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ABSTRACT

Post-hoc out-of-distribution (OOD) detection has garnered intensive attention in
reliable machine learning. Many efforts have been dedicated to deriving score
functions based on logits, distances, or rigorous data distribution assumptions to
identify low-scoring OOD samples. Nevertheless, these estimate scores may fail
to accurately reflect the true data density or impose impractical constraints. To
provide a unified perspective on density-based score design, we propose a novel
theoretical framework grounded in Bregman divergence, which extends distribu-
tion considerations to encompass an exponential family of distributions. Lever-
aging the conjugation constraint revealed in our theorem, we introduce a CON-
JNORM method, reframing density function design as a search for the optimal
norm coefficient p against the given dataset. In light of the computational chal-
lenges of normalization, we devise an unbiased and analytically tractable estima-
tor of the partition function using the Monte Carlo-based importance sampling
technique. Extensive experiments across OOD detection benchmarks empirically
demonstrate that our proposed CONJNORM has established a new state-of-the-art
in a variety of OOD detection setups, outperforming the current best method by up
to 13.25% and 28.19% (FPR95) on CIFAR-100 and ImageNet-1K, respectively.

1 INTRODUCTION

Despite the significant progress in machine learning that has facilitated a broad spectrum of classi-
fication tasks (Gaikwad et al., 2010; Huang et al., 2014; Zhao et al., 2019; Shantaiya et al., 2013;
Krizhevsky et al., 2012; Masana et al., 2022), models often operate under a closed-world scenario,
where test data stems from the same distribution as the training data. However, real-world applica-
tions often entail scenarios in which deployed models may encounter unseen classes of samples dur-
ing training, giving rise to what is known as out-of-distribution (OOD) data. These OOD instances
have the potential to undermine a model’s stability and, in certain cases, inflict severe damage upon
its performance. To identify and safely remove these OOD data in decision-critical tasks (Chen
et al., 2022; Zimmerer et al., 2022), OOD detection techniques have been proposed. To facilitate
easy separation of in-distribution (ID) and OOD data, mainstream OOD approaches either lever-
age post-hoc analysis or model re-training (Ming et al., 2022a; Wei et al., 2022; Chen et al., 2021;
Huang & Li, 2021; Du et al., 2022; Katz-Samuels et al., 2022; Wang et al., 2023; Lee et al., 2017)
by using density-based (Morteza & Li, 2022), output-based (Liu et al., 2020), distance-based (Lee
et al., 2018) and reconstruction-based strategies (Zhou, 2022).

Following previous works (Liu et al., 2020; Liang et al., 2017; Hendrycks & Gimpel, 2016; Sun
et al., 2021; Ahn et al., 2023; Djurisic et al., 2022; Lee et al., 2018), we focus on the post-hoc OOD
detection strategy, which offers more practical advantages than learning-based OOD approaches
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without requiring resource-intensive re-training processes. Our key research question of this ap-
proach centers on how to derive a proper scoring functions to indicate the ID-ness of the input
for effectively discerning OOD samples during testing. By definition, OOD data inherently diverges
from ID data by means of their data density distributions, rendering estimated density an ideal metric
for discrimination. Nevertheless, it is non-trivial to parameterize the unknown ID data distribution
for density estimation since the computation of normalization constants tends to be costly and even
intractable (Gutmann & Hyvärinen, 2012a). While recent attempts have been made by modeling ID
data as some specific prior distributions, i.e., the Gibbs-Boltzmann distribution in (Liu et al., 2020)
and the mixture Gaussian distribution in (Morteza & Li, 2022), to factitiously make normalization
constants sample-independent or known, this practice imposes strong distributional assumptions on
the underlying feature space. Furthermore, it offers no theoretical guarantee that those pre-defined
distributions necessarily hold in practice.

In this paper, we introduce an innovative Bregman divergence-based (Banerjee et al., 2005) theo-
retical framework aimed at providing a unified perspective for designing density functions within
an expansive exponential family of distributions (Amari, 2016). This framework not only bridges
the gap between existing post-hoc OOD approaches (Liu et al., 2020; Morteza & Li, 2022) but
also highlights a valuable conjugation constraint for tailoring density functions to given datasets.
Without loss of generality, we focus on the conjugate pair of lp and lq norms and propose the CON-
JNORM method. This approach reframes the density function design as a search for the optimal
norm coefficient within a narrow range. To facilitate tractable estimation of the partition function
for normalization, we compare two existing estimation baselines and put forward a Monte Carlo-
based importance sampling technique, which yields an unbiased and analytically tractable estimator.

2 PRELIMINARIES

Let X and Y = {1, . . . ,K} represent the input space and ID label space, respectively. The joint ID
distribution, represented as PXIYI

, is a joint distribution defined over X × Y . During testing time,
there are some unknown OOD joint distributions DXOYO

defined over X × Yc, where Yc is the
complementary set of Y . We also denote pI(x) as the density of the ID marginal distribution PXI

.
According to (Fang et al., 2022), OOD detection can be formally defined as follows:
Problem 1 (OOD Detection). Given labelled ID data Din = {(x1,y1), ..., (xN ,yN )}, which is
drawn from PXIYI

independent and identically distributed, the aim of OOD detection is to learn a
predictor g by using Din such that for any test data x: 1) if x is drawn from DXI , then g can classify
x into correct ID classes, and 2) if x is drawn from DXO , then g can detect x as OOD data.

Post-hoc Detection Strategy. Many representative OOD detection methods (Liu et al., 2020; Liang
et al., 2017; Hendrycks & Gimpel, 2016; Sun et al., 2021; Ahn et al., 2023; Djurisic et al., 2022; Lee
et al., 2018) follow a post-hoc strategy, i.e., given a well-trained model fθ using Din, and a scoring
function S, then x is detected as ID data if and only if S(x; fθ) ≥ λ, for some given threshold λ:

g (x) = ID, if S(x; fθ) ≥ λ; otherwise, g (x) = OOD. (1)

Following the representative work (Morteza & Li, 2022), a natural view for the motivation of the
post-hoc strategy is to use a level set for ID density pI(x) to discern ID and OOD data. Its main
objective is to construct an efficient scoring function S, that can effectively replicate the behavior
of the ID density function, pI(x), i.e., S(x; fθ) ∝ pI(x). Therefore, using the density-based frame-
work, (Morteza & Li, 2022) rewrites the post-hoc strategy as follows: given ID data density function
p̂θ(·) estimated by well-trained model fθ and a pre-defined threshold λ, then for any data x ∈ X ,

g (x) = ID, if p̂θ(x) ≥ λ; otherwise, g (x) = OOD. (2)

In this work, we mainly utilize the density-based framework to design our theory and algorithm.

Density Estimation Modeling. The performance of density-based OOD detection heavily relies on
the alignment between the estimated data density p̂θ(x) and the true density pI(x). Considering a
commonly used assumption in OOD detection, i.e., the uniform class prior on ID classes (Jiang et al.,
2023), p̂θ(x) can be expressed as the aggregate of the ID class-conditioned distributions p̂θ (x|k):

p̂θ(x) =

K∑
k=1

p̂θ (x|k) · p̂θ (k) ∝
K∑
k=1

p̂θ(x|k). (3)
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Based on Eq. 3, our main objective is to estimate the class-conditional distribution of ID data, in
order to effectively construct the data density p̂θ for discriminating between ID and OOD data.

Without loss of generality, we employ latent features z extracted from deep models as a surrogate
for the original high-dimensional raw data x. This is because z is deterministic within the post-hoc
framework. Consistent with probabilistic theory, we express p̂θ(z|k) in the following general form:

p̂θ (z|k) =
gθ(z, k)

Φ(k)
, (4)

where gθ(z, k) represents a non-negative density function, and Φ(k) =
∫
gθ(z, k) dz denotes the

partition function for normalization. According to prior works, the design principle for gθ(z, k) can
be divided into 3 categories: logit-based, distance-based and density-based methods.

Logit-based OOD methods (Liu et al., 2020; Hendrycks et al., 2019) resort to derive gθ(z, k) from
logit outputs. As a representative work, energy-based method (Liu et al., 2020) explicitly acknowl-
edges gθ(z, k) by fitting to the Gibbs-Boltzmann distribution, i.e., gθ(z, k) = exp(fkθ /T ) where fkθ
is the kth coordinate of fθ and T is a temperature parameter. This directly results in an energy-based
scoring function E(z) = −T log

∑K
k=1 gθ(z, k). However, it can be easily checked from Eq. 4

that E(z) ∝ − log p(z) holds if and only if Φ(k) = constant,∀k ∈ Y . While the energy-based
method has demonstrated empirical effectiveness, it is essential to recognize that this condition, i.e.,
Φ(k) = constant,∀k ∈ Y , may not always hold in practical scenarios. Differently, Hendrycks &
Gimpel (2016) proposes the maximum softmax score (MSP) to estimate OOD uncertainty:

MSP(z) = max
k=1,...,K

p̂θ(k|z) = max
k=1,...,K

gθ(z, k)∑K
k′=1 gθ(z, k

′)
̸∝ p̂θ (z) . (5)

where gθ(z, k) = exp(fkθ ). However, as shown in Eq. 5, there exists a misalignment between MSP
and the true data density, making ultimately MSP a suboptimal solution to OOD detection.

Figure 1: Illustration of the alignment of GEM
score and true density of Gaussian (Left) and
Gamma (Right) distributions.

Distance-based OOD methods (Lee et al.,
2017) target on deriving gθ(z, k) by assessing
the proximity of the input to the k-th prototype
µk. The selection of appropriate similarity met-
rics is crucial in capturing the intrinsic geomet-
ric data relationships. One of the most repre-
sentative metrics used is the maximum Maha-
lanobis distance (Lee et al., 2017), which is for-
mally defined as,

Maha(z) = max
k=1,...,K

−(z− µk)
⊤Σ−1(z− µk)

= max
k=1,...,K

log gθ(z, k) ̸∝ p̂θ (z) .

The distance metric can be considered as the density function gθ(z, k) in Eq. 4. This interpretation
allows us to bypass the estimation of the partition function and leads to a significant observation:
the distance measures are not directly proportional to the true data density.

Density-based OOD methods have rarely been studied compared to the previous two groups, pri-
marily because of the complexities involved in estimating Φ(k). Recently, a method called GEM
(Morteza & Li, 2022) has been proposed, with the assumption that the class-conditional density
conforms to a Gaussian distribution: let gθ(z, k) = exp(− 1

2 (z− µk)
⊤Σ−1(z− µk)),

GEM(z) =

K∑
k=1

exp(− 1
2 (z− µk)

⊤Σ−1(z− µk))√
(2π)d|Σ|

=

K∑
k=1

gθ(z, k)

Φ(k)
∝ 1

K

K∑
k=1

p̂θ(z|k) = p̂θ(z),

where Σ ∈ Rd×d is the covariance matrix. Note that Φ(k) =
√
(2π)d|Σ| in this case. This Gaus-

sian assumption, while simplifying the estimation of Φ(k), enables the direct utilization of the Ma-
halanobis distance as gθ(z, k). However, it is crucial to acknowledge that this methodology may
impose constraints on its ability to generalize effectively across a wide range of testing scenarios
due to the strict Gaussian assumption it relies upon.
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Discussion. Empirical examination of a toy dataset presented below reveals a case where the GEM’s
Gaussian assumption may prove inadequate, as demonstrated in Fig 1. For the purpose of visual-
ization, we begin by considering a simple scenario in which the input distribution is a mixture of
two-dimensional Gaussians with means µ2 = 2µ1 = 8 and variances σ1 = σ2 = 1 respectively.
While the GEM can well align with the true data density function, the alignment of GEM scores with
the true data density is noticeably compromised when the p(x) is changed to a mixture of Gamma
and Gaussian distributions (as shown on the right). In order to ensure an accurate estimation of the
ID class-conditional density, two fundamental questions arise:

♣ Can we develop a unified framework that guides the design of gθ(z, k)?
♠ Within this framework, how can we obtain a tractable estimate for Φ(k) without presuming

any particular prior distribution of p̂θ (z|k)?

In the following section, we propose a novel theoretical framework to answer the above questions.

3 METHODOLOGY

In this section, we first present the main Bregman Divergence-based theoretical framework of OOD
detection in Sec. 3.1. This framework unifies density function formulation and connects with prior
OOD techniques, leveraging the expansive exponential distribution family. Motivated by theory,
we introduce a novel approach called CONJNORM to determine the desired gθ through an exhaus-
tive search for the best norm coefficient p. To enable tractable density estimation, we explore two
partition function estimation baselines and propose our importance sampling in Sec. 3.2.

3.1 BREGMAN DIVERGENCE-GUIDED DESIGN OF gθ(z, k)

In formulating our theoretical framework, it is imperative to adopt a universal distribution family
to model the ID class-conditioned distributions p̂θ (x|k) without constraining ourselves to any par-
ticular choice. In this work, we consider the broad Exponential Family of Distributions (Brown,
1986). The family encompasses a wide range of probability distributions frequently employed in
prior OOD investigations, such as Gaussian, Gibbs-Boltzmann, and gamma distributions. To be
precise, the exponential family of distribution can be formally defined as follows:
Definition 1 (Exponential Family of Distribution (Brown, 1986)). A regular exponential family
p̂θ (z|k) is a family of probability distributions with density function with the parameters ηk:

p̂θ (z|k) = exp{z⊤ηk − ψ(ηk)− gψ(z)}, (6)

where ψ(·) is the so-called cumulant function and is a convex function of Legendre type.

By employing different cumulant functions ψ(·) and parameters ηk, one can create diverse class-
conditioned distributions p̂θk

(z|k). Nevertheless, it has been argued by Azoury & Warmuth (2001);
Chowdhury et al. (2023) that directly learning ηk to fit the ID data is computationally costly and
even intractable. To mitigate this challenge, a corresponding dual theorem (referred to as Theorem
1) has been developed. This theorem asserts that any regular exponential family distribution can be
presented through a uniquely determined Bregman divergence (Bregman, 1967), as defined below:
Definition 2 (Bregman Divergence (Bregman, 1967)). Let φ(·) be a differentiable, strictly convex
function of the Legendre type, the Bregman divergence is defined as:

dφ(z, z
′) = φ(z)− φ(z′)− (z− z′)⊤∇φ(z′), (7)

where ∇φ(z′) represents the gradient vector of φ(·) evaluated at z′.

The choices of the convex function φ in Bregman divergence can result in diverse distance metrics.
For instance, 1) When φ(z) = ∥z∥2, the resulting dφ corresponds to the squared Euclidean distance;
2) When φ(z) is the negative entropy function, dφ represents the KL divergence; and 3) When φ(z)
be expressed as a quadratic form, dφ represents the Mahalanobis distance. Next, Theorem 1 bridges
the Bregman divergence and the exponential family of distributions.
Theorem 1 (Forster & Warmuth (2002)). Suppose that ψ(·) and φ(·) are conjugate Legendre func-
tions. Let p̂θ (z|k) be a member of the exponential family conditioned on the k-th ID class with cu-
mulant function φ and parameters ηk (k = 1, ...,K), dφ be the Bregman divergence, then p̂θ (z|k)
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can be represented as follows: p̂θ (z|k) = exp(−dφ(z,µ(ηk)) − gφ(z)), where µ(ηk) is the ex-
pectation parameter corresponding to ηk (Banerjee et al., 2005), gφ(·) is a function uniquely deter-
mined by φ(·), and agnostic to µ(ηk).

Remark. As a direct implication of Theorem 1, a unified theoretical principle emerges for the design
of gθ(z, k) for OOD detection, owing to the conjugate relationship between ψ and φ. In essence,
when seeking an appropriate ψ for a given dataset, the optimal design of gθ(z, k) should inherently
adhere to the requirements of the corresponding Bregman divergence: let φ(·) = ψ∗(·), then

gθ(z, k) = exp(−dφ(z,µ(ηk))). (8)

Given that gφ(z) is agnostic to the choice of z, we exclude this term from consideration by treating
it as a constant in our analysis, which gives us a systematic approach to answering the question ♣.

CONJNORM. Given the expansive function space for the selection of the convex function ψ, our fo-
cus is on simplifying the search process by utilizing the lp norm as ψ, denoted as CONJNORM, where
ψ(ηk) = 1

2∥ηk∥
2
p. Therefore, the task of selecting an appropriate ψ is equivalent to identifying a

suitable p from the range of (1,+∞) for the given dataset. The lp norm offers several advantageous
properties, including convexity and simplicity in its conjugate pair. Firstly, the lp norm is convex for
all p ≥ 1, ensuring the presence of a global minimum during optimization. Secondly, the lp norm
has a well-defined and simple conjugate pair, namely the lq norm, where q represents the conjugate
exponent of p such that 1/p+1/q = 1. This simplicity in the conjugate pair enhances computational
tractability and facilitates the determination of φ = ψ∗:

φ(z) = ψ∗(z) =
1

2
∥z∥2q, where q =

p

p− 1
. (9)

To this end, the desired Bregman divergence dφ can be determined as

dφ(z,µ(ηk)) =
1

2
∥z∥2q +

1

2
∥µ(ηk)∥2q − ⟨z,∇1

2
∥µ(ηk)∥2q⟩. (10)

Hence, our final ID density can be estimated by combining Eq. 6 and Theorem 1

p̂θ (z) =
1

K

K∑
k=1

gθ(z, k)

Φ(k)
=

1

K

K∑
k=1

exp(−dφ(z,µ(ηk)))∫
exp(−dφ(z′,µ(ηk)))dz′

. (11)

In the context of our CONJNORM framework, where we treat p as a hyperparameter, the process
of searching for the optimal popt and identifying the most suitable density function dφ for a given
dataset becomes straightforward. We present experimental results that explore the effects of varying
p as illustrated in Fig. 4.

3.2 ESTIMATION OF PARTITION FUNCTION Φ(·)
To an estimate of p̂θ in Eq. 11, it is imperative to accurately approximate the partition function
Φ(k). The most straightforward approach to address this challenge involves fitting k distinct kernel
density functions, each corresponding to a different class. By employing this method, the density
function gθ can be effectively normalized:

Baselines 1: Self-Normalization (SN). Following Gutmann & Hyvärinen (2012b); Wu et al. (2018);
Mnih & Kavukcuoglu (2013), we assume the pre-trained neural network is perfectly expressively
such that the unnormalized density function dφ is self-normalized, i.e., Φ(k) = constant,∀k ∈ Y .
In this way, there is no need to explicitly compute the partition function Φ(k), which is given by

p̂θ (z) ∝
K∑
k=1

exp(−dφ(z,µ(ηk)). (12)

Baselines 2: Normalization via Kernel Density Estimation. Kernel density estimation (KDE)
(Chen, 2017; Kim & Scott, 2012) is a statistical method that is commonly used for probability
density estimation. This approach is inherently non-parametric, providing flexibility in the choice
of kernel functions (e.g., linear, Gaussian, exponential). Mathematically, the KDE-based estimation
of partition function Φ(k) can be formulated as follows: let Dk

in be the ID training data with label k,

ΦKDE(k) =
1

h|Dk
in|gθ(z, k)

∑
z′∈Dk

in

K(
gθ(z, k)− gθ(z

′, k)

h
), (13)
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Figure 2: Evaluations of different partition function estimation baselines on ImageNet: Left: Mo-
bileNetV2 and Right: ResNet50.

with h > 0 as the bandwidth that determines the smoothing of the resulting density function.

Experimental comparisons w.r.t. different baselines on the OOD detection benchmarks are summa-
rized in Fig 2. As we demonstrate later, we propose to leverage the means of importance sampling
for theoretically unbiased estimation instead, which provides stronger flexibility and generality.

Ours: Importance Sampling-Based Approximation. To enhance the flexibility of density-based
OOD detection, we consider a Monte Carlo method and construct a simple and analytically tractable
estimator to theoretically unbiasedly approximate them by means of importance sampling (IS)
(Liu et al., 2015; Tokdar & Kass, 2010; Ben Alaya et al., 2023). Specifically, let p̂o (z) be a
tractable distribution that has been properly normalized such that

∫
p̂o (z) dz = 1, we draw data

S =
{
(z1o,y

1
o), ..., (z

n
o ,y

n
o )
}

from the ID training data following the distribution p̂o (z), and esti-
mate Φ(k) by

ΦIS(k;S) =
1

n

n∑
i=1

gθ(z
i
o, k)

p̂o (zio)
. (14)

For simplicity, we set p̂o as a uniform distribution over the training ID data Din and n = N ×α with
α as the sampling ratio. In practice, we find that α = 10% is sufficient to get decent performance.
Besides, a desirable property of importance sampling is that the estimator ΦIS(k;S) is theoretically
unbiased (Liu et al., 2015), i.e., ES∼p̂o [ΦIS(k;S)] = Φ(k). IS provides us with a simple but effective
approach to answering the question ♠.

4 EXPERIMENTS

4.1 EXPERIMENTS SETUP

Table 1: OOD detection on CIFAR benchmarks.
We average the results across 6 OOD datasets. ↑
indicates larger values are better and vice versa.
The best result in each column is shown in bold.

Method CIFAR-10 CIFAR-100
FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 48.73 92.46 80.13 74.36
ODIN 24.57 93.71 58.14 84.49
Energy 26.55 94.57 68.45 81.19
DICE 20.83 95.24 49.72 87.23
ReAct 26.45 94.67 62.27 84.47
ASH 15.05 96.61 41.40 90.02
Maha 31.42 89.15 55.37 82.73
GEM 29.56 92.14 49.31 86.45
KNN 17.43 96.74 41.52 88.74
SHE 23.26 94.40 54.66 82.60
Ours 13.92 97.15 28.27 92.50
Ours+ASH 12.14 97.64 25.66 93.21

Baseline Methods. We compare our method
with representative methods, including MSP
(Hendrycks & Gimpel, 2016), ODIN (Liang
et al., 2017), Energy (Liu et al., 2020), ASH
(Djurisic et al., 2022), DICE (Sun & Li, 2022),
ReAct (Sun et al., 2021), Mahalanobis (Maha)
(Lee et al., 2018), GEM (Morteza & Li, 2022),
KNN (Sun et al., 2022) and SHE (Zhang et al.,
2022). It is worth noting that we have adopted
the recommended configurations proposed by
prior works, while concurrently standardizing
the backbone architecture to ensure equitable
comparisons.

Evaluation Metrics. The detection per-
formance is evaluated via two threshold-
independent metrics: the false positive rate of
OOD data is measured when the true positive
rate of ID data reaches 95% (FPR95); and the
area under the receiver operating characteristic curve (AUROC) is computed to quantify the prob-
ability of the ID case receiving a higher score compared to the OOD case. Reported performance
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Table 2: OOD detection results on the ImageNet benchmark with MobileNet-V2. ↑ indicates larger
values are better and vice versa. The best result in each column is shown in bold.

Method iNaturalist SUN Places Textures Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 64.29 85.32 77.02 77.10 79.23 76.27 73.51 77.30 73.51 79.00
ODIN 55.39 87.62 54.07 85.88 57.36 84.71 49.96 85.03 54.20 85.81
Energy 59.50 88.91 62.65 84.50 69.37 81.19 58.05 85.03 62.39 84.91
ReAct 42.40 91.53 47.69 88.16 51.56 86.64 38.42 91.53 45.02 89.60
DICE 43.09 90.83 38.69 90.46 53.11 85.81 32.80 91.30 41.92 89.60
ASH 39.10 91.94 43.62 90.02 58.84 84.73 13.12 97.10 38.67 90.95
Maha 62.11 81.00 47.82 86.33 52.09 83.63 92.38 33.06 63.60 71.01
GEM 65.77 79.82 45.53 87.45 82.85 68.31 43.49 86.22 59.39 80.25
KNN 46.78 85.96 40.18 86.28 62.46 82.96 31.79 90.82 45.30 86.51
SHE 47.61 89.24 42.38 89.22 56.62 83.79 29.33 92.98 43.98 88.81
Ours 29.06 93.89 46.74 87.10 62.07 81.41 10.30 97.53 37.04 89.98
Ours+ASH 24.08 94.36 30.19 92.63 46.26 87.57 12.70 97.20 28.31 92.94

results for our method are averaged over 5 independent runs for robustness. Due to the space limit,
we provide the implementation details in the Appendix.

4.2 MAIN RESULTS

Evaluation on CIFAR Benchmarks. Following the setup in Sun & Li (2022), we consider CIFAR-
10 and CIFAR-100 (Krizhevsky et al., 2009) as ID data and train DenseNet-101 (Huang et al., 2017)
on them respectively using the cross-entropy loss. The feature dimension of the penultimate layer is
342. For both CIFAR-10 and CIFAR-100, the model is trained for 100 epochs, with batch size 64,
weight decay 1e-4, and Nesterov momentum 0.9. The start learning rate is 0.1 and decays by a factor
of 10 at 50th, 75th, and 90th epochs. There are six datasets for OOD detection with regard to CIFAR
benchmarks: SVHN (Netzer et al., 2011), LSUN-Crop (Yu et al., 2015), LSUN-Resize (Yu et al.,
2015), iSUN (Xu et al., 2015), Places (Zhou et al., 2017), and Textures (Cimpoi et al., 2014). At test
time, all images are of size 32×32. Table 1 presented the performance of our approach and existing
competitive baselines, where the proposed approach significantly outperforms existing methods.
Specifically, comparing with the standard post-hoc methods, our method reveals 3.51% and 0.41%
average improvements w.r.t. FPR95 and AUROC on the CIFAR-10 dataset, and 13.25% and 3.76%
of the average improvements on the CIFAR-100 dataset. For advanced works that consider post-hoc
enhancement, e.g., ASH and DICE, our method still significantly performs better on both datasets

Evaluation on ImageNet Benchmark. We conduct experiments on the ImageNet benchmark,
demonstrating the scalability of our method. Specifically, we inherit the exact setup from (Djurisic
et al., 2022), where the ID dataset is ImageNet-1k (Krizhevsky et al., 2012), and OOD datasets in-
clude iNaturalist (Xiao et al., 2010b), SUN (Xiao et al., 2010a), Places365 (Zhou et al., 2017), and
Textures (Cimpoi et al., 2014). We use the pre-trained MobileNetV2 (Sandler et al., 2018) models
for ImageNet-1k provided by Pytorch (Paszke et al., 2019). At test time, all images are resized to
224×224. In Table 2, we reported the performances of four OOD test datasets respectively. It can
be seen that our method reaches state-of-the-art with 21.51% FPR95 and 95.48% AUROC on aver-
age across four OOD datasets. Besides, we notice that ASH can further considerably improve our
method by 9.27% and 2.06% w.r.t. FPR95 and AUROC respectively. We suspect that removing a
large portion of activations at a late layer helps to improve the representative ability of features.

4.3 ABLATION STUDY

Extracted Features z. This paper follows the convention in feature-based OOD detectors (Sun
et al., 2022; Zhang et al., 2022; Djurisic et al., 2022), where features from the penultimate layer are
utilized to estimate uncertain scores for OOD detection. Fig 3 provides an experimental evaluation
on the choice of working placement. It can be seen that feature from the deeper layer contributes to
better OOD detection performance than shallower ones. This is likely due to the penultimate layer
preserves more information than shallower layers.

Sampling Ratio α. In Fig 4, we analyze the effect of the sampling ratio α on CIFAR-100 and
ImageNet-1k datasets. We vary the random sampling ratio α within {1%, 5%, 10%, 50%, 100%}.
We note several interesting observations: (1) The optimal OOD detection (measured by FPR95)
remains similar under different random sampling ratios α especially when α ≥ 10%, which demon-
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(a) (b) (c)

Figure 3: Ablation study using feature extractions from (a) the first, (b) the second, and (c) the last
dense block of the DenseNet on the CIFAR-10.

(a) CIFAR-100 (b) ImageNet-1K (c) CIFAR-10 (d) CIFAR-100

Figure 4: Ablation study w.r.t varing sampling ratio α in red; and the norm coefficient p in blue.

strates the robustness of our method to the sampling ratio. (2) our method still achieves competitive
performance on benchmarks even when sampling 1% total number of ID training data.

Parameter Sensitivity of lp. We conduct a comparative assessment of OOD performance while
varying the lp norm coefficient p, which directly governs the density function gθ on CIFAR bench-
marks. The results, as depicted in Fig 4, reveal a consistent trend across both datasets. Notably,
the FPR95 scores exhibit a clear minimum within the range of (2, 3), suggesting that our proposed
CONJNORM approach can efficiently identify the optimal normalization without the computational
overhead. It is worth highlighting that when p = 2, signifying the Bregman divergence in Eq.(10)
degenerates into the squared Euclidean distance (corresponding to Gaussian densities), the OOD
performance does not attain its peak. This observation underscores the limitation of Gaussian as-
sumptions and underscores the generality and effectiveness of our CONJNORM.

Sensitivity of q with fixed lp norm. We also conduct a comparative assessment of OOD perfor-
mance by varying the value of q while fixing the lp norm. The experimental results on CIFAR-100
under two cases where p = 2.5 and p = 3.0. Note that the performance of our method tends to
be more appealing when q satisfies the conjugate condition that q = p/(p − 1), exceeding the case
where q = 2.0 by nearly 10% on FPR95. This empirically echoes Theorem 1.

4.4 EXTENSION TO MORE PROTOCOLS
In this section, we assess the versatility of the proposed CONJNORM approach in (1) Hard OOD
detection and (2) Long-tailed OOD settings. For more extensions, please refer to the Appendix.

4.4.1 HARD OOD DETECTION

We consider hard OOD scenarios (Tack et al., 2020), of which the OOD data are semantically similar
to that of the ID cases. With the CIFAR-100 as the ID dataset for training ResNet-50. we evaluate our

Table 3: Evaluation on hard OOD detection tasks. ↑ indicates larger values are better and vice versa.
The best result in each column is shown in bold.

Method LSUN-Fix ImageNet-Fix ImageNet-Resize CIFAR-10 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 90.43 63.97 88.46 67.32 86.38 71.24 89.67 66.47 88.73 67.25
ODIN 91.28 66.53 82.98 72.89 72.71 82.19 88.27 71.30 83.81 73.23
Energy 91.35 66.52 83.02 72.88 72.45 82.22 88.17 71.29 83.75 73.23
ReAct 93.70 64.52 83.36 73.47 62.85 85.79 89.09 69.87 82.25 73.41
Maha 90.54 56.43 83.24 61.84 75.83 64.71 90.27 54.36 84.97 59.33
KNN 91.70 69.70 80.58 76.46 68.90 85.98 83.28 75.57 81.12 76.93
SHE 93.52 63.56 85.62 70.75 81.54 76.97 89.32 71.52 87.50 70.70
Ours 85.80 72.48 76.14 78.77 65.38 86.29 84.87 75.88 78.05 78.35
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Figure 5: Comparisons of varying q when p is fixed at 2.5 (Left) and 3.0 (Right) on CIFAR-100.

Table 4: Evaluation on long-tailed OOD detection tasks. ↑ indicates larger values are better and vice
versa. The best result in each column is shown in bold.

Method SVHN LSUN iSUN Texture Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 97.82 56.45 82.48 73.54 97.61 54.95 95.51 54.53 92.49 60.08 93.18 59.91
ODIN 98.70 48.32 64.80 83.70 97.47 52.41 95.99 49.27 91.56 58.49 89.70 58.44
Energy 98.81 43.10 47.03 89.41 97.37 50.77 95.82 46.25 91.73 57.09 86.15 57.32
Maha 74.01 83.67 77.88 72.63 49.42 85.52 63.10 81.28 94.37 53.00 71.76 75.22

MSP+RP 97.76 56.45 82.33 73.54 97.51 54.76 95.73 54.13 92.65 59.73 93.20 59.72
ODIN+RW 98.82 52.94 83.79 69.28 96.10 50.64 96.95 45.14 93.36 51.5 93.80 53.90
Energy+RW 98.86 49.07 77.30 77.32 96.25 50.91 96.86 45.27 93.03 54.02 92.46 55.32
KNN 64.39 86.16 56.13 84.24 45.36 88.39 34.36 89.86 90.31 60.09 58.11 81.75
Ours 40.16 91.00 45.72 87.64 41.89 90.42 40.50 86.80 91.74 58.44 52.00 82.86

method on 4 hard OOD datasets, namely, LSUN-Fix (Yu et al., 2015), ImageNet-Fix (Krizhevsky
et al., 2012), ImageNet-Resize (Krizhevsky et al., 2012), and CIFAR-10. The model is trained for
200 epochs, with batch size 128, weight decay 5e-4 and Nesterov momentum 0.9. The start learning
rate is 0.1 and decays by a factor of 5 at 60th, 12th, 160th epochs. We select a set of strong baselines
that are competent in hard OOD detection, and the experiments are summarized in Table 3. It can
be seen that our method can beat the state-of-the-art across the considered datasets, even for the
challenging CIFAR-100 versus CIFAR-10 setting. The reason is that our lp norm-induced density
function can better capture the ID data distribution.

4.4.2 LONG-TAILED OOD DETECTION

We consider long-tailed OOD scenarios (Wang et al., 2022; Bai et al., 2023), of which the ID training
data exhibits an imbalanced class distribution. We use the long-tailed versions of CIFAR datasets
with the setting in Cao et al. (2019); Zhong et al. (2021). It is by controlling the degrees of data
imbalance with an imbalanced factor β = Nmax/Nmin, where Nmax and Nmin are the numbers of
training samples belonging to the most and the least frequent classes. Following (Zhong et al., 2021;
Zhou et al., 2020), we pre-train the ResNet-32 (He et al., 2016) network with β = 50 on CIFAR-
100 for 200 epochs with batch size 128, weight decay 2e-4 and Nesterov momentum 0.9. The start
learning rate is 0.1 and decays by a factor of 5 at the 160-th, 180-th epochs. The performance of
our methods and baselines are shown in Table 4, where we introduce the strategies of Replacing
(RP) and Reweighting (RW) in (Jiang et al., 2023) to modify previous OOD scoring functions. The
performance gain in Table 4 empirically demonstrates that using a uniform ID class distribution does
not make our method incompatible with the model that is pre-trained with class-imbalanced data.

5 CONCLUSION

In this paper, we present a theoretical framework for studying density-based OOD detection. By
establishing connections between the exponential family of distributions and Bregman divergence,
we provide a unified principle for designing scoring functions. Given the expansive function space
for selecting Bregman divergence, we propose a pair of conjugate functions to simplify the search
process. To address the challenging problem of the partition function, we introduce a computation-
ally tractable and theoretically unbiased estimator through importance sampling. Empirically, our
method outperforms numerous prior methods by a significant margin on several standard benchmark
datasets using various protocols. Since we only consider a pair of conjugate functions in finding
Bregman divergence and evaluate our method on Convolutional neural networks. In the future, it
is interesting to delve deeper into the design of Bregman divergence and incorporate large-scale
pre-trained Vision-Language Models (VLMs).
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Table 5: OOD detection on CIFAR100 benchmarks. We average the results across 6 OOD datasets.
↑ indicates larger values are better and vice versa. The best result in each column is shown in bold.

Metrics MSP ODIN Energy ReAct DICE Maha GEM KNN ASH Ours
FPR95↓ 79.29 77.47 76.66 69.95 73.06 71.75 65.21 62.22 65.29 54.47
AUROC↑ 79.9 74.36 80.14 81.99 79.86 63.14 77.81 84.22 81.36 87.26

A APPENDIX

A.1 LIMITATIONS

The limitation of this work lies in manually searching a good value of p to determine Bregman
divergence. We do not test our method on large-scale models.

A.2 OOD DATASET

For experiments where CIFAR benchmarks are the ID data, we adopt SVHN (Netzer et al., 2011),
LSUN-Crop (Yu et al., 2015), LSUN-Resize (Yu et al., 2015), iSUN (Xu et al., 2015), Places (Zhou
et al., 2017), and Textures (Cimpoi et al., 2014) as the OOD datasets. For experiments where
ImageNet-1K is the ID data, we adopt iNaturalist (Xiao et al., 2010b), SUN (Xiao et al., 2010a),
Places365 (Zhou et al., 2017), and Textures (Cimpoi et al., 2014) and the OOD dataset.

A.3 IMPLEMENTATION DETAILS.

Similar to DICE (Sun & Li, 2022), we adopt Tiny-ImageNet-200 (Le & Yang, 2015) as the auxiliary
OOD data with the searching space of p as (1,3]. We remove those data whose labels coincide with
ID cases. We set p = 2.2 for experiments in CIFAR-10, p = 2.5 for experiments in CIFAR-100,
p = 1.5 and p = 1.8 for experiments in ImageNet-1k on ResNet50 and MobileNetv2 respectively.

A.4 RESULTS WITH DIFFERENT BACKBONES

In the main paper, we have shown that our method is competitive on DenseNet and MobileNet. In
this section, we show in Table 5 and Table 6 that the strong performance of our method holds on
ResNet50 (He et al., 2016). All the numbers reported are averaged over OOD test datasets described
in Section 4.2. For ImageNet-1k, We use the pre-trained models provided by Pytorch. At test time,
all images are resized to 224×224. For CIFAR-100, the model is trained for 200 epochs, with batch
size 128, weight decay 5e-4 and Nesterov momentum 0.9. The start learning rate is 0.1 and decays
by a factor of 5 at 60th, 120th and 160th epochs. At test time, all images are of size 32×32.

A.5 OOD DETECTION WITH CONTRASTIVE REPRESENTATIONS

We explore the compatibility of our method with contrastive representations. Closely following the
training protocol in Ming et al. (2022b); Khosla et al. (2020), we pre-train ResNet-34 (He et al.,
2016) on CIFAR-100 with the SupCon (Khosla et al., 2020) and CIDER (Ming et al., 2022b) losses
respectively. We train the model using stochastic gradient descent for 500 epochs with batch size
512, Nesterov momentum 0.9, and weight decay 1e-4. The initial learning rate is 0.5 with cosine
scheduling. Table 7 demonstrates, under both SupCon and CIDER settings, ours consistently outper-
forms the Maha, SHE and KNN scores by a large margin, highlighting our method’s effectiveness.

A.6 MORE RESULTS ON LONG-TAILED OOD DETECTION

Continuing from Section 4.4.2, we further test the compatibility of our method to the model that is
pre-trained with class-imbalanced data. In this section, we use the long-tailed versions of CIFAR-10
datasets with the setting in Cao et al. (2019); Zhong et al. (2021) with an imbalanced factor β = 50.
Following (Zhong et al., 2021; Zhou et al., 2020), we pre-train the ResNet-32 (He et al., 2016)
network with β = 50 on CIFAR-10 for 200 epochs with batch size 128, weight decay 2e-4 and
Nesterov momentum 0.9. The start learning rate is 0.1 and decays by a factor of 5 at the 160-th,
180-th epochs. The performance of our methods and baselines are shown in Table 8.

15



Published as a conference paper at ICLR 2024

Table 6: OOD detection results on the ImageNet benchmark with ResNet-50. ↑ indicates larger
values are better and vice versa. The best result in each column is shown in bold.

Method iNaturalist SUN Places Textures Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 54.99 87.74 70.83 80.86 73.99 79.76 68.00 79.61 66.95 81.99
ODIN 47.66 89.66 60.15 84.59 67.89 81.78 50.23 85.62 56.48 85.41
Energy 55.72 89.95 59.26 85.89 64.92 82.86 53.72 85.99 58.41 86.17
ReAct 20.38 96.22 24.20 94.20 33.85 91.58 47.30 89.80 31.43 92.95
DICE 25.63 94.49 35.15 90.83 46.49 87.48 31.72 90.30 34.75 90.77
Maha 97.00 52.65 98.50 42.41 98.40 41.79 55.80 85.01 87.43 55.47
GEM 51.67 81.66 68.87 73.78 79.52 67.34 35.73 86.54 58.95 77.33
KNN 59.77 85.89 68.88 80.08 78.15 74.10 10.90 97.42 54.68 84.37
SHE 45.35 90.15 45.09 87.93 54.19 84.69 34.22 90.18 44.71 88.24
Ours 9.62 97.97 37.75 90.13 48.99 86.60 9.61 97.74 26.49 93.11

Table 7: OOD detection results on CIFAR-100 under contrastive learning. ↑ indicates larger values
are better and vice versa. The best result in each column is shown in bold.

Method SVHN LSUN iSUN Texture Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

SupCon+Maha 14.47 97.31 92.81 67.81 79.33 80.71 50.35 79.79 95.93 54.17 66.58 75.96
SupCon+SHE 28.35 94.34 72.53 78.81 99.18 19.31 72.16 68.07 83.17 75.41 71.08 67.19
SupCon+KNN 38.68 92.61 43.16 91.43 67.89 85.04 58.46 86.65 75.18 77.22 56.67 86.59
SupCon+Ours 28.74 94.58 15.43 97.28 56.97 88.54 46.03 90.11 74.97 77.65 44.43 89.63
CIDER+Maha 18.52 96.36 88.86 71.93 79.55 79.76 54.31 77.89 95.47 52.93 67.34 75.77
CIDER+SHE 28.16 94.09 69.06 82.60 99.69 15.51 75.57 62.84 87.21 72.41 71.94 65.51
CIDER+KNN 22.93 95.17 16.17 96.33 71.62 80.85 45.35 90.08 74.12 67.25 46.23 87.31
CIDER+Ours 15.87 96.55 6.04 98.76 52.45 88.32 31.97 93.31 72.31 75.94 35.73 90.58

A.7 DETAILED CIFAR RESULTS

Table 10 and Table 11 supplement Table 1 in the main text, as they display the full results on each
of the 6 OOD datasets for DenseNet trained on CIFAR-10 and CIFAR-100 respectively. Table 12
supplement Table 5, as it displays the full results on each of the 6 OOD datasets for ResNet50 trained
on CIFAR-100 respectively

A.8 DISCUSSION ON DEEP GENERATIVE MODELS FOR DENSITY ESTIMATION

Since density estimation plays a key role in our method, our work is related to deep generative
models that achieve empirically promising results based on neural networks. Generally, there are two
families of DGMs for density estimation: 1) autoregressive models (Germain et al., 2015; Uria et al.,
2016; Papamakarios et al., 2017) that decompose the density into the product of conditional densities
based on probability chain rule where Each conditional probability is modeled by a parametric
density (e.g., Gaussian or mixture of Gaussian) whose parameters are learned by neural networks,
and 2) normalizing flows (Rezende & Mohamed, 2015; Ballé et al., 2015; Dinh et al., 2016; Grover
et al., 2018; Albergo & Vanden-Eijnden, 2022) that represent input as an invertible transformation of
a latent variable with known density with the invertible transformation as a composition of a series of
simple functions. While using DGMs for density estimation seems to be a valid and intuitive option
for density-based OOD detection, this requires training a DGM from scratch and therefore violates
the principle of post-hoc OOD detection, i.e., only pre-trained models at hand are expected to be
used to detect OOD data from streaming data at the interference stage. Besides, Zhang et al. (2021)
finds that DGMS tend to assign higher probabilities or densities to OOD images than images from
the training distribution. We also explore the possibility of integrating pre-trained Diffusion models
(Peebles & Xie, 2023; Rombach et al., 2022) into zero-shot class-conditioned density estimation
based on Eq.(1) in Li et al. (2023). Unfortunately, the computation is intractable due to the integral.
Although authors in Li et al. (2023) use a simplified ELBO for approximation, there is no theoretical
guarantee that the ELBO can well align with the data density not to mention the computational-
inefficient inference of diffusion models. We will leave this challenge as our future work.
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Table 8: Evaluation on long-tailed OOD detection tasks on CIFAR-10. ↑ indicates larger values are
better and vice versa. The best result in each column is shown in bold.

Method SVHN LSUN iSUN Texture Places365 Average
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

MSP 90.12 78.00 83.62 86.98 53.29 90.00 77.23 77.24 87.42 77.88 78.34 82.02
ODIN 99.43 48.10 78.52 79.10 42.64 88.54 77.22 74.59 84.40 63.45 76.44 70.76
Energy 99.74 35.80 75.83 77.12 42.15 88.29 79.13 71.71 83.78 62.56 76.13 67.10
Maha 80.80 81.86 98.07 67.41 75.34 85.17 74.66 80.83 92.51 68.22 84.28 76.70
MSP+RP 82.64 78.00 67.21 86.98 50.30 90.00 75.80 77.24 80.71 77.88 71.33 82.02
ODIN+RW 88.64 70.74 52.37 84.93 63.97 84.37 82.62 68.93 74.70 79.47 72.46 77.69
Energy+RW 94.10 67.02 54.60 87.21 52.19 89.10 79.65 71.87 75.90 80.42 71.29 79.12
KNN 77.29 86.80 77.90 78.91 50.98 93.54 76.56 88.73 57.70 77.31 68.09 85.06
Ours 28.89 93.65 55.36 85.55 48.08 88.78 54.45 85.29 78.77 79.05 53.11 86.46

A.9 INTRACTABLE LEARNING OF THE EXPONENTIAL FAMILY NATURAL PARAMETER

Given the fact that
∫
p̂θ (z|k) dz = 1, we then have:∫

exp
{
z⊤ηk − ψ(ηk)− gψ(z)

}
dz = 1 (15)

Eq. 15 means that, for any known ψ(·) and g ψ(·), one can learn the natural parameter ηk by solving
the following:

expψ(ηk) =

∫
exp

{
z⊤ηk − gψ(z)

}
dz (16)

Since the right side of Eq. 16 includes the integral over latent feature space that is high-dimensional,
learning the natural parameter of an Exp. Family is said to be intractable.

A.10 THEORETICAL JUSTIFICATION

Let B denotes the Borel σ-algebra on Z and P(Z) denotes the set of all probability measures on
(Z,B), We recall the following definitions:
Definition 3 (Total Variation). Let P1,P2 ∈ P(Z). The total variation(TV) is defined by:

δ(P1,P2) = sup
A∈B

|P1(A)− P2(A)| (17)

We use the following characterization of TV (See Müller (1997) Theorem 5.4):
Lemma 1. Let P1,P2 ∈ P(Z) and let F denotes the unit ball in L∞(Z), i.e.,

F := {f ∈ L∞(Z)| ∥f∥∞ ≤ 1} (18)

then we have the following characterization for the TV distance,

δ(P1,P2) = sup
f∈F

|Ez∈P1f(z)− Ez∈P2f(z)| (19)

Next, let us recall the definition of Kullback–Leibler(KL) divergence,
Definition 4 (KL Divergence). Let P1,P2 ∈ P(Z) be two probability measures with density func-
tions p1 and p2 respectively. The KL divergence is defined by

KL(P1 || P2) :=

∫
z∈Z

p1(z) ln
p1(z)

p2(z)
dz (20)

whenever the above integral is defined.

Next, recall the following standard lemma that computes KL divergence between exponential family
distributions.
Lemma 2 (Relation between Bregman Divergences and KL Divergence (Banerjee et al., 2005)). Let
P1,P2 ∈ P(Z) conform to exponential family distributions with the corresponding density functions
p1 and p2 are parameterized by η1 and η2 respectively, then we have the following:

KL(P1 || P2) = dφ(µ(η1),µ(η2)) (21)

where dφ(·, ·) is the so-called Bregman Divergence.
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Next, we recall the following inequality that bounds the TV by KL divergence. (see Tsybakov
(2008), Lemma 2.5 and Lemma 2.6])
Lemma 3 (Pinsker inequality). Let P1,P2 ∈ P(Z) then we have the following:

δ(P1,P2) ≤
√

1

2
KL(P1 || P2) (22)

Theorem 2. We have the following bound:

Ez∈Pin [p̂θ (z)]− Ez∈Pout [p̂θ (z)] ≤ α (23)

where α := 1
K

∑K
k=1

√
1
2dφ(µ(ηk),µ(ηout))

Theorem 2 bounds the measure D in terms of Bregman divergence between µ(ηk) and µ(ηout).
It can be observed that D will converge to 0 as α → 0. This indicates that the performance of
our method can be guaranteed by a sufficiently discriminative feature space where the averaged
Bergman divergence between ID-class means and OOD data mean is sufficiently large. This theory
is empirically justified by our results in Section A.5 where CIDER are more beneficial to our method
than SupCon with the former learning more powerful feature representations than the latter.

Proof. First, notice that p̂θ (z) ∈ [0, 1],∀z ∈ Z , Therefore, by Lemma 1, we have,

Ez∈Pin [p̂θ (z)]− Ez∈Pout [p̂θ (z)] ≤ δ(Pin,Pout) (24)

Next, recall that pin (z)) = 1
K

∑K
k=1 pin (z|k), let Pkin denotes the probability distribution corre-

sponding to pin (·|k) and by triangle inequality and the definition of total variation we obtain

δ(Pin,Pout) = δ(
1

K

K∑
k=1

Pkin,Pout) = sup
A∈B

∣∣∣∣∣ 1K
K∑
k=1

Pkin(A)− Pout(A)

∣∣∣∣∣ (25)

≤ 1

K

K∑
k=1

sup
A∈B

∣∣Pkin(A)− Pout(A)
∣∣ (26)

=
1

K

K∑
k=1

δ(Pkin − Pout) (27)

Finally, by Lemma 2 and Lemma 3, we have:

δ(Pkin − Pout) ≤
√

1

2
KL(P1 || P2) =

√
1

2
dφ(µ(ηk),µ(ηout)) (28)

Putting all together, we obtain

Ez∈Pin [p̂θ (z)]− Ez∈Pout [p̂θ (z)] ≤
1

K

K∑
k=1

√
1

2
dφ(µ(ηk),µ(ηout)) (29)

and the proof is complete.

A.11 CONTRIBUTION SUMMARY

The contributions of our method are summarised as follows:

• It is always non-trivial to generalize from a specific distribution/distance to a broader dis-
tribution/distance family since this will trigger an important question to the optimal design
of the underlying distribution (♣). To answer this question, we explore the conjugate re-
lationship as a guideline for the design. Compared with other hand-crafted choices, our
proposed lp norm is general and well-defined, offering simplicity in determining its conju-
gate pair. By searching the optimal value of p for each dataset, we can flexibly model ID
data in a data-driven manner instead of blindly adopting a narrow Gaussian distributional
assumption in prior work, i.e., GEM (Morteza & Li, 2022) and Maha (Lee et al., 2018).
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Table 9: Additional results of long-tailed OOD detection on Cifar-100, where we consider two
baselines: (a) the ID training data is with class imbalance and (b) the ID training data is with class
balance. ↑ indicates larger values are better and vice versa.

Baseline Maha GEM KNN Ours
FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑ FPR95↓ AUROC↑

(a) 71.76 75.22 66.82 76.97 58.11 81.75 52.00 82.86
(b) 67.39 77.16 56.67 82.93 60.11 79.22 48.46 84.02

• Our proposed framework reveals the core components in density estimation for OOD de-
tection, which was overlooked by most heuristic-based OOD papers. In this way, The
framework not only inherits prior work including GEM (Morteza & Li, 2022) and Maha
(Lee et al., 2018) but also motivates further work to explore more effective designing prin-
ciples of density functions for OOD detection.

• We demonstrate the superior performance of our method on several OOD detection
benchmarks (CIFAR10/100 and ImageNet-1K), different model architectures (DenseNet,
ResNet, and MobileNet), and different pre-training protocols (standard classification, long-
tailed classification and contrastive learning).

A.12 LIST OF ASSUMPTIONS

The assumptions made in our method are given as follows:

1. The ID class prior is uniform, i.e., p̂θ (k) = 1
K .

2. gφ(·) = const and ψ(·) = 1
2∥∥ · ∥∥

2
p

We note that 1) Assumption 1 is made in many post-hoc OOD detection methods either explicitly or
implicitly (Jiang et al., 2023). Experiments in Section 4.4.2 show that our method still outperforms
in long-tailed scenarios with Assumption 1, and 2) Assumption 2 helps to reduce the complexity
of the exponential family distribution. While it is possible to parameterize the exponential family
distribution in a more complicated manner, our proposed simple version suffices to perform well.

A.13 A CLOSER LOOK AT EXPERIMENTS ON LONG-TAILED OOD DETECTION

As shown in Table 9, all methods that involve the use of ID training data suffer from a decrease in
their averaged OOD detection performance when the ID training data is with class imbalance. Note
that we keep using the network pre-trained on the long-tailed version of CIFAR-100 for fair compar-
ison. Even so, our method consistently outperforms in both scenarios, which implies the robustness
of our method. We suspect the reason is that the flexibility of the norm coefficient provides us with
the chance to find a compromised distribution from the exponential family.
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