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Abstract

Modern perception systems rely heavily on high-resolution cameras, LiDARs, and
advanced deep neural networks, enabling exceptional performance across various
applications. However, these optical systems predominantly depend on geometric
features and shapes of objects, which can be challenging to capture in long-range
perception applications. To overcome this limitation, alternative approaches such
as Doppler-based perception using high-resolution radars have been proposed.
Doppler-based systems are capable of measuring micro-motions of targets remotely
and with very high precision. When compared to geometric features, the resolution
of micro-motion features exhibits significantly greater resilience to the influence
of distance. However, the true potential of Doppler-based perception has yet to
be fully realized due to several factors. These include the unintuitive nature of
Doppler signals, the limited availability of public Doppler datasets, and the current
datasets’ inability to capture the specific co-factors that are unique to Doppler-
based perception, such as the effect of the radar’s observation angle and the target’s
motion trajectory. This paper introduces a new large multi-view Doppler dataset
together with baseline perception models for micro-motion-based gait analysis and
classification. The dataset captures the impact of the subject’s walking trajectory
and radar’s observation angle on the classification performance. Additionally,
baseline multi-view data fusion techniques are provided to mitigate these effects.
This work demonstrates that sub-second micro-motion snapshots can be sufficient
for reliable detection of hand movement patterns and even changes in a pedestrian’s
walking behavior when distracted by their phone. Overall, this research not only
showcases the potential of Doppler-based perception, but also offers valuable
solutions to tackle its fundamental challenges.

1 Introduction

Today’s perception systems typically benefit from the integration of high-resolution optical sensors
and advanced deep neural networks surpassing even human perception in various applications.
However, such systems also suffer from inherent limitations of optical system design and the physics
of energy propagation in 3D space, which cannot be solved even using the most advanced perception
neural networks. As an example, camera-based perception systems typically rely on extracting
geometrical (spatial) features of the environment with the effective observed resolution decreasing
quadratically as a function of distance. This results in a significantly lower performance in long-
range perception applications. Alternatively, there exist perception approaches that do not rely on
geometrical features and therefore offer enhanced resilience against distance-related information loss.
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One such approach is Doppler-based perception, enabled by the new generation of commercially
available, high-resolution, mm-Wave coherent radar systems. Unlike camera-based systems that
primarily capture an object’s shape, location, and color information (such as the shape and pose of
a human body, the color of a car, or the dimensions of a helicopter), Doppler-based systems detect
the motions exhibited by subjects and their components (such as the motion of human hands or legs
during walking, the movements of a car’s wheels, or the rotation of a helicopter’s rotors).

One application of micro-Doppler analysis methods that has been less investigated is using automotive
radar sensors, already present in cars, for predictive accident prevention. Such approaches involve
extracting high-level information that can potentially be used to predict pedestrians’ traffic behaviour
and their interactions with other pedestrians and cars on the road. Examples include, analyzing a
pedestrians’ hand or leg micro-movement patterns to determine whether the pedestrian is accompanied
by a child [1] or, as investigated in this paper for the first time, detecting pedestrians distracted while
texting on their phones. While Doppler-based perception is relatively new compared to vision-based
systems, it offers a fundamentally novel approach to perception and activity recognition, particularly
in long-range applications.

Although there are several advantages to Doppler-based perception, it also comes with its set of
unique challenges, which have limited its real-world applications. One challenge is that Doppler
measurements are “directional”, meaning that the micro-motion information captured by a Doppler
sensor depends on the radar’s observation angle (a function of subject’s relative location to the
radar) and the relative direction of the movement of the subject. This challenge is well-known in
the radar community, but as it will be shown in the next section, is rarely addressed or mitigated
in the literature. Another significant challenge in Doppler-based perception is that micro-motion
data is not human-readable. This is in contrast to optical sensors that generate 2D or 3D geometrical
(spatial) intuitive representations. This has made it impractical to design hand-crafted micro-motion
features, especially for more complex perception tasks. Deep learning methods have addressed this
issue by eliminating the need for hand-engineered features, but they require access to large and
representative datasets. Publicly available Doppler datasets today are typically very limited in size,
and more importantly, lack diversity in capturing co-factors unique to Doppler-based perception, such
as the effect of the relative location and trajectory of subjects discussed earlier.

In this paper, we release one of the largest public multi-view micro-Doppler datasets to date, along
with single-radar and multi-view baseline perception models. Our work showcases the potential of
off-the-shelf mm-Wave radars for complex Doppler-based perception tasks. In specific, this paper’s
contributions are summarized as follows:

The first multi-view Doppler dataset for micro-motion-based gait classification
The published dataset is one of the largest public micro-Doppler datasets in context of human gait
analysis and the only multi-view micro-Doppler dataset publicly available in this context to date.

Baseline neural networks for real-time hand movement and distracted pedestrian detection
We introduce baseline neural networks for a standard task of hand movement detection, and a task
never explored before: distracted pedestrian detection. The baseline models provided in this paper
can make predictions in less than a second. This highlights the potential of such methods for virtually
real-time Doppler analysis applications.

A new benchmark for the effect of location and walking trajectories on gait Doppler signatures
The published dataset is unparalleled in capturing the effect of different relative locations and walking
directions on the walking Doppler signature of subjects. Combining the multi-view aspect of the
published dataset and its comprehensive coverage of different locations and walking trajectories,
we also provide the first trajectory-agnostic micro-Doppler-based classifier in the context of gait
micro-Doppler analysis.

2 Relevant Work

2.1 Gait micro-Doppler Datasets

The overview of relevant gait micro-Doppler datasets is shown in Table 1. One main factor separating
different datasets in the context of gait classification is the definition of classes. In most Doppler
datasets today, the gait classes are limited to simple actions (e.g., fast vs slow walking, or crawling
vs jumping) which can be easily classified using the macro-motions of the body (mainly torso). In
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contrast, hand micro-motion detection is a much harder task, especially in presence of other sources
of micro-motions, like movement of the legs while walking. However, most existing works focus on
detecting hand while standing [2][3][4]. Our work is one of the few public datasets that include the
non-trivial task of hand movement detection for a walking subject, and the first dataset to investigate
changes in the walking pattern of pedestrians while distracted by their phones.

Another factor highlighting this proposed dataset is the classification latency of the baseline methods.
While most papers aim to classify motion snapshots of around three seconds [5] [2] [4], we aim to
achieve real-time Doppler-based perception by reducing the size of the micro-motion snapshots to
less than one human walking cycle (500-1000ms).

Moreover, trajectory and location coverage are often overlooked in existing datasets while Doppler
measurements are very sensitive on radar’s observation angle. There are three critical factors
to consider in this context: range coverage, azimuth coverage, and the coverage of participants
motion trajectories. Nevertheless, none of the existing datasets have considered these three aspects
simultaneously. Vishwakarma et al. [2] select a Region of Interest (RoI) spanning 1-10m in range,
but instead of complete coverage of different ranges, they measure random walking patterns of the
participants within the RoI. Chakraborty et al. [4] proposed the dataset containing activities with
discrete operation ranges and motion directions (i.e., 0◦, ±15◦, ±30◦, ±45◦) from the radar. The
dataset presented in this paper enjoys a comprehensive coverage of all of these factors, providing
a new benchmark for examining the effect of location and walking trajectories on gait Doppler
signatures.

Table 1: Comparison of public gait micro-Doppler datasets.

Location and Trajectory Coverage

Paper Hand
Micro-motion

Classification
Snapshot length

Classification
Latency Across

Range
Across

Azimuth
Motion

Direction

Participants
Number

Dataset
Size

Gurbuz et al. [5] - 3s Fast ✓ - - S M
Vishwakarma et al. [2] WS 2.7s Fast ✓ - R M S

Yang et al. [3] WS - - - - - L M
Gambi et al. [6] WW 16s Slow ✓ - - L S

Bhavanas et al. [7] - 3.7s Fast R R - L L
Chakraborty et al. [4] WS 3s Fast R - ✓ L M

MVDoppler (Ours) WW 0.64s Realtime 2 ✓ ✓ ✓ M L 1

WS: While Standing WW: While Walking -: not specified
Slow: >5s Fast: 1-5s Realtime: <1s
✓: Full coverage R: Random
S: <10 people or <10,000s M: 10-20 people or 10,000-20,000s L: >20 people or >20,000s

2.2 Multi-Radar Fusion

As mentioned earlier, Doppler-based perception using radar is dependent on the subject’s relative
location and movement direction. One approach to deal with this issue is to fuse information from
multiple radars. Multi-radar fusion techniques can typically be categorized into two approaches:
fusion of co-located perpendicular radars for improved angular resolution in both elevation and
azimuth dimensions [8, 9], and fusion of spatially distributed radars with the goal of achieving
better coverage over the RoI [10, 11, 12, 13, 14]. Our work falls under the later group of spatially
distributed radars. Early approaches demonstrated the efficacy of fusion from distributed radars at
the simulation level, particularly in terms of through-the-wall sensing [10, 11] and ghost mitigation
[12]. More recently, the focus has been shifted towards real-world multi-radar setups, with [13]
integrating signals from two off-the-shelf radars based on graph matching techniques, while [15]
leveraged ensemble learning for improved activity perception within a small RoI. Building upon prior
work, this study proposes a multi-view approach to Doppler-based gait analysis. We have specifically
designed a multi-radar setup that not only eliminates the blind spots of each radar but also ensures

1MVDoppler includes over 10.5 hours (37,800 seconds) of simultaneous data capture from two radars with
complementary views resulting in over 54,000 multi-view snapshots. For single-radar classification tasks, this
translates to an equivalent of 21 radar-hours or over 108,000 single-radar recorded snapshots.

2Latency in the context of gait analysis is typically determined by the minimum observation window size
required by the perception model to make an accurate classification.
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that the information from both radars is complementary with the goal of achieving a truly trajectory
and location-agnostic sensing system. To the best of our knowledge, this goal has not been achieved
by any single-radar or multi-radar system to date.

3 Dataset

3.1 Classes

To showcase the power of Doppler-based perception for real-time analysis of complex pedestrian
gait patterns, we defined four classes and two tasks as shown in Figure 1(a). A total of 13 volunteers
were recruited, All providing informed consent per IRB guidelines and agreeing to have their data
included in a publicly available dataset3. The four classes defined in this study include normal walking
("Normal"), phone call ("Phone Call"), hands in pockets ("Pockets"), and texting ("Texting"). Each
class represents a common activity undertaken by pedestrians in a typical traffic scenario. Normal
class is intended to capture the natural walking patterns of subjects, allowing for complete freedom
of movement in their hands and legs. The Phone Call class is similar to Normal, except for the
assumption that the participants are holding their phone to their ear with one hand, leaving only one
hand free. Pockets class assumes that the participants’ hands are in their pockets, restricting hand
movement entirely. Lastly, Texting class assumes the participants are using both hands to text on their
phones while walking. To better capture the effects of distracted walking on gait patterns, we asked
participants to keep their eyes fixed on their phones rather than maintaining their typical attentive
walking behavior.

We defined two classification tasks based on the four classes. The first task is hand movement
detection ("Hand"), which aims to distinguish classes with no hand movement (Pockets and Texting)
from classes with one or more moving hands (Phone Call and Normal). The second classification
task ("Distract"), which aims to detect changes in the walking patterns of individuals when they
are distracted by their phones. In absence of hand-movement signatures, we expect the perception
models to pick up more subtle cues in the distracted pedestrian’s walking pattern, making this task
significantly harder comparing to the "Hand" task.

3.2 Data Capture Setup

Figure 1(c) illustrates the multi-radar setup and its positioning with respect to the RoI. For our
experiments, we used two off-the-shelf FMCW radars (AWR1843 from Texas Instruments), and a
HD stereo camera (ZED from Stereolabs). The two radars were designed to operate at two different
frequencies (77-78GHz for radar0 and 79-80GHz for radar1), to ensure the simultaneous operation of
both radars at a high chirping duty-cycle (>95%) without any risk of interference.

As it will be shown, symmetrical coverage of the RoI by both radars is critical in this study. This is
achieved by selecting a rectangular area with a 10m extent in both range and azimuth of each radar,
and utilizing the entire width of each radar’s Field of View (FoV) in azimuth (±45◦). Assuming the
average height of a human to be less than 2m, both radars are set at a height of 1m to ensure the
Doppler signatures of both hands and legs can be properly captured. Considering the FoV of each
radar in elevation (±15◦), we chose the minimum distance of the RoI to each radar to be at 5m. This
guarantees the full utilization of the vertical beam width of each radar while eliminating the effect of
the beam shape on received signals in close ranges 3.

3.3 Experiment Design

To cover all possible walking directions and trajectories within the RoI, we defined seven walking
patterns shown in Figure 1(b). Participants were instructed to walk at their natural speed and cover
the entire RoI while repeating each walking pattern for all activity classes. Note that these patterns
were carefully selected to be complementary from the perspective of each radar, ensuring a natural
balance between the distribution of data across radars and walking patterns.

3More information in the supplementary materials
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(a) Activity classes (b) Walking patterns

(c) Experiment layout

Figure 1: Experiment Design. (a) The activity classes and corresponding classification tasks. High-
resolution Doppler snapshots are not human-readable, but can be sufficient for real-time motion-based
activity classifications. (b) The selected walking patterns. (c) RoI and its position relative to the
multi-radar setup.

3.4 Dataset Statistics

In Figure 2(a), we present a histogram showing the number of snapshots captured at each location
within the RoI. With a uniform coverage of samples and over 90 snapshots at each location bin, the
dataset provides sample size to accurately measure the effect of relative location on classification
results.

Figure 2(b) illustrates the distribution of snapshots captured for different walking velocities. It can
be observed that the dataset exhibits a symmetrical coverage within average walking speeds of our
subjects (1± 0.25m/s indicated by the white dashed lines) with over 90 snapshots per bin for the
primary linear walking directions (0◦, 45◦, 90◦, and 135◦, and their counterparts). This is evident that
the dataset provides sufficient sample-size to accurately measure the effect of walking trajectories on
the gait classification performance.

Figure 2(c) shows the distribution of average walking velocity over the RoI. The velocity is mostly
uniform within the RoI, with the exception of low-speed regions around the edges of the RoI where
participants stop and turn to avoid exiting the field. Minimizing the correlations between location and
walking velocities of subjects in the training data is a critical component in ensuring generalization
power of Doppler-based classifiers, a factor commonly overlooked in the capture and analysis of
micro-Doppler datasets.

4 Single-Radar Baseline Neural Networks

4.1 Pre-Processing

The initial step involves extracting the micro-Doppler signatures from each radar’s received raw signal.
We employ the CFAR algorithm [16] to detect the participant locations, and then use short-time
Fourier transform on the slow-time axis to extract the gait micro-Doppler spectrograms. Then, the
spectrogram’s magnitude is log-transformed and normalized as a grayscale input to deep neural
networks3.
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(a) Number of snapshots captured
at each location.

(b) Number of snapshots captured
for different motion directions and
velocities.

(c) Average walking velocity over
the RoI.

Figure 2: Dataset statistics. The captured dataset provides a comprehensive coverage across all
walking directions and locations within the RoI.

The dataset is collected in the form of 10-second walking episodes, which are further divided into
1.28-second clips with a 50% overlap. To avoid the classifiers being sensitive to the relative start
phase in walking cycles, we augment each training batch by randomly cropping each clip into a
snapshot of 640ms. Our experiments show that this simple augmentation technique is highly effective
in enhancing the generalization of Doppler-based gait classifiers on unseen data.

4.2 Gait Classification

Figure 1(a) displays examples of micro-Doppler snapshots captured for the four classes. These
snapshots cannot easily be distinguished by untrained human eyes, but contain high-dimensional
micro-motion signatures of human gait patterns that can be leveraged by Deep neural networks for
complex classification tasks. Hence, we utilize MobileNetV2 [17] as the backbone model for both
Hand and Distract tasks. We report the 4-fold cross-validation accuracy across different subjects in
Table 2. Remarkably, the classifier achieves reliable hand-movement detection accuracy of 85.25%
across subjects by analyzing Doppler snapshots in a window as short as a single walking step.
Moreover, Figure 3 demonstrates that using longer windows for inference increases the accuracy to
97.9%±3.07% (accuracy ± standard deviation).

The performance for the more challenging Distract task is naturally lower, yet still statistically
significant across subjects (accuracy of 62.55%±5.0% across two radars). This task aims to demon-
strate the feasibility of using micro-motion signatures to capture effects beyond simple hand or leg
movements, and pose a challenge to encourage advanced micro-Doppler analysis techniques. As
shown in Figure 3, similar to the Hand task, increasing the observation window length leads to an
accuracy of 72.05%±10.05%.

(a) Hand task (b) Distract task

Figure 3: Hand and Distract tasks results across different inference window sizes. The baseline neural
networks trained for real-time operation can also be used for slower but more accurate classification.
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Table 2: Classification accuracies (accuracy % ± standard deviation).

Single-Radar Multi-View Radar Fusion
Tasks Radar 0 Radar 1 Input-level Late-level Multi-level Late-level Multi-level

- Average Average Transformer Transformer

Hand 86.0±4.6 85.7±4.3 85.2±5.1 87.7±4.8 88.5±4.5 88.6± 4.8 90.2±4.6
Distract 63.5±6.0 61.5±4.9 60.0±6.9 65.8±7.5 66.9 ±6.4 67.4±5.6 66.9±6.3

5 Multi-Radar Baseline Neural Networks

5.1 Multi-Radar Fusion Methodology

In this section, we provide baseline models for the semantic fusion of multi-view Doppler signals, to
address their inherent dependency on subject’s location and trajectory.

Let f (· ;θ) denote a baseline embedding network with its internal parameters θ, designed to project
an arbitrary micro-Doppler snapshot X ∈ RT×F into the latent space f (X ;θ) = {η1, η2, . . . , ηL},
where ηl is the representation from the l-th encoding layer. The multi-view representations
f
(
XR1 ;θ

)
=

{
η1

R1, η2
R1, . . . , ηL

R1
}

and f
(
XR2 ;θ

)
=

{
η1

R2, η2
R2, . . . , ηL

R2
}

, obtained
from the multi-view micro-Doppler modalities XR1 and XR2, respectively, can be integrated across
a range of different fusion levels and methods.

We demonstrate multi-view fusion across three different embedding levels: 1) input-level fusion,
where the inputs XR1 and XR2 are channel-wise concatenated and embedded via the same single-
view baseline network, 2) late-level fusion, where the features are combined solely under the last
layer L, and 3) multi-level fusion, contemplates feature embeddings across all levels wherever the
features are resized, e.g., every representation level right after pooling.

One approach for multi-view fusion is to simply combine the corresponding representations from the
two radars by summing them together, i.e., (ηR1

l + ηl
R2)/2. However, given that the radar signals

captured from different spatial nodes pose inequivalent significance with respect to the heading
direction of a target, it may be more reasonable to assign dynamic weights across the multi-view
sequences. This intuition leads us to introduce a transformer-based fusion pipeline that merges the
tokenized form of ηR1

l and ηR2
l via token-wise concatenation [18], followed by self-attention layers

[19] to achieve cross-attention between the multi-view inputs as well as context-aware temporal
attention.

The combinations across different fusion levels and methods yield five multi-view radar fusion
variants: input-level fusion, late-level average-based fusion, multi-level average-based fusion, late-
level transformer-based fusion, and multi-level transformer-based fusion.

5.2 Experimental Analysis

Table 2 summarizes the classification performances for each fusion method. The results demonstrate
that the multi-view setting has holistic performance improvements in comparison with a single-radar
system. Of particular note is the trend that the use of adaptive fusion strategies at multiple-levels
leads to greater performance gains. Comparing with single-radar baselines, the proposed multi-level
transformer-based fusion baseline yields in significant improvements of around 5% for both for Hand
and Distract tasks.

6 Results and Discussion

It is worth noting that the accuracies shown in Table 2 represent the average classification performance
across the entire RoI and all velocities and directions. In this section, we provide an in-depth analysis
of single-view and multi-view classification results (for the best models presented in the previous
section) with respect to the effect of location and velocity. Figure 4 illustrates that the single-radar
classification accuracy decreases towards the edges of the RoI for both radars. This accuracy loss is
partly due to the reduced velocities at the edges of RoI, and in part due to the decreased signal-to-noise
ratio (SNR), which can be mitigated using beamforming techniques or increasing radar’s transmit
power. Figure 5 illustrates the accuracy distribution of the Hand task across the two-dimensional
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walking speed and direction of the subjects. The results highlight the significant sensitivity of single-
radar classification to such factors. The accuracy substantially drops for subjects with tangential
directions from the radar, owing to Doppler’s radial sensing nature. This effect is also clear in the
accuracy vs walking angle plot in Figure 6.

In contrast to single-radar baselines, Figure 4(c) and Figure 5(c) show that multi-view sensing has
great robustness at the edges of the RoI as well as on the tangential velocities. This is evidence that
multi-view radar sensing techniques can compensate for the limitations of single-radar approach, and
eliminate single-radar location and trajectory dependence. This result is further elucidated in Figure 6,
representing the average accuracy of the Hand and Distract tasks as a function of walking direction
relative to Radar0. Notably, the two radars exhibit complete complementary behavior specially for the
blind spots of each radar (i.e., ±90◦ for Radar0 and 0◦ and 180◦ for Radar1). The multi-radar fusion
consistently achieves higher accuracy than the best performance of either sensor alone, irrespective
of the directions.

(a) Radar 0 (b) Radar 1 (c) Fusion

Figure 4: Classification accuracy across the RoI for the Hand task. The classification performance of
the multi-view fusion approach is uniform across the RoI.

(a) Radar 0 (b) Radar 1 (c) Fusion

Figure 5: Hand task classification accuracy across walking velocity magnitudes and directions.
Single-radar classification performance is sensitive to the subjects direction of motion while the
multi-view approach is independent of the subjects moving direction.

7 Limitations

In this study, we focused on exploring the influence of subject’s location and trajectory co-factors on
gait analysis. However, there exist several other co-factors that we did not investigate. For instance,
we did not examine the impact of multi-path and clutter in different environments or the effect of
movements of the radar itself on the Doppler signature.

Another limitation of the presented dataset is related to the sample size and diversity of participants.
Although the presented results demonstrate statistical significance as indicated by the confidence
intervals in Table 2, the dataset could enjoy a larger and more diverse participants population.
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(a) Hand (b) Distract

Figure 6: Accuracy of Hand and Distract tasks across walking angles. Radars complement each other
in their sensitivity to effect of different walking directions. Fusion-based approach outperforms both
single radars across all walking directions.

Moreover, it is important for readers to note that the classes defined in this paper do not fully
encompass the breadth of diversity and complexity inherent in the two tasks. The selected classes
and the tasks introduced in this study were specifically designed to encompass varying levels of
difficulty in Doppler-based pedestrian gait analysis. They serve as an initial step towards utilizing
Doppler-based methods for advanced perception tasks.

8 Conclusion

This study introduces a novel micro-Doppler dataset, consisting of multiple views, for Doppler-
based pedestrian gait classification. Our research focuses on two challenging tasks: real-time hand
movement detection and distracted pedestrian detection. We establish neural network baselines
for these tasks and investigate the impact of Doppler directionality on single radar classification
performance—a factor often overlooked in existing Doppler-based classification literature.

To address the challenges posed by relative location and velocity, we propose multi-view neural
network baselines based on fusion transformers. Through this approach, we achieve trajectory-
agnostic, real-time pedestrian gait classification. The results we present demonstrate generalization
across different subjects and various walking trajectories, as evidenced by the narrow confidence
intervals of 5-7% reported for both tasks.

The availability of our dataset, along with the corresponding baseline neural networks, lays a solid
foundation for future research in real-time Doppler-based perception. This research avenue offers
an alternative to conventional vision-based perception approaches. Overall, our work contributes
significantly to the field of Doppler-based pedestrian gait classification and opens up opportunities
for further advancements in real-time Doppler-based perception.
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