines while maintaining cost-effectiveness,
highlighting the potential of parametric memory as a plug-in module for building language agents.

9

References
[1] Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen

Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large language models. arXiv
preprint arXiv:2108.07732, 2021.

[2] Alan Baddeley. Working memory. Memory, pages 71–111, 2020.

[3] Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang, Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han,
Fei Huang, et al. Qwen technical report. arXiv preprint arXiv:2309.16609, 2023.

[4] Yoshua Bengio, Salem Lahlou, Tristan Deleu, Edward J Hu, Mo Tiwari, and Emmanuel Bengio. Gflownet
foundations. Journal of Machine Learning Research, 24(210):1–55, 2023.

[5] Sebastian Borgeaud, Arthur Mensch, Jordan Hoffmann, Trevor Cai, Eliza Rutherford, Katie Millican,
George Bm Van Den Driessche, Jean-Baptiste Lespiau, Bogdan Damoc, Aidan Clark, et al. Improving
language models by retrieving from trillions of tokens. In International conference on machine learning,
pages 2206–2240. PMLR, 2022.

[6] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are few-shot learners.
Advances in neural information processing systems, 33:1877–1901, 2020.

[7] Cameron B Browne, Edward Powley, Daniel Whitehouse, Simon M Lucas, Peter I Cowling, Philipp
Rohlfshagen, Stephen Tavener, Diego Perez, Spyridon Samothrakis, and Simon Colton. A survey of monte
carlo tree search methods. IEEE Transactions on Computational Intelligence and AI in games, 4(1):1–43,
2012.

[8] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models
trained on code. arXiv preprint arXiv:2107.03374, 2021.

[9] Prateek Chhikara, Dev Khant, Saket Aryan, Taranjeet Singh, and Deshraj Yadav. Mem0: Building
production-ready ai agents with scalable long-term memory. arXiv preprint arXiv:2504.19413, 2025.

[10] Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam Roberts,
Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm: Scaling language
modeling with pathways. Journal of Machine Learning Research, 24(240):1–113, 2023.

[11] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models. arXiv e-prints,
pages arXiv–2407, 2024.

[12] Dan Hendrycks, Steven Basart, Saurav Kadavath, Mantas Mazeika, Akul Arora, Ethan Guo, Collin Burns,
Samir Puranik, Horace He, Dawn Song, and Jacob Steinhardt. Measuring coding challenge competence
with apps. NeurIPS, 2021.

[13] Dan Hendrycks, Collin Burns, Saurav Kadavath, Akul Arora, Steven Basart, Eric Tang, Dawn Song,
and Jacob Steinhardt. Measuring mathematical problem solving with the math dataset. arXiv preprint
arXiv:2103.03874, 2021.

[14] Xanh Ho, Anh-Khoa Duong Nguyen, Saku Sugawara, and Akiko Aizawa. Constructing a multi-hop qa
dataset for comprehensive evaluation of reasoning steps. arXiv preprint arXiv:2011.01060, 2020.

[15] Sirui Hong, Mingchen Zhuge, Jonathan Chen, Xiawu Zheng, Yuheng Cheng, Ceyao Zhang, Jinlin Wang,
Zili Wang, Steven Ka Shing Yau, Zijuan Lin, et al. Metagpt: Meta programming for a multi-agent
collaborative framework. International Conference on Learning Representations, ICLR, 2024.

[16] Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang, Weizhu
Chen, et al. Lora: Low-rank adaptation of large language models. ICLR, 1(2):3, 2022.

[17] Mengkang Hu, Tianxing Chen, Qiguang Chen, Yao Mu, Wenqi Shao, and Ping Luo. Hiagent: Hierarchical
working memory management for solving long-horizon agent tasks with large language model. arXiv
preprint arXiv:2408.09559, 2024.

[18] Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot, Diego
de las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier, Lélio Renard Lavaud,
Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mistral 7b, 2023.

10

[19] Vijay Lingam, Behrooz Omidvar-Tehrani, Sujay Sanghavi, Gaurav Gupta, Sayan Ghosh, Linbo Liu, Luke
Huan, and Anoop Deoras. Enhancing language model agents using diversity of thoughts. 2025.

[20] Zhengliang Liu, Yiwei Li, Peng Shu, Aoxiao Zhong, Longtao Yang, Chao Ju, Zihao Wu, Chong Ma,
Jie Luo, Cheng Chen, et al. Radiology-llama2: Best-in-class large language model for radiology. arXiv
preprint arXiv:2309.06419, 2023.

[21] Stuart Lloyd. Least squares quantization in pcm. IEEE transactions on information theory, 28(2):129–137,
1982.

[22] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement with self-feedback.
Advances in Neural Information Processing Systems, 36:46534–46594, 2023.

[23] George A Miller. The magical number seven, plus or minus two: Some limits on our capacity for processing
information. Psychological review, 63(2):81, 1956.

[24] Ranjita Naik, Varun Chandrasekaran, Mert Yuksekgonul, Hamid Palangi, and Besmira Nushi. Diversity of
thought improves reasoning abilities of large language models. 2023.

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen,
Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style, high-performance deep
learning library. Advances in neural information processing systems, 32, 2019.

[26] Yunfan Shao, Linyang Li, Junqi Dai, and Xipeng Qiu. Character-llm: A trainable agent for role-playing.
arXiv preprint arXiv:2310.10158, 2023.

[27] Weijia Shi, Sewon Min, Michihiro Yasunaga, Minjoon Seo, Rich James, Mike Lewis, Luke Zettlemoyer, and
Wen-tau Yih. Replug: Retrieval-augmented black-box language models. arXiv preprint arXiv:2301.12652,
2023.

[28] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao. Reflexion:
Language agents with verbal reinforcement learning. Advances in Neural Information Processing Systems,
36:8634–8652, 2023.

[29] Herbert A Simon. The architecture of complexity. In The Roots of Logistics, pages 335–361. Springer,
2012.

[30] Robert Tibshirani, Guenther Walther, and Trevor Hastie. Estimating the number of clusters in a data set via
the gap statistic. Journal of the royal statistical society: series b (statistical methodology), 63(2):411–423,
2001.

[31] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open and efficient foundation
language models. arXiv preprint arXiv:2302.13971, 2023.

[32] Guanzhi Wang, Yuqi Xie, Yunfan Jiang, Ajay Mandlekar, Chaowei Xiao, Yuke Zhu, Linxi Fan, and Anima
Anandkumar. Voyager: An open-ended embodied agent with large language models. arXiv preprint
arXiv:2305.16291, 2023.

[33] Haochun Wang, Chi Liu, Nuwa Xi, Zewen Qiang, Sendong Zhao, Bing Qin, and Ting Liu. Huatuo: Tuning
llama model with chinese medical knowledge. arXiv preprint arXiv:2304.06975, 2023.

[34] Weizhi Wang, Li Dong, Hao Cheng, Xiaodong Liu, Xifeng Yan, Jianfeng Gao, and Furu Wei. Augmenting
language models with long-term memory. Advances in Neural Information Processing Systems, 36:74530–
74543, 2023.

[35] Xuezhi Wang, Jason Wei, Dale Schuurmans, Quoc Le, Ed Chi, Sharan Narang, Aakanksha Chowdhery, and
Denny Zhou. Self-consistency improves chain of thought reasoning in language models. arXiv preprint
arXiv:2203.11171, 2022.

[36] Zora Zhiruo Wang, Jiayuan Mao, Daniel Fried, and Graham Neubig. Agent workflow memory. arXiv
preprint arXiv:2409.07429, 2024.

[37] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in neural
information processing systems, 35:24824–24837, 2022.

11

[38] Qingyun Wu, Gagan Bansal, Jieyu Zhang, Yiran Wu, Shaokun Zhang, Erkang Zhu, Beibin Li, Li Jiang,
Xiaoyun Zhang, and Chi Wang. Autogen: Enabling next-gen llm applications via multi-agent conversation
framework. arXiv preprint arXiv:2308.08155, 3(4), 2023.

[39] Honglin Xiong, Sheng Wang, Yitao Zhu, Zihao Zhao, Yuxiao Liu, Linlin Huang, Qian Wang, and Dinggang
Shen. Doctorglm: Fine-tuning your chinese doctor is not a herculean task. arXiv preprint arXiv:2304.01097,
2023.

[40] Wujiang Xu, Kai Mei, Hang Gao, Juntao Tan, Zujie Liang, and Yongfeng Zhang. A-mem: Agentic memory
for llm agents. arXiv preprint arXiv:2502.12110, 2025.

[41] Zhilin Yang, Peng Qi, Saizheng Zhang, Yoshua Bengio, William W Cohen, Ruslan Salakhutdinov, and
Christopher D Manning. Hotpotqa: A dataset for diverse, explainable multi-hop question answering. arXiv
preprint arXiv:1809.09600, 2018.

[42] Shunyu Yao, Dian Yu, Jeffrey Zhao, Izhak Shafran, Tom Griffiths, Yuan Cao, and Karthik Narasimhan.
Tree of thoughts: Deliberate problem solving with large language models. Advances in neural information
processing systems, 36:11809–11822, 2023.

[43] Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao. Re-
act: Synergizing reasoning and acting in language models. In International Conference on Learning
Representations (ICLR), 2023.

[44] Fangxu Yu, Lai Jiang, Haoqiang Kang, Shibo Hao, and Lianhui Qin. Flow of reasoning: Training llms
for divergent reasoning with minimal examples. In Forty-second International Conference on Machine
Learning.

[45] Mert Yuksekgonul, Federico Bianchi, Joseph Boen, Sheng Liu, Zhi Huang, Carlos Guestrin, and James
Zou. Textgrad: Automatic" differentiation" via text. arXiv preprint arXiv:2406.07496, 2024.

[46] Jiayi Zhang, Jinyu Xiang, Zhaoyang Yu, Fengwei Teng, Xionghui Chen, Jiaqi Chen, Mingchen Zhuge, Xin
Cheng, Sirui Hong, Jinlin Wang, et al. Aflow: Automating agentic workflow generation. arXiv preprint
arXiv:2410.10762, 2024.

[47] Zeyu Zhang, Xiaohe Bo, Chen Ma, Rui Li, Xu Chen, Quanyu Dai, Jieming Zhu, Zhenhua Dong, and
Ji-Rong Wen. A survey on the memory mechanism of large language model based agents, 2024.

[48] Longtao Zheng, Rundong Wang, Xinrun Wang, and Bo An. Synapse: Trajectory-as-exemplar prompting
with memory for computer control. arXiv preprint arXiv:2306.07863, 2023.

[49] Andy Zhou, Kai Yan, Michal Shlapentokh-Rothman, Haohan Wang, and Yu-Xiong Wang. Language agent
tree search unifies reasoning acting and planning in language models. arXiv preprint arXiv:2310.04406,
2023.

12

Appendix

Contents

A Additional Related Work 13

B Pseudocodes for ParamAgent 14

C Rationale for External Module Fine-Tuning 14

D More Experimental Details Results 15

D.1 Dataset Statistics . 15

D.2 Finetuning the Parametric Module . 16

D.3 More Implementation Details . 17

D.4 How does ParamAgent perform with stronger base LLMs? 18

D.5 Cost Analysis . 19

D.6 A Case Study . 20

D.7 Prompt Templates . 20

A Additional Related Work

Diversity in LLM Reasoning A key challenge in multi-step reasoning is avoiding redundant
or myopic thought patterns. Recent works therefore encourage diversity of reasoning paths. One
simple but effective approach is self-consistency decoding [35], which samples multiple independent
chains-of-thought and then selects the final answer by majority vote. Beyond this, researchers have
proposed methods to actively inject diversity into the reasoning process. For example, prompting
the model with different personas or perspectives (e.g. “Think like a mathematician” vs. “Explain
as a teacher”) can yield varied solution paths [24]. Another line of work trains LLMs to generate
diverse solutions through specialized learning algorithms: Flow of Reasoning framework [44] the
generation of reasoning steps as a search problem and uses a GFlowNet-based [4] fine-tuning to
stochastically sample multiple high-reward reasoning trajectories, achieving greater coverage of
the solution space. The recent DoT framework [19] explicitly tackles the lack of exploration by
producing non-redundant self-reflections to ensure each iteration explores new solution paths, rather
than repeating past failures. Empirically, DoT shows that encouraging such diversity yields substantial
gains on challenging reasoning tasks. ParamAgent adopts the principle of diversification in a notably
simple way: by drawing each new reasoning attempt from a high-temperature parametric sampler (the
memory module). This high-temperature sampling from the learned model-based memory introduces
stochasticity that is easy to implement yet effective at covering different problem-solving trajectories,
without needing elaborate persona prompts or complex search procedure.

Parametric Memory in LLM Reasoning Compared with textual memory, parametric memory
remains under-explored in LLM agents. While textual stores dominate due to interpretability and ease
of use, recent studies have also explored encoding memory directly into model parameters, thereby
avoiding the length limitations of textual memory. Character-LLM [26] fine-tunes role-playing agents
with character experiences to faithfully simulate personas. HuaTuo [33] tunes LLaMA [31] with
Chinese medical knowledge to enhance clinical QA and instruction following. DoctorGLM [39]
develops a Chinese medical dialogue system, demonstrating that physician-style models can be
obtained with moderate fine-tuning cost. Radiology-GPT [20] instruction-tunes on radiology corpora
to outperform general LLMs on imaging-focused tasks. These approaches directly fine-tune the base
LLM, yielding specialized models tailored to particular domains. By contrast, our framework keeps
the base agent intact and fine-tunes an external parametric module that generates domain-specific
reflective cues or semantic decompositions. This modular design allows the parametric module to

13

serve as a plug-in component for different agents, while reducing the risk of catastrophic forgetting
in the backbone. A detailed justification of this external design choice is provided in Appendix C.
More details on parametric memory in agentic reasoning can be found in [47].

Cognitive Science Inspirations for Reasoning Cognitive science research shows that people
manage complexity by chunking information into structured units, thereby reducing cognitive load
and effectively increasing capacity for multi-step reasoning [23]. Classic working memory models
further posit a central executive that maintains and manipulates only a small set of active items,
motivating reasoning procedures that keep a compact buffer of intermediate results [2]. In parallel,
problem solving is often modeled as hierarchical decomposition, where a complex goal is resolved
by recursively addressing sub-goals and recombining their solutions [29]. These insights motivate
semantic decomposition in multi-hop QA: parse a query into compact units (e.g., entities, relations,
constraints, answer type) and an explicit sequence of inference steps; solve sub-queries sequentially
while maintaining a small active buffer of intermediates; then integrate the chunks to produce the
final answer.

B Pseudocodes for ParamAgent

In this section, we present pseudocode for ParamAgent in Algorithm 2. We also include pseu-
docodes for Model-based Reflection and Model-based CoT in Algorithm 3 and ParamAgent-plus
in Algorithm 4 for clarity.

C Rationale for External Module Fine-Tuning

We justify our choice to fine-tune an external parametric module rather than the base language agent.

Training objectives Given an input x, the external module is trained to produce either a reflection
r or semantic units Z = {zi}mi=1:

max
ψ

E(x,r)∼Dr
[log pψ(r | x)] , max

ψ
E(x,Z)∼DZ

[log pψ(Z | x)] . (3)

At inference, the agent conditions on rgk∼pψ(· | x) or on Z∼pψ(· | x):

y ∼ pθ(· | x, r1:k, rgk), y ∼ pθ(· | x,Z, r1:k). (4)

Why not fine-tune the agent directly? Directly fine-tuning the base LLM within the agent
introduces the following challenges:

(1) Distribution mismatch. In practice, an agent generates reflections autoregressively as pθ(rk |
x, r1:k−1). If we fine-tune the base model only on pθ(r | x) without its own history, the training
distribution no longer matches the inference distribution pθ(rk | x, r1:k−1). Bridging this gap would
require sequence-level supervision and far more data due to the more complex distribution form.

(2) Capability interference. The agent must also maintain pθ(y | x, r1:k) to act (e.g., generate
code or multi-hop answers). Pushing the same parameters toward a specialized model for reflection
generation can interfere with this objective, degrading the agent’s general problem-solving ability.

Benefits of using external module In the meantime, adopt an external LLM module for parametric
knowledge introduces several advantages:

(1) Simpler supervision. Decoupling the base LLM and the external LLM model yields a simpler
objective pψ(r | x) or pψ(Z | x) rather than the history-conditioned pθ(rk | x, r1:k−1), reducing
modeling complexity and data requirements.

(2) Modular knowledge forms. The module can emit different forms of parametric knowledge
(e.g., reflections r for programming/math via Mr, semantic units Z for multi-hop QA via Mp),
complementing episodic self-reflection r1:k without altering the base agent.

(3) Stability and reuse. Keeping the base LLM in the agent fixed also avoids interference with
pθ(y | x, r1:k), mitigates catastrophic forgetting, and enables plug-in use across agents and backbones.

14

Algorithm 2 ParamAgent

Require: Dataset D, Base LM pθ, Parametric Module M∗ with parameters ψ, Max iterations Tmax,
Pass@k K

Ensure: Solutions for each task
1: Initialize: Episodic memoryM← ∅
2: for each task x ∈ D do
3: solved← False, k ← 0
4: while k < K and not solved do
5: t← 1, ycurr ← None
6: while t ≤ Tmax and not solved do
7: # Generate parametric insights for iteration t
8: if t = 1 then
9: T ← 0.2 ▷ informative first-round sampling

10: else
11: T ← 1.0 ▷ promote diversity thereafter
12: end if
13: if task is coding/math then
14: rgt−1 ∼ pψ(· | x;T) ▷ global reflection from Mr

15: else ▷ multi-hop QA
16: Z ∼ pψ(· | x;T) ▷ semantic units from Mp

17: end if
18: # Combine parametric and episodic knowledge
19: r1:t−1 ← RETRIEVEREFLECTIONS(M, x) ▷ local (self) reflections up to t−1
20: if task is coding/math then
21: ycurr ∼ pθ(· | x, r1:t−1, r

g
t−1) ▷ global–local fusion

22: else
23: ycurr ∼ pθ(· | x,Z, r1:t−1) ▷ semantic decomposition
24: end if
25: # Evaluate and update episodic memory
26: (passed, feedback)← EVALUATE(ycurr, x)
27: if passed then
28: solved← True
29: else
30: rt ← GENERATESELFREFLECTION(ycurr, feedback)
31: M←M∪ {(x, rt)} ▷ store only self-reflections
32: end if
33: t← t+ 1
34: end while
35: k ← k + 1
36: end while
37: end for

In conclusion, fine-tuning an external module rather than the base LLM offers a simpler training
objective, preserves the general capabilities of the agent, and enables flexible plug-in usage across
domains and backbones, which justifies this design choice.

D More Experimental Details Results

D.1 Dataset Statistics

Programming. For programming tasks, we evaluate on HumanEval [8] and MBPP [1]. HumanEval
consists of 164 hand-written Python programming problems, each accompanied by hidden unit
tests and a small number of visible test cases. We additionally consider MBPP, which provides 974
crowd-sourced Python problems; following prior work, we use the 397 problems from the filtered
evaluation split.

15

Algorithm 3 Model-based Reflection (CoT)

Require: Dataset D, Base LM pθ, Parametric Module M∗ with parameters ψ, Max iterations Tmax,
Pass@k K

Ensure: Solutions for each task
1: for each task x ∈ D do
2: solved← False, k ← 0
3: while k < K and not solved do
4: t← 1
5: while t ≤ Tmax and not solved do
6: # Parametric guidance only (no episodic memory)

7: T ←
{
0.2 if t = 1

1.0 otherwise
8: if task is coding/math then
9: rgt−1 ∼ pψ(· | x;T) ▷ global reflection from Mr

10: yt ∼ pθ(· | x, rgt−1)
11: else ▷ multi-hop QA
12: Z ∼ pψ(· | x;T) ▷ semantic units from Mp

13: yt ∼ pθ(· | x, Z)
14: end if
15: # Evaluate (no memory write)
16: passed← EVALUATE(yt, x)
17: if passed then
18: solved← True
19: end if
20: t← t+ 1
21: end while
22: k ← k + 1
23: end while
24: end for

Math. For mathematical reasoning, we adopt the MATH dataset [13], which contains competition-
style math problems spanning seven subjects including Algebra, Geometry, Number Theory, Counting
and Probability, and Precalculus. We randomly sample a balanced subset across categories for
evaluation.

Multi-hop QA. For multi-hop question answering, we use HotpotQA [41] and 2WikiMulti-
HopQA [14]. In HotpotQA, we stratify by difficulty level and randomly sample 100 examples
from each category (easy, medium, hard), yielding a total of 300 evaluation samples. For 2Wiki-
MultiHopQA, we stratify by question type and randomly sample 75 examples from each of four
categories (bridge comparison, comparison, compositional, inference), again yielding 300 samples in
total. These stratified subsets ensure balanced evaluation across different reasoning styles.

Table 5: Datasets used for Programming, Math, and Multi-hop QA tasks.
Task Type Dataset Name Size Metric

Programming HumanEval 164 problems, ∼3 visible test cases/problem Pass@1
Programming MBPP 397 sampled problems Pass@1
Math MATH 278 sampled problems across 7 subjects 0-1 Acc
Multi-hop QA HotpotQA 300 sampled problems (100 per difficulty) 0-1 Acc
Multi-hop QA 2WikiMultiHopQA 300 sampled problems (75 per type) 0-1 Acc

D.2 Finetuning the Parametric Module

Programming For programming tasks, we curate a dataset by sampling 4000 coding problems
from the APP dataset [12] at introductory level. In addition, we synthesize 4200 problems using
GPT-4o-mini, covering a diverse range of programming domains. The code templates and prompt

16

Algorithm 4 ParamAgent-plus

Require: Dataset D, Base LM pθ, Parametric Module M∗, Max iterations Tmax

1: Init: Episodic memoryM← ∅, Memory bank B ← ∅, Failed F ← ∅
2: Phase 1: Standard solving with memory banking
3: for each task x ∈ D do
4: for t = 1 to Tmax or until solved do
5: rgt−1 ∼ pψ(· | x) with T =0.2 if t=1 else T =1.0 ▷ Parametric insight
6: r1:t−1 ← Retrieve(M, x); y ∼ pθ(· | x, r1:t−1, r

g
t−1)

7: if Evaluate(y, x) passes then
8: Store (x, y, rgt−1) in B; mark solved; break
9: else

10: rt ← Reflect(y); M←M∪ {(x, rt)} ▷ Update episodic
11: end if
12: end for
13: if not solved then F ← F ∪ {x}
14: end if
15: end for
16: Phase 2: Memory-augmented reattempt
17: for each x ∈ F do
18: T ← RetrieveTopK(B, x); xaug ← Augment(x, T)
19: for t = 1 to Tmax or until solved do
20: rgt−1 ← Extract(T) or pψ(· | xaug) ▷ Reuse or generate (same T rule as above)
21: r1:t−1 ← Retrieve(M, x) + RetrieveByReflection(B)
22: y ∼ pθ(· | xaug, r1:t−1, r

g
t−1); Evaluate and updateM, B

23: end for
24: end for

used for data generation are provided in Figure 4. For each problem, GPT-4o-mini is further asked
to produce potential mistakes along with buggy implementations. This yields a dataset of reflective
signals and corresponding erroneous code examples. We then finetune LLaMA-3.1-8B with LoRA
on this dataset to obtain the programming-specific parametric module Mr.

Math For mathematical reasoning, we leverage the MATH training set [13]. From each subject area,
we randomly sample 800 problems and adopt the same pipeline as in programming: GPT-4o-mini
is prompted to produce reflective feedback and buggy derivations for each sampled problem. The
resulting dataset is used to LoRA-finetune LLaMA-3.1-8B to instantiate Mr for math reasoning.

Multi-hop QA For multi-hop QA, we randomly sample 10000 instances from the HotpotQA [41]
and 2WikiMultiHopQA [14] training sets respectively. GPT-4o-mini is prompted to output structured
semantic units (e.g., entities, relations, constraints, answer types, and sub-questions) for each example.
We then apply LoRA finetuning to LLaMA-3.1-8B on this dataset to build the parametric module
Mp.

Across all domains, during dataset construction we provide one carefully designed demonstration
example in the prompt to GPT-4o-mini. This ensures that the generated outputs (reflective feedback,
buggy code, or semantic units) adhere to the required format, making the synthetic supervision more
reliable.

D.3 More Implementation Details

We use the TogetherAI API service1 to access all backbone models in our experiments. Specifically,
we call the following model identifiers in implementation:

• meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo

• mistralai/Mistral-7B-Instruct-v0.2

1https://www.together.ai

17

https://www.together.ai

1 CATEGORIES = [
2 # Core Text & Parsing
3 "String Manipulation",
4 " R e g u l a r Expression Parsing",
5 "Natural -Language Tokenisation",
6 "CSV / JSON Parsing",
7 "URL / URI Parsing",
8 "Text Justification / Word -Wrapping",
9 # Lists , Arrays , SEQ

10 "Array / List Algorithms",
11 "Two -Pointer / Sliding -Window",
12 "Sorting & Searching",
13 "Statistical Summary of Sequences",
14 # Maths & Numbers
15 "Elementary Arithmetic / Algebra",
16 "Number Theory & Divisibility",
17 "Bitwise Operations",
18 "Combinatorics & Counting",
19 "Probability / Statistics",
20 # Data -Structures
21 "Hash / Set / Dict Operations",
22 "Stack / Queue Simulation",
23 "Linked -List Manipulation",
24 "Matrix Operations",
25 "Heap / Priority Queue Operations",
26 "Trie / Prefix -Tree",
27 # Graphs & Trees
28 "Graph / Tree Traversal",
29 "Binary Search Trees",
30 "Dynamic Programming",
31 "Recursion / Backtracking",
32 "Union -Find / Disjoint Set",
33 # Geometry / Coordinates
34 "Geometry & Coordinate Computation",
35 # Dates / Times / Calendars
36 "Date & Time Calculations",
37 # Miscellaneous Practical
38 "File & Path Utilities",
39 "Data -Type Conversion & Formatting",
40 "Cipher / Encoding",
41 "Simulation / Game Logic",
42 "Misc Small -Scale Algorithms"
43]

Figure 4: Schema of categories for synthesizing programming tasks used in our parametric module
construction.

• arize-ai/qwen-2-1.5b-instruct

In Section D.4, we use 70B scale LLMs in our framework, the model identifiers are:

• meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo

• Qwen/Qwen2.5-72B-Instruct-Turbo

All experiments are implemented in PyTorch [25].

D.4 How does ParamAgent perform with stronger base LLMs?

We further study the performance of ParamAgent when paired with stronger base models of around
70B parameters. Specifically, we use Llama-3.1-70B and Qwen2.5-72B-Instruct as the underlying
LLMs, while keeping the parametric module fixed as Llama-3.1-8B. We evaluate on HumanEval

18

1 system_content = (
2 "You are an expert Python engineer crafting coding problems .\n"
3 "Follow this EXACT format :\n\n<template_example >\n\n"
4 "- Randomly pick ONE category from the list above .\n"
5 "- Output EXACTLY two lines:\n"
6 " func_sign: <signature with colon >\n"
7 " docstring: ’<single -quoted string with \\n escapes >’\n"
8 "- Do NOT wrap in JSON or triple quotes .\n"
9 "- Avoid any collisions with past tasks .\n\n"

10)

Figure 5: Prompt for synthesizing programming tasks

Table 6: Performance on HumanEval. Bold denotes the best result, and underline marks the second
best. ↑ and ↓ indicate absolute change relative to the Base method. For clarity, the prompt token
usage of the Base method is normalized to 1.

Dataset Method Llama-3.1-70B-Instruct Qwen2.5-72B-Instruct
Pass@1 #Prompt Tokens Pass@1 #Prompt Tokens

HumanEval

Base 80.49 1.00 82.92 1.00
Model-based Reflection 87.80 ↑ 7.31 6.39 89.64 ↑ 6.72 3.48
Reflexion 90.24 ↑ 9.75 4.31 88.41 ↑ 5.49 3.48
DoT 90.85 ↑ 10.36 7.51 87.80 ↑ 4.88 6.05
DoT-bank 92.68 ↑ 12.19 9.14 90.24 ↑ 7.32 8.17
ParamAgent 92.07 ↑ 11.58 11.90 93.90 ↑ 10.98 8.93
ParamAgent-plus 95.03 ↑ 14.54 19.47 95.12 ↑ 12.20 16.81

for programming and HotpotQA for multi-hop QA. The results are reported in Table 6 and Table 7
respectively.

Results. Across tasks, ParamAgent achieves performance that is on par with, or even surpasses,
state-of-the-art baselines. Moreover, ParamAgent-plus consistently outperforms the best baseline
methods by a large margin, highlighting the effectiveness of the parametric module. It is worth noting
that our parametric module itself is only an 8B model, yet it integrates effectively with base LLMs as
large as 70B. This demonstrates the strong potential of our approach when scaled further.

Table 7: Performance on HotpotQA dataset. Bold denotes the best result, and underline marks the
second best. ↑ and ↓ indicate the absolute improvement or decrease relative to the Base method. For
clarity, the prompt token usage of the Base method is normalized to 1.

Dataset Method Llama-3.1-70B-Instruct Qwen2.5-72B-Instruct
Acc #Prompt Tokens Acc #Prompt Tokens

HotpotQA

Base 70.00 1.00 73.33 1.00
Model-based CoT 73.67 ↑ 3.67 1.43 74.10 ↑ 1.05 1.44
Reflexion 82.33 ↑ 12.33 3.02 82.67 ↑ 9.34 2.81
DoT 73.67 ↑ 3.67 3.43 80.67 ↑ 7.34 4.30
DoT-bank 80.00 ↑ 10.00 5.24 82.33 ↑ 9.00 7.87
ParamAgent 84.00 ↑ 14.00 7.70 81.00 ↑ 7.67 7.90
ParamAgent-plus 89.67 ↑ 19.67 13.69 84.67 ↑ 11.34 15.43

D.5 Cost Analysis

Table 8 reports prompt/completion tokens and costs using Llama-3.1-8B. Costs are computed with
TogetherAI pricing as of Aug 20, 2025 ($0.18 per million tokens). We can see that Model-based
Reflection (CoT) is highly efficient, achieving strong accuracy with far fewer tokens than reflection-
heavy methods like DoT-bank. By contrast, ParamAgent delivers the best results on both HumanEval
and HotpotQA, at higher but still moderate cost, this highlights the advantages of incorporating
various forms of memory modules.

19

Table 8: Token usage and cost on HumanEval and HotpotQA datasets with Llama3.1-8B as backbone
LLM. Best and second-best metrics are in bold and underline respectively.

Method HumanEval HotpotQA
#Prompt #Completion Total Cost Pass@1 #Prompt #Completion Total Cost Acc
Tokens Tokens ($) (%) Tokens Tokens ($) (%)

Base 37,463 13,506 0.00917 59.15 164,013 1,801 0.02985 57.67
Model-based Reflection 342,805 82,280 0.07652 78.05 236,548 1,212 0.04280 61.67
Reflexion 348,068 73,538 0.07589 76.22 703,192 68,612 0.13892 71.33
DoT 653,981 169,986 0.14831 72.56 1,164,812 106,806 0.22889 66.67
DoT-bank 926,047 233,016 0.20863 79.88 2,179,148 195,283 0.42740 72.00
ParamAgent 814,627 163,257 0.17602 82.93 3,649,598 128,010 0.67997 78.33

D.6 A Case Study

We present a case study from the MBPP dataset, where both Reflexion and DoT fail to generate
the correct implementation, while ParamAgent succeeds. To better understand this difference, we
analyze the reflective history of all three methods and highlight the gists, as illustrated in Figure 6.

From the analysis, we observe that Reflexion and DoT often produce unhelpful sometimes even
misleading reflections, which push the agent further away from the correct solution. In contrast,
ParamAgent generates fewer such misleading reflections. We hypothesize that this advantage
arises from the parametric knowledge encoded in Mr, which helps ParamAgent avoid unhelpful or
error-prone reflective signals.

D.7 Prompt Templates

We provide prompt templates used in ParamAgent across different domains. The 1-shot reflective
example for programming tasks can be found in Figure 7, and the corresponding math reasoning
template in Figure 8. For multi-hop QA, the semantic decomposition 1-shot example is shown in
Figure 9.

Instruction templates for generating actions for the programming is shown in Figure 10, the math
reasoning instruction in Figure 11, and the multi-hop QA instruction in Figure 12.

20

Reflexion.
Problem: "The implementation failed the test case where it tries to return a single element that
is not a list. This issue arises because the ^ operator in the set difference operation returns a set,
and then we explicitly convert it to a list..."
Problem: "The implementation failed the test where it is expected to find a difference in the
lists because the list to check for difference is a subset of the original list... This would return the
union of the two lists, not the actual difference."
Problem: "The implementation failed the test where the difference should be a single element
because it uses the symmetric difference operation which is not what’s intended here... When
converting the set back to a list using the list function, the order of elements is lost."
Problem: "When converting the set back to a list using the list function, the order of elements is
lost."

DoT.
Problem: "The implementation failed the test due to a mismatch in the type of the function
return value and the expected output."
Problem: "The function implementation does not handle the case where the input lists are not
of the same length or contain duplicate elements."
Problem: "The function implementation does not correctly calculate the symmetric difference
between two lists."
Problem: "The implementation failed due to a mismatch in the type of the function return value
and the expected output, but the proposed fix in the previous reflection is incomplete."
Problem: "The function implementation does not correctly handle the case where the input lists
are not of the same length or contain duplicate elements..."
Problem: "The function implementation does not correctly remove duplicates from the input
lists, leading to incorrect results."

ParamAgent.
Problem: "The function implementation does not handle the case of empty lists correctly."
Fix: "Add a check at the beginning of the function to return an empty list if either of the input
lists is empty..."
Problem: "The function implementation does not preserve the original order of elements in the
lists." Fix: "Instead of using set operations..., use a list comprehension to create the difference
list..."
Problem: "The function implementation does not handle non-integer values in the lists correctly."
Fix: "Add a check at the beginning... ensure that both input lists are lists of integers..."
Problem: "The function implementation does not handle non-list types correctly." Fix: "Add
a check... ensure that both input arguments are lists..."
Problem: "The function implementation does not handle duplicates correctly." Fix: "Use a
list comprehension... and preserve the original order..."
Problem: "The function implementation does not handle the case where the lists are identical."
Fix: "Return an empty list if the two input lists are identical."

Figure 6: Selected reflections on the mbpp_769_Diff problem. Red = critical errors that directly
invalidate the implementation; Orange = conceptual pitfalls or misleading reasoning patterns; Green
= key insights leading to a working solution; Gray = background noise (irrelevant or stylistic).

21

1 [Function Signature]:
2 def has_close_elements(numbers: List[float], threshold: float) -> bool

:
3 """Check if any two numbers in the list are closer than the

threshold."""
4

5 [Potential mistakes]:
6 1. ** Empty or Single -Element Lists ** must return ‘False ‘, not ‘True ‘.
7 2. ** Duplicate Values ** must be compared (difference 0), so never drop

duplicates.
8 3. Always use ** absolute difference ** (‘abs(a - b)‘), not raw

subtraction.
9 4. Use the correct ** strictness ** (‘< threshold ‘, not ‘<=‘).

10 5. Ensure you d o n t **exit too early ** check all distinct pairs.
11

12 [Flawed Implementations Illustrating Each Pitfall]:
13

14 def has_close_elements_v1(numbers: List[float], threshold: float) ->
bool:

15 # BUG: returns True for empty or single -element lists
16 if len(numbers) < 2:
17 return True
18 for i in range(len(numbers) -1):
19 for j in range(i+1, len(numbers)):
20 if abs(numbers[i] - numbers[j]) < threshold:
21 return True
22 return False
23

24 def has_close_elements_v2(numbers: List[float], threshold: float) ->
bool:

25 # BUG: removes duplicates , so identical values never compared
26 numbers = sorted(set(numbers))
27 for i in range(len(numbers) -1):
28 if abs(numbers[i+1] - numbers[i]) < threshold:
29 return True
30 return False
31

32 def has_close_elements_v3(numbers: List[float], threshold: float) ->
bool:

33 # BUG: uses raw subtraction instead of abs()
34 for i in range(len(numbers) -1):
35 for j in range(i+1, len(numbers)):
36 if (numbers[i] - numbers[j]) < threshold:
37 return True
38 return False
39

40 def has_close_elements_v4(numbers: List[float], threshold: float) ->
bool:

41 # BUG: uses <= instead of <, misclassifies exactly -threshold pairs
42 for i in range(len(numbers) -1):
43 for j in range(i+1, len(numbers)):
44 if abs(numbers[i] - numbers[j]) <= threshold:
45 return True
46 return False
47

48 def has_close_elements_v5(numbers: List[float], threshold: float) ->
bool:

49 # BUG: breaks out of outer loop too soon
50 ... (omit due to limited page)
51

52 END OF EXAMPLE

Figure 7: 1-shot example for reflective dataset construction for programming task.

22

Question. Circle O is located on the coordinate plane with center at (2, 3). One endpoint of
a diameter is at (−1,−1). What are the coordinates of the other endpoint of this diameter?
Express your answer as an ordered pair.

Pitfalls & Potential Mistakes
1. Confusing the center with an endpoint. Assuming the center is an endpoint leads to

an incorrect reflection point.
2. Incorrect use of the midpoint formula. Forgetting that the center is the midpoint of

the diameter, or solving (x+ x2)/2 = centerx incorrectly.
3. Using the wrong coordinates for the midpoint. Plugging endpoint coordinates in

place of the center (or vice versa) yields the wrong unknowns.
4. Arithmetic errors. Sign or algebra mistakes when solving, e.g. 2 = (−1 + x)/2⇒
x = 3 (incorrect) instead of x = 5.

5. Switching x and y. Mixing x- and y-midpoint formulas, or using x values to solve for
y.

6. Incorrect interpretation of the diameter. Thinking the diameter extends in the same
direction from the center; doubling the vector or reflecting in the wrong direction.

Figure 8: 1-shot example for reflective dataset construction in math reasoning.

Example 1
Question. Anatoly Maltsev and Valentin Turchin were both from Russia, which of the two is
known for his work as a mathematician?

Question Parsing and Intent Extraction
Key Components

• Entity A: Anatoly Maltsev — mathematician/logician; contributions in mathematical
logic and abstract algebra.

• Entity B: Valentin Turchin — computer scientist/philosopher; work in cybernetics and
philosophy of science.

• Implied Relationship: Comparative inquiry: which individual is more closely associ-
ated with mathematics.

• Answer Type Expected: Person name (e.g., “Anatoly Maltsev”).
• Reasoning Type: Comparative factual reasoning.
• Required Background: Biographical profiles or retrieved professional records.

Inference Trace
1. Retrieve factual data about Maltsev’s and Turchin’s primary academic domains.
2. Classify Maltsev as a mathematician (core contributions to mathematical logic).
3. Classify Turchin as mainly in cybernetics and philosophy.
4. Eliminate Turchin as the primary mathematician.
5. Conclude: Anatoly Maltsev.

Disambiguation Note
Nationality (Russia) does not help differentiate them.

Figure 9: 1-shot example used in ParamAgent for semantic decomposition dataset construction in
multi-hop QA.

23

You are an AI Python assistant. You will be given some potential pitfalls and several flawed
implementations for the coding challenge, as well as your previous implementation of a function,
a series of unit-test results, and your self-reflection on your previous implementation. Try to
avoid the errors from your previous implementation and the listed pitfalls.

Instruction: ALWAYS WRITE your full implementation (restate the function signature).

Figure 10: Instruction prompt used by ParamAgent to generate next-round solutions for programming
tasks.

You are revising your previous answer to a mathematics problem.
You will receive:
(1) the original question,
(2) potential mistakes and pitfalls,
(3) your last answer, (4) feedback (Right or Wrong) explaining why that answer was unsatisfac-
tory, and (5) your brief self-reflection on the mistake.

Respond with:
1. Reasoning: updated step-by-step thoughts.

2. Answer: the corrected final result.

Formatting: The final answer should be simplified to its simplest form, e.g., 25, 2516, 1
36 , etc.

Figure 11: Instruction prompt used by ParamAgent to generate next-round solutions for math
reasoning.

You are revising your previous answer to a multi-hop QA question.
You will receive:
(1) the original question,
(2) some key points, the underlying intent, and possible inference patterns that facilitate answer-
ing this question,
(3) your last answer,
(4) supporting context,
(5) feedback (Right or Wrong) explaining why that answer was unsatisfactory,
(6) your brief self-reflection on the mistake.

Instruction: Based on the inputs, produce a new single-phrase answer that resolves the error
and fully answers the question. Output only the answer — no commentary, no code.

Figure 12: The prompt of ParamAgent to generate next-round answers for multi-hop QA tasks.

24

	Introduction
	Preliminaries
	Augmenting Language Agents with Parametric Knowledge
	Global-Local Reflection
	Semantic Decomposition
	Relation to Previous Studies

	Experiments
	Setup
	Programming
	Math Reasoning
	Multi-hop QA
	Additional Analysis
	Quantifying the Diversity of Reflections
	Effect of Reflection Format from Mr on Programming Tasks
	Effect of Iteration Number on Model-based Reflection
	Effect of Auxiliary Datasets

	Related Work
	Conclusions
	Additional Related Work
	Pseudocodes for 1.03Param1.03Agent
	Rationale for External Module Fine-Tuning
	More Experimental Details Results
	Dataset Statistics
	Finetuning the Parametric Module
	More Implementation Details
	How does 1.03Param1.03Agent perform with stronger base LLMs?
	Cost Analysis
	A Case Study
	Prompt Templates

