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Abstract

Diffusion models are state-of-the-art methods in
generative modeling when samples from a target
probability distribution are available, and can be
efficiently sampled, using score matching to es-
timate score vectors guiding a Langevin process.
However, in the setting where samples from the
target are not available, e.g. when this target’s
density is known up to a normalization constant,
the score estimation task is challenging. Previous
approaches rely on Monte Carlo estimators that
are either computationally heavy to implement
or sample-inefficient. In this work, we propose a
computationally attractive alternative, relying on
the so-called dilation path, that yields score vec-
tors that are available in closed-form. This path
interpolates between a Dirac and the target distri-
bution using a convolution. We propose a simple
implementation of Langevin dynamics guided by
the dilation path, using adaptive step-sizes. We
illustrate the results of our sampling method on a
range of tasks, and shows it performs better than
classical alternatives.

1. Introduction
Drawing samples from a target distribution is a key prob-

lem in statistics. In many settings, the target distribu-
tion is known up to a normalizing constant. This is often
the case for pre-trained energy-based probabilistic mod-
els (Murphy, 2023, Chapter 24), whose parameters have
already been estimated (Hyvärinen, 2005; Gutmann and
Hyvärinen, 2012; Hinton, 2002; Gao et al., 2020). Another
example comes from Bayesian statistics, where the poste-
rior model over parameters given observed data is classi-
cally known only up to a normalizing constant (Wasser-
man, 2010, Chapter 11).
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Classical methods for sampling from such target distri-
butions, such as simulating a Langevin process with par-
ticles, are known to struggle when the target has many
modes. Typically, the particles are first drawn to certain
modes and then take exponential time to find all other
modes (Bovier et al., 2000; 2004; 2005). Many success-
ful, alternative methods rely on a path of distributions,
chosen by the user to steer the sampling process to reach
all the modes and hopefully converge faster (Neal, 2001;
Geyer, 1991; Marinari and Parisi, 1992; Dai et al., 2020).
An instance of such a method is Annealed Langevin Dy-
namics (Song and Ermon, 2019; 2020), that are simple
to implement and are popular in Bayesian inference (Dai
et al., 2020, Eq. 2.4), in global optimization (Geman and
Hwang, 1986), and more recently in sampling from high-
dimensional image distributions with many modes (Song
and Ermon, 2019; 2020; Song et al., 2020). In the latter
application, Annealed Langevin Dynamics have achieved
state-of-the-art results by following a specific path of dis-
tributions, obtained by interpolating the multi-modal target
and a standard Gaussian distribution with a convolution.

Yet, despite its promising geometry, this convolutional path
of distributions is not readily usable for Annealed Langevin
Dynamics, whose implementation requires the score vec-
tors of the path which are not available in closed-form. A
number of estimators for these score vectors have recently
been developed when the target distribution is only known
by its unnormalized density, yet these estimators can be
computationally heavy (Huang et al., 2024a) or sample-
inefficient (Huang et al., 2024b).

In this work, we introduce the dilation path, which is a
limit case of the popular convolutional path in which the
score vectors are available in closed-form. Our approach
circumvents alternatives that require Monte Carlo simula-
tion (Huang et al., 2024b; He et al., 2024; Grenioux et al.,
2024; Saremi et al., 2024; Akhound-Sadegh et al., 2024)
and is instead exceedingly simple to implement.

2. Background
Langevin dynamics The Unadjusted Langevin Algo-
rithm (ULA) is a classical algorithm to draw samples from
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a target distribution π. It is written as noisy gradient ascent

xk+1 = xk + hk∇ log π(xk) +
√

2hkϵk (1)

with step sizes hk > 0 and random noise ϵk ∼ N (0, I).
It can be viewed as a time-discretization of a Langevin dif-
fusion (Borodin, 2017), where time is defined as t = khk

in the limit of null step sizes hk → 0. The rate of con-
vergence is determined by constants (e.g. Log-Sobolev,
Poincaré) that describe the geometry of the target distri-
bution (Vempala and Wibisono, 2019): for multimodal dis-
tributions such as Gaussian mixtures, the constant degrades
exponentially fast with the distance between modes (Hol-
ley and Stroock, 1987; Arnold et al., 2000), making con-
vergence with given precision too slow to occur in a rea-
sonable number of iterations. Yet, Langevin dynamics
remain a popular choice for their computational simplic-
ity: simulating Eq. 1 requires computing the score vector
∇ log π(xk) which does not depend on the target’s normal-
izing constant. Hence, the Langevin sampler can be used
to sample target distributions whose normalizing factor is
unknown, and this property is unique among a broad class
of samplers (Chen et al., 2023).

Annealed Langevin dynamics Many heuristics broadly
known as annealing or tempering, consist in using the
Langevin dynamics to sample from a path of distributions
(µt)t∈R+

instead of the single target π, in hope that these
intermediate distributions decompose the original sampling
problem into easier tasks for Langevin dynamics. We
specifically consider

xk+1 = xk + hk∇ logµk(xk) +
√

2hkϵk, (2)

where the target now moves with time. This process is
known as Annealed Langevin Dynamics (Song and Ermon,
2019), and is sometimes combined with other sampling
processes based on resampling (Dai et al., 2020, Eq. 2.4) or
that directly simulate the path (µt)t∈R+ (Song et al., 2020,
Appendix G).

Convolutional path Recently, a path obtained by taking
the convolution of the target distribution π and an easier,
proposal distribution ν

µt(x) =
1√

1− λt

ν

Å
x√

1− λt

ã
∗ 1√

λt

π

Å
x√
λt

ã
(3)

has produced state-of-the-art results in sampling from high-
dimensional and multimodal distributions (Song and Er-
mon, 2019). Here, ν is typically a standard Gaussian
and λ : R+ → [0, 1] in an increasing function called
schedule (Chen, 2023): popular choices use exponential
λt = min(1, e−2(T−t)) for some fixed T ≥ 0, or lin-
ear λt = min(1, t) functions (Gao et al., 2023, Table

1). Note that the exponential schedule is initialized at
λ0 = e−2T : choosing T to be big (resp. small) initial-
izes the path of guiding distributions nearer to the proposal
(resp. target). Recent work has empirically observed that
this convolutional path may have a more favorable geome-
try for the Langevin sampler than another well-established
path (Phillips et al., 2024), obtained by taking the geo-
metric mean of the proposal and target distributions (Neal,
1998; Gelman and Meng, 1998a; Dai et al., 2020). How-
ever, using the convolutional path in practice requires com-
puting the score vectors ∇ logµt(·) which has been at the
center of recent work.

Computing the score with access to samples In ma-
chine learning literature, the target distribution is often
accessed through samples xπ ∼ π only. These can be
interpolated with samples from the proposal distribution
xν ∼ ν to produce samples from the intermediate distri-
butions µt (Albergo et al., 2023),

xt =
√
1− λtxν +

√
λtxπ . (4)

These samples can then be used to evaluate loss func-
tions whose minimizers are estimators of the scores
∇ logµt (Hyvärinen, 2005; Song and Ermon, 2019). Re-
cent work provides theoretical guarantees that the esti-
mation error deterioriates favorably, that is polynomially
as opposed to exponentially, with the dimensionality of
the data and separation between modes (Qin and Risteski,
2023).

Computing the score with access to an unnormalized
density In classical statistics, it is instead assumed that
the target distribution is accessed through its unnormalized
density, not its samples. A novel way to compute the scores
has been at the center of recent efforts to use the convolu-
tional path in this setup (Huang et al., 2024b; He et al.,
2024; Grenioux et al., 2024; Saremi et al., 2024; Akhound-
Sadegh et al., 2024). Overwhelmingly, these works use an
explicit Monte Carlo estimator of the score

∇ logµt(x) =
e−(T−t)

1− e−2(T−t)
Ey∼mt

[
y − eT−tx

]
, (5)

mt(y|x) ∝ π(y)×N (y; eT−tx,
√

e2(T−t) − 1I) (6)

obtained by replacing the expectation with an average over
finite samples. These samples are drawn from a blurred
version of the target mt(y|x), specifically the (normalized)
product of the target and proposal distributions.

Using this estimator presents three important challenges:

1. The number of sampling procedures

Each query of the score Eq. 5 at a certain x requires
running a new sampling procedure Eq. 6. For exam-
ple, each run of the algorithm Eq. 2 will query the
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score function at each iteration, and will require run-
ning as many sampling procedures.

2. The complexity of sampling procedures

Standard sampling procedures for Eq. 6 are slow to
converge. For example, He et al. (2024) use the rejec-
tion sampling algorithm whose computational cost is
exponential in the dimension. Alternatively, the Unad-
justed Langevin Algorithm Eq. 1 is guaranteed to be
fast-converging when the sampled distribution Eq. 6
is log-concave, which is the case whenever the Gaus-
sian distribution dominates the target. This is achieved
by a small enough T in Eq. 5- 6, or equivalently
by an initial schedule λ0 = e−2T close enough to
one so that the sampling process starts near the tar-
get (Huang et al., 2024b). Some works suppose that
small enough T can be found as as a hyperparameter
of the problem (Huang et al., 2024a; Grenioux et al.,
2024). Using that value, Grenioux et al. (2024) es-
timate the score Eq. 5 over a window near the tar-
get λt ∈ [e−2T , 1]. To estimate the score nearer the
proposal, Huang et al. (2024a) use the distribution at
e−2T as the new target, and repeat. The computa-
tional complexity of such a procedure is prohitive: it
scales exponentially in the number of windows (we
verify this in Appendix A). Some sampling methods
will altogether hide the difficulty of sampling a non
log-concave distribution Eq. 6 by supposing access to
an oracle (Lee et al., 2021; Chen et al., 2024).

3. The complexity of the estimator

Even if we were able to efficiently sample Eq. 6, the
estimator Eq. 5 introduces an estimation error in the
sampling process that can scale exponentially with the
dimensionality of data points (Huang et al., 2024b).

Importantly, these three challenges disappear when the
score vectors ∇ logµt(·) are analytically computable.
Finding a path that has both the favorable the geometry of
the convolutional path and analytically computable score
vectors is an unresolved problem.

3. The dilation path
We propose to use the limit of a Dirac proposal, anticipat-
ing that it will simplify the convolution which defines the
path and consequently the score. We call the corresponding
path a dilation path

µt(x) =
1√
λt

π

Å
x√
λt

ã
. (7)

Notably, the scores are now analytically available

∇ logµt(x) =
1√
λt

∇ log π

Å
x√
λt

ã
. (8)

We therefore recommend this path for practitioners and
verify its simplicity in the experiments of section 4. We
also note that considering a Dirac proposal has been known
to simplify the analytical equation of a path from an-
other problem known as Dynamic Optimal Transport or
Schrödinger bridge. In that setup, the goal is to find a path
that looks random (is close in Kullback-Leibler divergence
to a Wiener process) but with fixed distributions at the start
and end (proposal and target). Considering a Dirac pro-
posal simplifies the equations of that path which is then
given the name of Föllmer path (Ding et al., 2023; Huang
et al., 2021; Jiao et al., 2021).

To better understand the geometry of the dilation path, we
write the convolutional path between the proposal and tar-
get distributions assuming a fairly general parametric fam-
ily and then consider the special case of a Dirac proposal.
We recall the following in Appendix C

Proposition 1 (Gaussian mixture parametric family) Sup-
pose the proposal is a Gaussian ν := N (·,0,Σ0) and
the target is a mixture of M Gaussians with means
(µm)m∈J1,MK, covariances (Σm)m∈J1,MK, and positive
weights (wm)m∈J1,MK that sum to one.

The convolutional path Eq. 3 produces distributions πt

that conveniently remain in the Gaussian mixture paramet-
ric family. Their weights are constant wm(t) = wm and
their means and covariances interpolate additively the pro-
posal’s and target’s, as µm(t) =

√
λtµm and Σm(t) =

(1− λt)Σ0 + λtΣm.

In the case of a Dirac proposal, we have instead Σm(t) =
λtΣm.

Along the interpolation between a Dirac and the target, the
dilation path remains a mixture with constant weights, and
only the means and covariances are updated. Preserving
the mode weights along the path is a desirable feature for at
least two reasons. First, it has been observed that the score
vector used to simulate Eq. 2 is known to be rather blind to
mode weights when the modes are far apart (Wenliang and
Kanagawa, 2021). Second, it is reported that Langevin dy-
namics are slow-converging when initial and target weights
differ, which is sometimes referred to as “mode switch-
ing” (Phillips et al., 2024).

Numerical implementation A naive implementation of
the annealed Langevin sampler in Eq. 2 with the dilation
path is numerically unstable: distributions pλt when λt is
close to zero have steep modes around which the gradient
is numerically infinite. We verified in simple simulations
that the particles diverge. To mitigate this effect, we use
the effective numerical trick of an adaptive step size h to
control the magnitude of the gradient term h∇ log πk(x)
in Eq. 2.
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Recent works have adapted the step size to time, so that
hk ∝ 1/E[∥∇ log πk(xk)∥2], empirically observing that it
decreases with the number of iterations (Song and Ermon,
2019, Section 4.3) (Song and Ermon, 2020, Section 3.3).
Their motivation is to roughly equalize magnitudes of the
gradient and noise terms in Eq. 2: hk∥∇ log πk(xk)∥ ≈√
2hk∥ϵk∥ ≈ 1/E[∥∇ log πk(xk)∥]. In practice, they use

a proxy for E[∥∇ log πk(xk)∥2] which is not computed.

Instead, we use a finer adaptation, where the step size de-
pends on time as well as the current position of a parti-
cle hk(xk) ∝ 1/∥∇ log πk(xk)∥, or a bounded version in
practice (Leroy et al., 2024, Eq. 3.1). Our motivation is to
normalize the magnitude of the gradient term in Eq. 2. Note
that adapting the step size in this way alters the stationary
distribution of the sampling process. A corrective step can
be used (Leroy et al., 2024, Eq. 2.14) but it involves a
Hessian ∇2 log π(·) which is expensive to compute in high
dimensions and is outside the scope of this paper.

4. Experiments
In this section, we numerically verify convergence us-
ing the dilation path. We constrast it with another well-
established path — obtained as the geometric mean of
the proposal and target — whose scores are also avail-
able so that the computational budget for running Annealed
Langevin Dynamics Eq. 2 is comparable.

Convergence metrics To measure the discrepancy be-
tween the distribution the particles pk realizing the sam-
pling process Eq. 2 and the target distribution π, we use
(approximations of) a number of statistical divergences.
Among them, we distinguish the Kernel Stein Discrep-
ancy (KSD) (Liu et al., 2016; Chwialkowski et al., 2016;
Gorham and Mackey, 2017), defined as

KSD2(pk, π) = E(x,x′)∼pk⊗pk
[K(x,x′;∇ log π,K ′)]

(9)

where K and K ′ are kernels defined in Appendix D. Impor-
tantly, the KSD can be approximated using what is avail-
able: samples from pk and the score of the target π.

The other statistical divergences we use are abbreviated as
(KL, revKL, MMD, OT) and are defined in Appendix D.1.
Their approximations require access to samples from both
the process pk and the target π, which is not realistic as
samples from the target are unavailable in practice. How-
ever, in our synthetic experiments, we are able to track
these metrics.

We note many of these statistical divergences can be blind
to mode coverage, which means that a sampling process
can find few modes of the target π while ignoring other
modes, and still produce low values of these metrics. In

particular, this has been noted for the KSD (Korba et al.,
2021; C. Benard, 2023) and the revKL (Verine et al., 2023).
We therefore introduce a metric which we call the Mul-
timodality Score (MMS), that specifically measures mode
coverage. The MMS is defined as the root mean squared
error between the actual and expected number of particles
per mode.

Sampling a Gaussian mixture We follow the setups
of Zhang et al. (2020) and Midgley et al. (2023) where
the target distribution is a Gaussian mixture with 16 and 40
modes respectively. We use a standard Gaussian as the pro-
posal distribution, except for the dilation path which has a
Dirac proposal by design. Results are reported in Figure 1
and additional convergence diagnostics are reported in Ap-
pendix D.

20 0 20
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20 0 20

ULA, geometric path

20 0 20

ULA, dilation path

100 50 0

80
60
40
20

ULA

100 50 0

ULA, geometric path

100 50 0

ULA, dilation path

Figure 1: Top. 16-mode Gaussian mixture target and stan-
dard Gaussian proposal. Bottom. 40-mode Gaussian mix-
ture target. The proposal is a standard Gaussian for ULA
with/out the geometric path, and is a Dirac for ULA with
the dilation path. The kernel density estimate of the target
distribution is in blue; particles generated by the sampling
process are in red. Simulations involved 1000 particles,
10000 iterations, a step size of 0.001, and a linear sched-
ule.

These experiments highlight known benefits of Annealed
Langevin Dynamics that follow a convolutional path, rather
than an alternative, geometric path or no path at all. As ex-
pected in this setting, ULA with and without the geometric
path is stuck for many iterations in modes that are closest
to the initialization. One may be tempted to improve con-
sider a proposal distribution with wider coverage so that
more modes are already reached at initialization, but with-
out knowing the locations and weights of the modes, the
choice of “large enough” a Gaussian variance would be ar-
bitrary. For example, some modes of the target could al-
ways be left in the tails of a proposal with larger variance.
In contrast, ULA with the dilation path manages to recover
all modes. This is reflected in most metrics in Figure 2.
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Figure 2: Convergence diagnostics for sampling the 40-
mode Gaussian mixture target.

Sampling images Here, we use the dataset of images
MNIST (Deng, 2012). Each image has a resolution of
28× 28 pixels and can therefore be understood as a vector
in a high-dimensional space R784 with entries in J0, 255K.
The target distribution is estimated from the MNIST dataset
using a score-based diffusion model following Song and
Ermon (2019). Results are reported in Figure 3.

ULA ULA, geometric path ULA, dilation path

ULA ULA, geometric path ULA, dilation path

Figure 3: Top. The proposal is a standard Gaussian. Bot-
tom. The proposal is a uniform distribution over the pixel
domain. In both cases, the target distribution over images
is estimated from the MNIST dataset using a score-based
diffusion model following Song and Ermon (2019). Simu-
lations involved 100 particles, 500 iterations, a step size of
0.001, and a linear schedule.

ULA with the dilation path consistently finds many modes,
corresponding to different digits. The other sampling
schemes, ULA with/out the geometric path, find modes in
different proportions depending on the initialization: for
example, when initialized near the origin at the top of Fig-
ure 3, they predominantly find the mode for digit “one”,
which is closest to the origin as we verify in Figure 4.
However, with a uniform initialization, ULA with/out the
geometric path finds more modes in more balanced propor-
tions. A careful, quantitive study to understand how the
mode proportions are affected by the initialization is left

for future work.

5. Discussion
In this work, we introduced the dilation path, which a limit
case of the popular convolutional path where the score vec-
tors are available in closed-form. We show using this path
for Annealed Langevin dynamics with a step size that is
adaptive to both the time and position of a particle, yields
an efficient and easy to implement sampler for multi-modal
distributions. While we verified that this sampler recovers
the locations of the modes (mode “coverage”), future work
will be needed to verify if it correctly recovers their shapes
as well (mode “fidelity”).

We recall another path, similar in its derivation to the dila-
tion path: it is also obtained by rescaling the target distri-
bution (Ogata, 1990; 1996; Gelman and Meng, 1998b)

µt(x) =
√

λtπ(
√
λtx) . (10)

except that the proposal distribution, defined in the limit
of λt → 0, now tends to a uniform distribution instead of
a Dirac. This rescaled path will contract the modes from
infinity inward, until they match the target modes when
λt = 1 at a certain time. Because the mode locations re-
main far apart, Annealed Langevin dynamics could suffer
from the mode separation (Bovier et al., 2000; 2004; 2005).
This is in contrast to the dilation path, which starts with
a Dirac and then expands the modes from the origin out-
ward. Some works have also used this rescaled path for
importance sampling, where the proposal is chosen in the
family of distributions Eq. 10 for a certain value of λ (Sun
et al., 2013), with the strong assumption that the target is
Gaussian for tractability.
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A. Computational complexity the recursive algorithm
We here discuss the computational complexity of the recurive algorithm of Huang et al. (2024a). We would like to approx-
imate ∇ logµk(x). We can do so using Np particles sampled from Eq. 6 using ULA with Ni iterations. This will involve
Np ×Ni evaluations of the target score ∇ log π(·). Each of these scores can be approximated by repeating this procedure
over Ns segments. The total computational complexity is therefore (Np ×Ni)

Ns queries of the final target score. This is
exponential in the number of segments, which is computationally prohibitive.

B. Useful Lemma
Lemma 1 (Useful identities for a Gaussian density) Interchangeability of mean and variance: N (x;µ,Σ) = N (µ;x,Σ).
Shift ∈⃗Rd, N (x− ;⃗µ,Σ) = N (x;µ+ ,⃗Σ).
Scaling a ∈ R, N (x/a;µ,Σ) = aN (x; aµ, a2Σ).
Gradient ∇N (x;µ,Σ) = −Σ−1(x− µ)×N (x;µ,Σ).
Product N (x;µ1, σ

2
1)×N (x;µ2, σ

2
2) = N (x;

µ1σ
2
1+µ2σ

2
2

σ2
1+σ2

2
,

σ2
1σ

2
2

σ2
1+σ2

2
)

Convolution N (x;µ1, σ
2
1)×N (x;µ2, σ

2
2) = N (x;µ1 + µ2, σ

2
1 + σ2

2).

C. Parametric families
We first prove Proposition C, restated here

Proposition (Gaussian mixture parametric family) Suppose the proposal is a Gaussian ν := N (·,0,Σ0) and the tar-
get is a Gaussian mixture with M modes with means (µm)m∈J1,MK, covariances (Σm)m∈J1,MK, and positive weights
(wm)m∈J1,MK that sum to one.

Then, distributions πt along the convolutional path remain in the Gaussian mixture parametric family. Their weights are
constant wm(t) = wm and their means and covariances interpolate additively the proposal’s and target’s, as µm(t) =√
tµm and Σm(t)2 = (1− t)Σ0 + tΣm.

Proof. Distributions along the convolutional path between the target to the proposal, are given by

pλt(x) =
1√

1− λt

ν

Å
x√

1− λt

ã
∗ 1√

λt

π

Å
x√
λt

ã
=

1√
1− λt

N
Å

x√
1− λt

;0,Σ0

ã
∗

M∑
i=1

wm
1√
λt

N
Å

x√
λt

;µm,Σm

ã
= N (x;0, (1− λt)Σ0) ∗

M∑
i=1

wmN (x;
√

λtµm, λtΣm)

=
M∑
i=1

wmN (x;0, (1− λt)Σ0) ∗ N (x;
√

λtµm, λtΣm)

=

M∑
i=1

wmN (x;
√
λtµm, (1− λt)Σ0 + λtΣm) .

They conveniently remain in the Gaussian mixture parametric family, and their parameters are

wm(t) = wm µm(t) =
√

λtµm Σm(t) = (1− λt)Σ0 + λtΣm . (11)

If we consider the special case with the proposal covariance is Σ0 = ϵI , then in the limit ϵ → 0 the proposal becomes a
Dirac and we recover the dilation path with parameters

wm(t) = wm, µm(t) =
√

λtµm, Σm(t) = λtΣm . (12)
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D. Experiments
D.1. Statistical divergences used for evaluation

We next recall the definitions of the statistical divergences we use in our experiments, to measure the discrepancy between
the distribution of particles pk realizing the sampling process and the target distribution π.

• Kernel Stein Discrepancy (KSD) (Liu et al., 2016; Chwialkowski et al., 2016; Gorham and Mackey, 2017)

Computing the KSD requires access to samples from pk and to the density (more specifically, the score) of π.

This statistical divergence is defined as

KSD2(pk, π) = E(x,x′)∼pk⊗pk
[K(x,x′;π,K ′)] (13)

where K is a kernel whose computation requires the (unnormalized) target density π and another kernel K ′

K(x,y;π,K ′) = ∇ log π(x)T∇ log π(y)K ′(x,y) +∇ log π(x)T∇yK
′(x,y) (14)

+∇xK
′(x,y)T∇ log π(y) +∇x · ∇yK

′(x,y) . (15)

chosen by the user. We use the recommended choice by Gorham and Mackey (2017), known as the Inverse Multi-
quadratic Kernel K ′(x,y) = (1 + ∥x− y∥22)−β where β ∈ [0, 1] and is here chosen as 0.5.

• Maximum Mean Discrepancy (MMD) (Gretton et al., 2012)

Computing the MMD requires access to samples from both pk and π.

This statistical divergence is defined as

MMD2(pk, π) = 2E(x,y)∼pk⊗π[K(x,y)]− E(x,x′)∼pk⊗pk
[K(x,x′)]− E(y,y′)∼π⊗π[K(y,y′)] (16)

where K is a kernel chosen by the user. We use the Gaussian kernel K(x,y) = exp
(
−∥x− y∥22/2h

)
with a bandwith

h = 1.

• Kullback Leibler (KL) and reverse Kullback Leibler (revKL) divergences

Computing the KL divergence usually requires access to samples from pk and to the densities of both pk and π. The
reverse KL divergence is defined by switching the roles of pk and π. In our experiments, we use an approximation
implemented in the scipy library (Virtanen et al., 2020) that instead requires access to samples only, from both pk and
π.

The KL divergence is defined as

KL(pk, π) = Ex∼pk

ï
log

pk(x)

π(x)

ò
(17)

and switching the roles of pk and π yields the reverse KL divergence.

• 2-Wasserstein distance (OT)

Computing the OT (which stands for Optimal Transport) requires access to samples from both pk and π. In our
experiments, we actually do not approximate directly the OT, but an upper bound using the Sinkhorn algorithm
implemented in the ott library (Cuturi et al., 2022).

The 2-Wasserstein distance is defined as

W2(pk, π) = inf
c∈C

E(x,y)∼c

[
∥x− y∥2

]
(18)

where x ∼ pk and y ∼ π and C is the set of joint distributions over such (x,y).

Last, we use the Multimodality Score (MMS) defined as the root mean squared error between the actual and expected
number of particles per mode.
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Figure 4: Distribution of the Euclidean distances of image vectors to the origin for the MNIST train dataset. We use the
default kernel density estimate from the Seaborn python library (Waskom et al., 2017).
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Figure 5: Left. Convergence diagnostics of the sixteen modes experiment. These divergences seem to be more sensitive
to mode “fidelity” than mode “coverage”, given that ULA seems to do better than ULA dilation. Right. Convergence
diagnostics of the fourty modes experiment. The MMD and KL divergences seem to be sensitive to mode “coverage”
where ULA dilation does best visually.
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