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ABSTRACT

Audio watermarking, which embeds identity information into audio for authentic-
ity verification, is an effective approach to protecting the intellectual property of
audio content creators. A key unresolved challenge in audio watermarking is the
limited robustness of existing methods under real-world neural transformations,
such as denoising, codec, and vocoder reconstruction, which can render water-
marks removable or undetectable. To better understand this challenge, we intro-
duce the content alignment degree (CAD) metric, which quantifies the extent to
which watermarks are integrated into audio, and observe a positive correlation be-
tween CAD and watermark robustness. Guided by CAD, we propose AlignMark,
a content-aligned audio watermarking method that leverages spectral masking in
the embedder, temporal masking in the decoder, and multiple perceptual losses to
explicitly align watermark embedding with audio content and improve robustness
against diverse attacks while preserving perceptual quality. Furthermore, a fea-
ture pyramid-based decoder extracts watermarks across multiple scales, enhanc-
ing reliability under pitch shifts and spectral distortions. Extensive experiments
on multiple datasets and 21 attack scenarios demonstrate that AlignMark achieves
state-of-the-art performance, with an average bit-wise accuracy of 0.98 and false
attribution rate of 0.05, while maintaining imperceptible impact on audio quality.
See our code and demos at: https://anonymouswatermark.github.io/alignmark/.

1 INTRODUCTION

Audio watermarking, which embeds identity information into audio for authenticity verification, is
an effective approach for protecting the intellectual property (IP) of audio content creators. Robust-
ness is a key requirement, as it determines whether embedded information can survive real-world
attacks and distortions; without it, watermarks become removable or undetectable, limiting practical
utility. Traditional methods, such as spread spectrum (Bender et al., 1996), echo hiding (Gruhl et al.,
1996), and quantization index modulation (Chen & Wornell, 2001), have been studied for decades,
but their limited robustness against complex attacks restricts practical adoption. More recently, deep
neural network (DNN)-based audio watermarking (Chen et al., 2023; San Roman et al., 2024; Liu
et al., 2024a; Li et al., 2025) has demonstrated substantial improvements in robustness.

Despite progress in DNN-based audio watermarking, existing research remains nascent, addressing
limited attack scenarios and focusing mainly on robustness against traditional audio distortions like
resampling, filtering, and compression. Studies (O’Reilly et al., 2025; Wen et al., 2025) highlight
the lack of robustness in current approaches against complex neural transformations, including de-
noisers (Zhao et al., 2025), codecs (Défossez et al., 2022; Ju et al., 2024; Zhang et al., 2024), and
vocoders (Kong et al., 2020; Siuzdak, 2024); However, the underlying causes of robustness degra-
dation remain unexplored, and no existing solutions have effectively addressed this issue.

An intuitive factor of this issue, as identified by O’Reilly et al. (2025), is that previous methods
embed watermarks as background artifacts, decoupled from audio content, which makes them vul-
nerable to removal by denoising or codec reconstruction. This finding motivates us to propose a
further insight: Robustness correlates with the degree to which watermark embedding is aligned
with the audio content, or the extent to which the watermark is contained within the audio content.
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Figure 1: Left: content alignment degree vs bit-wise accuracy. Right: examples of original audio
and watermark spectrograms for methods (content alignment degree values in parentheses)

Here, audio content can be broadly interpreted as the energy-dense regions in the spectrogram. For
instance, in the case of speech, an ideal watermark should integrate into the harmonics and formants,
which regions are typically preserved under attacks, thereby providing inherent robustness. To val-
idate this insight, we formulate a metric called content alignment degree (CAD), which quantifies
the extent to which the watermark is contained within the audio content. Specifically, we treat the
spectrogram as an image and measure the watermark coverage within audio content (energy-dense
regions) across frames and frequency bands. Figure 1 (left) illustrates the relationship between CAD
and bit-wise accuracy (ACC) across multiple watermarking methods. The results reveal a strong
positive correlation between CAD and ACC of various methods, providing empirical evidence that
the degree of content alignment is crucial to the robustness of the watermark.

As shown in Figure 1 (right), we visualize the spectrograms of watermarks generated by multiple
methods. By comparing the spectrograms of watermarks with the original audio, previous methods
exhibit limited alignment with the audio content. From a model perspective, most existing meth-
ods do not explicitly optimize for the degree of content alignment (Chen et al., 2023; San Roman
et al., 2024; Liu et al., 2024a; 2025). Instead, they typically adopt general architectures that embed
watermarks into audio globally, without distinguishing between silent segments and voiced content.
While Li et al. (2025) considers embedding watermarks into voiced frames, it lacks constraints in
the frequency domain, resulting in partial watermarks in non-content frequency bands and degraded
audio quality. These limitations compromise their robustness against complex attacks.

In this paper, we propose AlignMark, a novel content-aligned audio watermarking method that ex-
plicitly aligns watermark embedding with audio content to provide inherent robustness. As dis-
cussed earlier, CAD measures the watermark alignment across frames and frequency bands, which
motivates the design of AlignMark to focus on alignment in both temporal and spectral dimen-
sions. Therefore, AlignMark incorporates spectral masking for the watermark embedder, temporal
masking for the watermark decoder, and leverages multiple perceptual losses to guide the model
toward content-aligned watermarking. Specifically, temporal masking leverages voice activity de-
tection (VAD)-based loss to directly constrain watermark decoding to voiced frames, while per-
ceptual losses enforce consistency between the watermarked audio and the original audio in both
the time-frequency domain and acoustic features. The gradients derived from these losses are then
back-propagated to the embedder, where the spectral masking explicitly aligns the watermark with
the audio content on the spectrogram. Additionally, inspired by Wen et al. (2025), which observes
that previous watermark decoding heavily relies on fixed frequency bands, making it susceptible to
pitch shifting, we introduce a feature pyramid in watermark decoding to extract watermarks across
multiple scales and improve robustness. Our main contributions are summarized as follows:

• We propose the content alignment degree (CAD) metric to quantify the alignment between
watermarks and audio content in the spectrogram. CAD reveals a positive correlation be-
tween watermark robustness and alignment with audio content, providing a guiding per-
spective for developing robust audio watermarking against neural transformations.

• We propose AlignMark, a novel content-aligned audio watermarking method that explicitly
aligns watermark embedding with audio content in both the temporal and spectral dimen-
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sions. Combined with multiple perceptual losses and a feature pyramid-based watermark
decoder, AlignMark achieves inherent robustness against complex attacks.

• Extensive experiments on multiple datasets across 21 attack scenarios, including denoising,
codec, and vocoder reconstruction, demonstrate the robustness of AlignMark. It achieves
an average bit-wise accuracy of 0.98, surpassing state-of-the-art methods at 0.87, while
maintaining imperceptible audio quality impact for human listeners.

2 RELATED WORK

We classify related work into two types based on practical scenarios: general and generative. Gen-
eral audio watermarking, the focus of this paper, integrates watermarks into existing audio, whether
artificially created or naturally recorded. Generative audio watermarking embeds watermarks during
audio generation, ensuring all generated content inherently contains identifiable marks.

General Audio Watermarking. Traditional methods, such as spread spectrum (Bender et al., 1996),
echo hiding (Gruhl et al., 1996), and quantization index modulation (Chen & Wornell, 2001), have
been studied for decades. Recently, DNN-based audio watermarking has emerged with diverse
approaches: spectrogram-based methods embed watermarks in spectral representations (Chen et al.,
2023; Liu et al., 2024a); waveform-based methods generate watermark waveforms that are directly
added to the original audio (Li & Lin, 2024; San Roman et al., 2024); synthesis-based methods
leverage pre-trained codecs to directly generate watermarked audio (Li et al., 2025; Ji et al., 2025).
While these DNN methods outperform traditional approaches, they employ general architectures
without audio content alignment, and still face challenges against complex neural transformations.
To evaluate our proposed content-aligned watermarking, we comprehensively compare it against the
aforementioned methods using publicly available implementations.

Generative Audio Watermarking. With the advancement of generative AI, some studies have
begun exploring watermarking methods embedded within generative models, enabling audio con-
tent to carry watermarks inherently without requiring additional processing. Some approaches de-
sign watermark-enabled codec models, allowing autoregressive generative models trained with the
codec’s tokens to produce audio with built-in watermarks (Zhou et al., 2025; San Roman et al.,
2025; Wang et al., 2025). For diffusion-based generative models, watermarks can be embedded in
the latent space and diffusion process to achieve audio generation with inherent watermarks (Liu
et al., 2024b; Tang, 2025). Although these methods involve watermarking, they must run on specific
generative models, whereas our focus is on general audio watermarking for arbitrary existing audio,
making experimental comparisons infeasible due to differing application scenarios.

3 CONTENT ALIGNMENT DEGREE

To quantify how well the watermark aligns with audio content, we introduce the CAD metric. The
intuition is to measure the proportion of the watermark that lies within energy-dense regions of the
spectrogram. Unlike set-symmetric metrics such as intersection over union (Yu et al., 2016), CAD
measures containment of watermark regions within content regions. Formally, CAD is defined as:

CAD =
|W ∩ C|
|W |

, (1)

where W denotes the set of watermark regions, C the set of audio content regions, and |W ∩ C|
their intersection. The following steps outline our specific implementation.

Step 1: Watermark Spectrogram Extraction. The watermark waveform xw ∈ RT is obtained by
subtracting the original audio x ∈ RT from the watermarked audio x̂ ∈ RT :

xw = x̂− x. (2)
Using STFT with 512 FFT points, hop length 128, and window length 512, we compute magnitude
spectrograms mw,m ∈ Rf×l for xw and x, with f = 257 frequency bins and l = T/128 frames.

Step 2: Normalization. To align the energy scales of watermark and content spectrograms, we
apply frame-wise min–max normalization:

m̂w(i, j) =
mw(i, j)−mini mw(i, j)

maxi mw(i, j)−mini mw(i, j)
, m̂(i, j) =

m(i, j)−mini m(i, j)

maxi m(i, j)−mini m(i, j)
. (3)

3
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Figure 2: The overall architecture of our proposed AlignMark.

Step 3: Binary Masking and Region Definition. The frequency axis is divided into overlapping
bands (window size 8, 50% overlap). For each band k, we average across frequencies to obtain
band-specific m̂

(k)
w ∈ Rl and m̂(k) ∈ Rl. Binary masks are then formed using mean-thresholding:

b(k)
w = (m̂(k)

w > µ(k)
w ), b(k) = (m̂(k) > µ(k)), (4)

where µ
(k)
w and µ(k) are mean values of m̂(k)

w and m̂(k). The watermark and content sets are

W =

K⋃
k=1

{j : b(k)
w (j) = 1}, C =

K⋃
k=1

{j : b(k)(j) = 1}. (5)

Step 4: CAD Computation. In practice, directly computing W ∩ C from binary masks can be
numerically sensitive in sparse spectrogram regions. To address this, we derive an equivalent form:

CAD =
|W ∩ C|
|W |

=
|W ∩ (W ∩ C)|
|W ∪ (W ∩ C)|

, (6)

where we define I = W ∩ C. To approximate I stably, we compute a continuous intersection map:

i = m̂w ⊙ m̂, (7)

where ⊙ is element-wise multiplication. The same band-averaging and thresholding procedure is
then applied to obtain binary masks b(k)

i . CAD is finally computed using the equivalent form:

CAD =
1

K

K∑
k=1

∑
(b

(k)
w ⊙ b

(k)
i )∑

max(b
(k)
w ,b

(k)
i )

. (8)

Higher CAD values indicate that watermark regions are largely contained within content regions,
whereas lower values suggest misalignment with energy-dense regions. CAD provides a quantita-
tive measure of the degree to which the watermark is integrated into the content, offering valuable
guidance for designing robust audio watermarking methods.

4 ALIGNMARK

The architecture of AlignMark, shown in Figure 2, includes a watermark embedder and a watermark
decoder. Spectral and temporal masking are jointly trained to support content-aligned watermarking.

4
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4.1 WATERMARK EMBEDDER

The watermark embedder comprises a frozen codec model (Zhang et al., 2024) with the quantization
layer removed, an adapter A, and an integrator I. Following Li et al. (2025), the adapter embeds
watermarks into speech latents, promoting their integration with the audio content. The integrator
predicts spectral masks to integrate the intermediate audio from the codec with the original audio,
generating the watermarked audio. This process is guided by perceptual losses and a VAD-based
loss, encouraging the embedder to align the watermark with the audio content.

Specifically, given the original audio x ∈ RT , the codec encoder extracts speech latents z ∈ Rd×t,
where t is the number of frames and d is the latent space dimension. The n-bit watermark w ∈
{0, 1}n is transformed into n embedding vectors via an embedding layer, summed to form we ∈ Rd,
which is broadcast across all frames and concatenated with z to produce zw ∈ R2d×t. The adapter
A, a 6-layer 2D convolutional network, transforms zw into modified speech latents z′ ∈ Rd×t,
which are decoded by the codec decoder to generate the intermediate audio x′ ∈ RT .

Both x′ and x are converted into spectrograms sx′ and sx ∈ R2f×l via STFT, where f is the number
of frequency bins, l is the number of frames, and 2f is the concatenation of the complex real and
imaginary components. The spectrograms are concatenated to form sc ∈ R4f×l, which is processed
by a 4-layer 2D convolutional embedder to predict a spectral mask α ∈ R2f×l. The watermarked
spectrogram sw ∈ R2f×l is obtained by combining sx′ and sx using α:

sw = sx′ · α+ sx · (1− α). (9)

Finally, the inverse STFT is applied to sw to produce the watermarked audio x̂ ∈ RT . During
training, the VAD-based loss constrains the spectral mask to embed the watermark in voiced frames,
while leaving silent frames almost unchanged. For the frequency dimension, x̂ is compared to
x using perceptual losses, including cosine similarity between z and z′, speaker similarity1 , and
psychoacoustic-based loudness loss San Roman et al. (2024). These losses penalize the watermark
in non-content frequency bands from semantic, acoustic, and perceptual perspectives, encouraging
the spectral mask to align with the audio content.

4.2 WATERMARK DECODER

The watermark decoder consists of a detector for predicting the temporal mask and an extractor
for capturing feature pyramids. The temporal mask is used to filter voiced frames from the feature
pyramids, which are then utilized to decode the watermark. During training, x̂ undergoes various
differentiable attacks to produce x̃, including standard audio distortions (San Roman et al., 2024;
Li et al., 2025) (replace, mask, shuffle, compression, filter, pitch shift) and neural transformations
(codec (Défossez et al., 2022), vocoder (Siuzdak, 2024)). These attacks serve as data augmentation
for model optimization. The detailed decoding process follows these steps:

Feature Pyramid Extraction. The attacked audio x̃ is fed into a feature encoder, initialized with
the codec encoder’s parameters, to extract speech latents ẑ ∈ Rd×t. These latents are processed
by a 6-layer 2D convolutional extractor, where each layer downsamples the channel dimension and
refines intermediate features. At scale i, the feature ẑi ∈ Rci×d/2i×t is computed iteratively as
ẑi = Conv2Di(ẑi−1), with ẑ0 = ẑ as input, ci = 2i−1 ·16 as the channel dimension, and Conv2Di(·)
representing the i-th convolutional layer. Each ẑi is processed by a fully connected layer to produce
the feature pyramid fi ∈ Rci×t, reducing the d/2i dimension. The final representation f ∈ Rc×t is
obtained by concatenating fi across all scales, with c =

∑6
i=1 ci.

Temporal Mask Prediction. A 4-layer 1D convolutional detector predicts a frame-wise temporal
mask p ∈ Rt, where values range from 0 to 1, with higher values indicating a greater probability
of voiced frames. The prediction process can be expressed as p = Sigmoid(Conv1D(ẑ)), where
Conv1D(·) denotes the 1D convolution detector, and Sigmoid(·) maps the output to [0, 1].

Watermark Decoding. The feature pyramid f is converted into frame-wise logits wf ∈
R(n/4)×16×t using a 2-layer MLP. The (n/4) × 16 format converts an n-bit binary watermark into
hexadecimal representation, following (Li et al., 2025), to stabilize training. Finally, the temporal
mask p directly filters these logits via a weighted sum, ŵ =

∑
t(wf · p). The weighted logits

1https://github.com/resemble-ai/Resemblyzer
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ŵ ∈ R(n/4)×16 are processed with an argmax operation and converted back to binary format, yield-
ing the final n-bit decoded watermark. The temporal mask encourages the extractor to focus on
audio content for watermark extraction and also guides the embedder to align with voiced frames.

4.3 TRAINING LOSS

We incorporate multiple perceptual losses to preserve audio quality. Standard losses (San Roman
et al., 2024) include L1 (Lℓ1), Mel spectrogram (Lmel), adversarial (Ladv), SI-SNR (Lsi-snr), and time-
frequency loudness (Lloud). In addition, we introduce the following losses: the speaker similarity
loss Lspk, which preserves speaker characteristics by minimizing the distance between Resemblyzer
embeddings; the latent cosine loss Lcos, which constrains modifications in the latent space to ensure
minimal distortion; the VAD-based loss LVAD, which supervises temporal masks using binary cross-
entropy; and the decoding loss Ldec, which applies cross-entropy to hexadecimal classification.

Formally, these losses can be written as:

Lspk = 1− cos(Emb(x),Emb(x̂)), Lcos = 1− cos(z, z′),

Lvad = −1

t

t∑
i=1

[
vi log pi + (1− vi) log(1− pi)

]
, Ldec = − 1

n/4

n/4∑
j=1

16∑
k=1

yjk log ŵjk,
(10)

where x and x̂ are the original and watermarked audio, Emb(·) extracts speaker embeddings, z and
z′ are the latents before and after adaptation, vi ∈ {0, 1} is the VAD label following Li et al. (2025)
(0 for silent/masked/replaced frames, 1 otherwise), pi is the predicted temporal mask, and yjk and
ŵjk are the one-hot label and predicted probability for the j-th hexadecimal digit.

The total loss is a weighted sum of all terms:

Ltotal =
∑
ℓ∈L

λℓLℓ (11)

where L denotes all loss terms with weights: λℓ1 = 0.01, λmel = 0.1, λadv = 0.5, λsi-snr = 0.01,
λloud = 0.1, λspk = 0.1, λcos = 0.1, λvad = 1.0, λdec = 4.0. This configuration is designed to
balance the scales of the losses and enhance the decoding loss to accelerate convergence.

5 EXPERIMENTS

5.1 EXPERIMENTAL SETUPS

Training. The codec model uses weights from SpeechTokenizer2. The adapter A employs skip-
gated blocks (Liu et al., 2024a) with layers of 32 channels. The integrator I consists of STFT (256
FFT points, hop length 64, window length 256) and 2D convolutions (64 channels, LeakyReLU with
slope 0.1 (Maas et al., 2013)). The watermark detector and extractor employ different architectures:
the detector uses 1D convolutions (256 channels, GELU), while the extractor uses 2D convolutions
(kernel (5, 3), stride (2, 1), padding (0, 1), channels doubling from 16, GELU (Hendrycks & Gim-
pel, 2016)). The watermark bit length n is 16. Adam optimizer (Kingma, 2014) is used with a 5e−5

learning rate, trained for 300 epochs, selecting the checkpoint with the lowest loss.

Dataset. Our experiments use three datasets: VCTK (Yamagishi, 2012), LibriSpeech (Panayotov
et al., 2015), and LJSpeech (Ito & Johnson, 2017). For VCTK, 200 audio samples are randomly se-
lected for testing, with the remaining samples used as the training set. Similarly, 200 audio samples
are randomly selected from LibriSpeech and LJSpeech respectively, forming a 600-sample test set.

Metrics and Baselines. We evaluate robustness using our proposed CAD, ACC, and false attribution
rate (FAR). ACC measures the ratio of correctly decoded bits. FAR is computed by comparing
each decoded watermark to one positive and 599 negative test watermarks via Hamming distance,
representing the proportion of cases where the closest match is not the positive sample. Audio
quality is assessed through objective metrics (PESQ (Rix et al., 2001), SI-SNR, STOI (Taal et al.,
2010), NISQA (Mittag et al., 2021)) and subjective ABX tests. NISQA scores (1-5) are obtained via

2https://huggingface.co/fnlp/SpeechTokenizer
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Table 1: Evaluation of robustness against complex attacks (ACC ↑, FAR ↓, bold for best)

WavMark AudioSeal Timbre VoiceMark AlignMark

Attack ACC FAR ACC FAR ACC FAR ACC FAR ACC FAR

Traditional Distortion

Resample 1.00 0.00 1.00 0.00 1.00 0.00 0.99 0.06 1.00 0.00
Boost Volume 1.00 0.00 1.00 0.00 1.00 0.00 0.98 0.09 1.00 0.00
Duck Volume 1.00 0.00 1.00 0.00 1.00 0.00 0.98 0.07 1.00 0.01
Highpass Filter 1.00 0.00 1.00 0.00 1.00 0.00 0.99 0.05 1.00 0.00
Lowpass Filter 1.00 0.00 1.00 0.00 1.00 0.02 0.76 0.82 1.00 0.00
Bandpass Filter 1.00 0.01 1.00 0.00 0.99 0.06 0.76 0.72 1.00 0.00
AAC Compression 1.00 0.00 0.73 0.96 1.00 0.00 0.98 0.07 0.99 0.02
MP3 Compression 0.98 0.04 1.00 0.00 1.00 0.00 0.85 0.56 0.99 0.01
Echo 0.99 0.02 1.00 0.00 1.00 0.00 0.98 0.11 1.00 0.01
Crop 0.98 0.03 0.62 0.91 1.00 0.00 0.98 0.08 0.99 0.02
Pink Noise 0.98 0.05 1.00 0.01 1.00 0.01 0.99 0.05 1.00 0.00
Gassuion Noise 0.51 1.00 0.77 0.73 0.87 0.60 0.54 0.99 0.99 0.02
Smooth 0.98 0.03 1.00 0.00 1.00 0.00 0.76 0.72 0.99 0.03
Pitch Shifting 0.52 0.97 0.53 0.97 0.54 0.72 0.85 0.50 1.00 0.00
Speed Change 0.51 0.99 0.50 0.99 0.50 0.98 0.53 0.95 0.94 0.21

Neural Transformation

EnCodec 0.51 1.00 0.50 1.00 0.57 0.99 0.96 0.16 0.99 0.02
FACodec 0.51 1.00 0.50 0.99 0.53 1.00 0.88 0.45 0.93 0.24
SpeechTokenizer 0.51 1.00 0.50 0.99 0.57 0.99 0.95 0.21 0.96 0.11
Vocos 0.51 1.00 0.50 1.00 1.00 0.00 0.99 0.04 1.00 0.00
HiFiGAN 0.51 1.00 0.50 1.00 0.92 0.48 0.94 0.22 0.99 0.01
Denoise 0.51 1.00 0.67 0.79 0.78 0.65 0.76 0.60 0.92 0.27

Average 0.78 0.45 0.79 0.47 0.86 0.32 0.87 0.37 0.98 0.05

CAD ↑ 0.54 0.58 0.67 0.72 0.85

automated evaluation, with higher scores indicating better naturalness. For ABX tests, 20 subjects
perform 10 trials per method, identifying whether a randomly selected sample X matches the original
A or watermarked B. Scores near 0.5 indicate imperceptible watermarks.

We compare against four state-of-the-art methods with publicly available implementations: Wav-
Mark (Chen et al., 2023), AudioSeal (San Roman et al., 2024), Timbre (Liu et al., 2024a), and
VoiceMark (Li et al., 2025). All methods use 16-bit watermarks except Timbre (10 bits). For
WavMark, undetected watermarks default to zeros. These baselines employ diverse architectures,
providing a comprehensive evaluation of our approach.

Attack Scenarios. We evaluate the robustness of our method across 21 attack scenarios, including
15 traditional audio distortions (San Roman et al., 2024; O’Reilly et al., 2025) and 6 neural trans-
formations (Zhao et al., 2025; Défossez et al., 2022; Zhang et al., 2024; Ju et al., 2024; Kong et al.,
2020; Siuzdak, 2024). Among these, AAC/MP3 compression, denoising (Zhao et al., 2025), FA-
Codec (Ju et al., 2024), SpeechTokenizer (Zhang et al., 2024), and HiFiGAN (Kong et al., 2020) are
unseen during training; detailed parameters are provided in Appendix A. Attacks that entirely alter
content, such as using watermarked audio as a prompt to generate new audio via text-to-speech, are
excluded from our experiments, as they fall outside the scope of protecting the audio content’s IP.

5.2 ROBUSTNESS EVALUATION

Robustness to Traditional Distortion. As shown in Table 1, AlignMark outperforms other methods
in ACC and FAR across most traditional distortions, especially in pitch shifting, speed changes, and
Gaussian noise attacks. Pitch shifting and speed change results demonstrate the effectiveness of the
feature pyramid, while noise resistance validates the robustness of content-aligned watermarking.
AlignMark shows slightly lower performance against compression and cropping attacks, as these
directly damage portions of audio content, consequently disrupting the embedded watermarks. This
issue could be mitigated by introducing more augmentations or using larger datasets.
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Robustness to Neural Transformation. Across all neural transformation attacks in Table 1, Align-
Mark significantly outperforms the baselines in both ACC and FAR, especially under denoising,
where the ACC of all baselines drops below 0.8, while AlignMark maintains above 0.92. The re-
sults demonstrate that both denoising and reconstruction attacks preserve audio content to some
extent, providing content-aligned watermarking with inherent robustness. Overall, as shown in Fig-
ure 1, the CAD metric shows a positive correlation with the average ACC and performance under
neural transformations, further validating the connection between CAD and robustness.

Robustness to Denoising Levels. Following previous work (O’Reilly et al., 2025), we first apply
Gaussian noise at SNRs of 20dB, 15dB, 10dB, 5dB, and 0dB, respectively, and then perform de-
noising (Zhao et al., 2025) to remove the watermark at different levels. The results in Figure 3 show
that all baselines experience a significant ACC drop as SNR decreases, with WavMark completely
failing to decode the watermark. In contrast, AlignMark demonstrates remarkable resilience, show-
ing no noticeable drop in ACC from 20dB to 15dB SNR, and maintaining an ACC of 0.8 even at
0dB SNR, outperforming all baselines. The results demonstrate that aligning watermarks with audio
content enhances their resilience against separation and removal.

Robustness to Pitch Shifting Levels. Figure 4 shows ACC of different methods under varying
levels of pitch shifting. From semitones -1 to 1, AlignMark consistently achieves robust performance
with an ACC of 1.0. In contrast, most other methods fail to decode, except for VoiceMark, which
maintains an ACC above 0.6. Timbre exhibits a strong dependence on fixed frequency bands, leading
to watermark reversal (near-zero ACC) at semitone shifts of -1 and 1. AlignMark introduces a feature
pyramid to enhance decoding robustness and thereby overcomes this limitation.
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Figure 3: Robustness to denoising levels.

1.0 0.5 0.0 0.5 1.0
Pitch Shift (Semitones)

0.0

0.2

0.4

0.6

0.8

1.0

Bi
t-w

is
e 

Ac
cu

ra
cy

WavMark
Timbre
AudioSeal
VoiceMark
AlignMark

Figure 4: Robustness to pitch shifting levels.

5.3 AUDIO QUALITY

Table 2 summarizes audio quality results. We group methods into signal-based and synthesis-based
models. Signal-based models embed watermarks directly into waveforms or spectrograms, yielding
strong objective metrics but lower NISQA naturalness. Synthesis-based models, including Voice-
Mark and our AlignMark, leverage codec models for watermark embedding, with three codec-only
models as baselines. Compared to codec baselines such as EnCodec and SpeechTokenizer, Align-
Mark achieves superior objective performance and higher NISQA naturalness than most watermark-
ing methods. Its ABX score of 0.51, close to 0.5, further indicates imperceptible quality degradation
for human listeners.

5.4 ABLATION STUDY

We conduct ablation on each key component of AlignMark, with average results shown in Table 3,
where removing any component degrades either robustness or audio quality. Removing the spec-
tral mask reduces both robustness and audio quality. The temporal mask also contributes to both
robustness and audio quality. Removing the feature pyramid causes training collapse, with over-
optimization of audio quality and reduced watermark capacity. Although CAD remains high, the
decoder fails to converge, leading to decoding failure. This suggests that CAD is meaningful only
with a well-trained decoder, indicating the importance of a appropriate decoder design.
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Table 2: Audio quality evaluation. ABX is better when closer to 0.5 (95% confidence interval).

Method PESQ ↑ STOI ↑ SI-SNR ↑ NISQA ↑ ABX

Signal-based Model
WavMark 4.10 0.99 36.87 4.21 0.50±0.08
Timbre 3.72 0.99 23.93 4.22 0.57±0.11
AudioSeal 4.37 0.99 27.60 4.28 0.49±0.07

Synthesis-based Model
EnCodec 2.82 0.92 5.67 3.97 -
FACodec 2.93 0.94 3.91 4.41 -
SpeechTokenizer 2.67 0.92 1.79 4.28 -
VoiceMark 2.19 0.90 1.90 4.36 0.72±0.09
AlignMark 3.03 0.95 12.16 4.31 0.51±0.10

Table 3: Ablation study.

Method ACC ↑ FAR ↓ PESQ ↑ STOI ↑ CAD ↑
AlignMark 0.98 0.05 3.03 0.95 0.85

w/o Temporal mask 0.80 0.49 2.75 0.94 0.70
w/o Spectral mask 0.84 0.40 1.89 0.85 0.76
w/o Feature pyramid 0.51 0.97 4.64 1.00 0.86

5.5 WATERMARK-CONTENT ALIGNMENT ANALYSIS

On different audio samples, we visualize the watermark spectrograms averaged over time and re-
duced using PCA to analyze the alignment between the watermark and audio content. As shown in
Figure 5, AlignMark’s watermarks vary across different audio, showing an association with the au-
dio content. In contrast, other methods produce clustered watermarks with limited association. This
result provides additional evidence of AlignMark’s ability to achieve content-aligned watermarking.
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Figure 5: PCA-based visualization of time-averaged watermark spectrograms.

6 CONCLUSION

In this work, we investigate the relationship between watermark robustness and audio content align-
ment, introducing the content alignment degree (CAD) metric and empirically observing a positive
correlation with robustness. Guided by CAD, we propose AlignMark, a content-aligned audio wa-
termarking method. AlignMark leverages spectral masking in the embedder, and temporal masking
along with a feature pyramid in the decoder, combined with multiple perceptual losses, to explicitly
align watermark embedding with audio content, enhancing robustness against diverse distortions and
transformations while preserving perceptual quality. Extensive experiments on three datasets and 21
attack scenarios show that AlignMark achieves state-of-the-art performance, with average ACC 0.98
and FAR 0.05, while maintaining imperceptible impact on audio quality for human listeners.
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ETHICS STATEMENT

To evaluate the subjective perception of AlignMark’s impact on audio quality, we conducted human
subjective testing experiments, including ABX tests, as detailed in the experimental section. All
recruited participants provided informed consent, and their responses were used solely for academic
research purposes. No personal information beyond the questionnaire content was collected, and
strict confidentiality was maintained regarding their answers. Additionally, all audio samples used
in the subjective tests were uniformly discarded after the experiments to prevent any risks associ-
ated with data leakage. While AlignMark aims to protect intellectual property, we acknowledge
the potential for misuse, such as embedding unauthorized watermarks or circumventing watermark
detection. This work is intended strictly for lawful and academic applications, and we encourage
future research to explore safeguards against unethical use.

REPRODUCIBILITY STATEMENT

To ensure the reproducibility of our results, we provide a detailed description of the experimental
setup, including datasets, model architectures, hyperparameters, and evaluation metrics. The pre-
trained models, training configurations, and attack scenarios are clearly documented in the main
text and appendix. Additionally, we commit to releasing the code, pre-trained weights, and data
preprocessing scripts upon publication to facilitate replication and further research. We encourage
the community to validate and extend our findings under diverse experimental conditions.
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A ATTACK PARAMETERS

Here are the settings of attack scenarios used in our experiments. The random seed is fixed across
all experiments:

• Resample: Upsample from 16kHz to 32kHz and then downsample back to 16kHz.
• Boost Volume: Increase volume by 20%.
• Duck Volume: Decrease volume by 20%.
• Highpass Filter: Apply a highpass filter to remove frequencies below 500Hz.
• Lowpass Filter: Apply a lowpass filter to remove frequencies above 4000Hz.
• Bandpass Filter: Allow frequencies between 500Hz and 4000Hz to pass through.
• AAC Compression: Apply AAC compression at 64kbps.
• MP3 Compression: Apply MP3 compression at 32kbps.
• Echo: Add an echo effect with random delay (0.1-0.5s) and random volume (0.1-0.5).
• Crop: Randomly retain 80% of the audio by cropping out the remaining 20%.
• Pink Noise: Add pink noise with fixed standard deviation of 0.1.
• Gaussian Noise: Add Gaussian noise with SNR set to 10dB.
• Smooth: Apply a moving average filter with a random window size between 2 and 10.
• Pitch Shifting: Randomly shift pitch within semitones [-1, 1].
• Speed Change: Randomly change speed by resampling with a factor between 0.5 and 2.0.
• EnCodec: Reconstruct audio using the pre-trained model from Défossez et al. (2022).
• FACodec: Reconstruct audio using the pre-trained model from Ju et al. (2024).
• SpeechTokenizer: Reconstruct audio using the pre-trained model from Zhang et al. (2024).
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• Vocos: Reconstruct audio using the pre-trained model from Siuzdak (2024).
• HiFiGAN: Reconstruct audio using the pre-trained model from Kong et al. (2020).
• Denoise: Add Gaussian noise at SNRs of 20dB, 15dB, 10dB, 5dB, and 0dB, then apply

denoising (Zhao et al., 2025) to remove the watermark at different levels. Finally, average
the evaluation metrics across all levels.

B VISUALIZATIONS

Figure 6 visualizes the spectrograms of the intermediate audio generated by the codec model and the
spectral mask to provide a detailed analysis. In Figure 6 (a), the intermediate audio exhibits a spec-
trogram that resembles natural speech, allowing it to be seamlessly embedded into the audio. This
encourages the content-aligned watermark embedder to embed watermarks within speech regions
rather than introducing artifacts into the background. Figures 6 (b–c) demonstrate that the spectral
mask aligns with audio content while avoiding the fundamental frequency regions that could severely
degrade audio quality, thereby preserving perceptual quality. These results confirm that AlignMark
achieves content-aligned watermarking without introducing background artifacts as seen in previous
methods, while minimizing the impact on audio quality.

(a) Intermediate audio (b) Spectral real-part mask (c) Spectral imag-part mask

Figure 6: Visualization of intermediate audio and spectral mask. The spectral mask (red regions
indicate embedding areas) accurately aligns with audio content while avoiding the fundamental fre-
quency regions that could severely degrade audio quality.

C THE USE OF LARGE LANGUAGE MODELS

Large language models were used to refine this paper’s writing for accurate spelling and grammar.
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