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Abstract

Conditional flow matching (CFM) has emerged as a powerful framework for
training continuous normalizing flows due to its computational efficiency and effec-
tiveness. However, standard CFM often produces paths that deviate significantly
from straight-line interpolations between prior and target distributions, making gen-
eration slower and less accurate due to the need for fine discretization at inference.
Recent methods enhance CFM performance by inducing shorter and straighter
trajectories but typically rely on computationally expensive mini-batch optimal
transport (OT). Drawing insights from entropic optimal transport (EOT), we pro-
pose weighted conditional flow matching (W-CFM), a novel approach that modifies
the classical CFM loss by weighting each training pair (z,y) with a Gibbs kernel.
We show that this weighting recovers the entropic OT coupling up to some bias in
the marginals, and we provide the conditions under which the marginals remain
nearly unchanged. Moreover, we establish an equivalence between W-CFM and the
minibatch OT method in the large-batch limit, showing how our method overcomes
computational and performance bottlenecks linked to batch size. Empirically, we
test our method on unconditional generation on various synthetic and real datasets,
confirming that W-CFM achieves sample quality, fidelity, and diversity comparable
or superior to alternative baselines while maintaining the computational efficiency
of vanilla CFM.

1 Introduction

Generative modeling aims to learn a transformation from a simple prior to a complex data distribu-
tion. Continuous normalizing flows (CNFs) achieve this via ODE-driven vector fields with exact
likelihoods, but likelihood maximization is often unstable and does not scale well [Chen et al.,[2018|,
Grathwohl et al.| 2018} /Onken et al.,2021]. Flow matching (FM) [Lipman et al., 2023} |Albergo et al.}
2023, [Liu et al., [2023] reframes training CNFs as regression on endpoint displacements, yielding
near-optimal transport when the prior is Gaussian. However, independent pairings can lead to subop-
timal paths. Conditional flow matching (CFM) [Lipman et al.,|2023| Tong et al., |2024]] generalizes
FM by conditioning on arbitrary couplings, enabling simulation-free CNF training from any source
distribution and supporting applications in molecule design, sequence modeling, and speech synthesis
[Irwin et al., [2024, |Geftner et al.| 2025| |Stark et al., [2024, [Zhang et al., 2024} Rohbeck et al., 2025,
Guo et al.,[2024]]. A refinement, minibatch optimal transport CFM (OT-CFM) [Pooladian et al., 2023
Tong et al.l 2024], couples pairs using an OT plan within each batch, producing straighter trajectories
with improved sample quality, but at cubic (or quadratic under entropic regularization) cost per batch
and with impractical requirements on balanced class representation for large multi-class datasets.

As an alternative that addresses these limitations, we introduce weighted conditional flow matching
(W-CFM), which replaces costly batch-level transport computations by simply weighting each inde-
pendently sampled pair (z, y) with the entropic OT (EOT) Gibbs kernel, w(x,y) = exp(—c(z,y)/¢)
[Cuturi, 2013]]. This importance weighting provably recovers the entropic OT (EOT) plan up to
a controllable bias in the marginals. As a result, the learned flow follows straight paths without
ever explicitly solving an OT problem during training. Moreover, we show that W-CFM matches
OT-CFM in the large-batch limit, thereby not incurring any of the batch size-related limitations or
any extra costs. In practice, W-CFM delivers straight flows and high-quality samples consistently
outperforming CFM and achieving comparable performance to OT-CFM, but with no extra overhead.
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2 Background: Entropic Optimal Transport

We recall only the results relevant to our work (see Nutz| [2021]] for details). Assume we want to
sample from v € P(R?) given samples from p € P(R?). The Kullback-Leibler divergence is

Dy, (p|lv) = [log Z—’Ij(x) dp(x) if p < v and +oo otherwise. Let II(p, v/) be the set of couplings
between p and v. The entropic optimal transport (EOT) problem with parameter € > 0 is

min / (,y) dn(2, ) + D (xlu ® v), M
mell(p,v)

where ¢ : R? x R — R is typically c(z,y) = ||z — yl|. For e = 0 this reduces to the Monge—
Kantorovich problem. EOT is widely used since it approximates OT while being tractable via
Sinkhorn iterations [[Cuturi, 2013} [Altschuler et al.l 2017]]. It can also be written as

min Dy (vlK), K (dr,dy) = e~/ p(de)u(dy), )
mell(p,v

which has a unique minimizer ..

Theorem 1 (Theorem 4.2 in Nutz [2021]). If c¢(z,y) < oo p ® v-a.s., there exist measurable
Schrodinger potentials ¢.,1. : R* — R such that

e (dar, dy) = exp(0(@) + ve(y) — <22 ) p(da)v(dy). 3)

Equivalently, . (dz, dy) = f-(x)g-(y)K:(dz, dy) with f. = exp(¢.) and g. = exp(t)). Thus the
Gibbs kernel encodes the dependence, while f., g. adjust the marginals.

3 Weighted Conditional Flow Matching

Let Lo(t, X,Y) = |Jvg(t, (1 —t) X +tY) — (Y — X)||?. The I-CFM loss with a linearly interpolating
conditional path is

Lrerm(9) = Eieri(0,1),(x,v)~nev[Lo(t, X, Y)]. 4)
To bias training toward nearby pairs, we introduce
ﬁu) (9) = EtNM(O,l),(X,Y)N;L@u ['[U(X, Y) L9 (tv X7 Y)] ) (5)

which is equivalent to (4) with the independent coupling replaced by m,(dz,dy)
w(z, y)p(dz)v(dy). Choosing we(z,y) = exp(—c(x,y)/e) with cost ¢ and € > 0 yields

Lw-crm(0;€) = Erori0,)E(x,v)mpew [We (X, Y) [va(t, X) — (Y — X)|1?]. (6)

In particular, Theoremimplies that Lw_crMm(0;€) = Z:Lorm(8; ¢c ), where ¢, is the following

prior
oo dy) = iCs(dZ%dy) exp(—ﬂés(;) —v=() @

and Z. = [ exp(—c(x,y)/e)pu(dz)v(dy) is the normalizing constant. Thus, training a CNF model
using the W-CFM loss given by (6)) is equivalent to training a CNF using the EOT plan as the prior
distribution, up to a change (a.k.a. tilt) in the marginals given by the Schrodinger potentials ¢, ..
Hence, Lyw_crm can be thought of as an approximation of the following loss function

Lror—crm(0;¢) = B0 Ex,y ). [|[vo(t, Xe) — (Y = X)|7] (®)

= Te (diC, dy)

with the approximation quality depending on the Schrodinger potentials ¢, 1..
3.1 Marginal Tilting under W-CFM

Using /C. for the prior leads to the following tilted marginals, which are obtained by integrating

with respect to y and x respectively:

exp(—oe(z - exp(—v

D aw), wly) = PPy, ©
g €

where Z!, Z2 are normalizing constants. Consequently, training a CNF using the W-CFM loss

induces a vector field mapping fi. to 7.. We formalize this result in the following proposition.

fic(dx) =
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Proposition 1 (Marginal tilting and continuity equation). Assume u,v € P(R?) have finite second
moment. Consider the variational problem

Hlvin Et~u(0,1) E(X)y),\,u(@,j [wE(X, Y) ||U(t,Xt) - (Y - X)”Q], Xt = (1 - t) X+tY. (10)

Let p; denote the law of X, under (X,Y) ~ q.. Then, (I0) admits a minimizer v. € L?([0,1] x
R%; p; (dz)dt), which is unique in that space. Moreover (p, v.) solve the continuity equation in the
weak sense

Oupe + V- (prve) =0, po = fle, P1 = Ve. (11)

In other words, under mild regularity conditions, the flow generated by v. pushes ji. forward onto ..
We now present a way to evaluate the marginal tilting. Using (7), the density ratios between tilted
and original marginals are given by

o) =G x [ oo (<820 wtdy), ) = G o [ e (<20 ) ),

dp
(12)
These integrals can be estimated by Monte Carlo sampling. If f.(z) is constant p almost everywhere,
then one is guaranteed that the source marginal is preserved, i.e., that i = p. Similarly, if g. is
constant v almost everywhere, then 7. = v. Such a situation arises, for instance, when p and v are
isotropic distributions.

3.1.1 On the Choice of ¢

The entropy regularization constant ¢ trades off geometric bias (straighter flows) against marginal
distortion. As shown in (I2)), if the reweighting functions f, g. are nearly constant on the supports of
, v, then fi., U, remain close to the i, v and the W-CFM loss (6) approximates the EOT-CFM loss
(B). We assess this by Monte Carlo estimates of the relative variance Var(f.(X))/E[f-(X)]? (and
analogously for g.), which is scale-invariant and comparable across datasets: low values indicate
minimal marginal distortion whereas large values signal mismatch.

For normalized high-dimensional data with Euclidean cost, typical pairwise distances scale as O(v/d)
due to concentration of measure on a sphere of radius v/d [Vershynin, 2018]. Setting £ on this scale
keeps the Gibbs weights well-conditioned, analogous to kernel width selection in SVMs [Christianini
et al., 2000]. Accordingly, we parameterize ¢ = x+v/d and tune « using the relative variance proxy: a
log-scale grid search selects the smallest x where variance flattening occurs (an “elbow rule” akin to
PCA [Jolliffe, [2002]). Schedulers for € (cosine, exponential, linear) showed no clear benefit, so we
use a fixed ¢, reported per dataset in Section [4]

3.2 Equivalence to OT-CFM in the Large Batch Limit

OT-CFM requires costly minibatch OT plans (cubic/quadratic in batch size and sensitive to mode
coverage), whereas W-CFM replaces them with simple Gibbs weights w. (z,y) = exp(—c(x,y)/e),
and under mild conditions, its loss coincides with EOT-CFM in the large-batch limit. We formalize
this in Proposition 2] below—proof is given in Appendix [A] A more detailed discussion can be found
in Appendix

Proposition 2. Let € > 0. Suppose that i, v, c are such that (1) is finite and p, v have bounded
support. Let (ty,, T, Yn)n>1 be iid samples of U(0,1) @ pu @ v. Assume that [i. = jand U, = v. Let
e be the optimal EOT plan between (1 and v. Let w7 be the optimal EOT plan between the empirical
distributions x,, = % Sor 0y, andy, = % i Oy,. Then, @ — 7. almost surely as n — oo in
the weak sense. In particular, if B,, = {(t;, z;,y:) : 1 < i < n} and vy(t, z) is uniformly integrable
int € [0, 1], continuous in z € R%, we have, for any 0

E[Lgor—crm(Bn,0;¢)] = 1(0;¢) x Lw—_crm(0;¢€), as n — oo,

where the expectation is taken over the random batch B,, and

n

1
Lror-—crm(Bn,056) = — > 7l (i, y5)|[va (ti, (1 = ti)ai + tiyy) — (v — )]
i,j=1
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Figure 1: Sample trajectories for moons generation. Blue dots are source samples, red dots are
generated samples. From left to right: I-CFM, W-CFM (e = 10), W-CFM (e = 2), and OT-CFM.

4 Experiments

Toy datasets. On mapping mixtures of Gaussians to structured targets (Table[I] Figure[I]and 2),
W-CFM consistently achieves sample quality comparable to the baselines with careful choice of ¢,
while significantly improving straightness over I-CFM. Small € values can distort marginals, but
larger & mitigates this while retaining some path straightness (Figure[5|and[d). OT-CFM with small
batches sometimes yields very low NPE, but with mixed sample quality, indicating that straightness
alone can be misleading.

Table 1: Performance of CFM variants on 2D datasets (5 seeds). W2 measures sample quality and
NPE trajectory straightness (both lower is better).

Dataset — Circular MoG — 5 Gaussians 8 Gaussians — moons
Algorithm | Metric — w3 () NPE (/) W3 ) NPE (})
I-CFM 0.091 £ 0.071 1.703 £ 0.107  0.680 £ 0.146 1.033 £ 0.070
OT-CFM 0.029 +0.011 0.032 +£0.019 0.232 +0.043 0.125 +0.011
OT-CFM (B = 16) 0.041 £0.014 0.188 £ 0.041 0.564 £0.125  0.067 & 0.024
W-CFM (small €) 0.018 + 0.008 0.086 £ 0.021 1.823 £ 0.166  0.289 £ 0.008
W-CFM (large ¢) 0.029 £ 0.011 0.097 £0.024  0.843 £+ 0.321 0.463 £ 0.061

Image datasets. On CIFAR-10, CelebA64, ImageNet64-10, Intel, and Food20, W-CFM matches
or surpasses baselines (Table [3), achieving the best FID on all datasets except CelebA64, where
OT-CFM benefits from its unimodal structure. Efficiency comparisons (Table [2) show W-CFM
reaches competitive or better FIDs with fewer function evaluations.

Table 2: FID | at varying NFEs (Euler). Lower is better.

Dataset I-CFM OT-CFM W-CFM

50 100 120 \ 50 100 120 \ 50 100 120
CIFAR-10 10.87 9.76 8.68 | 11.03 9.89 8.53 | 10.53 9.28 8.08
CelebA64 2949 2526 2450 | 27.76 23.86 2293 | 29.32 2522 24.37
ImageNet64-10 1494 1391 13.86 | 15.67 1478 14.68 | 1582 14.17 13.71
Intel 26.72 2640 2620 | 2545 2598 2426 | 25.01 24.47 24.08
Food20 10.10 8.98 8.85 | 10.16 9.17 8.95 | 10.01 8.97 8.57

Further evaluation in Appendix [D] Overall, W-CFM improves sample quality over I-CFM and OT-
CFM in multimodal settings, maintains competitive straightness, and achieves superior FID on most
image benchmarks with fewer NFEs. A detailed overview of the experimental setup in Appendix [C]

5 Conclusion

We propose weighted conditional flow matching (W-CFM), which improves path straightness and
sample quality by approximating the entropic OT plan with simple Gibbs weights, avoiding the
cost and batch-size limits of explicit OT. With the tuning of a single parameter, one can match the
performance of OT-CFM at a fraction of the extra training cost, with minimal impact on the marginals.
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A Proofs of Theoretical Results

A.1 Proof of Proposition|[l]

Recall the prior ¢. induced by the Gibbs kernel K.(dz,dy) = w(z,y)u(dz)v(dy) =
exp(—c(x,y)/e)p(dx)v(dy) defined in (7). Recall that p; denotes the distribution of X; =
(1 — )X +tY under (X,Y) ~ g.. Forany v € L2([0,1] x R%; p;(dz)dt), we have

Etri(0,)E(x v)mpew [we(X, Y)|[v(t, Xi) — (Y — X)||?]

d(p®@v
= Ersco By, | S (XY exp(—e(X. V) ) lo(e Xo) = (V = X)|P
[
= ZErs(0.) E(x,v)ma. [Il0(E Xe) = (Y = X)|P]

where Z. denotes the normalizing constant Z. = E(x y)~ ey [we (X, Y)] > 0. Hence the variational
problem given by is equivalent to

min B0, Ex,y)ng. (1006 X0) = (¥ = X)) (13)

By the L2-projection property of conditional expectations, the variational problem of is solved
by the function v, : [0, 1] x R? — R? defined by

Ve(t,2) = E(x,y)mg. [Y — X | X = 2]. (14)

Note that this definition is unique in L?([0, 1] x R%; p;(dx)dt). We now check that v. generates a

valid probability path between fi. and 7, i.e., that (p, v.) satisfy the continuity equation (IT)) in the

weak sense. Note that v (t,-) € L'(R?, p;) and fol Jga lve(t, )|p(t, x)dzdt < co. By Proposition
4.2 in[Santambrogio [2015]], it is enough to check that the continuity equation is satisfied in the sense
of distributions. Let ¢ € C((0,1) x R%), then

1 1
[ [ aotonas [ [ ott.z) ot
0 R4 0 R4

-/ CE0(t, X1) + Vo(t, X1) - (v — X)|dt = Elg(1, ) - 6(0, X)] = 0.
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A.2  Proof of Proposition

Let ¢ > 0. Recall that (¢, s, Yn)n>1 are iid samples of /(0,1) ® 1 ® v, and that we assume
ite = pand U, = v. Let 7. be the optimal EOT plan between p and v. Let 77 be the optimal EOT
plan between x,, = % St 0g, andy, = % > 1 8y, In this proof, the convergence of probability
measures is understood in the weak sense.

First, the almost-sure convergences x,, — p and y,, — v come from a classical result in probability
theory on the convergence of empirical distributions to the true distribution, see |Varadarajan|[[1958].

Since the minimization problem of (I)) is non-trivial, an application of Theorem 1.4 in[Ghosal et al.
[2022]] shows that the empirical EOT plan satisfies 7' — 7. almost surely. Now, for any n > 1, we
have

Blisor-cmBntial] =5 | [ [ (e 0= 00+ 1) — (g - ) dtn o)

1
_E [ / / loa(t, (1 — )z + ty) — (y — )| dmg(dx,dy)] ,
s(uyxs(w) Jo

where s(1), s(v) denote the support of 1 and v respectively, which are assumed to be bounded. Since

(z,y) — fol lve(t, (1 — t)x + ty) — (y — x)|\2 dt is continuous and bounded on s(u) X s(v) by our
assumption on vy, we have

/S(WS(V) </01 vg(t, (1 — ) + ty) — (y — )| dt) 7 (dx, dy)

( [ e 0= 12 4+ ) ~ (0 - x>|2dt) . (de. dy)

%
s(p)xs(v)

almost surely as n — oo. Now, the dominated convergence theorem ensures that this convergence
also holds in expectation, i.e.

1
E [Leor—crm(Bn, 0;€)] — / (/ vo(t, (1 —t)z + ty) — (y — )|? dt) e (da, dy).
s(wxs(v) \Jo

Finally, we want to prove that this integral is proportional to Lyw_crm(6; €). Since we assume no
tilting of the marginals, i.e. g- = 7., we have

Lw—crm(0;€) = ZEoi(0.1),(x, 7). [|[va(t, Xe) — (Y — X)|?]
1
_ za/ (/ lvo(t, (1 — )z + ty) — (y — x)||2dt> . (de, dy).
s(uyxs(v) \Jo

by using the same change of measure argument as in the proof of Proposition I} O

B Details on the Equivalence to OT-CFM in the Large Batch Limit

We recall the mini-batch optimal transport technique that is central in the OT-CFM algorithm of [Tong
et al.|[2024]. Given a batch of i.i.d. samples B = {(¢;,z;,y;) : i = 1,..., B}, where ¢; are i.i.d.
according to U(0, 1), x; are i.i.d. according to p, y; are i.i.d. according to v, and ¢;, z;, y; are drawn
independently, one can compute the optimal transport plan between the two corresponding discrete
distribution, i.e. one computes
B
T3 € arg min Z Zc(mi,yj)w(xi,yj), (15)

il
TEEB G =1

where I13 is the set of couplings between the empirical measures

1 & 1 &
XB:EZ(sziv YBZEZCM
i=1 i=1
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In particular, any 7 € I1z must satisfy >, 7(zi, y;) = >, m(zi, y5) = +. Then, given an optimal
TR, one computes the following

B
Lor—crm(B,0) Z g (i, (L= t:) i + tio (i) — Wo() — ©))% (16)

where o is a permutation corresponding to a Monge map for the problem (I3)), i.e., for some
T:{r;:i=1,...,B} = {y;:i=1,...,B} such that T'(2;) = y,(;) and 75 := (Id, T") 4 xp is
a solution to (T3) [Peyré and Cuturi, 2019]]. This sample loss is used as an approximation of the
following OT-CFM loss

Lor—crm(8) = Eirio,)Ex,yym [|lvat, Xe) — (Y = X)|7] (17)
where 7* solves the unregularized optimal transport problem, that is (I) with e = 0.

The sample OT-CFM loss in is a low bias approximation of only when the batch size is
large enough. The actual samples for which we compute (I6) are not exactly distributed according
to a genuine OT plan between p and v, since the OT plan 7* and the product measures p ® v are
typically singular. Additionally, computing the exact batch OT plan becomes prohibitively expensive
as the batch size grows. A solution is to compute an approximate OT plan, by using the Sinkhorn
algorithm [Cuturil 2013]], which is an efficient way of computing the entropic OT plan between
two discrete sets of measures. In that case, as the batch size increases, the sample OT-CFM loss
(T6) approximates Lgor—crum given by (B). Nevertheless, approximating the OT at the batch level
is particularly challenging in datasets with multiple modes, as it becomes unrealistic to faithfully
approximate the global OT if not all modes are adequately represented within each (or the average)
batch. Consequently, the batch size must scale with the number of models or classes present in the
dataset.

Our method does not have these scaling issues with the batch size, since it only involves computing a
simple weighting factor w. (z;,y;) = exp(—c(z;,y;)/¢e) for every training sample pair (x;,y;) in a
batch. In other words, if one assumes that the weight does not tilt the marginals, the weighted CFM
method corresponds to a large batch limit of OT-CFM (where batch EOT is used).

C Experimental Setup

To visually probe the benefits of our weighted loss, we design similar low-dimensional transport
benchmarks as in Tong et al.|[2024]]. First, we focus on mapping a distribution concentrated on an
annulus to a configurable Mixture of Gaussians (MoG). The second setup consists of recovering
the moons 2D dataset from a MoG source. We compare W-CFM for different choices of ¢ with the
cost c(z, y) = ||z — y|| against both OT-CFM and I-CFM, training a two-layer ELU-MLP with 64
hidden units per layer via Adam with a learning rate of 10~3 for 60,000 iterations with a default
batch size of 64. We evaluate sample quality, path straightness, and marginal density estimates using
KDE contours. When using W-CFM, the training loss is a sample average of (6), rescaled by a
Monte-Carlo approximation of Z_! computed over a single epoch as a preprocessing step.

To validate our approach in higher-dimensional settings, we evaluate on CIFAR-10 [Krizhevsky),
2009], CelebA64 [Liu et al., |2015]], and ImageNet64-10—a 64x64 version of 10 ImageNet classes
[Deng et al., 2009]]. We use a UNet backbone [Ronneberger et al.l [2015]] adapted to each dataset:
for CIFAR-10, a smaller model with two residual blocks, 64 base channels, and 16x16 attention;
for the rest of the datasets, a deeper UNet with three residual blocks, 128 base channels, a [1, 2,
2, 4] channel multiplier, and additional attention at 32x32 for ImageNet64-10, Food20, and Intel.
All models are trained with Adam, a learning rate of 2 x 10~%, cosine learning rate scheduling
with 5,000 warmup steps, and EMA (decay 0.9999), for 400,000 steps using batch sizes of 128 for
CIFAR-10, 64 for CelebA and ImageNet64-10, and 48 for Food20 and Intel. Our goal is not to reach
state-of-the-art performance, but to compare flow matching variants under matched computational
budgets and architectures.

D Additional Results



Figure 2: Sample trajectories for Circular MoG — 5 Gaussians. From left to right, the models used
are trained with: I-CFM, W-CFM (e = 0.4), W-CFM (¢ = 0.2), OT-CFM (batch size 16), and
OT-CFM.

Figure 3: Contour plots of learned density for moons (using 50,000 generated samples). The leftmost
plot corresponds to the true target distribution. Then, from left to right, the models used are trained
with: I-CFM, W-CFM (e = 10), W-CFM (e = 2), and OT-CFM. We observe that choosing a small
value of € for W-CFM leads to a "disentanglement" of the two generated moons.

Table 3: FID | across datasets (Dopri5 solver). Lower is better.

Model CIFAR-10 CelebA64 ImageNet64-10 Intel Food20
I-CFM 7.44 21.99 13.86 27.54 8.15
OT-CFM 7.60 20.93 14.39 25.63 8.23
W-CFM 7.33 21.96 13.56 25.22 7.93

Table 4: Comparison of CFM training algorithms’ performance on 8 Gaussians — moons on 5
random seeds. W3 measures the overall quality of sample generation (lower is better), NPE measures
the straightness of trajectories (lower is better), using the true optimal transport cost as a reference.
We emphasize on the tradeoff incurred by the choice of ¢.

Model W3 1) NPE ()

I-CFM 0.680 £ 0.146  1.033 £+ 0.070
OT-CFM 0.232 £ 0.043 0.125 £ 0.011
OT-CFM (B = 16) 0.564 +0.125 0.067 4 0.024
W-CFM (e = 2) 1.823 £ 0.166  0.289 + 0.008
W-CFM (e = 4) 1.476 £ 0.167 0.033 + 0.023
W-CFM (e = 6) 0.960 £ 0.186  0.220 £ 0.050
W-CFM (e = 8) 0.888 £ 0.217 0.365 £+ 0.076
W-CFM (e = 10) 0.843 £0.321 0.463 £ 0.061

Table 5: Sample quality and diversity metrics on CIFAR-10.

Model Precision (1) Recall (1) Density (1) Coverage (1) F1 (1)
I-CFM 0.83 0.75 0.98 0.91 0.78
OT-CFM 0.80 0.75 1.00 0.92 0.77
W-CFM 0.81 0.76 0.94 0.91 0.78




Figure 4: Sample trajectories on 8 Gaussians — moons with W-CFM. From left to right, the models
used are trained with the following values of ¢: 10,8,6,4,2.

Figure 5: Contour plots of learned target density for 8 Gaussians — moons. The leftmost plot
corresponds to the true target distribution. Then, from left to right, the models used are trained with
the following values of €: 2,4,6,8,10.

Figure 6: Generated samples from W-CFM trained on CIFAR-10.

Table 6: Sample quality and diversity metrics on CelebA64.

Model Precision (1) Recall (1) Density (1) Coverage (1) F1 (1)

I-CFM 0.86 0.66 1.26 0.98 0.74
OT-CFM 0.84 0.65 1.23 0.96 0.73
W-CFM 0.83 0.66 1.19 0.98 0.74
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Figure 7: Generated samples from W-CFM trained on CelebA64.

Figure 8: Generated samples from W-CFM trained on ImageNet-10.
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Figure 10: Generated samples from W-CFM trained on Intel Image Classification.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The claims made are detailed in the theoretical justification of our approach,
which is detailed in Section[3] and experiments to support our claims are presented in Section

4
Guidelines:
* The answer NA means that the abstract and introduction do not include the claims
made in the paper.
* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.
* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.
* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: The main limitation of our method is the induced tilting of the marginals, which
is highlighted both in the presentation of our method (Section|3) and in the experiments on
moons generation (Section ).

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
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Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: The assumptions are clearly stated for each result. All complete proofs can be
found in Appendix [A]

Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The datasets, model architectures and training algorithms (including hyperpa-
rameters) are explicitly discussed in Appendix [C]

Guidelines:

» The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer:

Justification: Our new training loss can easily be implemented by adding a few lines of code
to existing CFM training routines. We will release code upon acceptance.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We provide frequentist confidence intervals when relevant throughout our
experiments.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: This information is not relevant for the reproducibility and use of our results
and method, as the experiments can be performed on a single modern GPU.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification:
Guidelines:

e The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: We propose a method to make training of an existing class of generative models
more efficient, without affecting the overall landscape of what these models can achieve.

Guidelines:

* The answer NA means that there is no societal impact of the work performed.
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11.

12.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

 The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: Our work does not enable misuse beyond what continuous normalizing flows
trained with condition flow matching enables.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We reference any other related work and baselines we use.
Guidelines:

» The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

17



542
543
544
545

546
547
548
549

550

552

553

554

555

556
557
558
559
560
561
562
563

565
566
567

568

569

570

571

572

573
574
575
576
577
578

579
580

581
582
583
584

585

586

587

588
589
590
591
592

13.

14.

15.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: No new assets are released.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: Our work does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: Our work does not involve such risks.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.
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593 * We recognize that the procedures for this may vary significantly between institutions

594 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
595 guidelines for their institution.

596 * For initial submissions, do not include any information that would break anonymity (if
597 applicable), such as the institution conducting the review.

598 16. Declaration of LLM usage

599 Question: Does the paper describe the usage of LLMs if it is an important, original, or
600 non-standard component of the core methods in this research? Note that if the LLM is used
601 only for writing, editing, or formatting purposes and does not impact the core methodology,
602 scientific rigorousness, or originality of the research, declaration is not required.

603 Answer: [NA]

604 Justification: LLMs were only used for the purpose of enhancing the presentation.

605 Guidelines:

606 * The answer NA means that the core method development in this research does not
607 involve LLMs as any important, original, or non-standard components.

608 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
609 for what should or should not be described.
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