

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 ALIGNMARK: CONTENT-ALIGNED AUDIO WATER- MARKING FOR ROBUSTNESS AGAINST NEURAL TRANSFORMATIONS

Anonymous authors

Paper under double-blind review

ABSTRACT

Audio watermarking, which embeds identity information into audio for authenticity verification, is an effective approach to protecting the intellectual property of audio content creators. A key unresolved challenge in audio watermarking is the limited robustness of existing methods under real-world neural transformations, such as denoising, codec, and vocoder reconstruction, which can render watermarks removable or undetectable. To better understand this challenge, we introduce the content alignment degree (CAD) metric, which quantifies the extent to which watermarks are integrated into audio, and observe a positive correlation between CAD and watermark robustness. Guided by CAD, we propose AlignMark, a content-aligned audio watermarking method that leverages spectral masking in the embedder, temporal masking in the decoder, and multiple perceptual losses to explicitly align watermark embedding with audio content and improve robustness against diverse attacks while preserving perceptual quality. Furthermore, a feature pyramid-based decoder extracts watermarks across multiple scales, enhancing reliability under pitch shifts and spectral distortions. Extensive experiments on multiple datasets and 21 attack scenarios demonstrate that AlignMark achieves state-of-the-art performance, with an average bit-wise accuracy of 0.98 and false attribution rate of 0.05, while maintaining imperceptible impact on audio quality. See our code and demos at: <https://anonymouswatermark.github.io/alignmark/>.

1 INTRODUCTION

Audio watermarking, which embeds identity information into audio for authenticity verification, is an effective approach for protecting the intellectual property (IP) of audio content creators. Robustness is a key requirement, as it determines whether embedded information can survive real-world attacks and distortions; without it, watermarks become removable or undetectable, limiting practical utility. Traditional methods, such as spread spectrum (Bender et al., 1996), echo hiding (Gruhl et al., 1996), and quantization index modulation (Chen & Wornell, 2001), have been studied for decades, but their limited robustness against complex attacks restricts practical adoption. More recently, deep neural network (DNN)-based audio watermarking (Chen et al., 2023; San Roman et al., 2024; Liu et al., 2024a; Li et al., 2025) has demonstrated substantial improvements in robustness.

Despite progress in DNN-based audio watermarking, existing research remains nascent, addressing limited attack scenarios and focusing mainly on robustness against traditional audio distortions like resampling, filtering, and compression. Studies (O'Reilly et al., 2025; Wen et al., 2025) highlight the lack of robustness in current approaches against complex neural transformations, including denoisers (Zhao et al., 2025), codecs (Défossez et al., 2022; Ju et al., 2024; Zhang et al., 2024), and vocoders (Kong et al., 2020; Siuzdak, 2024); However, the underlying causes of robustness degradation remain unexplored, and no existing solutions have effectively addressed this issue.

An intuitive factor of this issue, as identified by O'Reilly et al. (2025), is that previous methods embed watermarks as background artifacts, decoupled from audio content, which makes them vulnerable to removal by denoising or codec reconstruction. This finding motivates us to propose a further insight: *Robustness correlates with the degree to which watermark embedding is aligned with the audio content, or the extent to which the watermark is contained within the audio content.*

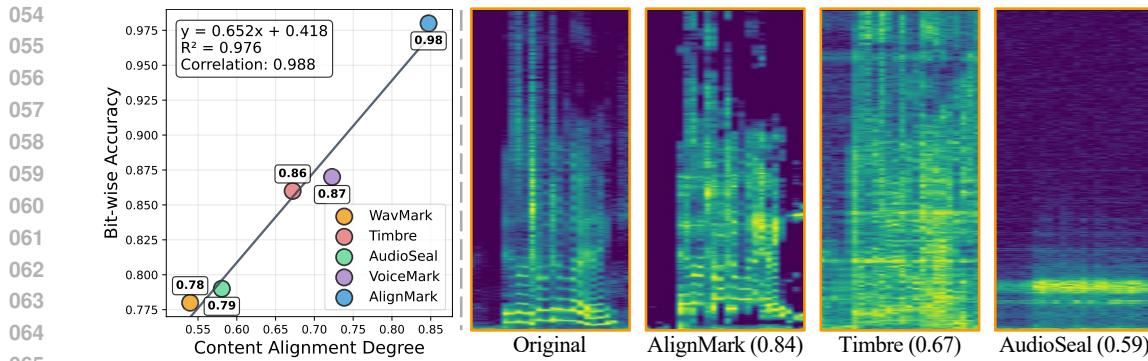


Figure 1: **Left:** content alignment degree vs bit-wise accuracy. **Right:** examples of original audio and watermark spectrograms for methods (content alignment degree values in parentheses)

Here, audio content can be broadly interpreted as the energy-dense regions in the spectrogram. For instance, in the case of speech, an ideal watermark should integrate into the harmonics and formants, which regions are typically preserved under attacks, thereby providing inherent robustness. To validate this insight, we formulate a metric called content alignment degree (CAD), which quantifies the extent to which the watermark is contained within the audio content. Specifically, we treat the spectrogram as an image and measure the watermark coverage within audio content (energy-dense regions) across frames and frequency bands. Figure 1 (left) illustrates the relationship between CAD and bit-wise accuracy (ACC) across multiple watermarking methods. The results reveal a strong positive correlation between CAD and ACC of various methods, providing empirical evidence that the degree of content alignment is crucial to the robustness of the watermark.

As shown in Figure 1 (right), we visualize the spectrograms of watermarks generated by multiple methods. By comparing the spectrograms of watermarks with the original audio, previous methods exhibit limited alignment with the audio content. From a model perspective, most existing methods do not explicitly optimize for the degree of content alignment (Chen et al., 2023; San Roman et al., 2024; Liu et al., 2024a; 2025). Instead, they typically adopt general architectures that embed watermarks into audio globally, without distinguishing between silent segments and voiced content. While Li et al. (2025) considers embedding watermarks into voiced frames, it lacks constraints in the frequency domain, resulting in partial watermarks in non-content frequency bands and degraded audio quality. These limitations compromise their robustness against complex attacks.

In this paper, we propose AlignMark, a novel content-aligned audio watermarking method that explicitly aligns watermark embedding with audio content to provide inherent robustness. As discussed earlier, CAD measures the watermark alignment across frames and frequency bands, which motivates the design of AlignMark to focus on alignment in both temporal and spectral dimensions. Therefore, AlignMark incorporates spectral masking for the watermark embedder, temporal masking for the watermark decoder, and leverages multiple perceptual losses to guide the model toward content-aligned watermarking. Specifically, temporal masking leverages voice activity detection (VAD)-based loss to directly constrain watermark decoding to voiced frames, while perceptual losses enforce consistency between the watermarked audio and the original audio in both the time-frequency domain and acoustic features. The gradients derived from these losses are then back-propagated to the embedder, where the spectral masking explicitly aligns the watermark with the audio content on the spectrogram. Additionally, inspired by Wen et al. (2025), which observes that previous watermark decoding heavily relies on fixed frequency bands, making it susceptible to pitch shifting, we introduce a feature pyramid in watermark decoding to extract watermarks across multiple scales and improve robustness. Our main contributions are summarized as follows:

- We propose the content alignment degree (CAD) metric to quantify the alignment between watermarks and audio content in the spectrogram. CAD reveals a positive correlation between watermark robustness and alignment with audio content, providing a guiding perspective for developing robust audio watermarking against neural transformations.
- We propose AlignMark, a novel content-aligned audio watermarking method that explicitly aligns watermark embedding with audio content in both the temporal and spectral dimen-

108 sions. Combined with multiple perceptual losses and a feature pyramid-based watermark
 109 decoder, AlignMark achieves inherent robustness against complex attacks.
 110

111 • Extensive experiments on multiple datasets across 21 attack scenarios, including denoising,
 112 codec, and vocoder reconstruction, demonstrate the robustness of AlignMark. It achieves
 113 an average bit-wise accuracy of 0.98, surpassing state-of-the-art methods at 0.87, while
 114 maintaining imperceptible audio quality impact for human listeners.

115 2 RELATED WORK

117 We classify related work into two types based on practical scenarios: general and generative. General
 118 audio watermarking, the focus of this paper, integrates watermarks into existing audio, whether
 119 artificially created or naturally recorded. Generative audio watermarking embeds watermarks during
 120 audio generation, ensuring all generated content inherently contains identifiable marks.

121 **General Audio Watermarking.** Traditional methods, such as spread spectrum (Bender et al., 1996),
 122 echo hiding (Gruhl et al., 1996), and quantization index modulation (Chen & Wornell, 2001), have
 123 been studied for decades. Recently, DNN-based audio watermarking has emerged with diverse
 124 approaches: spectrogram-based methods embed watermarks in spectral representations (Chen et al.,
 125 2023; Liu et al., 2024a); waveform-based methods generate watermark waveforms that are directly
 126 added to the original audio (Li & Lin, 2024; San Roman et al., 2024); synthesis-based methods
 127 leverage pre-trained codecs to directly generate watermarked audio (Li et al., 2025; Ji et al., 2025).
 128 While these DNN methods outperform traditional approaches, they employ general architectures
 129 without audio content alignment, and still face challenges against complex neural transformations.
 130 To evaluate our proposed content-aligned watermarking, we comprehensively compare it against the
 131 aforementioned methods using publicly available implementations.

132 **Generative Audio Watermarking.** With the advancement of generative AI, some studies have
 133 begun exploring watermarking methods embedded within generative models, enabling audio content
 134 to carry watermarks inherently without requiring additional processing. Some approaches design
 135 watermark-enabled codec models, allowing autoregressive generative models trained with the
 136 codec’s tokens to produce audio with built-in watermarks (Zhou et al., 2025; San Roman et al.,
 137 2025; Wang et al., 2025). For diffusion-based generative models, watermarks can be embedded in
 138 the latent space and diffusion process to achieve audio generation with inherent watermarks (Liu
 139 et al., 2024b; Tang, 2025). Although these methods involve watermarking, they must run on specific
 140 generative models, whereas our focus is on general audio watermarking for arbitrary existing audio,
 141 making experimental comparisons infeasible due to differing application scenarios.

142 3 CONTENT ALIGNMENT DEGREE

143 To quantify how well the watermark aligns with audio content, we introduce the CAD metric. The
 144 intuition is to measure the proportion of the watermark that lies within energy-dense regions of the
 145 spectrogram. Unlike set-symmetric metrics such as intersection over union (Yu et al., 2016), CAD
 146 measures containment of watermark regions within content regions. Formally, CAD is defined as:
 147

$$148 \text{CAD} = \frac{|W \cap C|}{|W|}, \quad (1)$$

149 where W denotes the set of watermark regions, C the set of audio content regions, and $|W \cap C|$
 150 their intersection. The following steps outline our specific implementation.

151 **Step 1: Watermark Spectrogram Extraction.** The watermark waveform $x_w \in \mathbb{R}^T$ is obtained by
 152 subtracting the original audio $x \in \mathbb{R}^T$ from the watermarked audio $\hat{x} \in \mathbb{R}^T$:

$$153 x_w = \hat{x} - x. \quad (2)$$

154 Using STFT with 512 FFT points, hop length 128, and window length 512, we compute magnitude
 155 spectrograms $\mathbf{m}_w, \mathbf{m} \in \mathbb{R}^{f \times l}$ for x_w and x , with $f = 257$ frequency bins and $l = T/128$ frames.

156 **Step 2: Normalization.** To align the energy scales of watermark and content spectrograms, we
 157 apply frame-wise min–max normalization:

$$158 \hat{\mathbf{m}}_w(i, j) = \frac{\mathbf{m}_w(i, j) - \min_i \mathbf{m}_w(i, j)}{\max_i \mathbf{m}_w(i, j) - \min_i \mathbf{m}_w(i, j)}, \quad \hat{\mathbf{m}}(i, j) = \frac{\mathbf{m}(i, j) - \min_i \mathbf{m}(i, j)}{\max_i \mathbf{m}(i, j) - \min_i \mathbf{m}(i, j)}. \quad (3)$$

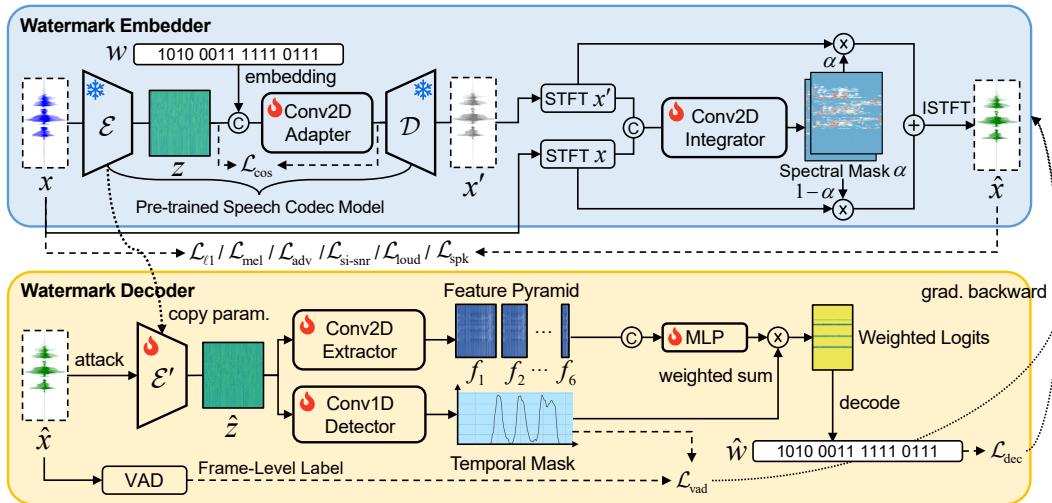


Figure 2: The overall architecture of our proposed AlignMark.

Step 3: Binary Masking and Region Definition. The frequency axis is divided into overlapping bands (window size 8, 50% overlap). For each band k , we average across frequencies to obtain band-specific $\hat{\mathbf{m}}_w^{(k)} \in \mathbb{R}^l$ and $\hat{\mathbf{m}}^{(k)} \in \mathbb{R}^l$. Binary masks are then formed using mean-thresholding:

$$\mathbf{b}_w^{(k)} = (\hat{\mathbf{m}}_w^{(k)} > \mu_w^{(k)}), \quad \mathbf{b}^{(k)} = (\hat{\mathbf{m}}^{(k)} > \mu^{(k)}), \quad (4)$$

where $\mu_w^{(k)}$ and $\mu^{(k)}$ are mean values of $\hat{\mathbf{m}}_w^{(k)}$ and $\hat{\mathbf{m}}^{(k)}$. The watermark and content sets are

$$W = \bigcup_{k=1}^K \{j : \mathbf{b}_w^{(k)}(j) = 1\}, \quad C = \bigcup_{k=1}^K \{j : \mathbf{b}^{(k)}(j) = 1\}. \quad (5)$$

Step 4: CAD Computation. In practice, directly computing $W \cap C$ from binary masks can be numerically sensitive in sparse spectrogram regions. To address this, we derive an equivalent form:

$$\text{CAD} = \frac{|W \cap C|}{|W|} = \frac{|W \cap (W \cap C)|}{|W \cup (W \cap C)|}, \quad (6)$$

where we define $I = W \cap C$. To approximate I stably, we compute a continuous intersection map:

$$\mathbf{i} = \hat{\mathbf{m}}_w \odot \hat{\mathbf{m}}, \quad (7)$$

where \odot is element-wise multiplication. The same band-averaging and thresholding procedure is then applied to obtain binary masks $\mathbf{b}_i^{(k)}$. CAD is finally computed using the equivalent form:

$$\text{CAD} = \frac{1}{K} \sum_{k=1}^K \frac{\sum(\mathbf{b}_w^{(k)} \odot \mathbf{b}_i^{(k)})}{\sum \max(\mathbf{b}_w^{(k)}, \mathbf{b}_i^{(k)})}. \quad (8)$$

Higher CAD values indicate that watermark regions are largely contained within content regions, whereas lower values suggest misalignment with energy-dense regions. CAD provides a quantitative measure of the degree to which the watermark is integrated into the content, offering valuable guidance for designing robust audio watermarking methods.

4 ALIGNMARK

The architecture of AlignMark, shown in Figure 2, includes a watermark embedder and a watermark decoder. Spectral and temporal masking are jointly trained to support content-aligned watermarking.

216 4.1 WATERMARK EMBEDDER
217

218 The watermark embedder comprises a frozen codec model (Zhang et al., 2024) with the quantization
219 layer removed, an adapter \mathcal{A} , and an integrator \mathcal{I} . Following Li et al. (2025), the adapter embeds
220 watermarks into speech latents, promoting their integration with the audio content. The integrator
221 predicts spectral masks to integrate the intermediate audio from the codec with the original audio,
222 generating the watermarked audio. This process is guided by perceptual losses and a VAD-based
223 loss, encouraging the embedder to align the watermark with the audio content.

224 Specifically, given the original audio $x \in \mathbb{R}^T$, the codec encoder extracts speech latents $z \in \mathbb{R}^{d \times t}$,
225 where t is the number of frames and d is the latent space dimension. The n -bit watermark $w \in$
226 $\{0, 1\}^n$ is transformed into n embedding vectors via an embedding layer, summed to form $w_e \in \mathbb{R}^d$,
227 which is broadcast across all frames and concatenated with z to produce $z_w \in \mathbb{R}^{2d \times t}$. The adapter
228 \mathcal{A} , a 6-layer 2D convolutional network, transforms z_w into modified speech latents $z' \in \mathbb{R}^{d \times t}$,
229 which are decoded by the codec decoder to generate the intermediate audio $x' \in \mathbb{R}^T$.

230 Both x' and x are converted into spectrograms $\mathbf{s}_{x'}$ and $\mathbf{s}_x \in \mathbb{R}^{2f \times l}$ via STFT, where f is the number
231 of frequency bins, l is the number of frames, and $2f$ is the concatenation of the complex real and
232 imaginary components. The spectrograms are concatenated to form $\mathbf{s}_c \in \mathbb{R}^{4f \times l}$, which is processed
233 by a 4-layer 2D convolutional embedder to predict a spectral mask $\alpha \in \mathbb{R}^{2f \times l}$. The watermarked
234 spectrogram $\mathbf{s}_w \in \mathbb{R}^{2f \times l}$ is obtained by combining $\mathbf{s}_{x'}$ and \mathbf{s}_x using α :

$$\mathbf{s}_w = \mathbf{s}_{x'} \cdot \alpha + \mathbf{s}_x \cdot (1 - \alpha). \quad (9)$$

235 Finally, the inverse STFT is applied to \mathbf{s}_w to produce the watermarked audio $\hat{x} \in \mathbb{R}^T$. During
236 training, the VAD-based loss constrains the spectral mask to embed the watermark in voiced frames,
237 while leaving silent frames almost unchanged. For the frequency dimension, \hat{x} is compared to
238 x using perceptual losses, including cosine similarity between z and z' , speaker similarity¹, and
239 psychoacoustic-based loudness loss San Roman et al. (2024). These losses penalize the watermark
240 in non-content frequency bands from semantic, acoustic, and perceptual perspectives, encouraging
241 the spectral mask to align with the audio content.

242 4.2 WATERMARK DECODER
243

244 The watermark decoder consists of a detector for predicting the temporal mask and an extractor
245 for capturing feature pyramids. The temporal mask is used to filter voiced frames from the feature
246 pyramids, which are then utilized to decode the watermark. During training, \hat{x} undergoes various
247 differentiable attacks to produce \tilde{x} , including standard audio distortions (San Roman et al., 2024;
248 Li et al., 2025) (replace, mask, shuffle, compression, filter, pitch shift) and neural transformations
249 (codec (Défossez et al., 2022), vocoder (Siuzdak, 2024)). These attacks serve as data augmentation
250 for model optimization. The detailed decoding process follows these steps:

251 **Feature Pyramid Extraction.** The attacked audio \tilde{x} is fed into a feature encoder, initialized with
252 the codec encoder’s parameters, to extract speech latents $\hat{z} \in \mathbb{R}^{d \times t}$. These latents are processed
253 by a 6-layer 2D convolutional extractor, where each layer downsamples the channel dimension and
254 refines intermediate features. At scale i , the feature $\hat{z}_i \in \mathbb{R}^{c_i \times d/2^i \times t}$ is computed iteratively as
255 $\hat{z}_i = \text{Conv2D}_i(\hat{z}_{i-1})$, with $\hat{z}_0 = \hat{z}$ as input, $c_i = 2^{i-1} \cdot 16$ as the channel dimension, and $\text{Conv2D}_i(\cdot)$
256 representing the i -th convolutional layer. Each \hat{z}_i is processed by a fully connected layer to produce
257 the feature pyramid $f_i \in \mathbb{R}^{c_i \times t}$, reducing the $d/2^i$ dimension. The final representation $f \in \mathbb{R}^{c \times t}$ is
258 obtained by concatenating f_i across all scales, with $c = \sum_{i=1}^6 c_i$.

259 **Temporal Mask Prediction.** A 4-layer 1D convolutional detector predicts a frame-wise temporal
260 mask $p \in \mathbb{R}^t$, where values range from 0 to 1, with higher values indicating a greater probability
261 of voiced frames. The prediction process can be expressed as $p = \text{Sigmoid}(\text{Conv1D}(\hat{z}))$, where
262 $\text{Conv1D}(\cdot)$ denotes the 1D convolution detector, and $\text{Sigmoid}(\cdot)$ maps the output to $[0, 1]$.

263 **Watermark Decoding.** The feature pyramid f is converted into frame-wise logits $w_f \in$
264 $\mathbb{R}^{(n/4) \times 16 \times t}$ using a 2-layer MLP. The $(n/4) \times 16$ format converts an n -bit binary watermark into
265 hexadecimal representation, following (Li et al., 2025), to stabilize training. Finally, the temporal
266 mask p directly filters these logits via a weighted sum, $\hat{w} = \sum_t (w_f \cdot p)$. The weighted logits

267 ¹<https://github.com/resemble-ai/Resemblyzer>

270 $\hat{w} \in \mathbb{R}^{(n/4) \times 16}$ are processed with an argmax operation and converted back to binary format, yielding
 271 the final n -bit decoded watermark. The temporal mask encourages the extractor to focus on
 272 audio content for watermark extraction and also guides the embedder to align with voiced frames.
 273

274 4.3 TRAINING LOSS

275 We incorporate multiple perceptual losses to preserve audio quality. Standard losses (San Roman
 276 et al., 2024) include L1 (\mathcal{L}_{ℓ_1}), Mel spectrogram (\mathcal{L}_{mel}), adversarial (\mathcal{L}_{adv}), SI-SNR ($\mathcal{L}_{\text{si-snr}}$), and time-
 277 frequency loudness ($\mathcal{L}_{\text{loud}}$). In addition, we introduce the following losses: the speaker similarity
 278 loss \mathcal{L}_{spk} , which preserves speaker characteristics by minimizing the distance between Resemblyzer
 279 embeddings; the latent cosine loss \mathcal{L}_{cos} , which constrains modifications in the latent space to ensure
 280 minimal distortion; the VAD-based loss \mathcal{L}_{VAD} , which supervises temporal masks using binary cross-
 281 entropy; and the decoding loss \mathcal{L}_{dec} , which applies cross-entropy to hexadecimal classification.
 282

283 Formally, these losses can be written as:

$$\begin{aligned} \mathcal{L}_{\text{spk}} &= 1 - \cos(\text{Emb}(x), \text{Emb}(\hat{x})), & \mathcal{L}_{\text{cos}} &= 1 - \cos(z, z'), \\ \mathcal{L}_{\text{vad}} &= -\frac{1}{t} \sum_{i=1}^t [v_i \log p_i + (1 - v_i) \log(1 - p_i)], & \mathcal{L}_{\text{dec}} &= -\frac{1}{n/4} \sum_{j=1}^{n/4} \sum_{k=1}^{16} y_{jk} \log \hat{w}_{jk}, \end{aligned} \quad (10)$$

289 where x and \hat{x} are the original and watermarked audio, $\text{Emb}(\cdot)$ extracts speaker embeddings, z and
 290 z' are the latents before and after adaptation, $v_i \in \{0, 1\}$ is the VAD label following Li et al. (2025)
 291 (0 for silent/masked/replaced frames, 1 otherwise), p_i is the predicted temporal mask, and y_{jk} and
 292 \hat{w}_{jk} are the one-hot label and predicted probability for the j -th hexadecimal digit.

293 The total loss is a weighted sum of all terms:

$$\mathcal{L}_{\text{total}} = \sum_{\ell \in \mathcal{L}} \lambda_{\ell} \mathcal{L}_{\ell} \quad (11)$$

297 where \mathcal{L} denotes all loss terms with weights: $\lambda_{\ell_1} = 0.01$, $\lambda_{\text{mel}} = 0.1$, $\lambda_{\text{adv}} = 0.5$, $\lambda_{\text{si-snr}} = 0.01$,
 298 $\lambda_{\text{loud}} = 0.1$, $\lambda_{\text{spk}} = 0.1$, $\lambda_{\text{cos}} = 0.1$, $\lambda_{\text{vad}} = 1.0$, $\lambda_{\text{dec}} = 4.0$. This configuration is designed to
 299 balance the scales of the losses and enhance the decoding loss to accelerate convergence.
 300

301 5 EXPERIMENTS

302 5.1 EXPERIMENTAL SETUPS

303 **Training.** The codec model uses weights from SpeechTokenizer². The adapter \mathcal{A} employs skip-
 304 gated blocks (Liu et al., 2024a) with layers of 32 channels. The integrator \mathcal{I} consists of STFT (256
 305 FFT points, hop length 64, window length 256) and 2D convolutions (64 channels, LeakyReLU with
 306 slope 0.1 (Maas et al., 2013)). The watermark detector and extractor employ different architectures:
 307 the detector uses 1D convolutions (256 channels, GELU), while the extractor uses 2D convolutions
 308 (kernel (5, 3), stride (2, 1), padding (0, 1), channels doubling from 16, GELU (Hendrycks & Gim-
 309 pel, 2016)). The watermark bit length n is 16. Adam optimizer (Kingma, 2014) is used with a $5e^{-5}$
 310 learning rate, trained for 300 epochs, selecting the checkpoint with the lowest loss.
 311

312 **Dataset.** Our experiments use three datasets: VCTK (Yamagishi, 2012), LibriSpeech (Panayotov
 313 et al., 2015), and LJSpeech (Ito & Johnson, 2017). For VCTK, 200 audio samples are randomly
 314 selected for testing, with the remaining samples used as the training set. Similarly, 200 audio samples
 315 are randomly selected from LibriSpeech and LJSpeech respectively, forming a 600-sample test set.
 316

317 **Metrics and Baselines.** We evaluate robustness using our proposed CAD, ACC, and false attribution
 318 rate (FAR). ACC measures the ratio of correctly decoded bits. FAR is computed by comparing
 319 each decoded watermark to one positive and 599 negative test watermarks via Hamming distance,
 320 representing the proportion of cases where the closest match is not the positive sample. Audio
 321 quality is assessed through objective metrics (PESQ (Rix et al., 2001), SI-SNR, STOI (Taal et al.,
 322 2010), NISQA (Mittag et al., 2021)) and subjective ABX tests. NISQA scores (1-5) are obtained via
 323

²<https://huggingface.co/fnlp/SpeechTokenizer>

324 Table 1: Evaluation of robustness against complex attacks (ACC \uparrow , FAR \downarrow , **bold** for best)
325

326 327 328 329 Attack	330 331 332 333 334 335 336 337 338 339 340 341 342 WavMark		330 331 332 333 334 335 336 337 338 339 340 341 342 AudioSeal		330 331 332 333 334 335 336 337 338 339 340 341 342 Timbre		330 331 332 333 334 335 336 337 338 339 340 341 342 VoiceMark		330 331 332 333 334 335 336 337 338 339 340 341 342 AlignMark	
	330 331 332 333 334 335 336 337 338 339 340 341 342 ACC	330 331 332 333 334 335 336 337 338 339 340 341 342 FAR	330 331 332 333 334 335 336 337 338 339 340 341 342 ACC	330 331 332 333 334 335 336 337 338 339 340 341 342 FAR	330 331 332 333 334 335 336 337 338 339 340 341 342 ACC	330 331 332 333 334 335 336 337 338 339 340 341 342 FAR	330 331 332 333 334 335 336 337 338 339 340 341 342 ACC	330 331 332 333 334 335 336 337 338 339 340 341 342 FAR		
343 Traditional Distortion										
344 Resample	1.00	0.00	1.00	0.00	1.00	0.00	0.99	0.06	1.00 0.00	
345 Boost Volume	1.00	0.00	1.00	0.00	1.00	0.00	0.98	0.09	1.00 0.00	
346 Duck Volume	1.00	0.00	1.00	0.00	1.00	0.00	0.98	0.07	1.00 0.01	
347 Highpass Filter	1.00	0.00	1.00	0.00	1.00	0.00	0.99	0.05	1.00 0.00	
348 Lowpass Filter	1.00	0.00	1.00	0.00	1.00	0.02	0.76	0.82	1.00 0.00	
349 Bandpass Filter	1.00	0.01	1.00	0.00	0.99	0.06	0.76	0.72	1.00 0.00	
350 AAC Compression	1.00	0.00	0.73	0.96	1.00	0.00	0.98	0.07	0.99 0.02	
351 MP3 Compression	0.98	0.04	1.00	0.00	1.00	0.00	0.85	0.56	0.99 0.01	
352 Echo	0.99	0.02	1.00	0.00	1.00	0.00	0.98	0.11	1.00 0.01	
353 Crop	0.98	0.03	0.62	0.91	1.00	0.00	0.98	0.08	0.99 0.02	
354 Pink Noise	0.98	0.05	1.00	0.01	1.00	0.01	0.99	0.05	1.00 0.00	
355 Gassuion Noise	0.51	1.00	0.77	0.73	0.87	0.60	0.54	0.99	0.99 0.02	
356 Smooth	0.98	0.03	1.00	0.00	1.00	0.00	0.76	0.72	0.99 0.03	
357 Pitch Shifting	0.52	0.97	0.53	0.97	0.54	0.72	0.85	0.50	1.00 0.00	
358 Speed Change	0.51	0.99	0.50	0.99	0.50	0.98	0.53	0.95	0.94 0.21	
359 Neural Transformation										
360 EnCodec	0.51	1.00	0.50	1.00	0.57	0.99	0.96	0.16	0.99 0.02	
361 FACodec	0.51	1.00	0.50	0.99	0.53	1.00	0.88	0.45	0.93 0.24	
362 SpeechTokenizer	0.51	1.00	0.50	0.99	0.57	0.99	0.95	0.21	0.96 0.11	
363 Vocos	0.51	1.00	0.50	1.00	1.00	0.00	0.99	0.04	1.00 0.00	
364 HiFiGAN	0.51	1.00	0.50	1.00	0.92	0.48	0.94	0.22	0.99 0.01	
365 Denoise	0.51	1.00	0.67	0.79	0.78	0.65	0.76	0.60	0.92 0.27	
366 Average	0.78	0.45	0.79	0.47	0.86	0.32	0.87	0.37	0.98 0.05	
367 CAD \uparrow	0.54		0.58		0.67		0.72		0.85	

368 automated evaluation, with higher scores indicating better naturalness. For ABX tests, 20 subjects
369 perform 10 trials per method, identifying whether a randomly selected sample X matches the original
370 A or watermarked B. Scores near 0.5 indicate imperceptible watermarks.

371 We compare against four state-of-the-art methods with publicly available implementations: Wav-
372 Mark (Chen et al., 2023), AudioSeal (San Roman et al., 2024), Timbre (Liu et al., 2024a), and
373 VoiceMark (Li et al., 2025). All methods use 16-bit watermarks except Timbre (10 bits). For
374 WavMark, undetected watermarks default to zeros. These baselines employ diverse architectures,
375 providing a comprehensive evaluation of our approach.

376 **Attack Scenarios.** We evaluate the robustness of our method across 21 attack scenarios, including
377 15 traditional audio distortions (San Roman et al., 2024; O'Reilly et al., 2025) and 6 neural trans-
378 formations (Zhao et al., 2025; Défossez et al., 2022; Zhang et al., 2024; Ju et al., 2024; Kong et al.,
379 2020; Siuzdak, 2024). Among these, AAC/MP3 compression, denoising (Zhao et al., 2025), FA-
380 Codec (Ju et al., 2024), SpeechTokenizer (Zhang et al., 2024), and HiFiGAN (Kong et al., 2020) are
381 unseen during training; detailed parameters are provided in Appendix A. Attacks that entirely alter
382 content, such as using watermarked audio as a prompt to generate new audio via text-to-speech, are
383 excluded from our experiments, as they fall outside the scope of protecting the audio content's IP.

384 5.2 ROBUSTNESS EVALUATION

385 **Robustness to Traditional Distortion.** As shown in Table 1, AlignMark outperforms other methods
386 in ACC and FAR across most traditional distortions, especially in pitch shifting, speed changes, and
387 Gaussian noise attacks. Pitch shifting and speed change results demonstrate the effectiveness of the
388 feature pyramid, while noise resistance validates the robustness of content-aligned watermarking.
389 AlignMark shows slightly lower performance against compression and cropping attacks, as these
390 directly damage portions of audio content, consequently disrupting the embedded watermarks. This
391 issue could be mitigated by introducing more augmentations or using larger datasets.

378 **Robustness to Neural Transformation.** Across all neural transformation attacks in Table 1, Align-
 379 Mark significantly outperforms the baselines in both ACC and FAR, especially under denoising,
 380 where the ACC of all baselines drops below 0.8, while AlignMark maintains above 0.92. The re-
 381 sults demonstrate that both denoising and reconstruction attacks preserve audio content to some
 382 extent, providing content-aligned watermarking with inherent robustness. Overall, as shown in Fig-
 383 ure 1, the CAD metric shows a positive correlation with the average ACC and performance under
 384 neural transformations, further validating the connection between CAD and robustness.

385 **Robustness to Denoising Levels.** Following previous work (O'Reilly et al., 2025), we first apply
 386 Gaussian noise at SNRs of 20dB, 15dB, 10dB, 5dB, and 0dB, respectively, and then perform de-
 387 noising (Zhao et al., 2025) to remove the watermark at different levels. The results in Figure 3 show
 388 that all baselines experience a significant ACC drop as SNR decreases, with WavMark completely
 389 failing to decode the watermark. In contrast, AlignMark demonstrates remarkable resilience, show-
 390 ing no noticeable drop in ACC from 20dB to 15dB SNR, and maintaining an ACC of 0.8 even at
 391 0dB SNR, outperforming all baselines. The results demonstrate that aligning watermarks with audio
 392 content enhances their resilience against separation and removal.

393 **Robustness to Pitch Shifting Levels.** Figure 4 shows ACC of different methods under varying
 394 levels of pitch shifting. From semitones -1 to 1, AlignMark consistently achieves robust performance
 395 with an ACC of 1.0. In contrast, most other methods fail to decode, except for VoiceMark, which
 396 maintains an ACC above 0.6. Timbre exhibits a strong dependence on fixed frequency bands, leading
 397 to watermark reversal (near-zero ACC) at semitone shifts of -1 and 1. AlignMark introduces a feature
 398 pyramid to enhance decoding robustness and thereby overcomes this limitation.

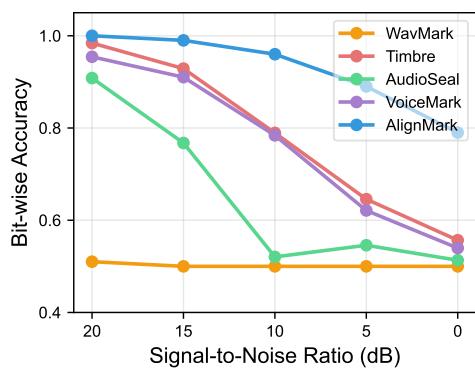


Figure 3: Robustness to denoising levels.

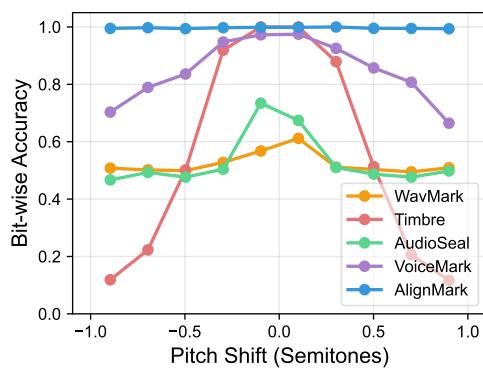


Figure 4: Robustness to pitch shifting levels.

5.3 AUDIO QUALITY

416 Table 2 summarizes audio quality results. We group methods into signal-based and synthesis-based
 417 models. Signal-based models embed watermarks directly into waveforms or spectrograms, yielding
 418 strong objective metrics but lower NISQA naturalness. Synthesis-based models, including Voice-
 419 Mark and our AlignMark, leverage codec models for watermark embedding, with three codec-only
 420 models as baselines. Compared to codec baselines such as EnCodec and SpeechTokenizer, Align-
 421 Mark achieves superior objective performance and higher NISQA naturalness than most watermark-
 422 ing methods. Its ABX score of 0.51, close to 0.5, further indicates imperceptible quality degradation
 423 for human listeners.

5.4 ABLATION STUDY

426 We conduct ablation on each key component of AlignMark, with average results shown in Table 3,
 427 where removing any component degrades either robustness or audio quality. Removing the spe-
 428 cial mask reduces both robustness and audio quality. The temporal mask also contributes to both
 429 robustness and audio quality. Removing the feature pyramid causes training collapse, with over-
 430 optimization of audio quality and reduced watermark capacity. Although CAD remains high, the
 431 decoder fails to converge, leading to decoding failure. This suggests that CAD is meaningful only
 with a well-trained decoder, indicating the importance of a appropriate decoder design.

432 Table 2: Audio quality evaluation. ABX is better when closer to 0.5 (95% confidence interval).
433

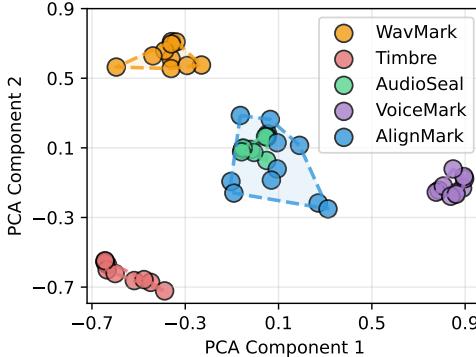
434	Method	PESQ \uparrow	STOI \uparrow	SI-SNR \uparrow	NISQA \uparrow	ABX
<i>Signal-based Model</i>						
436	WavMark	4.10	0.99	36.87	4.21	0.50 ± 0.08
437	Timbre	3.72	0.99	23.93	4.22	0.57 ± 0.11
438	AudioSeal	4.37	0.99	27.60	4.28	0.49 ± 0.07
<i>Synthesis-based Model</i>						
440	EnCodec	2.82	0.92	5.67	3.97	-
441	FACodec	2.93	0.94	3.91	4.41	-
442	SpeechTokenizer	2.67	0.92	1.79	4.28	-
443	VoiceMark	2.19	0.90	1.90	4.36	0.72 ± 0.09
444	AlignMark	3.03	0.95	12.16	4.31	0.51 ± 0.10

445 Table 3: Ablation study.
446

447	Method	ACC \uparrow	FAR \downarrow	PESQ \uparrow	STOI \uparrow	CAD \uparrow
449	AlignMark	0.98	0.05	3.03	0.95	0.85
450	w/o Temporal mask	0.80	0.49	2.75	0.94	0.70
451	w/o Spectral mask	0.84	0.40	1.89	0.85	0.76
452	w/o Feature pyramid	0.51	0.97	4.64	1.00	0.86

454 5.5 WATERMARK-CONTENT ALIGNMENT ANALYSIS

455 On different audio samples, we visualize the watermark spectrograms averaged over time and reduced using PCA to analyze the alignment between the watermark and audio content. As shown in Figure 5, AlignMark’s watermarks vary across different audio, showing an association with the audio content. In contrast, other methods produce clustered watermarks with limited association. This result provides additional evidence of AlignMark’s ability to achieve content-aligned watermarking.

473 Figure 5: PCA-based visualization of time-averaged watermark spectrograms.
474

476 6 CONCLUSION

478 In this work, we investigate the relationship between watermark robustness and audio content alignment, introducing the content alignment degree (CAD) metric and empirically observing a positive
479 correlation with robustness. Guided by CAD, we propose AlignMark, a content-aligned audio watermarking
480 method. AlignMark leverages spectral masking in the embedder, and temporal masking
481 along with a feature pyramid in the decoder, combined with multiple perceptual losses, to explicitly
482 align watermark embedding with audio content, enhancing robustness against diverse distortions and
483 transformations while preserving perceptual quality. Extensive experiments on three datasets and 21
484 attack scenarios show that AlignMark achieves state-of-the-art performance, with average ACC 0.98
485 and FAR 0.05, while maintaining imperceptible impact on audio quality for human listeners.

486 ETHICS STATEMENT
487488 To evaluate the subjective perception of AlignMark’s impact on audio quality, we conducted human
489 subjective testing experiments, including ABX tests, as detailed in the experimental section. All
490 recruited participants provided informed consent, and their responses were used solely for academic
491 research purposes. No personal information beyond the questionnaire content was collected, and
492 strict confidentiality was maintained regarding their answers. Additionally, all audio samples used
493 in the subjective tests were uniformly discarded after the experiments to prevent any risks associ-
494 ated with data leakage. While AlignMark aims to protect intellectual property, we acknowledge
495 the potential for misuse, such as embedding unauthorized watermarks or circumventing watermark
496 detection. This work is intended strictly for lawful and academic applications, and we encourage
497 future research to explore safeguards against unethical use.
498499 REPRODUCIBILITY STATEMENT
500501 To ensure the reproducibility of our results, we provide a detailed description of the experimental
502 setup, including datasets, model architectures, hyperparameters, and evaluation metrics. The pre-
503 trained models, training configurations, and attack scenarios are clearly documented in the main
504 text and appendix. Additionally, we commit to releasing the code, pre-trained weights, and data
505 preprocessing scripts upon publication to facilitate replication and further research. We encourage
506 the community to validate and extend our findings under diverse experimental conditions.
507508 REFERENCES
509510 W. Bender, D. Gruhl, N. Morimoto, and A. Lu. Techniques for data hiding. *IBM Systems Journal*,
511 pp. 313–336, Jan 1996. doi: 10.1147/sj.353.0313. URL <http://dx.doi.org/10.1147/sj.353.0313>.
512
513 Brian Chen and Gregory W Wornell. Quantization index modulation methods for digital water-
514 marking and information embedding of multimedia. *Journal of VLSI signal processing systems
515 for signal, image and video technology*, 27(1):7–33, 2001.
516
517 Guangyu Chen, Yu Wu, Shujie Liu, Tao Liu, Xiaoyong Du, and Furu Wei. Wavmark: Watermarking
518 for audio generation. *arXiv preprint arXiv:2308.12770*, 2023.
519
520 Alexandre Défossez, Jade Copet, Gabriel Synnaeve, and Yossi Adi. High fidelity neural audio
521 compression. *arXiv preprint arXiv:2210.13438*, 2022.
522
523 Daniel Gruhl, Anthony Lu, and Walter Bender. *Echo hiding*, pp. 295–315. Jan 1996. doi: 10.1007/3-540-61996-8_48. URL http://dx.doi.org/10.1007/3-540-61996-8_48.
524
525 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus). *arXiv preprint
526 arXiv:1606.08415*, 2016.
527
528 Keith Ito and Linda Johnson. The IJ speech dataset. <https://keithito.com/LJ-Speech-Dataset/>, 2017.
529
530 Shengpeng Ji, Ziyue Jiang, Jialong Zuo, Minghui Fang, Yifu Chen, Tao Jin, and Zhou Zhao. Speech
531 watermarking with discrete intermediate representations. In *Proceedings of the AAAI Conference
532 on Artificial Intelligence*, volume 39, pp. 24239–24247, 2025.
533
534 Zeqian Ju, Yuancheng Wang, Kai Shen, Xu Tan, Detai Xin, Dongchao Yang, Yanqing Liu, Yichong
535 Leng, Kaitao Song, Siliang Tang, Zhizheng Wu, Tao Qin, Xiang-Yang Li, Wei Ye, Shikun Zhang,
536 Jiang Bian, Lei He, Jinyu Li, and Sheng Zhao. NaturalSpeech 3: zero-shot speech synthesis with
537 factorized codec and diffusion models. In *Proceedings of the 41st International Conference on
Machine Learning*, ICML’24. JMLR.org, 2024.
538
539 Diederik P Kingma. Adam: A method for stochastic optimization. *arXiv preprint arXiv:1412.6980*,
2014.

540 Jungil Kong, Jaehyeon Kim, and Jaekyoung Bae. Hifi-gan: Generative adversarial networks for
 541 efficient and high fidelity speech synthesis. *Advances in neural information processing systems*,
 542 33:17022–17033, 2020.

543

544 Haiyun Li, Zhiyong Wu, Xiaofeng Xie, Jingran Xie, Yaoxun Xu, and Hanyang Peng. Voice-
 545 Mark: Zero-Shot Voice Cloning-Resistant Watermarking Approach Leveraging Speaker-Specific
 546 Latents. In *Interspeech 2025*, pp. 5108–5112, 2025. doi: 10.21437/Interspeech.2025-575.

547

548 Qi Li and Xiaodong Lin. Proactive audio authentication using speaker identity watermarking. In
 549 *2024 21st Annual International Conference on Privacy, Security and Trust (PST)*, pp. 1–10. IEEE,
 550 2024.

551

552 Chang Liu, Jie Zhang, Tianwei Zhang, Xi Yang, Weiming Zhang, and Nenghai Yu. Detecting voice
 553 cloning attacks via timbre watermarking. In *Network and Distributed System Security Symposium*,
 554 2024a. doi: 10.14722/ndss.2024.24200.

555

556 Weizhi Liu, Yue Li, Dongdong Lin, Hui Tian, and Haizhou Li. Groot: Generating robust water-
 557 mark for diffusion-model-based audio synthesis. In *Proceedings of the 32nd ACM International
 558 Conference on Multimedia*, pp. 3294–3302, 2024b.

559

560 Yixin Liu, Lie Lu, Jihui Jin, Lichao Sun, and Andrea Fanelli. XAttnmark: learning robust audio wa-
 561 termarking with cross-attention. In *Forty-second International Conference on Machine Learning*,
 562 2025. URL <https://openreview.net/forum?id=zuOKPHHfEr>.

563

564 Andrew L Maas, Awni Y Hannun, Andrew Y Ng, et al. Rectifier nonlinearities improve neural
 565 network acoustic models. In *Proc. icml*, volume 30, pp. 3. Atlanta, GA, 2013.

566

567 Gabriel Mittag, Babak Naderi, Assmaa Chehadi, and Sebastian Möller. Nisqa: A deep cnn-self-
 568 attention model for multidimensional speech quality prediction with crowdsourced datasets. *arXiv
 569 preprint arXiv:2104.09494*, 2021.

570

571 Patrick O'Reilly, Zeyu Jin, Jiaqi Su, and Bryan Pardo. Deep audio watermarks are shallow: Limita-
 572 tions of post-hoc watermarking techniques for speech. In *ICLR Workshop on GenAI Watermark-
 573 ing*, 2025.

574

575 Vassil Panayotov, Guoguo Chen, Daniel Povey, and Sanjeev Khudanpur. Librispeech: an asr corpus
 576 based on public domain audio books. In *2015 IEEE international conference on acoustics, speech
 577 and signal processing (ICASSP)*, pp. 5206–5210. IEEE, 2015.

578

579 Antony W Rix, John G Beerends, Michael P Hollier, and Andries P Hekstra. Perceptual evaluation
 580 of speech quality (pesq)-a new method for speech quality assessment of telephone networks and
 581 codecs. In *2001 IEEE international conference on acoustics, speech, and signal processing.
 582 Proceedings (Cat. No. 01CH37221)*, volume 2, pp. 749–752. IEEE, 2001.

583

584 Robin San Roman, Pierre Fernandez, Hady Elsahar, Alexandre Défossez, Teddy Furon, and Tuan
 585 Tran. Proactive detection of voice cloning with localized watermarking. In *International Confer-
 586 ence on Machine Learning*, volume 235, 2024.

587

588 Robin San Roman, Pierre Fernandez, Antoine Deleforge, Yossi Adi, and Romain Serizel. Latent
 589 watermarking of audio generative models. In *ICASSP 2025-2025 IEEE International Conference
 590 on Acoustics, Speech and Signal Processing (ICASSP)*, pp. 1–5. IEEE, 2025.

591

592 Hubert Siuzdak. Vocos: Closing the gap between time-domain and fourier-based neural vocoders
 593 for high-quality audio synthesis. In B. Kim, Y. Yue, S. Chaudhuri, K. Fragkiadaki, M. Khan, and
 594 Y. Sun (eds.), *International Conference on Representation Learning*, volume 2024, pp. 25719–
 595 25733, 2024. URL [https://proceedings.iclr.cc/paper_files/paper/2024/
 596 file/6db0903efdfe9b1bbafb015c10990b78-Paper-Conference.pdf](https://proceedings.iclr.cc/paper_files/paper/2024/file/6db0903efdfe9b1bbafb015c10990b78-Paper-Conference.pdf).

597

598 Cees H Taal, Richard C Hendriks, Richard Heusdens, and Jesper Jensen. A short-time objective
 599 intelligibility measure for time-frequency weighted noisy speech. In *2010 IEEE international
 600 conference on acoustics, speech and signal processing*, pp. 4214–4217. IEEE, 2010.

594 Yi Tang. Poisoning the diffusion: A simple and robust watermarking method for audio generation. In
 595 *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing*
 596 (*ICASSP*), pp. 1–5. IEEE, 2025.

597
 598 Helin Wang, Meng Yu, Jiarui Hai, Chen Chen, Yuchen Hu, Rilin Chen, Najim Dehak, and Dong Yu.
 599 Ssr-speech: Towards stable, safe and robust zero-shot text-based speech editing and synthesis. In
 600 *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing*
 601 (*ICASSP*), pp. 1–5. IEEE, 2025.

602
 603 Yizhu Wen, Ashwin Innuganti, Aaron Bien Ramos, Hanqing Guo, and Qiben Yan. Sok: How robust
 604 is audio watermarking in generative ai models? *arXiv preprint arXiv:2503.19176*, 2025.

605
 606 Junichi Yamagishi. English multi-speaker corpus for cstr voice cloning toolkit, 2012. URL <https://dataspace.ed.ac.uk/handle/10283/3443>.

607
 608 Jiahui Yu, Yunling Jiang, Zhangyang Wang, Zhimin Cao, and Thomas Huang. Unitbox: An ad-
 609 vanced object detection network. In *Proceedings of the 24th ACM international conference on*
 610 *Multimedia*, pp. 516–520, 2016.

611
 612 Xin Zhang, Dong Zhang, Shimin Li, Yaqian Zhou, and Xipeng Qiu. Speechtokenizer: Unified
 613 speech tokenizer for speech language models. In *The Twelfth International Conference on Learn-
 614 ing Representations*, 2024. URL <https://openreview.net/forum?id=AF9Q8Vip84>.

615
 616 Shengkui Zhao, Zexu Pan, and Bin Ma. Clearervoice-studio: Bridging advanced speech processing
 617 research and practical deployment. *arXiv preprint arXiv:2506.19398*, 2025.

618
 619 Junzuo Zhou, Jiangyan Yi, Yong Ren, Jianhua Tao, Tao Wang, and Chu Yuan Zhang. Wm-
 620 codec: End-to-end neural speech codec with deep watermarking for authenticity verification. In
 621 *ICASSP 2025-2025 IEEE International Conference on Acoustics, Speech and Signal Processing*
 622 (*ICASSP*), pp. 1–5. IEEE, 2025.

623 A ATTACK PARAMETERS

624 Here are the settings of attack scenarios used in our experiments. The random seed is fixed across
 625 all experiments:

- 626 • **Resample:** Upsample from 16kHz to 32kHz and then downsample back to 16kHz.
- 627 • **Boost Volume:** Increase volume by 20%.
- 628 • **Duck Volume:** Decrease volume by 20%.
- 629 • **Highpass Filter:** Apply a highpass filter to remove frequencies below 500Hz.
- 630 • **Lowpass Filter:** Apply a lowpass filter to remove frequencies above 4000Hz.
- 631 • **Bandpass Filter:** Allow frequencies between 500Hz and 4000Hz to pass through.
- 632 • **AAC Compression:** Apply AAC compression at 64kbps.
- 633 • **MP3 Compression:** Apply MP3 compression at 32kbps.
- 634 • **Echo:** Add an echo effect with random delay (0.1-0.5s) and random volume (0.1-0.5).
- 635 • **Crop:** Randomly retain 80% of the audio by cropping out the remaining 20%.
- 636 • **Pink Noise:** Add pink noise with fixed standard deviation of 0.1.
- 637 • **Gaussian Noise:** Add Gaussian noise with SNR set to 10dB.
- 638 • **Smooth:** Apply a moving average filter with a random window size between 2 and 10.
- 639 • **Pitch Shifting:** Randomly shift pitch within semitones [-1, 1].
- 640 • **Speed Change:** Randomly change speed by resampling with a factor between 0.5 and 2.0.
- 641 • **EnCodec:** Reconstruct audio using the pre-trained model from Défossez et al. (2022).
- 642 • **FACodec:** Reconstruct audio using the pre-trained model from Ju et al. (2024).
- 643 • **SpeechTokenizer:** Reconstruct audio using the pre-trained model from Zhang et al. (2024).

648

- **Vocos**: Reconstruct audio using the pre-trained model from Siuzdak (2024).

649

- **HiFiGAN**: Reconstruct audio using the pre-trained model from Kong et al. (2020).

650

- **Denoise**: Add Gaussian noise at SNRs of 20dB, 15dB, 10dB, 5dB, and 0dB, then apply

651

- denoising (Zhao et al., 2025) to remove the watermark at different levels. Finally, average

652

- the evaluation metrics across all levels.

653

655 B VISUALIZATIONS

656

657 Figure 6 visualizes the spectrograms of the intermediate audio generated by the codec model and the

658 spectral mask to provide a detailed analysis. In Figure 6 (a), the intermediate audio exhibits a spec-

659 trogram that resembles natural speech, allowing it to be seamlessly embedded into the audio. This

660 encourages the content-aligned watermark embedder to embed watermarks within speech regions

661 rather than introducing artifacts into the background. Figures 6 (b–c) demonstrate that the spectral

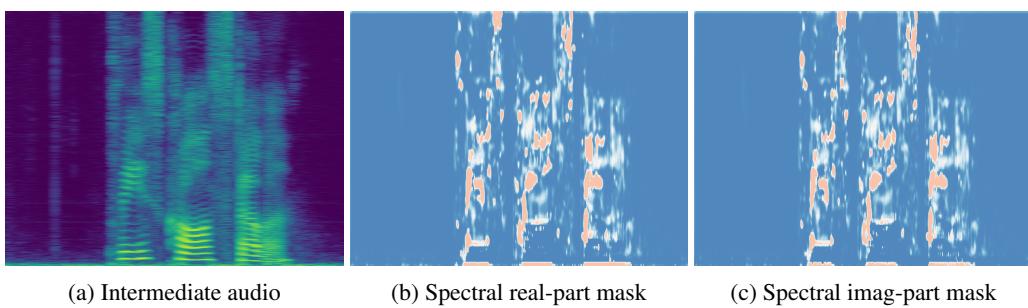
662 mask aligns with audio content while avoiding the fundamental frequency regions that could severely

663 degrade audio quality, thereby preserving perceptual quality. These results confirm that AlignMark

664 achieves content-aligned watermarking without introducing background artifacts as seen in previous

665 methods, while minimizing the impact on audio quality.

666



(a) Intermediate audio (b) Spectral real-part mask (c) Spectral imag-part mask

Figure 6: Visualization of intermediate audio and spectral mask. The spectral mask (red regions indicate embedding areas) accurately aligns with audio content while avoiding the fundamental frequency regions that could severely degrade audio quality.

C THE USE OF LARGE LANGUAGE MODELS

Large language models were used to refine this paper’s writing for accurate spelling and grammar.