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Abstract
Conditional flow matching (CFM) has emerged as a powerful framework for1

training continuous normalizing flows due to its computational efficiency and effec-2

tiveness. However, standard CFM often produces paths that deviate significantly3

from straight-line interpolations between prior and target distributions, making gen-4

eration slower and less accurate due to the need for fine discretization at inference.5

Recent methods enhance CFM performance by inducing shorter and straighter6

trajectories but typically rely on computationally expensive mini-batch optimal7

transport (OT). Drawing insights from entropic optimal transport (EOT), we pro-8

pose weighted conditional flow matching (W-CFM), a novel approach that modifies9

the classical CFM loss by weighting each training pair (x, y) with a Gibbs kernel.10

We show that this weighting recovers the entropic OT coupling up to some bias in11

the marginals, and we provide the conditions under which the marginals remain12

nearly unchanged. Moreover, we establish an equivalence between W-CFM and the13

minibatch OT method in the large-batch limit, showing how our method overcomes14

computational and performance bottlenecks linked to batch size. Empirically, we15

test our method on unconditional generation on various synthetic and real datasets,16

confirming that W-CFM achieves sample quality, fidelity, and diversity comparable17

or superior to alternative baselines while maintaining the computational efficiency18

of vanilla CFM.19

1 Introduction20

Generative modeling aims to learn a transformation from a simple prior to a complex data distribu-21

tion. Continuous normalizing flows (CNFs) achieve this via ODE-driven vector fields with exact22

likelihoods, but likelihood maximization is often unstable and does not scale well [Chen et al., 2018,23

Grathwohl et al., 2018, Onken et al., 2021]. Flow matching (FM) [Lipman et al., 2023, Albergo et al.,24

2023, Liu et al., 2023] reframes training CNFs as regression on endpoint displacements, yielding25

near-optimal transport when the prior is Gaussian. However, independent pairings can lead to subop-26

timal paths. Conditional flow matching (CFM) [Lipman et al., 2023, Tong et al., 2024] generalizes27

FM by conditioning on arbitrary couplings, enabling simulation-free CNF training from any source28

distribution and supporting applications in molecule design, sequence modeling, and speech synthesis29

[Irwin et al., 2024, Geffner et al., 2025, Stark et al., 2024, Zhang et al., 2024, Rohbeck et al., 2025,30

Guo et al., 2024]. A refinement, minibatch optimal transport CFM (OT-CFM) [Pooladian et al., 2023,31

Tong et al., 2024], couples pairs using an OT plan within each batch, producing straighter trajectories32

with improved sample quality, but at cubic (or quadratic under entropic regularization) cost per batch33

and with impractical requirements on balanced class representation for large multi-class datasets.34

As an alternative that addresses these limitations, we introduce weighted conditional flow matching35

(W-CFM), which replaces costly batch-level transport computations by simply weighting each inde-36

pendently sampled pair (x, y) with the entropic OT (EOT) Gibbs kernel, w(x, y) = exp(−c(x, y)/ε)37

[Cuturi, 2013]. This importance weighting provably recovers the entropic OT (EOT) plan up to38

a controllable bias in the marginals. As a result, the learned flow follows straight paths without39

ever explicitly solving an OT problem during training. Moreover, we show that W-CFM matches40

OT-CFM in the large-batch limit, thereby not incurring any of the batch size-related limitations or41

any extra costs. In practice, W-CFM delivers straight flows and high-quality samples consistently42

outperforming CFM and achieving comparable performance to OT-CFM, but with no extra overhead.43
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2 Background: Entropic Optimal Transport44

We recall only the results relevant to our work (see Nutz [2021] for details). Assume we want to45

sample from ν ∈ P(Rd) given samples from µ ∈ P(Rd). The Kullback–Leibler divergence is46

DKL(µ∥ν) =
∫
log dµ

dν (x) dµ(x) if µ≪ ν and +∞ otherwise. Let Π(µ, ν) be the set of couplings47

between µ and ν. The entropic optimal transport (EOT) problem with parameter ε > 0 is48

min
π∈Π(µ,ν)

∫
c(x, y) dπ(x, y) + εDKL(π∥µ⊗ ν), (1)

where c : Rd × Rd → R+ is typically c(x, y) = ∥x − y∥. For ε = 0 this reduces to the Monge–49

Kantorovich problem. EOT is widely used since it approximates OT while being tractable via50

Sinkhorn iterations [Cuturi, 2013, Altschuler et al., 2017]. It can also be written as51

min
π∈Π(µ,ν)

DKL(π∥Kε), Kε(dx, dy) = e−c(x,y)/ε µ(dx)ν(dy), (2)

which has a unique minimizer πε.52

Theorem 1 (Theorem 4.2 in Nutz [2021]). If c(x, y) < ∞ µ ⊗ ν-a.s., there exist measurable53

Schrödinger potentials ϕε, ψε : Rd → R such that54

πε(dx, dy) = exp
(
ϕε(x) + ψε(y)− c(x,y)

ε

)
µ(dx)ν(dy). (3)

Equivalently, πε(dx, dy) = fε(x)gε(y)Kε(dx, dy) with fε = exp(ϕε) and gε = exp(ψε). Thus the55

Gibbs kernel encodes the dependence, while fε, gε adjust the marginals.56

3 Weighted Conditional Flow Matching57

Let Lθ(t,X, Y ) := ∥vθ(t, (1−t)X+tY )−(Y −X)∥2. The I-CFM loss with a linearly interpolating58

conditional path is59

LI-CFM(θ) = Et∼U(0,1),(X,Y )∼µ⊗ν [Lθ(t,X, Y )]. (4)
To bias training toward nearby pairs, we introduce60

Lw(θ) = Et∼U(0,1),(X,Y )∼µ⊗ν [w(X,Y )Lθ(t,X, Y )], (5)

which is equivalent to (4) with the independent coupling replaced by πw(dx, dy) ∝61

w(x, y)µ(dx)ν(dy). Choosing wε(x, y) = exp(−c(x, y)/ε) with cost c and ε > 0 yields62

LW-CFM(θ; ε) = Et∼U(0,1)E(X,Y )∼µ⊗ν [wε(X,Y ) ∥vθ(t,X)− (Y −X)∥2]. (6)

In particular, Theorem 1 implies that LW−CFM(θ; ε) = ZεLCFM(θ; qε), where qε is the following63

prior64

qε(dx, dy) :=
Kε(dx, dy)

Zε
= πε(dx, dy)

exp(−ϕε(x)− ψε(y))

Zε
, (7)

and Zε =
∫
exp(−c(x, y)/ε)µ(dx)ν(dy) is the normalizing constant. Thus, training a CNF model65

using the W-CFM loss given by (6) is equivalent to training a CNF using the EOT plan as the prior66

distribution, up to a change (a.k.a. tilt) in the marginals given by the Schrödinger potentials ϕε, ψε.67

Hence, LW−CFM can be thought of as an approximation of the following loss function68

LEOT−CFM(θ; ε) = Et∼U(0,1)E(X,Y )∼πε

[
||vθ(t,Xt)− (Y −X)||2

]
, (8)

with the approximation quality depending on the Schrödinger potentials ϕε, ψε.69

3.1 Marginal Tilting under W-CFM70

Using Kε for the prior leads to the following tilted marginals, which are obtained by integrating (7)71

with respect to y and x respectively:72

µ̃ε(dx) =
exp(−ϕε(x))

Z1
ε

µ(dx), ν̃ε(dy) =
exp(−ψε(y))

Z2
ε

ν(dy), (9)

where Z1
ε , Z

2
ε are normalizing constants. Consequently, training a CNF using the W-CFM loss73

induces a vector field mapping µ̃ε to ν̃ε. We formalize this result in the following proposition.74
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Proposition 1 (Marginal tilting and continuity equation). Assume µ, ν ∈ P(Rd) have finite second75

moment. Consider the variational problem76

min
v

Et∼U(0,1) E(X,Y )∼µ⊗ν

[
wε(X,Y ) ∥v(t,Xt)− (Y −X)∥2

]
, Xt = (1− t)X + t Y. (10)

Let ρt denote the law of Xt under (X,Y ) ∼ qε. Then, (10) admits a minimizer vε ∈ L2([0, 1] ×77

Rd; ρt(dx)dt), which is unique in that space. Moreover (ρ, vε) solve the continuity equation in the78

weak sense79

∂tρt +∇· (ρt vε) = 0, ρ0 = µ̃ε, ρ1 = ν̃ε. (11)

In other words, under mild regularity conditions, the flow generated by vε pushes µ̃ε forward onto ν̃ε.80

We now present a way to evaluate the marginal tilting. Using (7), the density ratios between tilted81

and original marginals are given by82

fε(x) =
dµ̃ϵ

dµ
(x) ∝

∫
Rd

exp

(
−c(x, y)

ε

)
ν(dy), gε(y) =

dν̃ϵ
dν

(y) ∝
∫
Rd

exp

(
−c(x, y)

ε

)
µ(dx).

(12)
These integrals can be estimated by Monte Carlo sampling. If fε(x) is constant µ almost everywhere,83

then one is guaranteed that the source marginal is preserved, i.e., that µ̃ε = µ. Similarly, if gε is84

constant ν almost everywhere, then ν̃ε = ν. Such a situation arises, for instance, when µ and ν are85

isotropic distributions.86

3.1.1 On the Choice of ε87

The entropy regularization constant ε trades off geometric bias (straighter flows) against marginal88

distortion. As shown in (12), if the reweighting functions fε, gε are nearly constant on the supports of89

µ, ν, then µ̃ε, ν̃ε remain close to the µ, ν and the W-CFM loss (6) approximates the EOT-CFM loss90

(8). We assess this by Monte Carlo estimates of the relative variance Var(fε(X))/E[fε(X)]2 (and91

analogously for gε), which is scale-invariant and comparable across datasets: low values indicate92

minimal marginal distortion whereas large values signal mismatch.93

For normalized high-dimensional data with Euclidean cost, typical pairwise distances scale as O(
√
d)94

due to concentration of measure on a sphere of radius
√
d [Vershynin, 2018]. Setting ε on this scale95

keeps the Gibbs weights well-conditioned, analogous to kernel width selection in SVMs [Christianini96

et al., 2000]. Accordingly, we parameterize ε = κ
√
d and tune κ using the relative variance proxy: a97

log-scale grid search selects the smallest κ where variance flattening occurs (an “elbow rule” akin to98

PCA [Jolliffe, 2002]). Schedulers for ε (cosine, exponential, linear) showed no clear benefit, so we99

use a fixed ε, reported per dataset in Section 4.100

3.2 Equivalence to OT-CFM in the Large Batch Limit101

OT-CFM requires costly minibatch OT plans (cubic/quadratic in batch size and sensitive to mode102

coverage), whereas W-CFM replaces them with simple Gibbs weights wε(x, y) = exp(−c(x, y)/ε),103

and under mild conditions, its loss coincides with EOT-CFM in the large-batch limit. We formalize104

this in Proposition 2 below—proof is given in Appendix A. A more detailed discussion can be found105

in Appendix B.106

Proposition 2. Let ε > 0. Suppose that µ, ν, c are such that (1) is finite and µ, ν have bounded107

support. Let (tn, xn, yn)n≥1 be iid samples of U(0, 1)⊗µ⊗ ν. Assume that µ̃ε = µ and ν̃ε = ν. Let108

πε be the optimal EOT plan between µ and ν. Let πn
ε be the optimal EOT plan between the empirical109

distributions xn = 1
n

∑n
i=1 δxi

and yn = 1
n

∑n
i=1 δyi

. Then, πn
ε → πε almost surely as n→ ∞ in110

the weak sense. In particular, if Bn = {(ti, xi, yi) : 1 ≤ i ≤ n} and vθ(t, z) is uniformly integrable111

in t ∈ [0, 1], continuous in z ∈ Rd, we have, for any θ112

E [LEOT−CFM(Bn, θ; ε)] → l(θ; ε) ∝ LW−CFM(θ; ε), as n→ ∞,

where the expectation is taken over the random batch Bn and113

LEOT−CFM(Bn, θ; ε) =
1

n

n∑
i,j=1

πn
ε (xi, yj)∥vθ(ti, (1− ti)xi + tiyj)− (yj − xi)∥2.
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Figure 1: Sample trajectories for moons generation. Blue dots are source samples, red dots are
generated samples. From left to right: I-CFM, W-CFM (ε = 10), W-CFM (ε = 2), and OT-CFM.

4 Experiments114

Toy datasets. On mapping mixtures of Gaussians to structured targets (Table 1, Figure 1 and 2),115

W-CFM consistently achieves sample quality comparable to the baselines with careful choice of ε,116

while significantly improving straightness over I-CFM. Small ε values can distort marginals, but117

larger ε mitigates this while retaining some path straightness (Figure 5 and 4). OT-CFM with small118

batches sometimes yields very low NPE, but with mixed sample quality, indicating that straightness119

alone can be misleading.120

Table 1: Performance of CFM variants on 2D datasets (5 seeds). W 2
2 measures sample quality and

NPE trajectory straightness (both lower is better).

Dataset → Circular MoG → 5 Gaussians 8 Gaussians → moons

Algorithm ↓ Metric → W 2
2 (↓) NPE (↓) W 2

2 (↓) NPE (↓)

I-CFM 0.091 ± 0.071 1.703 ± 0.107 0.680 ± 0.146 1.033 ± 0.070
OT-CFM 0.029 ± 0.011 0.032 ± 0.019 0.232 ± 0.043 0.125 ± 0.011
OT-CFM (B = 16) 0.041 ± 0.014 0.188 ± 0.041 0.564 ± 0.125 0.067 ± 0.024
W-CFM (small ε) 0.018 ± 0.008 0.086 ± 0.021 1.823 ± 0.166 0.289 ± 0.008
W-CFM (large ε) 0.029 ± 0.011 0.097 ± 0.024 0.843 ± 0.321 0.463 ± 0.061

Image datasets. On CIFAR-10, CelebA64, ImageNet64-10, Intel, and Food20, W-CFM matches121

or surpasses baselines (Table 3), achieving the best FID on all datasets except CelebA64, where122

OT-CFM benefits from its unimodal structure. Efficiency comparisons (Table 2) show W-CFM123

reaches competitive or better FIDs with fewer function evaluations.124

Table 2: FID ↓ at varying NFEs (Euler). Lower is better.

Dataset I-CFM OT-CFM W-CFM

50 100 120 50 100 120 50 100 120

CIFAR-10 10.87 9.76 8.68 11.03 9.89 8.53 10.53 9.28 8.08
CelebA64 29.49 25.26 24.50 27.76 23.86 22.93 29.32 25.22 24.37
ImageNet64-10 14.94 13.91 13.86 15.67 14.78 14.68 15.82 14.17 13.71
Intel 26.72 26.40 26.20 25.45 25.98 24.26 25.01 24.47 24.08
Food20 10.10 8.98 8.85 10.16 9.17 8.95 10.01 8.97 8.57

Further evaluation in Appendix D. Overall, W-CFM improves sample quality over I-CFM and OT-125

CFM in multimodal settings, maintains competitive straightness, and achieves superior FID on most126

image benchmarks with fewer NFEs. A detailed overview of the experimental setup in Appendix C.127

5 Conclusion128

We propose weighted conditional flow matching (W-CFM), which improves path straightness and129

sample quality by approximating the entropic OT plan with simple Gibbs weights, avoiding the130

cost and batch-size limits of explicit OT. With the tuning of a single parameter, one can match the131

performance of OT-CFM at a fraction of the extra training cost, with minimal impact on the marginals.132
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A Proofs of Theoretical Results197

A.1 Proof of Proposition 1198

Recall the prior qε induced by the Gibbs kernel Kε(dx, dy) = wε(x, y)µ(dx)ν(dy) =199

exp(−c(x, y)/ε)µ(dx)ν(dy) defined in (7). Recall that ρt denotes the distribution of Xt =200

(1− t)X + tY under (X,Y ) ∼ qε. For any v ∈ L2([0, 1]× Rd; ρt(dx)dt), we have201

Et∼U(0,1)E(X,Y )∼µ⊗ν

[
wε(X,Y )||v(t,Xt)− (Y −X)||2

]
= Et∼U(0,1)E(X,Y )∼qε

[
d(µ⊗ ν)

dqε
(X,Y ) exp(−c(X,Y )/ε)||v(t,Xt)− (Y −X)||2

]
= ZεEt∼U(0,1)E(X,Y )∼qε

[
||v(t,Xt)− (Y −X)||2

]
,

whereZε denotes the normalizing constantZε := E(X,Y )∼µ⊗ν [wε(X,Y )] > 0. Hence the variational202

problem given by (10) is equivalent to203

min
v

Et∼U(0,1)E(X,Y )∼qε

[
||v(t,Xt)− (Y −X)||2

]
. (13)

By the L2-projection property of conditional expectations, the variational problem of (13) is solved204

by the function vε : [0, 1]× Rd → Rd defined by205

vε(t, z) = E(X,Y )∼qε [Y −X | Xt = z]. (14)

Note that this definition is unique in L2([0, 1]× Rd; ρt(dx)dt). We now check that vε generates a206

valid probability path between µ̃ε and ν̃ε, i.e., that (ρ, vε) satisfy the continuity equation (11) in the207

weak sense. Note that vε(t, ·) ∈ L1(Rd, ρt) and
∫ 1

0

∫
Rd |vε(t, x)|p(t, x)dxdt <∞. By Proposition208

4.2 in Santambrogio [2015], it is enough to check that the continuity equation is satisfied in the sense209

of distributions. Let ϕ ∈ C1
c ((0, 1)× Rd), then210 ∫ 1

0

∫
Rd

∂tϕ(t, x)ρt(dx)dt+

∫ 1

0

∫
Rd

∇ϕ(t, x) · vε(t, x)ρt(dx)dt

=

∫ t

0

E[∂tϕ(t,Xt) +∇ϕ(t,Xt) · (Y −X)]dt = E[ϕ(1, Y )− ϕ(0, X)] = 0.

211
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A.2 Proof of Proposition 2212

Let ε > 0. Recall that (tn, xn, yn)n≥1 are iid samples of U(0, 1) ⊗ µ ⊗ ν, and that we assume213

µ̃ε = µ and ν̃ε = ν. Let πε be the optimal EOT plan between µ and ν. Let πn
ε be the optimal EOT214

plan between xn = 1
n

∑n
i=1 δxi

and yn = 1
n

∑n
i=1 δyi

. In this proof, the convergence of probability215

measures is understood in the weak sense.216

First, the almost-sure convergences xn → µ and yn → ν come from a classical result in probability217

theory on the convergence of empirical distributions to the true distribution, see Varadarajan [1958].218

Since the minimization problem of (1) is non-trivial, an application of Theorem 1.4 in Ghosal et al.219

[2022] shows that the empirical EOT plan satisfies πn
ε → πε almost surely. Now, for any n ≥ 1, we220

have221

E [LEOT−CFM(Bn, θ; ε)] = E
[∫

Rd×Rd

∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dtπn
ε (dx, dy)

]
= E

[∫
s(µ)×s(ν)

∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dtπn
ε (dx, dy)

]
,

where s(µ), s(ν) denote the support of µ and ν respectively, which are assumed to be bounded. Since222

(x, y) 7→
∫ 1

0
∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt is continuous and bounded on s(µ)× s(ν) by our223

assumption on vθ, we have224 ∫
s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πn
ε (dx, dy)

→
∫
s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πε(dx, dy)

almost surely as n→ ∞. Now, the dominated convergence theorem ensures that this convergence225

also holds in expectation, i.e.226

E [LEOT−CFM(Bn, θ; ε)] →
∫

s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πε(dx, dy).

Finally, we want to prove that this integral is proportional to LW−CFM(θ; ε). Since we assume no227

tilting of the marginals, i.e. qε = πε, we have228

LW−CFM(θ; ε) = ZεEt∼U(0,1),(X,Y )∼πε

[
||vθ(t,Xt)− (Y −X)||2

]
= Zε

∫
s(µ)×s(ν)

(∫ 1

0

∥vθ(t, (1− t)x+ ty)− (y − x)∥2 dt
)
πε(dx, dy).

by using the same change of measure argument as in the proof of Proposition 1.229

B Details on the Equivalence to OT-CFM in the Large Batch Limit230

We recall the mini-batch optimal transport technique that is central in the OT-CFM algorithm of Tong231

et al. [2024]. Given a batch of i.i.d. samples B = {(ti, xi, yi) : i = 1, . . . , B}, where ti are i.i.d.232

according to U(0, 1), xi are i.i.d. according to µ, yi are i.i.d. according to ν, and ti, xi, yi are drawn233

independently, one can compute the optimal transport plan between the two corresponding discrete234

distribution, i.e. one computes235

πB ∈ arg min
π∈ΠB

B∑
i=1

B∑
j=1

c(xi, yj)π(xi, yj), (15)

where ΠB is the set of couplings between the empirical measures

xB =
1

B

B∑
i=1

δxi
, yB =

1

B

B∑
i=1

δyi
.
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In particular, any π ∈ ΠB must satisfy
∑

j π(xi, yj) =
∑

i π(xi, yj) =
1
B . Then, given an optimal236

πB, one computes the following237

LOT−CFM(B, θ) = 1

B

B∑
i=1

(vθ(ti, (1− ti)xi + tiyσ(i))− (yσ(i) − xi))
2, (16)

where σ is a permutation corresponding to a Monge map for the problem (15), i.e., for some238

T : {xi : i = 1, . . . , B} → {yi : i = 1, . . . , B} such that T (xi) = yσ(i) and πB := (Id, T )#xB is239

a solution to (15) [Peyré and Cuturi, 2019]. This sample loss is used as an approximation of the240

following OT-CFM loss241

LOT−CFM(θ) := Et∼U(0,1)E(X,Y )∼π⋆

[
||vθ(t,Xt)− (Y −X)||2

]
, (17)

where π⋆ solves the unregularized optimal transport problem, that is (1) with ε = 0.242

The sample OT-CFM loss in (16) is a low bias approximation of (17) only when the batch size is243

large enough. The actual samples for which we compute (16) are not exactly distributed according244

to a genuine OT plan between µ and ν, since the OT plan π⋆ and the product measures µ ⊗ ν are245

typically singular. Additionally, computing the exact batch OT plan becomes prohibitively expensive246

as the batch size grows. A solution is to compute an approximate OT plan, by using the Sinkhorn247

algorithm [Cuturi, 2013], which is an efficient way of computing the entropic OT plan between248

two discrete sets of measures. In that case, as the batch size increases, the sample OT-CFM loss249

(16) approximates LEOT−CFM given by (8). Nevertheless, approximating the OT at the batch level250

is particularly challenging in datasets with multiple modes, as it becomes unrealistic to faithfully251

approximate the global OT if not all modes are adequately represented within each (or the average)252

batch. Consequently, the batch size must scale with the number of models or classes present in the253

dataset.254

Our method does not have these scaling issues with the batch size, since it only involves computing a255

simple weighting factor wε(xi, yi) = exp(−c(xi, yi)/ε) for every training sample pair (xi, yi) in a256

batch. In other words, if one assumes that the weight does not tilt the marginals, the weighted CFM257

method corresponds to a large batch limit of OT-CFM (where batch EOT is used).258

C Experimental Setup259

To visually probe the benefits of our weighted loss, we design similar low-dimensional transport260

benchmarks as in Tong et al. [2024]. First, we focus on mapping a distribution concentrated on an261

annulus to a configurable Mixture of Gaussians (MoG). The second setup consists of recovering262

the moons 2D dataset from a MoG source. We compare W-CFM for different choices of ε with the263

cost c(x, y) = ∥x− y∥ against both OT-CFM and I-CFM, training a two-layer ELU-MLP with 64264

hidden units per layer via Adam with a learning rate of 10−3 for 60,000 iterations with a default265

batch size of 64. We evaluate sample quality, path straightness, and marginal density estimates using266

KDE contours. When using W-CFM, the training loss is a sample average of (6), rescaled by a267

Monte-Carlo approximation of Z−1
ε computed over a single epoch as a preprocessing step.268

To validate our approach in higher-dimensional settings, we evaluate on CIFAR-10 [Krizhevsky,269

2009], CelebA64 [Liu et al., 2015], and ImageNet64-10—a 64×64 version of 10 ImageNet classes270

[Deng et al., 2009]. We use a UNet backbone [Ronneberger et al., 2015] adapted to each dataset:271

for CIFAR-10, a smaller model with two residual blocks, 64 base channels, and 16×16 attention;272

for the rest of the datasets, a deeper UNet with three residual blocks, 128 base channels, a [1, 2,273

2, 4] channel multiplier, and additional attention at 32×32 for ImageNet64-10, Food20, and Intel.274

All models are trained with Adam, a learning rate of 2 × 10−4, cosine learning rate scheduling275

with 5,000 warmup steps, and EMA (decay 0.9999), for 400,000 steps using batch sizes of 128 for276

CIFAR-10, 64 for CelebA and ImageNet64-10, and 48 for Food20 and Intel. Our goal is not to reach277

state-of-the-art performance, but to compare flow matching variants under matched computational278

budgets and architectures.279

D Additional Results280
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Figure 2: Sample trajectories for Circular MoG → 5 Gaussians. From left to right, the models used
are trained with: I-CFM, W-CFM (ε = 0.4), W-CFM (ε = 0.2), OT-CFM (batch size 16), and
OT-CFM.

Figure 3: Contour plots of learned density for moons (using 50,000 generated samples). The leftmost
plot corresponds to the true target distribution. Then, from left to right, the models used are trained
with: I-CFM, W-CFM (ε = 10), W-CFM (ε = 2), and OT-CFM. We observe that choosing a small
value of ε for W-CFM leads to a "disentanglement" of the two generated moons.

Table 3: FID ↓ across datasets (Dopri5 solver). Lower is better.

Model CIFAR-10 CelebA64 ImageNet64-10 Intel Food20

I-CFM 7.44 21.99 13.86 27.54 8.15
OT-CFM 7.60 20.93 14.39 25.63 8.23
W-CFM 7.33 21.96 13.56 25.22 7.93

Table 4: Comparison of CFM training algorithms’ performance on 8 Gaussians → moons on 5
random seeds. W 2

2 measures the overall quality of sample generation (lower is better), NPE measures
the straightness of trajectories (lower is better), using the true optimal transport cost as a reference.
We emphasize on the tradeoff incurred by the choice of ε.

Model W 2
2 (↓) NPE (↓)

I-CFM 0.680 ± 0.146 1.033 ± 0.070
OT-CFM 0.232 ± 0.043 0.125 ± 0.011
OT-CFM (B = 16) 0.564 ± 0.125 0.067 ± 0.024
W-CFM (ε = 2) 1.823 ± 0.166 0.289 ± 0.008
W-CFM (ε = 4) 1.476 ± 0.167 0.033 ± 0.023
W-CFM (ε = 6) 0.960 ± 0.186 0.220 ± 0.050
W-CFM (ε = 8) 0.888 ± 0.217 0.365 ± 0.076
W-CFM (ε = 10) 0.843 ± 0.321 0.463 ± 0.061

Table 5: Sample quality and diversity metrics on CIFAR-10.

Model Precision (↑) Recall (↑) Density (↑) Coverage (↑) F1 (↑)

I-CFM 0.83 0.75 0.98 0.91 0.78
OT-CFM 0.80 0.75 1.00 0.92 0.77
W-CFM 0.81 0.76 0.94 0.91 0.78
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Figure 4: Sample trajectories on 8 Gaussians → moons with W-CFM. From left to right, the models
used are trained with the following values of ε: 10,8,6,4,2.

Figure 5: Contour plots of learned target density for 8 Gaussians → moons. The leftmost plot
corresponds to the true target distribution. Then, from left to right, the models used are trained with
the following values of ε: 2,4,6,8,10.

Figure 6: Generated samples from W-CFM trained on CIFAR-10.

Table 6: Sample quality and diversity metrics on CelebA64.

Model Precision (↑) Recall (↑) Density (↑) Coverage (↑) F1 (↑)

I-CFM 0.86 0.66 1.26 0.98 0.74
OT-CFM 0.84 0.65 1.23 0.96 0.73
W-CFM 0.83 0.66 1.19 0.98 0.74
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Figure 7: Generated samples from W-CFM trained on CelebA64.

Figure 8: Generated samples from W-CFM trained on ImageNet-10.
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Figure 9: Generated samples from W-CFM trained on Food-101.

Figure 10: Generated samples from W-CFM trained on Intel Image Classification.
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