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Abstract

Solving image inverse problems (e.g., super-resolution and inpainting) requires1

generating a high fidelity image that matches the given input (the low-resolution2

image or the masked image). By using the input image as guidance, we can3

leverage a pretrained diffusion generation model to solve a wide range of image4

inversion tasks without task specific model fine-tuning. In this work, we propose5

diffusion policy gradient (DPG), a tractable computation method to estimate the6

score function given the guidance image. Our method is robust to both Gaussian7

and Poisson noise added to the input image, and it improves the image restoration8

consistency and quality on FFHQ, ImageNet and LSUN datasets on both linear9

and non-linear image inversion tasks (inpainting, super-resolution, motion deblur,10

non-linear deblur, etc.).11

1 Introduction and Problem Formulation12

Denoising Diffusion Probabilistic Models Ho et al. [2020], Sohl-Dickstein et al. [2015] provide13

tractable solutions to modeling a high quality image distribution. Their modeling and generation14

capabilities have been exploited in a wide range of image inverse problems Dhariwal and Nichol15

[2021], Blattmann et al. [2022], Rombach et al. [2021], Kawar et al. [2022], in which the goal is to16

generate a high quality image that matches the given input image. However, training a diffusion model17

from scratch is time-consuming. An alternative solution is to use the input image as guidance, and18

then generate the target image using a pretrained diffusion generative model through guided diffusion19

Ho and Salimans [2021], Dhariwal and Nichol [2021]. However, when the input guidance image20

is distorted by random noise and becomes inaccurate, solving image inversion problems becomes21

extremely challenging.22

Problem Formulation We now describe the noisy image inverse problem in more details. Suppose23

x0 represents a high quality image and let p0(x0) be its distribution. Let y be a noisy input image,24

which is obtained by feeding a high quality image x0 through an operator A, i.e.,25

y = A(x0) + n, (1)
where n is the distorted random noise. The operator A depends on the image inversion tasks. Notice26

that the operator A is often low-rank and invertible, making the computation of the inverse of y27

impossible.28

Given the noisy input y, we can find the inverse solution x0 by sampling from the conditional distri-29

bution p0(x0|y) = p0(x0)p0(y|x0)
p(y) ∝ p0(x0)p0(y|x0). Sampling from p0(x0|y) requires information30

about the prior distribution p0(x0), i.e., the distribution of the high quality images. This information31

can be obtained via an image generative model such as diffusion models.32

Solving Inverse Problem Using Pretrained Diffusion Models The forward diffusion process that33

turns p0(x0|y) into a Gaussian can be described by the following stochastic differential equation34

Submitted to the DLDE-III Workshop in the 37th Conference on Neural Information Processing Systems
(NeurIPS 2023). Do not distribute.



(SDE), i.e., dx = − 1
2β(t)xdt+

√
β(t)dw, t ∈ [0, T ], where β(t) : [0, T ] 7→ R+ is a monotonicallly35

increasing function and w is a Wiener process. Sampling from p0(x0|y) requires running the reverse36

of the forward diffusion process, i.e., running the following SDE by starting from xT ∼ N (0, I):37

dx =

[
−β(t)

2
x− β(t)∇x log pt(x|y)

]
dt+

√
β(t)dw. (2)

To generate image x0 for given input y by running equation 2, we need to compute the score function38

st(xt,y) := ∇xt
log pt(xt|y).39

Related Work There are currently two lines of work in leveraging diffusion generative models40

to compute the score function st(xt,y) and solve image inverse problems.The first line of work41

utilizes the low rank structure of the operator A, and directly plugs the known information y into42

the estimation process. SDEdit, Blended Diffusion and DiffEdit Meng et al. [2022], Avrahami et al.43

[2022, 2023], Couairon et al. [2023] solve image inpainting and editing tasks by plugging y directly44

into the pixel space of x0 and then use it to predict st(xt,y). To solve a wider range of tasks such as45

super-resolution and deblur, researchers further decompose A using the singular value decomposition46

(SVD) Song et al. [2021a], Wang et al. [2023], Kawar et al. [2022], and plug the known information47

y into the spectral space of x0. However, those plug-in approaches can only work for linear inverse48

problems, and each task requires an SVD decomposition of the operator A. To solve a wider range of49

non-linear image inversion problems, another line of research generate x0 by using the input image50

y as guidance Chung et al. [2022, 2023], Meng and Kabashima [2022], Song et al. [2023c,a], Rout51

et al. [2023], Song et al. [2023b], Hu et al. [2023]. Notice that the score function st(xt,y) can be52

decomposed as follows:53

st(xt,y) := ∇xt
log pt(xt|y) = ∇xt

log pt(xt,y) = ∇xt
log pt(xt) +∇xt

log pt(y|xt). (3)

The first term in equation 3 is known by the pretrained diffusion model ϵθ(xt, t) = ∇xt
log pt(xt).54

The challenge to estimate the second term, i.e., the guidance score function ∇xt
log pt(y|xt) =55

∇xt
Ep0|t(x0|xt) [p0(y|x0)] in each diffusion generation step t, where xt is the intermediate steps of56

the generation process.57

Contributions. We propose a new method to estimate the score function ∇x log pt(y|xt). Our58

estimation can improve the image restoration quality without task specific model fine-tuning. Our59

contributions are summarized as follows:60

(1) By viewing each noisy image xt as a policy and let the predicted image x0 be a state that is61

selected by the policy, we propose diffusion policy gradient (DPG), a new method to estimate the62

score function given the input image y.63

(2) DPG does not need to compute a closed form psuedo-inverse or the spectral decomposition. With64

a pretrained diffusion generative model, we can solve a wide range of image inverse problems without65

model fine-tuning.66

(3) Theoretically, the score function estimated by DPG is more accurate than DPS in the initial67

stages of the generation process. In experiments, DPG can restore more high-frequency details of68

the images. Quantitative evaluations on FFHQ, ImageNet and LSUN image restoration tasks show69

that the proposed method achieves performance improvement in both image restoration quality and70

consistency.71

2 Methodology72

2.1 Computing ∇x log pt(y|xt) as Policy Gradient73

We first decompose the second term∇x log pt(xt|y) in equation 3 as follows:74

∇xt log pt(y|xt) ∝ ∇xt

∫
p0|t(x0|xt)︸ ︷︷ ︸

State Density Function

p0(y|x0)︸ ︷︷ ︸
Cost

dx0 =: s̃t(xt,y). (4)

We notice that the generated image x0 is determined by the intermediate noisy image xt, and75

the conditional probability p0|t(y|x0) is highly related to the reconstruction loss between y and76

the predicted image x0. Moreover, the score function ∇xt
log pt(xt|y) is the gradient direction77

of the expected loss function
∫
p0|t(x0|xt)p0(y|x0)dx0. Therefore, the computation of the score78

function equation 4 is closely related to policy gradient in reinforcement learning, where pt(xt|x0) is79
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the state occupation measure by choosing policy xt, and p0(y|x0) is the cost. The following theorem80

enables us to compute the score function equation 4 from the policy gradient perspective, proof is81

provided in Appendix 5:82

Theorem 1 (Leibniz Rule) For almost all t ∈ [0, T ], we can compute the score function s̃t(xt,y)83

from equation 4 as follows:84

s̃t(xt,y) = Ep0|t(x0|xt)

[
p0(y|x0)∇xt

log p0|t(x0|xt)
]

(5)

2.2 Implementation Details85

Tractable Monte Carlo sampling Computing the score function in equation 5 requires sampling from86

p0|t(x0|xt), the closed form of which is unknown. To approximate p0|t(x0|xt), similar to Chung87

et al. [2023], Song et al. [2023c], we select a Gaussian distribution q0|t(x0|xt) = N (x̂0(xt), r
2
t I) to88

approximate p0|t(x0|xt), where the mean x̂0(xt) is obtained by the Tweedie’s estimation Efron89

[2011], Kim and Ye [2021], x̂0(xt) = 1√
αt

(
xt −

√
1− αtϵθ(xt, t)

)
. We select the variance90

rt = 1
C×H×W ℓy(x), where C,H,W are the channels, height and weight of the x0 and ℓy(x)91

is the reconstruction loss between y and the reconstructed image x̂0. Then, by drawing N samples92

{x(1)
0 , · · · ,x(N)

0 } from distribution q0|t(x0|xt), we can approximate the score function s̃t(xt,y)93

in equation 5 via the Monte Carlo (MC) method Eq0|t(x0|xt)

[
p0(y|x0)∇xt log q0|t(x0|xt)

]
≈94

− 1
2r2tN

∑N
i=1

(
p0(y|x(i)

0 ) · ∇xt
∥x(i)

0 − x̂0(xt)∥22
)

95

Reward Shaping Similar to policy gradient in reinforcement learning, direct MC estimation of96

the policy gradient from suffers from high variance and low convergence rate. We leverage reward97

shaping Ng et al. [1999] by computing a bias term b := Ep0|t(x0|xt) [p0(y|x0)] for each sample i98

using the leave-one-out cross-validation, b(i) := 1
N−1

∑N
j=1,j ̸=i p0

(
y|x(i)

0

)
. We can then improve99

the MC estimation by s̃t(xt,y) = − 1
2r2tN

∑N
i=1

(
(p0(y|x(i)

0 )− b(i))×∇xt
∥x(i)

0 − x̂0(xt)∥22
)

100

Algorithm 1 Diffusion Policy Gradient (DPG)
Require: T , y, ℓ(y,A(·))
xT ∼ N (0, I)
for t = T − 1 to 0 do

x̂0 ← 1√
αt

(xt + (1− αtϵθ(xt, t))

rt ← 1
C×H×W ℓy(x).

ξ(i) ∼ N (0, I),x
(i)
0 ← x̂0 + rtξ

(i), i =
1, · · · , Nmc.

b(i) ← 1
Nmc−1

∑Nmc

j=1,j ̸=i p0(y|x
(i)
0 )

s̃t(xt,y) ← 1
Nmc

∑Nmc

i=1 (p0(y|x
(i)
0 ) −

b(i))∇xt

(
−∥x(i)

0 − x̂0(xt)∥22
)

st(xt,y)← ϵθ(xt, t) + C s̃t(xt,y)
∥s̃t(xt,y)∥2

2

xt−1 ←DDPM(xt, st(xt,y)).
end for
Return image x0

Score Function Normalization Notice that the101

score function computed after reward shaping102

contains only direction information. The ex-103

act norm of the gradient∇xt
log pt(y|xt) is un-104

known. We observe from the classifier free con-105

ditional generation experiments that the norm106

of the conditional score function is almost the107

same as the score of the unconditional gen-108

eration score, and the norm is stable during109

the whole diffusion inference process. There-110

fore, we simply rescale the computed gradient111

into a vector with norm C, i.e., assume that112

∇xt log pt(y|xt) ≈ C · 1
∥s̃t(xt,y)∥2

2
s̃t(xt,y) and113

plug it into equation 3 to compute the score func-114

tion st(xt,y), i.e.,115

st(xt,y) ≈ ϵθ(xt, t) + C · s̃t(xt,y)

∥s̃t(xt,y)∥22
. (6)

Using equation 6, we can solve the image in-116

version problems with the standard DDPM sampling method, which is displayed in Algorithm 1117

118

3 Experiments119

Experiment Setup We test the performance of our proposed algorithm on three datasets: the120

FFHQ 256×256 dataset Karras et al. [2019], the ImageNet dataset Deng et al. [2009] and121

the LSUN-Bedroom dataset Yu et al. [2015]. We consider four types of image inverse tasks:122

(1) Inpainting with a 128×128 masks placed randomly on the figure; (2) 4×super-resolution123

with average pooling; (3) Gaussian deblur with kernel size 61 × 61 and standard devia-124

tion of 3.0; (4) Motion deblur with kernel size of 61 and intensity value 0.5 generated by1.125
1https://github.com/LeviBorodenko/motionblur
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Figure 1: Results on solving linear noisy inverse problems
with Gaussian noise σy = 0.05 on ImageNet and LSUN
Dataset.

We consider that the input image is noisy, i.e.,126

Gaussian noise with variance σy = 0.05 or127

Poisson noise with rate λ = 1.0 is added on128

the input image. For FFHQ experiments, we129

use the pretrained model from Chung et al.130

[2023] (trained on 4.9k images on FFHQ) and131

test the performance of 1k validation set; For132

Imagenet and LSUN experiments, we use the133

unconditional Imagenet and LSUN-Bedroom134

256×256 generation model from Dhariwal135

and Nichol [2021]. We evaluate the perfor-136

mance on 1k ImageNet validation set images137
2 and the full LSUN-Bedroom validation set.138

Evaluations We measure both the image139

restoration quality and consistency compared140

with the ground-truth image. For image141

restoration quality, we compute the Fréchet142

inception distance (FID) between the restored143

images and the ground truth images; For im-144

age restoration consistency, we compute the145

LPIPS score Zhang et al. [2018] (VGG Net)146

between the restored image and the ground truth image. Quantitative evaluation results are displayed147

in Table 1. Selected image restoration samples when the observation noise are Gaussian and Poisson148

are displayed in Fig. 1 and Fig. 5 in the Appendix 8.2. We compare the performance with the149

following methods: Denoising Diffusion Null Space models (DDNM+) Wang et al. [2023], Diffusion150

Posterior Sampling (DPS) Chung et al. [2022] and the Denoising Diffusion Restoration Models151

(DDRM) Kawar et al. [2022]. The key paremeters for different methods are displayed in Appendix 7.152

Analysis First, the FID and LPIPS score of our proposed DPG method is smaller than the DPS153

method in most tasks, indicating that DPG has a better image restoration quality than DPS method.154

This is because the estimation of the score function by DPG is more accurate than DPS, especially155

in the initial stages of the diffusion generation process. Therefore, the shape and structure of the156

image can be recovered in an earlilier stage of the diffusion process, this gives room to recover157

high frequency details in later stage of the image generation. In Appendix 6 we will analyze this158

observation both theoretically and empirically. Notice that DDNM+ and DDRM uses a plug-in159

estimation, i.e., the known pixels in y are directly used in the generation process. Therefore, the input160

noise added on the input degrade the image restoration quality. From Fig. 1, DPG recovers more high161

frequency details of the ground truth image, and therefore receives a smaller LPIPS and FID score in162

most image inverse tasks compared with DDNM+ and DDRM in most experiments. More results on163

Poisson input noise and non-linear image inverse tasks can be found Appendix 8.164

4 Conclusions165 Table 1: Quantitative Results on Linear Inverse Problems
with Gaussian Noise (Bold: best; underlined: second best)

Inpainting Super-Resolution Deblur (Gauss) Deblur (Motion)
Method FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓

FFHQ 1k Validation Set
DPG 22.44 0.181 22.49 0.214 22.29 0.216 24.44 0.223
DPS 33.12 0.168 39.35 0.214 44.05 0.257 39.02 0.242

DDRM 27.47 0.172 62.15 0.294 74.92 0.332 N/A N/A
DDNM+ 27.34 0.173 46.13 0.260 63.19 0.301 N/A N/A

ImageNet 1k Validation Set
DPG 41.09 0.266 31.02 0.293 34.43 0.314 36.15 0.343
DPS 45.95 0.267 43.60 0.340 62.65 0.434 56.08 0.386

DDRM 50.94 0.246 51.77 0.355 72.49 0.345 N/A N/A
DDNM+ 50.50 0.246 51.08 0.362 71.74 0.410 N/A N/A

LSUN-Bedroom Validation Set
DPG 34.32 0.218 31.44 0.262 38.72 0.277 34.44 0.284
DPS 35.91 0.218 37.42 0.284 48.10 0.320 50.09 0.358

DDRM 37.61 0.205 50.96 0.310 59.04 0.353 N/A N/A
DDNM+ 37.03 0.204 50.15 0.296 74.40 0.336 N/A N/A

In this paper, we proposed a new method to166

estimate the score function for solving image167

inverse problems. Our method is robust when168

the input image is perturbed by random noise,169

and can be used for solving non-linear inverse170

problems such as non-linear deblur. Experi-171

ments demonstrate that the proposed method172

can improve image restoration quality in both173

human eye evaluation and quantitative met-174

rics. In the future, we will test the perfor-175

mance of DPG method on non-differentiable176

image inverse tasks such as JPEG restoration.177

2https://github.com/XingangPan/deep-generative-prior/blob/master/scripts/
imagenet_val_1k.txt
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5 Proof of Theorem 1263

To prove Theorem 1, we need to verify the following three condition holds for density function264

pt(xt|y): For fixed x0 and any time τ < T , if the conditional density function p0|t(x0|xt = x)265

satisfy the following conditions: (1) function p0|t(x0|xt = x) is a Lebesgue-integrable of t for each266

x; (2) the gradient∇xt
p0|t(x0|xt),∀x exists for almost all t ∈ [0, T ]; (3) there is an integral function267

g(t) so that ∥∇xt
p0|t(x0|xt)∥ ≤ g(t) We will first verify each condition in Theorem 1 respectively268

and then provide detailed derivations of equation 5.269

(1) To show function p0|t(x0|xt) is integrable of t, we show that p0|t(x0|xt) is bounded. Recall270

that p0(x0) is the probability density function of the high-quality images and let µ0(dx0) be the271

probability measure. Then density function p0|t(x0|xt) can be computed by:272

p0|t(x0|xt) =
µ0(dx0)pt|0(xt|x0)

dx0

∫
pt|0(xt|x0)µ0(dx0)

. (7)

According to [Song et al., 2021b, Eq. (29)], distribution p(xt|x0) = N (xt|
√

α(t)x0, (1− α(t))I) is273

Gaussian, hence pt|0(xt|x0) is bounded. Therefore, p0|t(x0|xt) < 1,∀t is bounded on [0, T ] and is274

hence Lebesgue-integrable of t.275

(2) The gradient of conditional density function∇xtp0|t(x0|xt) can be decomposed by:276

∇xt
p0|t(x0|xt) = ∇xt

(
pt,0(xt,x0)

pt(xt)

)
=

1

pt(xt)2
(∇xt

p(xt|x0) · pt(xt)−∇xt
pt(xt) · p(xt|x0)) .

(8)

According to [Song et al., 2021b, Eq. (29)], distribution pt|0(xt|x0) = N (xt|
√
α(t)x0, (1− α(t))I)277

is Gaussian, therefore, pt(xt) is non-zero ∀xt ∈ R, t < T and the gradient ∇xt
p(xt|x0) exists for278

all xt,∀t. It then remains to prove that gradient ∇xt
pt(xt) exists for almost all t ∈ [0, T ]. Since279

pt(xt) = Ep0

[
pt|0(xt|x0)

]
and density function p(xt|x0) is a Gaussian, as function p(xt|x0) is280

continuous on xt, function pt(xt) is continuous for all t ∈ [0, T ) and hence ∇xtpt(xt) exists for281

almost all t ∈ [0, T ].282

(3) According to equation 8, the norm283

∥∇xtp0|t(x0|xt)∥22 =∥p0|t(x0|xt)∇xt log p0|t(x0|xt)∥22
=∥p0|t(x0|xt)

(
∇xt log pt|0(xt|x0)−∇xt log pt(xt)

)
∥22

≤∥p0|t(x0|xt)∇xt
log pt|0(xt|x0)∥22 + ∥p0|t(x0|xt)∇xt

log pt(xt)∥22. (9)

Notice that pt|0(xt|x0) is a Gaussian distribution, therefore the gradient can be computed by:284

∇xt log pt|0(xt|x0) =∇xt log

(
1

(2π(1− α(t))dx/2
exp

(
−∥xt − x0∥22
2(1− α(t))

))
=− 1

1− α(t)
(xt − x0) (10)

For notation simplicity, denote z = 1√
1−α(t)

(xt − x0). Then the norm of gradient∇xtpt|0(xt|x0)285

can be upper bounded by:286

∥p0|t(x0|xt)∇xt
log p0|t(x0|xt)∥22

(a)

≤ ∥ 1

1− α(t)
(xt − x0)∥22 ≤

2

1− α(t)
dx, (11)

Since α(t) < 1 is continuous, function 2
1−α(t)dx is continuous and bounded on [0, τ),∀τ < T .287

Consider that ∇xt log pt(xt) = ∇xt logEp0

[
pt|0(xt|x0)

]
. Since pt|0(xt|x0) is a Gaussian, we288

can exchange the integral and gradient operator and then obtain ∇xt
logEp0

[
pt|0(xt|x0)

]
=289

1

Ep0 [pt|0(xt|x0)]
Ep0

[
∇xt

pt|0(xt|x0)
]
. Then according to equation 11, the gradient of ∇xt

pt(xt)290

can also be upper bounded by:291

p0|t(x0|xt)

Ep0

[
pt|0(xt|x0)

]∥Ep0

[
∇xtpt|0(xt|x0)

]
∥22 ≤

p0|t(x0|xt)

p(xt)

2

1− α(t)
dx. (12)
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Plugging equation 11 and equation 12 into equation 9, we can upper bound ∥∇xtp0|t(x0|xt)∥22 as292

follows:293

∥∇xtp0|t(x0|xt)∥22 ≤ 2C1(1− α(t))−(dx+1)/2 =: g(t). (13)

Since function g(t) is continuous and bounded on [0, τ ],∀τ < T , function g(t) is integrable. There-294

fore, we can apply the Leibniz rule and compute the score function s̃t(xt,y) in equation ?? as295

follows:296

s̃t(xt,y) =∇xt

(∫
p0|t(x0|xt)p0(y|x0)dx0

)
(b)
=

∫
∇xtp0|t(x0|xt)p0(y|x0)dx0

=

∫
p0|t(x0|xt)

(
1

p0|t(x0|xt)
∇xtp0|t(x0|xt)

)
p0(y|x0)dx0

(c)
=

∫
p0|t(x0|xt)∇xt

log p0|t(x0|xt)p0(y|x0)dx0

=Ep0|t(x0|xt)

[
p0(y|x0)∇xt log p0|t(x0|xt)

]
, (14)

where equation (b) is obtained by exchanging the integration and gradient operator; equation (c) is297

obtained because∇xt log p0|t(x0|xt) =
1

p0|t(x0|xt)
p0|t(x0|xt).298

6 Analysis of Score Function Estimation Accuracy299

First, we will present the following corollary:300

Corollary 1 When rt → 0 and N → ∞, if p0(y|x0) is a Gaussian distribution, then the score301

function 5 is approximately302

s̃t(xt,y) =
1

2σ2
yrt

p0(y|x0)∇xt
ℓ(y,A(x̂0(xt))), (15)

whose direction is the same of the score function in DPS Chung et al. [2023].303

Proof of Corollary 1 is provided in Section 6.1. Corollary 1 shows that the score function s̃t(xt,y) ≈304

∇xtℓ(y,A(x̂0(xt))) used by DPS Chung et al. [2023] is accurate when rt → 0, i.e., in later-stages of305

the diffusion generation process. However, in initial stages of the image generation (i.e., t is large), the306

score function obtained by DPS is inaccurate, therefore, as is shown in Fig. 3, the reconstruction loss307

ℓ(y,A(x̂0(xt)) by running the DPS algorithm in the initial image generation stages (i.e., t ≥ 750)308

larger compared with our proposed DPG method. Fig. 2 plots the intermediate recoverved figures309

during the diffusion process. Since DPG has a more accurate estimation of the guidance score310

function, the shape the sketch of the image is recovered at an earlier stage compared with the DPG311

method (i.e., at time step t = 900, noisy image generated by DPG has the sketch of the chicken,312

while the image generated by DPS is blank.)313

6.1 Proof of Corollary 1314

s̃t(xt,y)

=Eq(x0|xt)

[
p0(y|x0)∇xt

(
− 1

2r2t
∥x0 − x̂0(xt)∥22

)]
=Eq(x0|xt)

[
− 1

r2t
p0(y|x0)

(
(x̂0(xt)− x0)

T ∂x̂0(xt)

∂xt

)T
]

(a)
=Eξ∼N (0,I)

[
− 1

r2t
p0(y|x̂0(xt) + rtξ)

(
ξT

∂x̂0(xt)

∂xt

)T
]

(b)
≈Eξ∼N (0,I)

[
− 1

r2t

(
p0(y|x̂0) + rt∇T

x0
p0(y|x̂0)ξ

)(
ξT

∂x̂0(xt)

∂xt

)T
]

8



(c)
=

(((((((((((((((((((

Eξ∼N (0,I)

[
− 1

r2t
p0(y|x̂0)

(
ξT

∂x̂0(xt)

∂xt

)T
]

+ Eξ∼N (0,I)

[
− 1

rt
∇T

x0
p0(y|x̂0)ξ ·

(
ξT

∂x̂0(xt)

∂xt

)T
]

(d)
=

1

2σ2
yrt

p0(y|x0)Eξ∼N (0,I)

[
(∇x0ℓ(y,A(x0))

T ξ) ·
(
ξT

∂x̂0(xt)

∂xt

)T
]

=
1

2σ2
yrt

p0(y|x0)Eξ∼N (0,I)

[
(ξT∇x0ℓ(y,A(x0)) ·

(
(
∂x̂0(xt)

∂xt
)T ξ

)]
=

1

2σ2
yrt

p0(y|x0)Eξ∼N (0,I)

[
Tr

(
ξξT∇x0ℓ(y,A(x0)) · (

∂x̂0(xt)

∂xt
)T

)]
=

1

2σ2
yrt

p0(y|x0)∇xtℓ(y,A(x0)) (16)

where equality (a) is obtained because q(x0|x0) is a Gaussian distribution; approximation (b) is315

obtained via the first order Taylor expansion and is accurate when rt is small; equation (c) is obtained316

because E[ξ] = 0 and equation (d) is obtained because p0(y|x0) is a Gaussian distribution with317

mean A(x0), then denote ℓ(y,A(x0)) = ∥y − A(x0)∥22 be the reconstruction loss, the gradient318

∇x0p0(y|x0) = − 1
2σ2

y
p0(y|x0)∇ℓ(y,A(x0)).319

7 Key parameters for experiments320

7.1 DPG321

For FFHQ dataset:322

• Gaussian Noise σ = 0.05:323

– Inpainting: N = 5000, C = 180324

– Super-Resolution: N = 800, C = 160325

– Gaussian Deblurring: N = 800, C = 200326

– Motion Deblurring: N = 500, C = 200327

• Poisson Noise λ = 1.0:328

– Inpainting: N = 5000, C = 180329

– Super-Resolution: N = 500, C = 150330

– Gaussian Deblurring: N = 500, C = 150331

– Motion Deblurring: N = 500, C = 150332

• Nonlinear Inversion Task with Gaussian noise σ = 0.05:333

– Phase Retrieval: N = 1000, C = 200334

– Non-Linear Deblurring: N = 500, C = 150335

For ImageNet&LSUN-Bedroom dataset:336

• Gaussian Noise σ = 0.05:337

– Inpainting: N = 5000, C = 250338

– Super-Resolution: N = 500, C = 160339

– Gaussian Deblurring: N = 500, C = 200340

– Motion Deblurring: N = 500, C = 200341

• Poisson Noise λ = 1.0:342

– Super-Resolution: N = 500, C = 200343

– Gaussian Deblurring: N = 500, C = 200344

– Motion Deblurring: N = 500, C = 200345
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7.2 Results on the Image Restoration Process346

Next, we will plot the image restoration process and analyze the effect of better score function347

estimation. We plot the resonctruction loss evolution of DPG (red) and DPS (blue) method in Fig. 2.348

Shaded area depicts the confidence interval. The mean and confidence interval are obtained by taking349

the average of 10 runs. According to Fig. 2, DPG always have a smaller reconstruction error in the

Figure 2: Evolution of the reconstruction error in the image restoration process of super-resolution
(left), Gaussian Deblurring (middle) and Motion Deblurring (Right).

350
earlier stages, and evolution of the reconstruction error is more stable. This leads to the observation351

that DPG can restore image sketches at an earlier stage, which provides room and opportunity to352

improve and generation detailed figures in later stage of the diffusion generation process. The image353

generation results for super-resolution and deblurring tasks are illustrated in Fig. 3.354

8 More Experiment Results355

8.1 Representative Results on Linear and Non-Linear Inverse Problems356

8.2 Experiments with Poisson Noise357

We compare the performance of DPG and DPS when the input image y is distorted by random358

Poisson noise with rate λ = 1. Selected Image inverse results are displayed in Fig. 5.359

Table 3: Results on Out-of-Distribution Image Inverse Problems on USC-SIPI Dataset

SR (4×) Deblur (Gauss) Deblur (Motion)
Method LPIPS↓ PSNR↑ LPIPS↓ PSNR↑ LPIPS↓ PSNR↑

DPG 0.245 22.35 0.259 22.35 0.282 22.15
DPS 0.295 23.03 0.331 21.17 0.392 18.77

DDRM 0.331 25.71 0.417 23.90 N/A N/A

8.3 Results on Out-of-Distribution Inverse Problems360

Following Kawar et al. [2022], we test our algorithm on out-of-distribution image inversion problems.361

We use the unconditional diffusion generation model trained on ImageNet256× 256 dataset to solve362

inverse problems on the USC-SIPI dataset Weber [2006], in which each image does not belong to any363

ImageNet classes. According to Fig. 6, DPG can successfully solve the inversion problem, and the364

restored image contains more high frequency details compared with DPG and DDRM.365
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Figure 3: The image restoration process for super-resolution, gaussian deblurring and motion
deblurring task. 11



(a) Inpainting (b) Super-Resolution (c) Gaussian Deblurring (d) Motion Deblurring

(e) Non-linear Deblurring (f) Uncropping

Figure 4: Examples on solving noisy image inverse problems on ImageNet and LSUN-Bedroom validation set
using our proposed method without task specific model finetuning or training.
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Figure 5: Image Restoration Results on ImageNet with Poisson Noise λ = 1.0.
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Figure 6: Solving noisy image inversion problems on USC-SIPI Dataset with the pretrained ImageNet
Model. Each input has a Gaussian noise σy = 0.05.
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