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Abstract

Large Language Models (LLMs) have demonstrated strong reasoning abilities,1

yet existing agent frameworks remain constrained by two limitations. First, they2

typically operate at the per-instance level, confining signals to individual problems3

and overlooking transferable patterns across tasks. Second, while some approaches4

attempt to incorporate global information through external memory, these are non-5

parametric in nature, and thus capture only shallow interactions across instances,6

failing to uncover deeper regularities. To overcome these limitations, we pro-7

pose ParamAgent, a language agent framework that leverages a domain-adaptive8

parametric memory to internalize knowledge across samples into model param-9

eters. In addition to capturing cross-sample regularities, ParamAgent provides10

twofold flexibility: (i) the parametric module can supply different forms of knowl-11

edge depending on various domains, and (ii) the same module can be integrated12

with different base LLMs, making ParamAgent broadly applicable. Moreover,13

ParamAgent naturally promotes diversity of outputs by adjusting the sampling14

temperature of the parametric module. Experiments on programming, math rea-15

soning, and multi-hop question answering benchmarks show that ParamAgent16

consistently outperforms state-of-the-art baselines, surpassing the best baseline by17

up to 7.90%, 9.41%, and 24.30% respectively.18

1 Introduction19

Large language models (LLMs) [6, 10, 31] have exhibited striking progress in complex reasoning20

tasks. Their ability to interleave reasoning with actions has led to the development of autonomous21

language agents that treat an LLM as the core policy[37, 28, 43, 42, 50, 22, 38, 32, 15, 46]. For22

example, Chain-of-Thought (CoT) prompting [37] elicits explicit intermediate steps that improve23

reasoning performance on complex tasks. Self-Refine [22] introduces an iterative self-feedback loop,24

enabling models to progressively refine their outputs and achieve higher-quality results. Subsequent25

work expands agents’ search and feedback mechanisms: Reflexion [28] stores verbalized feedback26

in episodic memory (i.e., a long-term memory of the agent’s self-reflections accumulated across27

iterations) and yields noticable gains; Tree-of-Thoughts (ToT) [42] explores multiple reasoning paths28

via tree search; LATS integrates Monte-Carlo Tree Search for long-horizon planning [50, 7]; Diversity29

of Thought (DoT) [19] proposes to promote diversity for reflective feedbacks.30

Despite these advances, current language agent frameworks remain limited by their localized perspec-31

tive. For instance, self-reflection operates at the per-instance level, confining their reasoning signals32

to individual problems without exploiting connections across similar problem structures. As a result,33

agents miss population-level insights about shared failure modes and underlying cross-instance34

associations. Second, although recent frameworks equip agents with mechanisms for storing past35

experiences and retrieving them when solving new tasks [5, 27, 49, 19], allowing them to leverage36

global information, these approaches typically rely on non-parametric memory (e.g., textual logs or37
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retrieval-augmented stores). Consequently, they capitalize on shallow interactions across instances,38

which may fail to uncover deeper regularities or to extend beyond embedding-level similarities.39

One natural choice is to fine-tune the base LLM in the agent to internalize the cross-sample knowl-40

edge. However, this poses two challenges: (1) a distribution mismatch, and (2) general capability41

degradation. Further detailed discussions on the challenge of fine-tuning the agent are provided in42

Appendix C.43

To overcome these limitations, we propose ParamAgent, a language agent framework that utilizes44

parametric knowledge. ParamAgent adopts a external module M∗ (∗ indicates that the module can45

generate different forms of knowledge, adapting to various domains) to internalize knowledge across46

samples. When solving a new problem, the agent queries M∗ to obtain population-level insights47

rather than instance-level feedback. For example, Mr in ParamAgent can synthesize potential48

mistakes for a programming and math task, whereas Mp generates semantic decompositions for49

multi-hop question answering (QA) (Sec. 3). Since the knowledge is encoded directly into the M∗’s50

model parameters via a training process, it captures deep interactions across samples, enabling it to51

synthesize insights that capture cross-sample similarities, which is in contrast with previous retrieval52

based methods that recall a handful of past trajectories as external memory.53

In addition to capturing cross-sample regularities, ParamAgent offers twofold flexibility. First, the54

parametric module can supply different forms of knowledge, such as generating population-level55

reflective feedback signals to augment self-reflection, or decomposing complex queries into semantic56

units as structured intermediate thoughts. Second, the same module can be integrated with different57

base LLMs, making ParamAgent broadly applicable and adaptable across various base LLMs.58

Moreover, by adjusting the sampling temperature of the parametric module, ParamAgent naturally59

promotes diversity of the outputs.60

We evaluate ParamAgent on math reasoning problems, programming, and multi-hop QA. In each61

domain, ParamAgent significantly outperforms state-of-the-art methods. Concretely, our approach62

surpasses the best baseline by up to 7.90% on programming, 9.41% on math reasoning, and 24.30%63

on multi-hop QA. Our contributions can be summarized as follows:64

• We identify key limitations in existing agent frameworks and propose leveraging parametric65

knowledge to capture cross-sample interactions, thereby augmenting the reasoning process.66

• We propose ParamAgent, a language agent that equips a parametric module to capture cross-67

sample regularities, and further introduce ParamAgent-plus, an enhanced variant that integrates68

multiple forms of memory modules.69

• The parametric module M∗ is capable of synthesizing multiple forms of knowledge that support70

adaptation to a wide range of domains, and it can be flexibly integrated with different base LLMs71

in the agents.72

• Through extensive experiments on programming, math reasoning, and multi-hop QA, ParamAgent73

consistently outperforms state-of-the-art baselines, surpassing the second best by up to 7.90%,74

9.41%, and 24.30% respectively.75

2 Preliminaries76

We consider a pretrained Language Model (LM) pθ with parameters θ that operates on token77

sequences. Let x = (x[1], . . . , x[lx]) denote the input sequence and y = (y[1], . . . , y[ly]) the78

output sequence. The LM decodes autoregressively, i.e., pθ(y | x) =
∏ly
i=1 pθ

(
y[i] | x, y[1:i−1]

)
,79

and, more generally, with an auxiliary prompt π (e.g., instructions, exemplars, tool feedback, etc.),80

pθ(y | x, π) =
∏ly
i=1 pθ

(
y[i] | x, π, y[1:i−1]

)
. We use z1, . . . , zn to denote intermediate thoughts,81

and r1, . . . , rk to denote self-reflections. A node in a search tree is written as s = [x, z1:i].82

Input–Output (IO) prompting The LM is prompted with task instructions and/or few-shot IO83

pairs and directly produces the final output: y ∼ pθ(· | x, πIO).84

Chain-of-Thought (CoT) To handle x 7→ y, CoT [37] instructs the model to first generate a85

sequence of thoughts and then the answer: zi ∼ pθ(· | x, z1:i−1), y ∼ pθ(· | x, z1:n). In practice,86

[z1:n, y] is sampled as a single contiguous sequence.87
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(a) An output example of Mr on programming
task using HumanEval dataset.

(b) An output example of Mp on multi-hop QA task using
HotpotQA dataset.

Figure 1: Illustration of the output produced by M∗

Reflexion Reflexion [28] augments the prompt with episodic self-reflections r1:k from the previous88

k iterations. The agent then generates new solutions conditioned on the previous feedbacks: y ∼89

pθ(· | x, r1:k). Intuitively, ri provides textual semantic gradient signals [28, 45], indicating common90

errors to avoid and corrective cues.91

Diversity of Thoughts (DoT) DoT [19] enhances the diversity of reflection feedback by using92

explicit prompt-level instructions to generate a set of diversified reflections {ri}ki=1, thereby reducing93

redundancy and improving coverage of solutions. The decoding objective remains: y ∼ pθ(· |94

x, r1:k).95

Tree-of-Thought (ToT) and LATS ToT [42]lifts CoT into a search over partial solutions96

s = [x, z1:i]. New thoughts are proposed via CoT-style sampling zi ∼ pθ(· | x, z1:i−1), while97

DFS/BFS is used to explore the search tree. LATS [50] extends this view with Monte-Carlo Tree98

Search (MCTS) [7], repeatedly selecting, expanding, simulating, and backpropagating values over99

nodes s, thereby constructing high-value trajectories of thoughts leading to a more probable correct y.100

3 Augmenting Language Agents with Parametric Knowledge101

In this section, we show how ParamAgent leverages parametric knowledge to augment LLM-102

based agents. Depending on the domain, ParamAgent employs different forms of parametric103

knowledge. Speficically, (1) A reflection-oriented module Mr to synthesize model-based reflection104

for programming and math, and (2) A decomposition-oriented module Mp to produce semantic units105

for multi-hop QA. The detailed pseudo-code can be found in Appendix B, a shorter version can be106

found in Algorithm 1.107

3.1 Global-Local Reflection108

To incorporate cross-sample reflective signals beyond instance-specific cues, we propose a109

global–local reflection mechanism. The key idea is to combine self-reflections derived from episodic110

memory with global reflections synthesized by a parametric module Mr.111

Training Mr. We obtain Mr by fine-tuning a pretrained LLM on a curated dataset where reflective112

feedback is provided as supervision. Through this process, the module internalizes population-level113

patterns into its model parameters, and learns to synthesize model-based reflections and corrective114

cues. We provide more details regarding the dataset curation and training in Appendix D.2. An115

example output from Mr is shown in Figure 1a.116

Formulation. Having obtained Mr, ParamAgent conditions jointly on two sources of feedback:117

y ∼ pθ(· | x, r1:k, rgk), rgk ∼ pψ(· | x), (1)
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where r1:k denotes k self-reflections collected across iterations, and rgk is the global reflection118

generated by Mr at the k-th iteration.119

Usage. In each episode, Mr samples a global reflection rgk, which is injected into the prompt120

alongside self-reflections from the memory. A low sampling temperature is used in the first round121

to ensure informative feedback, while later rounds adopt a higher temperature to promote diversity.122

Importantly, rgk is used only as a transient input and is not stored in memory; the episodic memory123

only maintains self-reflections generated by the agent itself.124

3.2 Semantic Decomposition125

Algorithm 1: Pseudocode for ParamAgent

Require: Dataset D, base LM pθ , parametric module M∗
with params ψ, max iterations Tmax

1: M← ∅ ▷ Initialize memory
2: for x ∈ D do
3: for t = 1 to Tmax do

4: T ←

{
0.2 if t = 1

1.0 otherwise
5: Gt−1 ∼ pψ(· | x;T ) ▷ rgt−1 or Z
6: r1:t−1 ← RETRIEVEREFLECTIONS(M, x)
7: yt ∼ pθ(· | x, r1:t−1, Gt−1)
8: if EVALUATE(yt, x) then
9: break

10: else
11: rt ← GENERATESELFREFLECTION(yt)
12: M←M∪ {(x, rt)} ▷ Store reflection
13: end if
14: end for
15: end for

Beyond reflections, the parametric mod-126

ule can also generate structured knowl-127

edge. Inspired by chunking and the128

working memory model from cognitive129

science [23, 2], we introduce Mp to130

decompose complex multi-hop queries131

into compact semantic units that guide132

reasoning, one such example is illus-133

trated in Figure 1b.134

Training Mp. Similar to Mr, we fine-135

tune a pretrained LLM where semantic136

decompositions (e.g., entities, relations,137

constraints, answer types, etc.) serve as138

the training signal. Details are deferred139

in Appendix D.2.140

Formulation. ParamAgent then con-141

ditions jointly on the original query x,142

the semantic units Z, and a set of self-143

reflections r1:k derived from prior at-144

tempts, with the final answer produced145

as:146

y ∼ pθ(· | x, Z, r1:k). (2)

By combining self reflection with model-based semantic decomposition, the agent benefits from both147

local reflective feedback and global structural guidance.148

Usage. Similarly, at the first round, Mp generates semantic units under a low temperature, and the149

temperature is increased in the remaining rounds to promote diversity.150

3.3 Relation to Previous Studies151

Global-local reflection Our design is inspired by Reflexion [28], which improves reasoning through152

iterative interaction between an actor Ma, an evaluator Me, and a self-reflection module Msr. The153

actor generates candidate outputs, the evaluator provides feedback based on task-specific signals, and154

the self-reflection module produces natural language feedback that is appended to the context of the155

next trial. In ParamAgent, we propose a new module Mr, which encodes cross-sample similarities156

into the model parameters, allowing the module to generate higher-quality reflections that facilitate157

the reasoning process of the language agent.158

Semantic decomposition A key advantage of ParamAgent lies in its flexibility: the method can159

provide different forms of knowledge depending on the task. For multi-hop QA, we introduce seman-160

tic decomposition, which is conceptually related to CoT prompting. In standard CoT, intermediate161

thoughts zi are elicited directly by the base LM. In contrast, our framework employs a dedicated162

parametric module Mp, which generates a structured set of intermediate thoughts Z that guide the163

reasoning process. Furthermore, we show that semantic decomposition can be seamlessly combined164

with reflection-based framework. Together they complement each other, yielding richer guidance to165

augment reasoning.166
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4 Experiments167

In this section, we detail our experimental setup and present results across programming, math168

reasoning, and multi-hop QA. We then conduct more in-depth empirical analyses of our proposed169

method. More experimental results are included in Appendix D, including experiments with 70B170

scale LLMs.171

4.1 Setup172

Datasets We evaluate our framework across three domains. For programming, we use Hu-173

manEval [8] and MBPP [1]. For math reasoning, we adopt the MATH dataset [13], which covers174

competition-level problems of varying difficulty across seven subjects. For multi-hop QA, we use175

HotpotQA [41] and 2WikiMultiHopQA [14], which require reasoning across multiple passages.176

Further details about each dataset, as well as how we perform dataset splits are provided in later177

sections.178

Evaluation For programming tasks, we follow prior work [28, 19] and report Pass@1. During179

generation, only visible or synthetic test cases are used, while final evaluation is conducted on hidden180

test cases; a score of 1 is assigned if all tests pass and 0 otherwise. For math reasoning and multi-hop181

QA, we report 0–1 accuracy on subsampled testsets.182

Baselines We compare against: (1) Base, the underlying LLM agent without reflection; (2) Re-183

flexion [28], which uses episodic self-reflections; (3) DoT [19], which augments Reflexion with184

prompt-level diversity. (4) DoT-bank [19], which further incorporate a memory bank to enrich the185

reflective feedbacks. (5) In addition, we develop a baseline that uses only the parametric module186

to generate reflections or semantic units, referred to as model-based reflection or model-based CoT.187

This baseline utilizes M∗ purely as a parametric sampler, without performing self-reflection. The188

pseudocode can be found in Appendix B. Our full model ParamAgent incorporates both episodic189

memory and parametric memory for iterative reasoning, yielding stronger and more diverse feedback190

signals. Finally, we also explore an extended variant ParamAgent-plus, where we further intro-191

duce a memory bank similar to DoT. This extension allows the agent to combine episodic memory,192

parametric memory, and cross-sample memory, offering a comprehensive integration of different193

knowledge sources.194

To ensure a comprehensive evaluation, we employ three backbone LLMs with varying levels of195

reasoning capability: (1) Llama-3.1-8B [11], a strong open-source reasoning model; (2) Mistral-196

7B-v0.2 [18], a competitive medium-sized model with efficient inference; and (3) Qwen2-1.5B-197

instruct [3], a TogetherAI’s hosted version of Qwen2 1.5B, fine-tuned into an instruction-following198

variant. This selection of backbones allows us to examine how our approach performs across199

different model sizes and reasoning strengths. We also provide results with stronger base LLMs200

in Appendix D.4, showing that even when the parametric module remains an 8B model, it can still201

provide noticable gains to agents built on 70B-scale LLMs.202

Hyperparameters Across all experiments, we fix the number of reflection iterations to 5 for both203

baseline methods and our proposed approach. For ParamAgent and its variants, we set the sampling204

temperature to T = 0.2 during the first iteration, and T = 1.0 in the subsequent iterations to promote205

diversity. For LoRA finetuning of the parametric modules, we use a rank of r = 128, scaling factor206

α = 32, a learning rate of 2e− 5, and train for 3 epochs.207

Parametric module The parametric module is designed to internalize population-level knowledge208

across tasks t ∈ D. We first construct a dataset {(ti,mi)}ni=1 by prompting an LLM on synthetic209

data or a subset of the training set to enumerate failure modes or semantic units, where n is typically210

around 104. Mr or Mp is then obtained by finetuning a pretrained LLM using LoRA [16], encoding211

this knowledge into its parameters. In our experiments, we instantiate the module with Llama-3.1-212

8B. More details on the setup, dataset construction, training procedure, and implementation of the213

parametric module are deferred to Appendix D.2.214
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Table 1: Performance on HumanEval and MBPP datasets. Bold denotes the best result, and underline
marks the second best. ↑ and ↓ indicate the absolute improvement or decrease relative to the Base
method. For clarity, the prompt token usage of the Base method is normalized to 1. Table 2 and
Table 3 use the same notation, which we omit from the captions due to space constraints.

Dataset Method Llama-3.1-8B Mistral-7B-v0.2 Qwen2-1.5B
Pass@1 #Prompt Tokens Pass@1 #Prompt Tokens Pass@1 #Prompt Tokens

HumanEval

Base 59.15 1.00 32.93 1.00 41.46 1.00
Model-based Reflection 78.05 ↑ 18.90 9.15 68.29 ↑ 35.36 23.73 68.91 ↑ 27.45 6.77
Reflexion 76.22 ↑ 17.07 9.29 51.22 ↑ 18.29 28.54 49.39 ↑ 7.93 18.30
DoT 73.17 ↑ 14.02 17.45 46.95 ↑ 14.02 43.06 56.56 ↑ 15.10 15.26
DoT-bank 79.56 ↑ 20.41 24.71 54.26 ↑ 21.33 61.62 60.10 ↑ 18.64 31.28
Ours 82.93 ↑ 23.78 19.18 67.07 ↑ 34.14 70.38 66.46 ↑ 25.00 33.45

MBPP

Base 47.61 1.00 24.94 1.00 42.06 1.00
Model-based Reflection 52.90 ↑ 5.29 31.93 47.86 ↑ 22.92 20.98 52.89 ↑ 10.83 25.35
Reflexion 58.69 ↑ 11.08 37.18 28.46 ↑ 3.52 14.02 47.61 ↑ 5.55 26.95
DoT 61.21 ↑ 13.60 51.83 19.79 ↓ 5.15 25.45 47.37 ↑ 5.31 21.48
DoT-bank 64.82 ↑ 17.21 69.41 24.68 ↓ 0.26 60.09 53.38 ↑ 11.32 60.95
Ours 67.00 ↑ 19.39 86.39 51.64 ↑ 26.70 36.88 54.90 ↑ 12.84 66.86

4.2 Programming215

Datasets We evaluate our framework on two widely used programming benchmarks: Hu-216

manEval [8] and MBPP [1]. HumanEval consists of Python programming problems that test func-217

tional correctness using hidden unit tests, while MBPP covers beginner to intermediate-level Python218

problems designed for program synthesis.219

Results From Table 1, we can observe that: (1) Model-based Reflection, which relies solely220

on parametric reflection without using self-reflection, already achieves substantial gains or per-221

forms comparably to the baseline methods across different LLM backbones. This indicates that222

parametric knowledge alone can provide useful reflective signals, effectively guiding the agent223

toward higher-quality solutions. (2) Furthermore, ParamAgent, which integrates both instance-224

specific self-reflections and model-based parametric reflections, achieves consistent improvements225

across most datasets and base models. This highlights the complementary benefits of combining226

feedback at different granularities: local signals capturing trial-specific errors and global signals227

capturing population-level patterns. (3) Notably, although DoT-bank also leverages global-level228

reflective feedback, it underperforms compared to ParamAgent in most scenarios. This highlights229

that retrieval-based memory modules are less effective than model-based parametric modules in230

capturing deep relational patterns across tasks. (4) Finally, ParamAgent is also cost-effective, its231

token consumption is on par or lower than DoT-bank while delivering stronger performance.232

4.3 Math Reasoning233

Datasets For mathematical reasoning, we evaluate on the MATH dataset [13], which consists of234

competition-level problems spanning seven subjects: Prealgebra, Algebra, Number Theory, Counting235

and Probability, Geometry, Intermediate Algebra, and Precalculus. To construct our evaluation set,236

we randomly sample 40 problems from each subject in testset, ensuring that the problems cover237

diverse topics and allows us to comprehensively assess the performance of different methods across238

varying topics.239

Results From Table 2, we can make several observations. (1) Compared with model-based reflection240

alone, instance-level self-reflection proves more effective for math reasoning. However, when241

model-based reflective feedback is incorporated, ParamAgent consistently improves over Reflexion242

across all 3 backbone LLMs, and outperforms DoT on all LLM backbones. (2) Furthermore,243

ParamAgent-plus, which incorporates all levels of memory modules, achieves state-of-the-art244

results across all 3 backbone LLMs. This clearly demonstrates the added value of parametric245

knowledge: by combining episodic memory, parametric memory, and cross-sample memory, the246

agent gains access to richer and more complementary feedback signals, enabling stronger performance247

on competition-level mathematical reasoning tasks.248
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Table 2: Performance on MATH dataset.

Dataset Method Llama-3.1-8B Mistral-7B-v0.2 Qwen2-1.5B
Acc #Prompt Tokens Acc #Prompt Tokens Acc #Prompt Tokens

MATH

Base 48.20 1.00 12.23 1.00 8.99 1.00
Model-based Reflection 45.81 ↓ 2.39 2.58 13.31 ↑ 1.08 2.82 16.91 ↑ 7.92 2.84
Reflexion 58.99 ↑ 10.79 23.33 19.78 ↑ 7.55 27.67 21.94 ↑ 12.95 18.39
DoT 64.38 ↑ 16.18 34.17 23.25 ↑ 11.02 40.51 22.30 ↑ 13.31 31.99
DoT-bank 73.02 ↑ 24.82 83.92 35.61 ↑ 23.38 122.92 24.37 ↑ 15.38 76.71
ParamAgent 67.99 ↑ 19.79 57.01 28.06 ↑ 15.83 92.91 22.30 ↑ 13.31 70.07
ParamAgent-plus 75.45 ↑ 27.25 111.32 38.96 ↑ 26.73 196.18 25.97 ↑ 16.98 144.25

Table 3: Performance on HotpotQA and 2WikiMultiHopQA datasets.
Dataset Method Llama-3.1-8B Mistral-7B-v0.2 Qwen2-1.5B

Acc #Prompt Tokens Acc #Prompt Tokens Acc #Prompt Tokens

HotpotQA

Base 57.67 1.00 45.00 1.00 43.66 1.00
Model-based CoT 61.67 ↑ 4.00 1.46 54.33 ↑ 9.33 1.46 48.10 ↑ 4.44 1.44
Reflexion 71.33 ↑ 13.66 4.13 62.33 ↑ 17.33 4.67 50.03 ↑ 6.37 6.22
DoT 66.67 ↑ 9.00 7.10 58.33 ↑ 13.33 8.97 49.32 ↑ 5.66 58.05
DoT-bank 72.00 ↑ 14.33 13.28 66.33 ↑ 21.33 19.35 52.02 ↑ 8.36 109.54
ParamAgent 78.33 ↑ 20.66 22.25 69.67 ↑ 24.67 34.99 64.66 ↑ 21.00 14.69

2WikiMultiHopQA

Base 40.33 1.00 21.00 1.00 40.33 1.00
Model-based CoT 54.67 ↑ 14.34 1.39 46.33 ↑ 25.33 1.21 40.66 ↑ 0.33 1.19
Reflexion 78.67 ↑ 38.34 5.47 61.33 ↑ 40.33 5.86 51.00 ↑ 10.67 6.56
DoT 66.67 ↑ 26.34 7.03 52.13 ↑ 31.13 6.40 47.83 ↑ 7.50 30.55
DoT-bank 80.33 ↑ 40.00 12.49 74.66 ↑ 53.66 8.10 50.49 ↑ 10.16 54.92
ParamAgent 88.67 ↑ 48.34 10.41 81.33 ↑ 60.33 14.43 63.33 ↑ 23.00 17.39

4.4 Multi-hop QA249

Datasets We use a subset of samples from HotpotQA and 2WikiMultiHopQA for the evaluation.250

Specifically, for HotpotQA, from the training set, we randomly sample 100 examples for each251

difficulty level (easy, medium, and hard), resulting in 300 test samples. For 2WikiMultiHopQA, we252

focus on 4 representative categories: bridge comparison, comparison, compositional, and inference.253

We randomly draw 75 examples from each category, leading to a total of 300 test samples.254

Results From Table 3, we can draw several conclusions. (1) Model-based CoT outperforms the Base255

method by a large margin across all three backbones. This indicates that decomposed semantics, when256

used as structured intermediate thoughts, facilitating the reasoning ability of the underlying LLM. (2)257

Although Model-based CoT underperforms compared to stronger baselines such as Reflexion and258

DoT-bank, ParamAgent achieves significant improvements over all state-of-the-art methods, even259

without incorporating a memory bank. This demonstrates the complementary advantages of semantic260

decomposition compared with reflective feedback, and highlights the effectiveness of combining261

them within a unified framework.262

4.5 Additional Analysis263

4.5.1 Quantifying the Diversity of Reflections264

Setup We study to what extent the reflection trajectories produced by ParamAgent differ from265

those of other baselines. To this end, we maintain the complete reflection history for each sample266

and embed each reflection using the OpenAI text-embedding-3-small model. We focus on the267

HumanEval dataset for this analysis. Concretely, for N samples, and for each backbone LLM, we268

obtain a 2D tensor of shape R
∑N

i=1 ni×F , where ni denotes the number of reflection iterations for269

sample i, and F is the embedding dimension. We then perform k-means clustering [21] over all270

reflections and apply the elbow method [30] to determine the optimal clustering number K∗. This271

provides a quantitative measure of the semantic diversity of reflective feedback across methods.272

Additionally, for each K, we compute the silhouette score to evaluate clustering quality.273

Results As shown in Figure 2, ParamAgent achieves an optimal clustering number of K∗ = 39,274

substantially larger than that of Reflexion, DoT and DoT-bank. This indicates that the reflective275

outputs of Reflexion lack diversity, whereas the parametric feedback of ParamAgent introduces276

significantly richer and more varied reflective signals. Moreover, across all clustering numbers K,277

the silhouette score of ParamAgent is consistently higher than those of competing methods. This278

7



Reflections DoT DoT-Bank Ours
Methods

0

10

20

30

40

Va
lu

es

K=11

K=32 K=33

K=39

0.061

0.171 0.173

0.240

Optimal K
Silhouette Score

(a) Optimal clustering number K∗ across methods and the
corresponding Silhouette scores.

(b) Silhouette score for every clustering
number K ∈ [2, 60].

Figure 2: Quantitative analysis of reflection diversity: (a) optimal clustering numberK∗; (b) silhouette
scores for different K.

suggests not only that ParamAgent generates more diverse reflections, but also that these reflections279

form more coherent semantic groups.280

4.5.2 Effect of Reflection Format from Mr on Programming Tasks281

Setup In this section, we conduct an ablation study on the content of the reflections produced by282

Mr for programming tasks. As introduced in Section 3, for a given programming task t, Mr samples283

two complementary components: (1) textual reflective feedback describing potential pitfalls, and (2)284

code snippets implementing possible buggy solutions to illustrate failure modes. To analyze their285

contributions, we post-process the outputs from Mr by removing one of the components. We then286

evaluate the resulting variants on the HumanEval dataset.
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Figure 3: Ablation studies.
287

Results From Figure 3a, we can observe that: (1) The textual reflective feedback (w/o Impl) proves288

to be more important across different backbone LLMs. When only buggy code implementations289

are preserved without natural language descriptions, the performance sometimes even degrades,290

as observed in Llama-3.1-8B. (2) When only textual reflective feedback is kept, both Mistral-7B-291

v0.2 and Qwen2-1.5B show moderate drops in accuracy. This suggests that including buggy code292

implementations also provides useful complementary signals. Overall, these results indicate that293

outputting both natural language reflections and buggy code examples is a robust design choice.294

4.5.3 Effect of Iteration Number on Model-based Reflection295

Setup In the main experiments, we fixed of iterations to 5 for fairness. Here we vary the iteration296

count of Model-based Reflection in {1, 3, 10} to examine how diversity affect the model performance.297

Results As shown in Figure 3b, running only a single iteration yields subpar performance, indicating298

that providing one informative reflection (T = 0.2) is insufficient. Performance improves steadily as299
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the iteration number increases significantly, even without an episodic memory buffer. This highlights300

that the diversity introduced by the parametric memory is crucial and effective for performance gains.301

5 Related Work302

We discuss the most relevant work below, with additional related work in Appendix A.303

LLM Reasoning LLMs have demonstrated emergent abilities to perform multi-step reasoning304

when prompted appropriately. for instance, CoT prompting elicits the model to generate explicit305

intermediate reasoning steps and significantly improves performance on complex tasks [37]. Self-306

Consistency [35] further improves CoT by sampling multiple reasoning paths and aggregating them307

via majority voting, which increases robustness. ReAct [43] is a seminal approach that interleaves308

reasoning steps with actions (e.g., tool uses or environment queries) in an interactive decision-making309

loop, allowing the model to both “think” and “act” step-by-step. Other methods focus on iterative310

self-feedback, highlighting that reasoning is a process, not a one-shot [22, 28]. ParamAgent follows311

this iterative reasoning paradigm but avoids sophisticated search procedures.312

External Memory in LLMs Memory has become central for agents tackling multi-step reason-313

ing [47]. Short-term mechanisms such as Self-Refine [22] use the model’s own recent outputs as314

transient memory for iterative refinement, while Reflexion [28] maintains episodic logs of errors315

and reflections to guide retries within a task. These approaches however, reset once a new problem316

begins. To address this limitation, external memory has been proposed to augment agentic reason-317

ing [5, 27, 34, 27, 48, 36, 17, 40, 9, 19]. These methods mainly rely on non-parametric memory,318

either through textual logs or retrieval databases. By contrast, ParamAgent introduces a external319

parametric memory module M∗, which retrieves the knowledge from model-based sampler rather320

than recalling raw traces, enabling it to generate population-level knowledge that can be adapted to321

different domains.322

Cognitive Science Inspirations for Reasoning Cognitive science research shows that people323

manage complexity by chunking information into structured units, thereby reducing cognitive load324

and effectively increasing capacity for multi-step reasoning [23]. Classic working memory models325

further posit a central executive that maintains and manipulates only a small set of active items,326

motivating reasoning procedures that keep a compact buffer of intermediate results [2]. In parallel,327

problem solving is often modeled as hierarchical decomposition, where a complex goal is resolved328

by recursively addressing sub-goals and recombining their solutions [29]. These insights motivate329

semantic decomposition in multi-hop QA: parse a query into compact units (e.g., entities, relations,330

constraints, answer type) and an explicit sequence of inference steps; solve sub-queries sequentially331

while maintaining a small active buffer of intermediates; then integrate the chunks to produce the332

final answer.333

6 Conclusions334

We propose ParamAgent, a language agent framework that introduces a parametric module to move335

beyond instance-level reflection. By encoding cross-sample regularities into model parameters,336

ParamAgent internalizes global patterns and synthesizes population-level insights in a generative337

manner. Across programming, mathematical reasoning, and multi-hop QA, ParamAgent delivers338

substantial performance gains over state-of-the-art baselines while maintaining cost-effectiveness,339

highlighting the potential of parametric memory as a plug-in module for building language agents.340
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A Additional Related Work489

Diversity in LLM Reasoning A key challenge in multi-step reasoning is avoiding redundant490

or myopic thought patterns. Recent works therefore encourage diversity of reasoning paths. One491

simple but effective approach is self-consistency decoding [35], which samples multiple independent492

chains-of-thought and then selects the final answer by majority vote. Beyond this, researchers have493

proposed methods to actively inject diversity into the reasoning process. For example, prompting494

the model with different personas or perspectives (e.g. “Think like a mathematician” vs. “Explain495

as a teacher”) can yield varied solution paths [24]. Another line of work trains LLMs to generate496

diverse solutions through specialized learning algorithms: Flow of Reasoning framework [44] the497

generation of reasoning steps as a search problem and uses a GFlowNet-based [4] fine-tuning to498

stochastically sample multiple high-reward reasoning trajectories, achieving greater coverage of499

the solution space. The recent DoT framework [19] explicitly tackles the lack of exploration by500

producing non-redundant self-reflections to ensure each iteration explores new solution paths, rather501

than repeating past failures. Empirically, DoT shows that encouraging such diversity yields substantial502

gains on challenging reasoning tasks. ParamAgent adopts the principle of diversification in a notably503

simple way: by drawing each new reasoning attempt from a high-temperature parametric sampler (the504

memory module). This high-temperature sampling from the learned model-based memory introduces505

stochasticity that is easy to implement yet effective at covering different problem-solving trajectories,506

without needing elaborate persona prompts or complex search procedure.507

Parametric Memory in LLM Reasoning Compared with textual memory, parametric memory508

remains under-explored in LLM agents. While textual stores dominate due to interpretability and ease509

of use, recent studies have also explored encoding memory directly into model parameters, thereby510

avoiding the length limitations of textual memory. Character-LLM [26] fine-tunes role-playing agents511

with character experiences to faithfully simulate personas. HuaTuo [33] tunes LLaMA [31] with512

Chinese medical knowledge to enhance clinical QA and instruction following. DoctorGLM [39]513

develops a Chinese medical dialogue system, demonstrating that physician-style models can be514

obtained with moderate fine-tuning cost. Radiology-GPT [20] instruction-tunes on radiology corpora515

to outperform general LLMs on imaging-focused tasks. These approaches directly fine-tune the base516

LLM, yielding specialized models tailored to particular domains. By contrast, our framework keeps517

the base agent intact and fine-tunes an external parametric module that generates domain-specific518

reflective cues or semantic decompositions. This modular design allows the parametric module to519
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Algorithm 2 ParamAgent

Require: Dataset D, Base LM pθ, Parametric Module M∗ with parameters ψ, Max iterations Tmax,
Pass@k K

Ensure: Solutions for each task
1: Initialize: Episodic memoryM← ∅
2: for each task x ∈ D do
3: solved← False, k ← 0
4: while k < K and not solved do
5: t← 1, ycurr ← None
6: while t ≤ Tmax and not solved do
7: # Generate parametric insights for iteration t
8: if t = 1 then
9: T ← 0.2 ▷ informative first-round sampling

10: else
11: T ← 1.0 ▷ promote diversity thereafter
12: end if
13: if task is coding/math then
14: rgt−1 ∼ pψ(· | x;T ) ▷ global reflection from Mr

15: else ▷ multi-hop QA
16: Z ∼ pψ(· | x;T ) ▷ semantic units from Mp

17: end if
18: # Combine parametric and episodic knowledge
19: r1:t−1 ← RETRIEVEREFLECTIONS(M, x) ▷ local (self) reflections up to t−1
20: if task is coding/math then
21: ycurr ∼ pθ(· | x, r1:t−1, r

g
t−1) ▷ global–local fusion

22: else
23: ycurr ∼ pθ(· | x,Z, r1:t−1) ▷ semantic decomposition
24: end if
25: # Evaluate and update episodic memory
26: (passed, feedback)← EVALUATE(ycurr, x)
27: if passed then
28: solved← True
29: else
30: rt ← GENERATESELFREFLECTION(ycurr, feedback)
31: M←M∪ {(x, rt)} ▷ store only self-reflections
32: end if
33: t← t+ 1
34: end while
35: k ← k + 1
36: end while
37: end for

serve as a plug-in component for different agents, while reducing the risk of catastrophic forgetting520

in the backbone. A detailed justification of this external design choice is provided in Appendix C.521

More details on parametric memory in agentic reasoning can be found in [47].522

B Pseudocodes for ParamAgent523

In this section, we present pseudocode for ParamAgent in Algorithm 2. We also include pseu-524

docodes for Model-based Reflection and Model-based CoT in Algorithm 3 and ParamAgent-plus525

in Algorithm 4 for clarity.526

C Rationale for External Module Fine-Tuning527

We justify our choice to fine-tune an external parametric module rather than the base language agent.528
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Algorithm 3 Model-based Reflection (CoT)

Require: Dataset D, Base LM pθ, Parametric Module M∗ with parameters ψ, Max iterations Tmax,
Pass@k K

Ensure: Solutions for each task
1: for each task x ∈ D do
2: solved← False, k ← 0
3: while k < K and not solved do
4: t← 1
5: while t ≤ Tmax and not solved do
6: # Parametric guidance only (no episodic memory)

7: T ←
{
0.2 if t = 1

1.0 otherwise
8: if task is coding/math then
9: rgt−1 ∼ pψ(· | x;T ) ▷ global reflection from Mr

10: yt ∼ pθ(· | x, rgt−1)
11: else ▷ multi-hop QA
12: Z ∼ pψ(· | x;T ) ▷ semantic units from Mp

13: yt ∼ pθ(· | x, Z)
14: end if
15: # Evaluate (no memory write)
16: passed← EVALUATE(yt, x)
17: if passed then
18: solved← True
19: end if
20: t← t+ 1
21: end while
22: k ← k + 1
23: end while
24: end for

Training objectives Given an input x, the external module is trained to produce either a reflection529

r or semantic units Z = {zi}mi=1:530

max
ψ

E(x,r)∼Dr
[log pψ(r | x)] , max

ψ
E(x,Z)∼DZ

[log pψ(Z | x)] . (3)

At inference, the agent conditions on rgk∼pψ(· | x) or on Z∼pψ(· | x):531

y ∼ pθ(· | x, r1:k, rgk), y ∼ pθ(· | x,Z, r1:k). (4)

Why not fine-tune the agent directly? Directly fine-tuning the base LLM within the agent532

introduces the following challenges:533

(1) Distribution mismatch. In practice, an agent generates reflections autoregressively as pθ(rk |534

x, r1:k−1). If we fine-tune the base model only on pθ(r | x) without its own history, the training535

distribution no longer matches the inference distribution pθ(rk | x, r1:k−1). Bridging this gap would536

require sequence-level supervision and far more data due to the more complex distribution form.537

(2) Capability interference. The agent must also maintain pθ(y | x, r1:k) to act (e.g., generate538

code or multi-hop answers). Pushing the same parameters toward a specialized model for reflection539

generation can interfere with this objective, degrading the agent’s general problem-solving ability.540

Benefits of using external module In the meantime, adopt an external LLM module for parametric541

knowledge introduces several advantages:542

(1) Simpler supervision. Decoupling the base LLM and the external LLM model yields a simpler543

objective pψ(r | x) or pψ(Z | x) rather than the history-conditioned pθ(rk | x, r1:k−1), reducing544

modeling complexity and data requirements.545

(2) Modular knowledge forms. The module can emit different forms of parametric knowledge546

(e.g., reflections r for programming/math via Mr, semantic units Z for multi-hop QA via Mp),547

complementing episodic self-reflection r1:k without altering the base agent.548
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Algorithm 4 ParamAgent-plus

Require: Dataset D, Base LM pθ, Parametric Module M∗, Max iterations Tmax

1: Init: Episodic memoryM← ∅, Memory bank B ← ∅, Failed F ← ∅
2: Phase 1: Standard solving with memory banking
3: for each task x ∈ D do
4: for t = 1 to Tmax or until solved do
5: rgt−1 ∼ pψ(· | x) with T =0.2 if t=1 else T =1.0 ▷ Parametric insight
6: r1:t−1 ← Retrieve(M, x); y ∼ pθ(· | x, r1:t−1, r

g
t−1)

7: if Evaluate(y, x) passes then
8: Store (x, y, rgt−1) in B; mark solved; break
9: else

10: rt ← Reflect(y); M←M∪ {(x, rt)} ▷ Update episodic
11: end if
12: end for
13: if not solved then F ← F ∪ {x}
14: end if
15: end for
16: Phase 2: Memory-augmented reattempt
17: for each x ∈ F do
18: T ← RetrieveTopK(B, x); xaug ← Augment(x, T )
19: for t = 1 to Tmax or until solved do
20: rgt−1 ← Extract(T ) or pψ(· | xaug) ▷ Reuse or generate (same T rule as above)
21: r1:t−1 ← Retrieve(M, x) + RetrieveByReflection(B)
22: y ∼ pθ(· | xaug, r1:t−1, r

g
t−1); Evaluate and updateM, B

23: end for
24: end for

(3) Stability and reuse. Keeping the base LLM in the agent fixed also avoids interference with549

pθ(y | x, r1:k), mitigates catastrophic forgetting, and enables plug-in use across agents and backbones.550

In conclusion, fine-tuning an external module rather than the base LLM offers a simpler training551

objective, preserves the general capabilities of the agent, and enables flexible plug-in usage across552

domains and backbones, which justifies this design choice.553

D More Experimental Details Results554

D.1 Dataset Statistics555

Programming. For programming tasks, we evaluate on HumanEval [8] and MBPP [1]. HumanEval556

consists of 164 hand-written Python programming problems, each accompanied by hidden unit557

tests and a small number of visible test cases. We additionally consider MBPP, which provides 974558

crowd-sourced Python problems; following prior work, we use the 397 problems from the filtered559

evaluation split.560

Math. For mathematical reasoning, we adopt the MATH dataset [13], which contains competition-561

style math problems spanning seven subjects including Algebra, Geometry, Number Theory, Counting562

and Probability, and Precalculus. We randomly sample a balanced subset across categories for563

evaluation.564

Multi-hop QA. For multi-hop question answering, we use HotpotQA [41] and 2WikiMulti-565

HopQA [14]. In HotpotQA, we stratify by difficulty level and randomly sample 100 examples566

from each category (easy, medium, hard), yielding a total of 300 evaluation samples. For 2Wiki-567

MultiHopQA, we stratify by question type and randomly sample 75 examples from each of four568

categories (bridge comparison, comparison, compositional, inference), again yielding 300 samples in569

total. These stratified subsets ensure balanced evaluation across different reasoning styles.570
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Table 4: Datasets used for Programming, Math, and Multi-hop QA tasks.
Task Type Dataset Name Size Metric

Programming HumanEval 164 problems, ∼3 visible test cases/problem Pass@1
Programming MBPP 397 sampled problems Pass@1
Math MATH 278 sampled problems across 7 subjects 0-1 Acc
Multi-hop QA HotpotQA 300 sampled problems (100 per difficulty) 0-1 Acc
Multi-hop QA 2WikiMultiHopQA 300 sampled problems (75 per type) 0-1 Acc

D.2 Finetuning the Parametric Module571

Programming For programming tasks, we curate a dataset by sampling 4000 coding problems572

from the APP dataset [12] at introductory level. In addition, we synthesize 4200 problems using573

GPT-4o-mini, covering a diverse range of programming domains. The code templates and prompt574

used for data generation are provided in Figure 4. For each problem, GPT-4o-mini is further asked575

to produce potential mistakes along with buggy implementations. This yields a dataset of reflective576

signals and corresponding erroneous code examples. We then finetune LLaMA-3.1-8B with LoRA577

on this dataset to obtain the programming-specific parametric module Mr.578

Math For mathematical reasoning, we leverage the MATH training set [13]. From each subject area,579

we randomly sample 800 problems and adopt the same pipeline as in programming: GPT-4o-mini580

is prompted to produce reflective feedback and buggy derivations for each sampled problem. The581

resulting dataset is used to LoRA-finetune LLaMA-3.1-8B to instantiate Mr for math reasoning.582

Multi-hop QA For multi-hop QA, we randomly sample 10000 instances from the HotpotQA [41]583

and 2WikiMultiHopQA [14] training sets respectively. GPT-4o-mini is prompted to output structured584

semantic units (e.g., entities, relations, constraints, answer types, and sub-questions) for each example.585

We then apply LoRA finetuning to LLaMA-3.1-8B on this dataset to build the parametric module586

Mp.587

Across all domains, during dataset construction we provide one carefully designed demonstration588

example in the prompt to GPT-4o-mini. This ensures that the generated outputs (reflective feedback,589

buggy code, or semantic units) adhere to the required format, making the synthetic supervision more590

reliable.591

D.3 More Implementation Details592

We use the TogetherAI API service1 to access all backbone models in our experiments. Specifically,593

we call the following model identifiers in implementation:594

• meta-llama/Meta-Llama-3.1-8B-Instruct-Turbo595

• mistralai/Mistral-7B-Instruct-v0.2596

• arize-ai/qwen-2-1.5b-instruct597

In Section D.4, we use 70B scale LLMs in our framework, the model identifiers are:598

• meta-llama/Meta-Llama-3.1-70B-Instruct-Turbo599

• Qwen/Qwen2.5-72B-Instruct-Turbo600

All experiments are implemented in PyTorch [25].601

D.4 How does ParamAgent perform with stronger base LLMs?602

We further study the performance of ParamAgent when paired with stronger base models of around603

70B parameters. Specifically, we use Llama-3.1-70B and Qwen2.5-72B-Instruct as the underlying604

LLMs, while keeping the parametric module fixed as Llama-3.1-8B. We evaluate on HumanEval605

1https://www.together.ai
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1 CATEGORIES = [
2 # Core Text & Parsing
3 "String Manipulation",
4 " R e g u l a r Expression Parsing",
5 "Natural -Language Tokenisation",
6 "CSV / JSON Parsing",
7 "URL / URI Parsing",
8 "Text Justification / Word -Wrapping",
9 # Lists , Arrays , SEQ

10 "Array / List Algorithms",
11 "Two -Pointer / Sliding -Window",
12 "Sorting & Searching",
13 "Statistical Summary of Sequences",
14 # Maths & Numbers
15 "Elementary Arithmetic / Algebra",
16 "Number Theory & Divisibility",
17 "Bitwise Operations",
18 "Combinatorics & Counting",
19 "Probability / Statistics",
20 # Data -Structures
21 "Hash / Set / Dict Operations",
22 "Stack / Queue Simulation",
23 "Linked -List Manipulation",
24 "Matrix Operations",
25 "Heap / Priority Queue Operations",
26 "Trie / Prefix -Tree",
27 # Graphs & Trees
28 "Graph / Tree Traversal",
29 "Binary Search Trees",
30 "Dynamic Programming",
31 "Recursion / Backtracking",
32 "Union -Find / Disjoint Set",
33 # Geometry / Coordinates
34 "Geometry & Coordinate Computation",
35 # Dates / Times / Calendars
36 "Date & Time Calculations",
37 # Miscellaneous Practical
38 "File & Path Utilities",
39 "Data -Type Conversion & Formatting",
40 "Cipher / Encoding",
41 "Simulation / Game Logic",
42 "Misc Small -Scale Algorithms"
43 ]

Figure 4: Schema of categories for synthesizing programming tasks used in our parametric module
construction.

for programming and HotpotQA for multi-hop QA. The results are reported in Table 5 and Table 6606

respectively.607

Results. Across tasks, ParamAgent achieves performance that is on par with, or even surpasses,608

state-of-the-art baselines. Moreover, ParamAgent-plus consistently outperforms the best baseline609

methods by a large margin, highlighting the effectiveness of the parametric module. It is worth noting610

that our parametric module itself is only an 8B model, yet it integrates effectively with base LLMs as611

large as 70B. This demonstrates the strong potential of our approach when scaled further.612

D.5 Cost Analysis613

Table 7 reports prompt/completion tokens and costs using Llama-3.1-8B. Costs are computed with614

TogetherAI pricing as of Aug 20, 2025 ($0.18 per million tokens). We can see that Model-based615

Reflection (CoT) is highly efficient, achieving strong accuracy with far fewer tokens than reflection-616

heavy methods like DoT-bank. By contrast, ParamAgent delivers the best results on both HumanEval617
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1 system_content = (
2 "You are an expert Python engineer crafting coding problems .\n"
3 "Follow this EXACT format :\n\n<template_example >\n\n"
4 "- Randomly pick ONE category from the list above .\n"
5 "- Output EXACTLY two lines:\n"
6 " func_sign: <signature with colon >\n"
7 " docstring: ’<single -quoted string with \\n escapes >’\n"
8 "- Do NOT wrap in JSON or triple quotes .\n"
9 "- Avoid any collisions with past tasks .\n\n"

10 )

Figure 5: Prompt for synthesizing programming tasks

Table 5: Performance on HumanEval. Bold denotes the best result, and underline marks the second
best. ↑ and ↓ indicate absolute change relative to the Base method. For clarity, the prompt token
usage of the Base method is normalized to 1.

Dataset Method Llama-3.1-70B-Instruct Qwen2.5-72B-Instruct
Pass@1 #Prompt Tokens Pass@1 #Prompt Tokens

HumanEval

Base 80.49 1.00 82.92 1.00
Model-based Reflection 87.80 ↑ 7.31 6.39 89.64 ↑ 6.72 3.48
Reflexion 90.24 ↑ 9.75 4.31 88.41 ↑ 5.49 3.48
DoT 90.85 ↑ 10.36 7.51 87.80 ↑ 4.88 6.05
DoT-bank 92.68 ↑ 12.19 9.14 90.24 ↑ 7.32 8.17
ParamAgent 92.07 ↑ 11.58 11.90 93.90 ↑ 10.98 8.93
ParamAgent-plus 95.03 ↑ 14.54 19.47 95.12 ↑ 12.20 16.81

and HotpotQA, at higher but still moderate cost, this highlights the advantages of incorporating618

various forms of memory modules.619

D.6 A Case Study620

We present a case study from the MBPP dataset, where both Reflexion and DoT fail to generate621

the correct implementation, while ParamAgent succeeds. To better understand this difference, we622

analyze the reflective history of all three methods and highlight the gists, as illustrated in Figure 6.623

From the analysis, we observe that Reflexion and DoT often produce unhelpful sometimes even624

misleading reflections, which push the agent further away from the correct solution. In contrast,625

ParamAgent generates fewer such misleading reflections. We hypothesize that this advantage626

arises from the parametric knowledge encoded in Mr, which helps ParamAgent avoid unhelpful or627

error-prone reflective signals.628

D.7 Prompt Templates629

We provide prompt templates used in ParamAgent across different domains. The 1-shot reflective630

example for programming tasks can be found in Figure 7, and the corresponding math reasoning631

template in Figure 8. For multi-hop QA, the semantic decomposition 1-shot example is shown in632

Figure 9.633

Instruction templates for generating actions for the programming is shown in Figure 10, the math634

reasoning instruction in Figure 11, and the multi-hop QA instruction in Figure 12.635
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Table 6: Performance on HotpotQA dataset. Bold denotes the best result, and underline marks the
second best. ↑ and ↓ indicate the absolute improvement or decrease relative to the Base method. For
clarity, the prompt token usage of the Base method is normalized to 1.

Dataset Method Llama-3.1-70B-Instruct Qwen2.5-72B-Instruct
Acc #Prompt Tokens Acc #Prompt Tokens

HotpotQA

Base 70.00 1.00 73.33 1.00
Model-based CoT 73.67 ↑ 3.67 1.43 74.10 ↑ 1.05 1.44
Reflexion 82.33 ↑ 12.33 3.02 82.67 ↑ 9.34 2.81
DoT 73.67 ↑ 3.67 3.43 80.67 ↑ 7.34 4.30
DoT-bank 80.00 ↑ 10.00 5.24 82.33 ↑ 9.00 7.87
ParamAgent 84.00 ↑ 14.00 7.70 81.00 ↑ 7.67 7.90
ParamAgent-plus 89.67 ↑ 19.67 13.69 84.67 ↑ 11.34 15.43

Table 7: Token usage and cost on HumanEval and HotpotQA datasets with Llama3.1-8B as backbone
LLM. Best and second-best metrics are in bold and underline respectively.

Method HumanEval HotpotQA
#Prompt #Completion Total Cost Pass@1 #Prompt #Completion Total Cost Acc
Tokens Tokens ($) (%) Tokens Tokens ($) (%)

Base 37,463 13,506 0.00917 59.15 164,013 1,801 0.02985 57.67
Model-based Reflection 342,805 82,280 0.07652 78.05 236,548 1,212 0.04280 61.67
Reflexion 348,068 73,538 0.07589 76.22 703,192 68,612 0.13892 71.33
DoT 653,981 169,986 0.14831 72.56 1,164,812 106,806 0.22889 66.67
DoT-bank 926,047 233,016 0.20863 79.88 2,179,148 195,283 0.42740 72.00
ParamAgent 814,627 163,257 0.17602 82.93 3,649,598 128,010 0.67997 78.33
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Reflexion.
Problem: "The implementation failed the test case where it tries to return a single element that
is not a list. This issue arises because the ^ operator in the set difference operation returns a set,
and then we explicitly convert it to a list..."
Problem: "The implementation failed the test where it is expected to find a difference in the
lists because the list to check for difference is a subset of the original list... This would return the
union of the two lists, not the actual difference."
Problem: "The implementation failed the test where the difference should be a single element
because it uses the symmetric difference operation which is not what’s intended here... When
converting the set back to a list using the list function, the order of elements is lost."
Problem: "When converting the set back to a list using the list function, the order of elements is
lost."

DoT.
Problem: "The implementation failed the test due to a mismatch in the type of the function
return value and the expected output."
Problem: "The function implementation does not handle the case where the input lists are not
of the same length or contain duplicate elements."
Problem: "The function implementation does not correctly calculate the symmetric difference
between two lists."
Problem: "The implementation failed due to a mismatch in the type of the function return value
and the expected output, but the proposed fix in the previous reflection is incomplete."
Problem: "The function implementation does not correctly handle the case where the input lists
are not of the same length or contain duplicate elements..."
Problem: "The function implementation does not correctly remove duplicates from the input
lists, leading to incorrect results."

ParamAgent.
Problem: "The function implementation does not handle the case of empty lists correctly."
Fix: "Add a check at the beginning of the function to return an empty list if either of the input
lists is empty..."
Problem: "The function implementation does not preserve the original order of elements in the
lists." Fix: "Instead of using set operations..., use a list comprehension to create the difference
list..."
Problem: "The function implementation does not handle non-integer values in the lists correctly."
Fix: "Add a check at the beginning... ensure that both input lists are lists of integers..."
Problem: "The function implementation does not handle non-list types correctly." Fix: "Add
a check... ensure that both input arguments are lists..."
Problem: "The function implementation does not handle duplicates correctly." Fix: "Use a
list comprehension... and preserve the original order..."
Problem: "The function implementation does not handle the case where the lists are identical."
Fix: "Return an empty list if the two input lists are identical."

Figure 6: Selected reflections on the mbpp_769_Diff problem. Red = critical errors that directly
invalidate the implementation; Orange = conceptual pitfalls or misleading reasoning patterns; Green
= key insights leading to a working solution; Gray = background noise (irrelevant or stylistic).
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1 [Function Signature ]:
2 def has_close_elements(numbers: List[float], threshold: float) -> bool

:
3 """Check if any two numbers in the list are closer than the

threshold."""
4

5 [Potential mistakes ]:
6 1. ** Empty or Single -Element Lists ** must return ‘False ‘, not ‘True ‘.
7 2. ** Duplicate Values ** must be compared (difference 0), so never drop

duplicates.
8 3. Always use ** absolute difference ** (‘abs(a - b)‘), not raw

subtraction.
9 4. Use the correct ** strictness ** (‘< threshold ‘, not ‘<=‘).

10 5. Ensure you d o n t **exit too early ** check all distinct pairs.
11

12 [Flawed Implementations Illustrating Each Pitfall ]:
13

14 def has_close_elements_v1(numbers: List[float], threshold: float) ->
bool:

15 # BUG: returns True for empty or single -element lists
16 if len(numbers) < 2:
17 return True
18 for i in range(len(numbers) -1):
19 for j in range(i+1, len(numbers)):
20 if abs(numbers[i] - numbers[j]) < threshold:
21 return True
22 return False
23

24 def has_close_elements_v2(numbers: List[float], threshold: float) ->
bool:

25 # BUG: removes duplicates , so identical values never compared
26 numbers = sorted(set(numbers))
27 for i in range(len(numbers) -1):
28 if abs(numbers[i+1] - numbers[i]) < threshold:
29 return True
30 return False
31

32 def has_close_elements_v3(numbers: List[float], threshold: float) ->
bool:

33 # BUG: uses raw subtraction instead of abs()
34 for i in range(len(numbers) -1):
35 for j in range(i+1, len(numbers)):
36 if (numbers[i] - numbers[j]) < threshold:
37 return True
38 return False
39

40 def has_close_elements_v4(numbers: List[float], threshold: float) ->
bool:

41 # BUG: uses <= instead of <, misclassifies exactly -threshold pairs
42 for i in range(len(numbers) -1):
43 for j in range(i+1, len(numbers)):
44 if abs(numbers[i] - numbers[j]) <= threshold:
45 return True
46 return False
47

48 def has_close_elements_v5(numbers: List[float], threshold: float) ->
bool:

49 # BUG: breaks out of outer loop too soon
50 ... (omit due to limited page)
51

52 END OF EXAMPLE

Figure 7: 1-shot example for reflective dataset construction for programming task.
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Question. Circle O is located on the coordinate plane with center at (2, 3). One endpoint of
a diameter is at (−1,−1). What are the coordinates of the other endpoint of this diameter?
Express your answer as an ordered pair.

Pitfalls & Potential Mistakes
1. Confusing the center with an endpoint. Assuming the center is an endpoint leads to

an incorrect reflection point.
2. Incorrect use of the midpoint formula. Forgetting that the center is the midpoint of

the diameter, or solving (x+ x2)/2 = centerx incorrectly.
3. Using the wrong coordinates for the midpoint. Plugging endpoint coordinates in

place of the center (or vice versa) yields the wrong unknowns.
4. Arithmetic errors. Sign or algebra mistakes when solving, e.g. 2 = (−1 + x)/2⇒
x = 3 (incorrect) instead of x = 5.

5. Switching x and y. Mixing x- and y-midpoint formulas, or using x values to solve for
y.

6. Incorrect interpretation of the diameter. Thinking the diameter extends in the same
direction from the center; doubling the vector or reflecting in the wrong direction.

Figure 8: 1-shot example for reflective dataset construction in math reasoning.

Example 1
Question. Anatoly Maltsev and Valentin Turchin were both from Russia, which of the two is
known for his work as a mathematician?

Question Parsing and Intent Extraction
Key Components

• Entity A: Anatoly Maltsev — mathematician/logician; contributions in mathematical
logic and abstract algebra.

• Entity B: Valentin Turchin — computer scientist/philosopher; work in cybernetics and
philosophy of science.

• Implied Relationship: Comparative inquiry: which individual is more closely associ-
ated with mathematics.

• Answer Type Expected: Person name (e.g., “Anatoly Maltsev”).
• Reasoning Type: Comparative factual reasoning.
• Required Background: Biographical profiles or retrieved professional records.

Inference Trace
1. Retrieve factual data about Maltsev’s and Turchin’s primary academic domains.
2. Classify Maltsev as a mathematician (core contributions to mathematical logic).
3. Classify Turchin as mainly in cybernetics and philosophy.
4. Eliminate Turchin as the primary mathematician.
5. Conclude: Anatoly Maltsev.

Disambiguation Note
Nationality (Russia) does not help differentiate them.

Figure 9: 1-shot example used in ParamAgent for semantic decomposition dataset construction in
multi-hop QA.
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You are an AI Python assistant. You will be given some potential pitfalls and several flawed
implementations for the coding challenge, as well as your previous implementation of a function,
a series of unit-test results, and your self-reflection on your previous implementation. Try to
avoid the errors from your previous implementation and the listed pitfalls.

Instruction: ALWAYS WRITE your full implementation (restate the function signature).

Figure 10: Instruction prompt used by ParamAgent to generate next-round solutions for programming
tasks.

You are revising your previous answer to a mathematics problem.
You will receive:
(1) the original question,
(2) potential mistakes and pitfalls,
(3) your last answer, (4) feedback (Right or Wrong) explaining why that answer was unsatisfac-
tory, and (5) your brief self-reflection on the mistake.

Respond with:
1. Reasoning: updated step-by-step thoughts.

2. Answer: the corrected final result.

Formatting: The final answer should be simplified to its simplest form, e.g., 25, 2516, 1
36 , etc.

Figure 11: Instruction prompt used by ParamAgent to generate next-round solutions for math
reasoning.

You are revising your previous answer to a multi-hop QA question.
You will receive:
(1) the original question,
(2) some key points, the underlying intent, and possible inference patterns that facilitate answer-
ing this question,
(3) your last answer,
(4) supporting context,
(5) feedback (Right or Wrong) explaining why that answer was unsatisfactory,
(6) your brief self-reflection on the mistake.

Instruction: Based on the inputs, produce a new single-phrase answer that resolves the error
and fully answers the question. Output only the answer — no commentary, no code.

Figure 12: The prompt of ParamAgent to generate next-round answers for multi-hop QA tasks.
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