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Abstract

It has been empirically observed that training large models with weighted cross-entropy
(CE) beyond zero training error is not a satisfactory remedy for label-imbalanced data.
Instead, the recently introduced vector-scaling (VS) loss parameterizes the CE loss in a way
tailored to this modern training regime. The driving force to understand the impact of such
parameterizations on the gradient-descent path has been the theory of implicit bias. For
linear(ized) models, this theory allows to explain why weighted CE fails and how the VS-loss
biases the optimization path towards solutions favoring minorities. However, beyond linear
models the description of implicit bias is more obscure. In order to gain insights on the
impact of different CE-parameterizations in non-linear models, we investigate their implicit
geometry of learned classifiers and embeddings. Our main result characterizes the global
minimizers of a non-convex cost-sensitive SVM classifier for the unconstrained features
model (UFM), which serves as a deep-net abstraction. We also study empirically, both for
the UFM and for deep-nets, the convergence of SGD to this global minimizer observing
slow-downs with increasing imbalance ratios and scalings of the loss hyperparameters.

1. Introduction

In the overparameterized regime, when training continues beyond zero-training error, tra-
ditional techniques, such as oversampling minorities or minimizing weighted cross-entropy
(CE) can be ineffective in mitigating label-imbalances [1, 22]. A growing literature has
proposed several alternatives to guarantee equitable performance across majorities and
minorities [2, 11-15, 18, 27]. Among these, the vector-scaling (VS)-loss [14, 27] introduces
multiplicative hyperparameters on the CE logits. The idea is rooted in the theory of implicit
bias, which seeks characterizing the bias introduced by gradient-based algorithms during
training [9, 17, 23]. Specifically for binary linear models, [14] uncovers a favorable bias of the
VS-loss towards classifiers with larger margin for the minority. However, this leaves open the
question how the VS-loss changes the learnt model in non-linear settings where embeddings
and classifiers are jointly learnt. Unfortunately, implicit bias characterizations for non-linear
models are more obscure compared to the linear case [10, 17] making it unclear how to gain
concrete insights on the way the learnt models affect minorities.

This paper undertakes the investigation of the implicit geometry of classifiers and
embeddings learnt by CE-parameterizations when training on imbalanced data. The notion
of implicit geometry,! pioneered by [20] and further investigated by [3-8, 16, 19, 24-26, 28, 29],

§: equal contribution. The long version of this paper is available on arXiv.
"Tn the literature this is known as neural collapse (NC) [20]. However, [24] showed that training CE loss
on imbalanced data learns a geometry different from that in [20] for balanced data. To draw distinction,
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Figure 1: Geometries induced by CE and its two parameterizations: LDT and CDT. k = 3 classes
(2 minorities); imbalance ratio R = 10; hyperparameters dmaj/dmin = V/R. See Cor. 3 for details.
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is intimately related to that of implicit bias. On the one hand, it is more restrictive as it
focuses only on the classifiers and on the embeddings, rather than the weights of the entire
model. Also, it is insensitive to the specific architecture or dataset. On the other hand, it
offers a more explicit characterization that describes the involved geometry of the weights
and promises to be “cross-situationally invariant” across architectures and datasets [20].

Contributions. We study two parameterizations of the CE loss. First, the class-dependent
temperature (CDT)-loss [27], which is a special case of the VS-loss [14]. Second, the label-
dependent temperature (LDT)-loss, which we introduce as an alternative to the CDT-loss.
For both losses, we investigate the implicit geometry of learnt features and classifiers when
training on label-imbalanced data without explicit regularization beyond zero training error.
To do this, we rely on the unconstrained features model (UFM) [3, 19], a proxy for large
models recently used to study the implicit geometry of the CE loss [8, 24, 28, 29]. Relying
on implicit-bias results, we relax the question of implicit geometry of SGD solutions, to a
question about the geometry of the global minimizers of a non-convex cost-sensitive support-
vector machines (SVM) problem. Our main result characterizes the global minimizers of this
problem (which takes different form for the CDT and LDT losses). The characterization is
explicit in terms of the number of classes, the minority and imbalance ratios, and the loss-
hyperparameters. It also leads to closed-form expressions for the norms and pairwise angles of
the learned geometries. This show explicitly how to best tune the hyperparameters to induce
symmetry in the geometry (see Fig. 1). We also show numerically that SGD training on the
UFM converges to the uncovered geometries. However, we observe that convergence slows
down for increasing values of the imbalance ratio and of the hyperparameters. This motivates
further theoretical and algorithmic investigations towards faster training. Finally, as evidence
of the utility of our geometry characterizations for the UFM, we present preliminary results
on deep-nets and complex imbalanced datasets.

2. Background
The VS-loss is the following parameterization of the CE-loss [14]:
Lys(W;0) := Zie[n] log(1 + EcE[k]: c#yi e_(éyiwyi_6CWC)Th9(Xi)+Lyi_LC)' (1)

Here x;,7 € [n] are n examples, hg(.) is the feature map parameterized by trainable
parameters 6 (weights of the hidden layers of a neural network), y; € [k] are the labels,

they refer to the former and latter as SELI and ETF geometries, respectively. We show that different CE
parameterizations result in yet different geometries. This motivates the term “implicit geometry”.
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and we, ¢ € [k] are the classifier vectors (head of the network) in a k-class classification
setting. The parameters 0., and ¢, c € [k] are multiplicative and additive hyperparameters,
respectively. Setting . = 1,1, =0, Vc € [k] recovers the CE loss.

Prior art: Binary linear classification. In a binary setting with fixed feature map (i.e.
non-trainable @) [14] studies the implicit bias of gradient descent (GD) on binary VS loss.

Proposition 1 ([14]) For fized feature map hg, v; € {1}, and h; := hg(i),i € [n], GD
with sufficiently small learning rate on the binary VS-loss Lys binary (W) = Yie[n] log(1 +
e 00 0w hitia, ), converges (asymptotically in the number of training steps) in direction to the

Cost-Sensitive SVM (CS-SVM) classifiers: argming |[w|3 subj. to v;d,,wih; > 1,i € [n].

Prop. 1 explicitly describes how the hyperparameters affect training asymptotically: the
GD path is implicitly biased towards a classifier that assigns margins to the two classes with
relative ratio 0_1/d41. Thus, tuning 0_1 > 041 if class v = +1 is minority, favors the minority
by assigning larger margin to it. Note, the additive hyperparameters ¢, have no have effect
on the implicit bias asymptotically. Our focus here is on the asymptotic training regime,
hence onwards we restrict attention to the multiplicative hyperparameters o,.

Open problem: Beyond linear models. Prop. 1 is limited to a setting with fixed features.
While an extension of the loss itself to the learned-feature setting is easy to heuristically
derive (see Eqn. (1)), it is an open question to explicitly characterize the effect of the
hyperparameters on the learnt solution: How do they affect the relative margin between
majorities and minorities or between minorities vs minorities?

3. An implicit-geometry view

To better understand the impact of different CE modifications, we study their implicit
geometry, i.e. the geometry of classifiers and embeddings learned (asymptotically in the
number of training steps) by GD. For this, we adopt the unconstrained features model (UFM)
[3, 19]. Let Wgui = [W1, wa, -, Wi]| and Hgx, = [hi, ha, - h, ] be the matrix of k classifier
weights and n feature embeddings corresponding to each example in the training set. Here,
d > k-1 is the feature dimension. We assume each class ¢ € [k] has n. > 1 examples so
that ¥ ce(x] ne = n. Without loss of generality, we assume examples are ordered, i.e. samples
i=1,...,n1 have label y; = 1 and so on. In the UFM the features h;,i € [n] are trained
jointly with the weights w,, c € [k] and are trained unconstrained, i.e. without abiding by
an explicit parameterization by some weight vector @ (as in (1)). Previous works use the
UFM to derive the implicit geometry of CE loss on balanced (e.g. [3, 19, 28, 29]) and on
imbalanced data [24]. Instead, we study different parameterizations of the CE loss.
CDT/LDT losses on the UFM. Consider training the UFM by minimizing the following
two parameterization of the CE loss:

ECDT(WTH7 6) - Zze[n] log (1 + Zc¢yi e_((syiwyi_éch)Thi)’ (2&)
ﬁLDT(WTHy 6) = Zze[n] log (1 + Zc¢yi e_((syi (W’yi_Wc))Thi)_ (2b)
Both losses are parameterized by a vector § = [(51, 09,y ... ,6k]T € R¥ of positive multiplicative

hyperparameters. The CDT loss (2a) was previously introduced by [14, 27] (note is a special
case of (1) when ignoring ¢.). Here, we also introduce the LDT loss (2b) as an alternative
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parameterization: CDT associates the hyperparameters § with the class label of the classifier
vectors w,, while LDT assigns the same § to the label of the feature vector h;.
Unconstrained-features cost-sensitive SVM. We minimize the losses in (2) without
explicit regularization. Note that in the UFM, minimization over the embedding map is
not parameterized in terms of 8, as say in (1). Thus, the minimization is (joint) over
classifiers W and embeddings H. Specifically, consider performing this minimization using
gradient flow (i.e. GD with infinitesimal step-size.) Then, by interpreting the UFM as
a two-layer linear model (e.g. see [24]) it can be shown following [17] that gradient flow
will converge (asymptotically in time) in direction to a KKT point of the following two
non-convex minimizations for CDT and LDT losses respectively:

Vn‘}iﬁ W%+ [H|% subj. to (8, Wy, —dewe) hy > 1, i€ [n],c#y;, (3a)
Vn‘}iﬁ W%+ [H|: subj. to 8, (wy, —we) h;>1, ie[n],c#y. (3b)

Note the resemblence of the above to the CS-SVM minimization of Prop. 1. But unlike in
Prop. 1, the problems here are non-convex since minimization is also over H. We refer to
(3) as CS-SVM. Our main result characterizes their global solutions.

4. Global structure of the CS-SVM

In this section, we use Myxr = [p1,, ] to denote the mean-embeddings of H, i.e.
te = (1/ne) Yiy,=c i, Ye € [k]. For simplicity, we focus on a (R, p)-STEP-imbalanced setting,
where we have pk minority classes with np;, samples each, and pk = (1 - p)k majority classes
with Rnmin samples. In this case, it is reasonable to assume that & also shares this STEP
structure, i.e. for majorities d. = dmaj > 0 and for minorities 6. = dmin > 0. We describe the
geometry of the unconstrained CS-SVM solutions (W*, H*) of (3a) and (3b) in terms of an
encoding matrix and a geometry induced by the SVD factors of this matrix.

Definition 1 For hyperparameters é € R]j, minority fraction p (p:=1-p), k classes, and

a rational imbalance ratio R 2, the (8, R)-Simplex-Encoding Label (SEL) matriz and the
corresponding Simplex-Encoded-Labels Interpolation (SELI) geometry are defined as follows:

(a) (8, R)-SEL matrix. Define Bjyy such that Ve, j € [k],

(e, 5] = {60_1 (1-02/Suqs?) sc=]

[

_50_1 (6;2/Zc’e[k] 5212) , CF .] .

Choose o € N such that aR € N, and let n:= ak(Rp+p). Then, the (8, R)-SEL matriz, along
with its SVD, is defined as follows,

kan = [Elzﬁk ® ]lgR E(ﬁk+1):k®]lg] =VA [U,{:ﬁk®]l£R U?ﬁk&l):k@ﬂg] ) (4)
where A € Rgrk_l)x(k_l) is a diagonal matriz and U, 'V € Ry, -1y have orthonormal columns.

(b) (8, R)-SELI geometry. The classifier and mean-embeddings matrices W, M e R>¥
follow the (8, R)-SELI geometry if the following conditions are satisfied:

WIW o« VAVT, MTM o« UAUT, and WM oc VAUT = 2. (5)

This assumption is not restrictive since under STEP imbalance R := nmaj/Mminor for integers nmaj, Nminor-
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The (4, R)-SELI geometry is specified by the SVD factors of the corresponding SEL matrix.
The first two properties describe the relative norms and pair-wise angles of classifiers/mean
embeddings, and the third one determines the relative margins between classes. The pattern
of the (8, R)-SEL matrix is determined by R and 6, as well as p and k. We drop the latter
dependence in the name, since they are understood from context and our results focus on
the role of R and 8. When & = 1, Z takes a special form: it reduces to a matrix with entries
1-1/k and -1/k, which [24] calls the SEL matrix and shows that it characterize the implicit
geometry of the CE loss for imbalanced data (aka SELI geometry) [24]. Further, considering
the balanced case R =1, recovers the ETF geometry. Our definition is strictly more general
allowing us to describe the implicit geometry learned by CDT/LDT losses. We note that
77 diag (6) M1 = 0. Thus, rank(Z) = k - 1.
With these we are ready to state our main result.

Theorem 2 Suppose d > k-1 in an (R, p)-STEP imbalance setting. Let (W*,H*) be
any minimizers of either (3a) or (3b), and M* be the optimal class-wise mean-embeddings.
Then, all embeddings collapse to their class means, i.e., Yi € [n], h} = Ky, Also,

(i) [CDT (3a)] (W*,M*) follow the (8, R)-SELI geometry.

(i) [LDT (3b)] (W*, M* diag (8)) follow (1, R)-SELI geometry, where R := R((Smin/émaj)Q,
provided R is rational.?

Thm. 2 describes the geometry of both classifiers and embeddings that solve the non-
convex CS-SVM for either CDT or LDT. From statements (i) and (ii) we can find the optimal
classifiers and mean-embeddings, their norms (up to a constant) and pair-wise angles in
terms of the geometry in Defn. 1. It is also easy to see that the geometry only depends on
the ratio A := 0maj/dmin. The special case of § = 1}, and R =1 recovers the SELI [24] and
ETF [20] geometries. For general R and tuning of 4, the LDT/CDT geometries are different
than both the SELI and ETF geometries. We visualize changes in the geometry in Fig. 1.

Closed-form geometry formulas. Explicit computation of the SVD factors of the
(0, R)-SEL matrix yields closed-form expressions for the norms and pair-wise angles of the
mean-embeddings and classifiers. These formulas can then be evaluated in the limit R — oo
giving further insights for mitigating collapse of minority classifiers; see long version for
details. (The collapse of minorities as R — oo is studied in [3]).

Special tunings. Two notable special cases arise when setting d. = \/n., as shown below.

Corollary 3 Set A := 0maj/Omin = V'R. Then, the followings hold: (i) For CDT loss, each
feature embedding hy perfectly aligns with its corresponding classifier wy, , i.e. cos(w;i,hf ) =

1,Vie[n]. (i) For LDT loss, (W*,M*diag (8)) follows the ETF geometry.

Note the LDT geometry becomes exactly the same (for all R) as the perfectly symmetric
ETF geometry modulo a scaling on the norms of the embeddings (minority norms are larger
than majorities by a factor of V/R). For the same tuning, the CDT geometry aligns perfectly
the embeddings of each class with the corresponding classifier. See Fig. 1 for an illustration.

3This a technical requirement. In our experiments we apply the same formulas even when R is not rational.
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Numerical experiments. We investigate convergence of SGD trajectory for unregularized
CDT/LDT-losses in (2a)/(2b) to the implicit geometries in Thm. 2 for both UFM and deep-
nets with standard datasets. In both cases, we parameterize A = RY with v € [-1.5,1.5]. For
each choice of v and loss function, we compute the average norm ratios and angles between
each pair of majority and minority classifiers/embeddings and compare it to CDT/LDT
geometries. Fig. 2 shows the results for (R = 10, p = 1/2)-STEP imbalanced UFM, while
Fig. 3 in the SM shows the results for ResNet-18 model on imbalanced CIFAR-10 dataset.
The details of the experiments are given in the SM. Additional theoretical and experimental
results are available in the long version of the paper.
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Figure 2: Properties of the solutions found by SGD (markers) trained on the CDT/LDT losses in
(2a)/(2b) versus the global minimizers of the CS-SVM in (3a)/(3b) as given by Thm. 2 (solid line).
The dashed line marks ETF [20]. Purple markers distinguish the cases where the model did not
enter a zero-training-error regime. Refer to SM for more details.

Concluding remarks on experiments. In our empirical studies, we observe the following:
the level of convergence accuracy that can be reached in practical SGD training generally
varies between architectures, data models and the loss that being optimized. For example,
for CDT loss, we find that the classifier geometry converges very well to its prescribed limit,
but the same is not true for the embeddings geometry for the same loss or for the classifiers
geometry for the LDT. Consistently, the experiments in [20, 24] show different levels of
convergence between different metrics (e.g. classifiers vs embeddings, norms vs angles) and
different architectures/datasets. Similar to observations in [24] of slow convergence under high
imbalance ratios, our results indicate worse convergence under “strong” parameterizations of
CE as well. Despite these limitations, our results indicate that our geometry characterizations
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are remarkably well-predictive of the behavior in complex deep-nets. Specifically accounting
for the fact that classifiers and embeddings are by-products of training in very complex
environments, we find the level of agreement of the empirically measured angles/norms to
the respective (closed-form) (8, R)-SELI geometry values rather striking.
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Appendix A. Experiment details

In this section, we provide additional details and discussions on our experiments.

A.1. UFM experimental setting

We investigate convergence of SGD trajectory for unregularized CDT/LDT loss in (2a)/(2b)
to the implicit geometries in Thm. 2. We train the UFM as a two-layer network (no biases)
with n = 275 inputs, d = 20 hidden units and k = 10 classes, trained on the basis vectors in
R™. We measure the properties (i.e norms and angles) of the trained geometry and compare
them with the statement in Thm. 2. The labels for each vector are chosen such that the
dataset is (R =10, p = 1/2)-STEP imbalanced, with nmyin = 5, and choose A = @ = R" with
v € [-1.5,1.5]. Models are trained with constant learning rate for 6000 epochs. We normalize
4 so that ]l;‘gé = k, since we empirically observe for a fixed ratio A that the convergence
speed depends on the magnitude of 4.

For the trained classifiers and embeddings, we compute: (1) squared ratios of majority-
minority norms, (2) cosine of angles between pairs of majority-majority, minority-minority,
majority-minority classifiers and mean-embeddings. For each choice of v and loss function,
we compute each metric on all the respective pairs, and compare their average to the values
predicted by Thm. 2. As A gets far from 1, some models fail to achieve zero-training-error
in this setting: We differentiate these cases with the purple (rather than green) markers.

A.2. Deep-net experimental setting

We train a ResNet-18 on imbalanced CIFAR-10 with R = 10. We train the model for 350
epochs with an initial learning rate of 0.1 reduced at epochs 116 and 232 by a factor of 10,
with a batch size of 128. Following the same setting as in [20, 24], momentum and weight
decay are set to 0.9 and 107° respectively. Similar to UFM, we normalize & to sum to k. At
the end on the training, we compute the same metrics described in Sec. A.1.

A.3. Discussion on experimental results

Figs. 2 and 3 illustrate the empirical geometry vs the prediction of Thm. 2. The convergence
to the theoretical values is more challenging for the deep-net models, particularly for large
|| Further, the theory gives a more accurate prediction of the mean-embeddings’ geometry
in case of the LDT, and of the classifiers’ in case of the CDT loss. This is consistent for both
UFM and deep-net models. For LDT, the prediction is well followed by UFM and ResNet
empirics around the special case of v = 0.5, with an exception of the majority classifier angles
in the ResNet experiments. Also, as predicted by the theorem, for v=0.5 (A = \/}_%), the
LDT geometry is the Simplex ETF, up to a scaling on the features: In Figs. 2 and 3 the LDT
cosine plots intersect with the ETF angles, i.e. —1/(k - 1), thus achieving equiangularity
and maximal angular separation. The classifier norm ratios also attain the value 1, which
along with the equiangularity describe an ETF structure for classifiers.

Remark 4 In our experiments with CDT and LDT, we center the embeddings before
computing the geometrical quantities like norms and angles. This is consistent with centering
performed for experiments with balanced data by [21, 24, 29], although the exact centering
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Figure 3: Same as Fig. 2, instead with’ResNet—18 trained on (10, 1/2)-STEP imbalanced CIFAR-10.

vector is now as discussed in the section below. Further, even in the UFM experiments with
LDT, we observe that the centered mean embeddings follow the predicted implicit geometry
more closely. Thus, we employ the centering as shown in (7).

CDT centering: Classifiers that follow the geometry in Thm. 2, w}, c € [k] are centered
around zero after some re-weighting, i.e. Y cx] We./dc = 0. The embeddings h;,i € [n] are
also not centered around zero in general. Instead, it holds that

1
> —h; =0.
ie[n] "

(6)

Note that this reduces to Yje[, h; for balanced data, and remains unchanged for any choice
of the hyper-parameters §. Eqn. (6) is also equivalent to Y.z pre = 0, with p, c € [k] the
mean embeddings of each class.

LDT centering: The optimal classifiers and features (W*,M*D) follow the (1}, R)-SELI
structure. Thus (see [24, Sec. B.1.4]), the classifiers w}, ¢ € [k] are centered around zero.
However the embeddings are centered around zero after a reweighting that depends both on
dc and n., ce [k]. Specifically, ¥ c[x) dcprr = 0, or equivalently,

>

i€[n]

Oy
—Yihi =0.
Ty,

(7)
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Figure 4: Convergence of UFM parameters to the optimal solution in Thm. 2, trained by SGD on
CDT loss. Larger imbalance ratio R and -y can lead to slower convergence to the expected structure.

A.4. Optimization Concerns

In our experiments, we observe that large R and A affect the convergence negatively.
This observation is also made in [24]. We compare the convergence speed for different
values of R and v in Fig. 4. To measure the distance of the SGD solution to the predicted
implicit geometry at each epoch, we compute || Hgigl\ - szviigil

. T
| for centered mean embeddings and | |\$TM\| ||W*TM*|\ |

| | for the classiﬁer weights,

| for logits,

MTM Y

I T8N~ e
where (W* M*) are as described by Thm. 2.

In addition to the worse convergence, as suggested by Fig. 3, larger |y| values make
it more challenging to reach models with zero training error by SGD. In particular, for a
ResNet-18 model trained with CDT on imbalanced CIFAR-10, Fig. 5 illustrates how larger
~ values significantly reduce the training accuracy of minority classes, further emphasizing
the difficulties with optimization in this setting.

Total Accuracy Minority Classes Majority Accuracy

1.0 1.0 1.0

0.9 0.9 0.9 /,.W—-/

0.8 ‘ 0.8 0.8

0.7 M 0.7 0.7
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0.5 0.5 0.5 — y=05
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0.3 0.3 0.3 — =10
0.2 0.2 0.2 =— y=-10
0.1 0.1 0.1 — =
0.0 0.0 0.0 y==

Epochs Epochs Epochs

Figure 5: Balanced training accuracy during training of ResNet-18 models on (R = 10, p=1/2)-
STEP imbalance CIFAR10 dataset with CDT loss using a range of v values.
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