Under review as a conference paper at ICLR 2026

ON THE MEASUREMENT AND EFFICIENT MITIGATION
OF LENGTH GENERALIZATION GAPS IN LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) typically train on short text due to the quadratic
complexity of their self-attention architectures. As a result, their performance
suffers drastically on inputs longer than those encountered during training, sub-
stantially limiting their applications in real-world tasks involving long contexts. In
this paper, we rigorously establish an upper bound on length generalization in the
measurement space and identify two length-related factors that limit performance.
Our theory explains two recent observations: (i) out-of-distribution positions in
longer contexts reduce length generalization, and (ii) fine-tuning on entire se-
quences is not necessary. Motivated by these insights, we propose Virtual-context
Learning (VCL), a flexible method that requires minimal modifications to most
fine-tuning approaches. Experiments on various tasks show that VCL allows LLMs
to generalize to 4x context windows while retaining perplexity and improving
performance on downstream tasks such as Passkey Retrieval and LongBench. VCL
brings substantial efficiency improvements, reducing decoding time and memory
usage by up to 50% compared with fine-tuning baselines.

1 INTRODUCTION

Large language models (LLMs) have recently advanced the state-of-the-art across various natural
language processing tasks (Achiam et al., 2023} [Team, [2025} |Meta, 2024). They typically remain
pre-trained on finite context windows primarily due to the computational overhead quadratic in
the input lengths of their self-attention architectures [Touvron et al.|(2023ajb). As a result, their
performance degrades significantly when applied to longer sequences (Ye et al.,[2025; Bai et al.| [2024;
Chen et al.| 2024; |[Kuratov et al.| [2024])), limiting their applicability in tasks that require long-range
contexts, such as document retrieval, code generation, and story generalization (Bai et al., 2023}
Zhang et al.| {2024} |Metal 2024; |Qin et al., [2024)).

In this paper, we first provide a rigorous analysis of the upper bound for length generalization in pure
self-attention using measure theory. Notably, attention matrices are discrete and of varying sizes
across sequence lengths, preventing direct comparison or standard matrix operations. To address
this question, we develop a measure-theoretic framework that maps token matrices and attention
updates into a continuous probability space, which allows us to quantify distributional differences
between short and long contexts and thereby analyze how attention distributions evolve as sequence
length increases. Based on this framework, we identify two length-related factors that underlie
generalization failures: (i) the shorter length N (usually the pre-training context window) at a rate of
v/InNN; (ii) the challenge of embedding distribution shifts for unseen or longer lengths. The increase
in the test length can affect the distribution shift, increasing the distance between token embeddings
and leading to failures in length generalization (Ye et al., 2025; (Chen et al.,[2023a).

Moreover, by connecting the bound factors of attention distribution distances to practical phenomena,
we can systematically elucidate the mechanisms behind recent empirical findings (Clark et al.,|2018};
Chen et al.| 2023a)). (i) Longer contexts can diminish length generalization ability by introducing
Out-of-Distribution (OOD) positions, which enlarges the distribution shift term in the bound. Existing
position interpolation (PI) methods, such as Yarn (Peng et al.| 2023), mitigate this effect by re-scaling
longer position indices and adjusting the frequency basis to align with the scale inherited from the
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pre-trained model during fine-tuning. (ii) Fine-tuning on entire long target sequences is not necessary,
as only the short-length term appears in the bound directly. Instead, selecting a subset of important
tokens from long sequences for fine-tuning yields comparable performance to using all tokens |Fang
et al.| (2024); Hu et al.| (2024). These selected tokens effectively mimic the long distribution and
reduce the generalization gap, verifying the theoretical feasibility of extending context windows to
even infinite lengths under limited computational resources.

Building on our theoretical insights, we introduce Virtual-context Learning (VCL), a simple and
effective method that updates parameters only on long-length tokens. It trains solely on unseen or
longer indices, reducing the quadratic cost of long inputs with minimal code changes in standard fine-
tuning methods (Peng et al.| 2023} |Chen et al., [2023a). VCL can also optionally combine with PI to
further alleviate token-distance effects caused by PE distribution shifts. Our experiments thoroughly
evaluate VCL on a variety of tasks. On Proof-pile (Azerbayeyv et al.,2022)) and GovReport (Huang
et al.,|2021)), VCL facilitates length generalization against a wide range of PI series and PE-augmented
methods up to 4 x length extension, retaining the language modeling perplexity and generation quality.
VCL improves scores on downstream tasks including Passkey Retrieval (Mohtashami & Jaggil [2023)
and LongBench (Bai et al.,|2023)) which are two established benchmarks for long-context evaluation.
We observe that VCL remains nearly 100% accuracy on OOD length on Passkey Retrieval and an
average of 3.5 gain on LongBench. VCL also brings substantial efficiency improvements, reducing
50% training time and memory usage over full-length fine-tuning.

In summary, our key contributions are:

e From the theoretical perspective, we establish the upper bound of the length generalization
performance under measurement space and pinpoint two length-related factors underlying the
generalization failures: the shorter length term and the distribution shift distance of the different
length sequences, opening the way to provably predict length generalization capabilities.

o Built upon our theoretical conclusion, we clarify the mechanisms behind recent empirical findings.
Our results reveal that OOD positions in longer contexts reduce length generalization ability by
increasing the distribution shift distance. Additionally, fine-tuning on entire sequences is not
essential, as generalization performance is constrained solely by the short length, rather than
directly by the long length.

e Based on our close observation, we propose a simple and effective method Virtual-context Learn-
ing (VCL) with minimal code changes during the standard fine-tuning phase, reducing the GPU
usage and time consumption. Experiments across diverse benchmarks, including language model-
ing, passkey retrieval, and LongBench, demonstrate our VCL effectiveness in addressing length
generalization challenges and further validating our theoretical insights.

2 RELATED WORK

Length generalization Length generalization remains a critical challenge in neural networks, as
evidenced by extensive research (Delétang et al., [2022; |Graves et al., 2016; |[Hupkes et al.l [2020;
Zhang et al} [2022). Even Transformer-based large language models (LLMs) (Chowdhery et al.,
2023} |Team), 2025)), despite their sophisticated reasoning capabilities, struggle to process sequences
that exceed their training length (Anil et al.| 2022} [Ye et al.,|2025). Current approaches to improve
length generalization, primarily focus on two aspects: enhancing positional encoding via fine-tuning
methods (Chen et al., |2023b; |Peng et al.| 2023} |Chen et al.| [2023a) and optimizing input formats
by zero-shot prompting (Quesnelle et al.,2023; Han et al.| |2023b). Research has explored various
positional encoding alternatives, including relative positional encodings that encode token-to-token
distances (Dai et al.;[McLeish et al.,|2024)), skip or randomized position encodings (Ruoss et al.||2023;
Zhu et al., 2023)), and weighted attention mechanisms as substitutes for position embeddings (Chi
et al.,2022; [Li et al., |2023; [Press et al., 2021). Consequently, researchers have developed alternative
data formatting techniques specifically for pretrained LLMs, including scratchpad methods and chain-
of-thought approaches through in-context learning or fine-tuning (Xiao et al., 2023} Liu et al., 2024).
However, these methods are challenging to implement during post-training and not robust (Zhou
et al., [2024; |Han et al., 2023a)).

Length generalization theory in transformer Previous research (Bhattamishra et al., 2024} [Liu
et al.,|2022; Vuckovic et al.,|2020; |Huang et al., 2024)) has focused on the mathematical properties
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of attention mechanisms, particularly examining properties such as Lipschitz continuity (Wu et al.|
2024; |Castin et al., 2023) or investigating the PE influence by modeling self-attention as a system
of self-interacting particles (Vuckovic et al.| 20205 (Wu et al., [2024). [Zhou et al.| (2023) first posits
the length generalization theory that transformers can achieve exact length generalization on algo-
rithmic tasks solvable by simple programs RASP-L. Huang et al.[(2024) further generalized it and
provides a positive result for a specific idealized learning strategy under learnable PE. However,
these studies (Han et al., |2023a}; [Press et al., [2022)) often impose constraints on specific PEs and
rely on numerous assumptions about input-output relationships. In this paper, we avoid making
specific assumptions about PEs or input distributions; first investigate the influence of self-attention
architectures on length generalization via the probability transformation.

3 PROBLEM SETUP

(Measurement) Notation We use the shorthand [n] := {1,2,...,n}. Let ||  ||; be the 1-norm
and 1 be the indicator function. For a real-valued function f, we use || f||Lip := sup,, |f(z) —
f)|/d(z,y) as the Lipschitz semi-norm. Throughout the analysis in the paper, we formalize the
attention to be the kernel A in the probability space. Formally, let (E, £) denote a subset of R?
endowed with its Borel o-algebra, and P(F) be the space of all probability measures on E. We
define the Markov kernels {¥ ()}, cp(E) by

G(z)v(dz)
v dz) (= ———= FE
o(v)(da) U(g) v e P(B)
where G is a measurable function and v/( f B (2) ). For A € &, the kernel satisfies

Vo) (z, A) = /A U0 () (dy).

For a function G of two variables, G : E' x E — R, we let |G| Lipco := sup,ep [|G(9,y) Lip
and |G|, Lip := Sup,c g ||G(z, )| Lip- In the attention mechanism, the measurable function G is
expressed in exponential form G(z,y) = exp(zy”). A lookup kernel L(z, dy) is a Markov kernel
that maps P (X) to distributions on P(Y"). Formal definitions are provided in Appendix

Furthermore, we will use the measurement-theoretic terminology (see Figure [I]for illustration):

Definition 3.1 (Wasserstein Distance) Let P(E) be the set of probability measures, p,v € P(E),
and C(u, v) be the set of distributions on (E x E,E x &) with marginals (i, v on the first and second
components, respectively. The Wasserstein distance between pu,v € P(E) is

W)= ot f[ o=yl dy) M)
ExXE

TeC(p,v)

Attention Mechanism Let X = {Xi,..., Xy} € RV*? be the token matrix, where N is the
length and X; € R represent the i-th token vector. The raw attention score matrix is computed
as Z = XWq(XWk)T /\/dqrx where Wo, Wi € R4*4" are the query, key matrices respectively,
and dgx is a temperature term to control the scale of raw attention scores. Without loss of generality,

we assume dgx = 1 in our analysis. To enforce attention, we create an attention matrix A € RN*N
where we normalize the attention scores among all tokens,

exp(Zz-j)
> p exp(Zix)

Attention Update For our analysis, we consider single-head self-attention networks (SAs). The
layerwise update rule can be written as:

AW = softmax(X(t)W( ) t)W '/ daor)
XD = A x O D), 3)
where W‘(/t ) € R¥* s the value matrix. For simplicity, throughout the paper, we assume that

d=d , Wg = Wg ), Wk = Wi((t), Wy = W‘(,t ). Yet the results can be easily generalized to the
multi-layer case through iteration.

A;; = softmax(Z) = (2)



Under review as a conference paper at ICLR 2026

4 A MEASURE-THEORETIC FRAMEWORK FOR LENGTH GENERALIZATION

While the previous section formalizes the attention mechanism and its update rule, these formulations
are insufficient for rigorously analyzing length generalization, since the attention outputs at different
sequence lengths correspond to matrices of incompatible sizes that cannot be directly compared. To
understand how attention distributions change as the sequence length grows, we need a framework
that can measure distributional differences between short and long contexts; therefore, we map the
attention mechanism into the continuous probability spaces (Vuckovic et al., [2020; Kim et al., 2021)
by (i) representing queries, keys, and values as empirical measure mapping and (i) the attention
interaction as a Markov kernel transport. This abstraction allows us to use tools from measure theory,
in particular the Wasserstein distance, to formally analyze how much attention distribution shifts
under longer contexts and to derive theoretical bounds on length generalization.

4.1 ATTENTION KERNEL: A MEASURE THEORY VIEW

For simplicity, let Q) = XOWg, K = XOWy, and VD = XOWy,. Throughout this paper,
we represent any X € {Q), K V®)} by its empirical measure m(X) = {ox; N |, regarded as
a probability measure P(X). Here the Dirac measure §,(FE) to a set E assigns 1 if z € E and 0
otherwise. We then map the attention scores A to the probability space via nonlinear Markov kernel
transport on m(Q®)) and m(K ) as follows:

Proposition 4.1 (Attention Score Kernel) For the function G(q, k) = exp(gk™ /d i) where d gy, is
a temperature term to control the scale of raw attention scores, the attention score kernel AS is the

family of Markov kernels {V ¢ (v)},ep(E)- Speciﬁcally, for m(Q(t)) and m(K®), we have

op=Lyy @)D
m(Q")¥a(m(KY . 0 (). 4)
t 15— 127‘ 1G (t)vKﬁt)) K

The detailed proof is provided in Appendix [F.1} This formula converts the attention scores matrix A
for queries and keys into a conditional probability representation AS using Markov kernels, with
the non-linear function G expressed in exponential form. Finally, we present the attention as the
interaction between attention scores and values in the form of a probability measure as follows:

Proposition 4.2 (Self-attention Kernel) The self-attention kernel A,, is the composition of the at-
tention score kernel AS, the lookup kernel L(k,dv) =>"._\ 1k = k;d,,(dv) and the projection 11,
defined for x € E and i € P(E) as

Au(z,dz) =TIV g, ) (1) L] (d2). Q)
Specifically, we have:
m(X(t+1)) —> {6Q§t)Am(K(t)), ey 6Q%)Am(K(t))} 6)

implements an attention mechanism.

The detailed proof is provided in Appendix [F.2]

Finally, we adopt the following assumptions in our analysis:

Assumption 4.3 There exists C' € R such that
maxien {[|G(QW, KW)||1ip + |GQYW, K)o} < C

Assumption 4.4 The empirical measures P(E) € {m(Q®), m(K®), m(V®))} all have finite first
moments that [, ||z|1dP(x) < co.

A states that the Lipschitz semi-norm and supremum norm of the exponential kernel G remain
uniformly bounded with respect to sequence length, which is essential for ensuring stable and efficient
attention computation in practice (Kim et al., 2021} |Castin et al., 2023)), whereas A guarantees
that the Wasserstein distance between empirical measures is well-defined and finite for any ¢ > 0,
enabling the subsequent analysis of distributional shifts (Vuckovic et al., [2020).

4.2 LENGTH GENERALIZATION UPPER BOUND: 2 LENGTH-RELATED FACTORS
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Building on the probabilistic representation of
the attention kernel A, we formalize length
generalization as the Wasserstein distance
between attention outputs under short and
long contexts. As shown in Figure [ if
two token matrices convey similar semantics,
their attention-induced measures should satisfy
W(m(XZ(\?H)), m(XJ(\ZH))) ~ 0, reflecting the
desired property of length generalization that
representations remain close even when extend- Figure 1: Intuition of our theoretical framework. Given

ing from short to long contexts (M > N). For two sentences with similar semantics, we measure the
example, the short sentence “The weather is hot.” Wasserstein distance W between their attention-kernel

and the longer variant “In this hot weather, the outputs in probability space, which should yield similar
sun shines brightly in the sky, the temperature representations.

has clearly risen, making it very uncomfortable.” convey the same meaning and should yield similar
distributions. This view provides a principled metric to quantify how model behavior shifts with
length and underpins our theoretical bounds.

{——Short-context distribution;
|~ Long-context distribution |

The weather is hot.
)

W (XIS:H)'XN +1))

Remark 4.5 The Wasserstein distance W aligns with interpretable metrics for analyzing length
generalization, such as JS distance, KL divergence, and perplexity. See Appendix|C|for empirical
evidence under various settings in LLMs.

Formally, based on the attention kernel A, our goal is to measure W between the output of the
attention kernel given two token matrices Xy of length NV and input X, of arbitrary longer length
M > N with similar meanings. Finally, we prove the length generalization bound as follows:

Theorem 4.6 (Length Generalization Upper Bound) Suppose two representations with different
length X](\f) = {Xft), ... ,XJ(\;)} and XI(J{) = {Xl(t), . 7X](\Z)}, N < M, and the attention kernel

A. Let 11 be the usual projection. Then under Aand Sfor p = m(XJ(\fv)) andv = m(X](L?),

1
W (m(X§ ) mx ™)) < 2ee(L) [V [N + 5 |Glluip + [Glloe + Vi +2| Wip,v),

(N

where c(I1), ¢(L) are some constants to be determined and the detailed expressions of ||G||eo and
|G|l Lip are seen in Appendix|F3|

The detailed proof of Theorem [.6]is provided in Appendix This result extends the findings
of [Vuckovic et al.|(2020), which primarily analyzed the Lipschitz constant of attention but did not
explicitly address how sequence length affects generalization. Under A the terms ||G||~ and
|G||Lip are intrinsic properties of the exponential similarity function G defined on the space E and
remain bounded regardless of input length; similarly, ¢(IT), ¢(L), and the embedding dimension d are
independent of sequence size.

Consequently, only two length-dependent factors govern generalization performance:

(i) Shorter-length v/In N: depends only on the shorter length N and thus does not grow when
evaluating on longer sequences, fortunately, which means that simply increasing test length does not
worsen the bound through this factor.

(ii) Distribution shift distance W (u, v/): captures how the probability distributions of short and long
contexts diverge, which is the primary factor driving length generalization failures with the test length
increase and the key target for improvement.

5 OUR THEORY-INSPIRED PROPOSAL: VIRTUAL-CONTEXT LEARNING

Having analyzed the Wasserstein distance of the attention kernel in probability space and established
its dependence on sequence length, we now bridge theory with practice. Specifically, we examine
(i) how positional encodings and their induced interpolation methods affect the distribution shift
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term W (u, v), and (ii) whether full-length fine-tuning is an efficient way to extend context length.
These insights motivate our proposed training strategy, Virtual-context Learning, which controls the
effective training length while directly adapting to out-of-distribution positions.

5.1 A CLOSE LOOK AT POSITION ENCODINGS AND FULL-LENGTH FINE-TUNING

Out-of-distribution (OOD) positions on
longer contexts reduce length general-
ization. A key source of length gener- 01
alization failure lies in positional encod-
ings: when extrapolated to unseen lengths,
they distort the representation space and
increase distributional mismatch (Kazem-
nejad et al.l [2023; |Gao et al., 2024). Our

‘Wasserstein Distance

& ° 286 512 1k 3k

T . . _ 512 1k 2k °
theoretical framewo.rlf explalns this P h_e The evaluation length The evaluation length
nomenon: OOD pOSlthHS en]arge the dis- (a) Wasserstein Distance (b) PPL under short,
tribution shift term W( Iy l/) in our bOlll’ld, under various PEs long, and detach settings.

since the geometry of embeddings at un-

seen positions deviates from that observed Figure 2: Implications of theorem. (a) OOD positions cause
during training. Notably, we follow [Vuck] the distribution shift (W explosion). (b) Gradient backprop-
ovic et al] (2020); [Castin et al] (2023) in agation only on the longer length (detach) is comparable to
encoding structural information (positions, [ull-length (512) parameter updates.

adjacency, semantics) in the token matrix X, which makes our theoretical framework applicable
to diverse positional encodings, including RoPE (Su et al., [2022), Alibi (Press et al., [2022), and
interpolation-based variants.

We empirically validate this explanation on CodeLlama with GovReport up to 4k tokens: Figure 2(a)
shows that the average Wasserstein distance grows substantially once the evaluate sequence length
exceeds the context window (1k). Existing position interpolation (PT) methods, such as Yarn (Peng
et al., [2023)), mitigate this effect by re-scaling longer position indices and adjusting the frequency
basis to match the scale inherited from the pre-trained model during fine-tuning.

Full-length fine-tuning on entire sequences is not necessary. Recent works (Fang et al.,[2024; |Hu
et al.,2024) show that selecting only a subset of important tokens from long sequences for fine-tuning
yields comparable performance to using all tokens. Our theorem explains: perhaps counter-intuitively,
increasing the training length M does not inevitably harm length generalization, since only the
short-length term appears in the bound. Thus, fine-tuning on carefully chosen tokens that reflect the
long-context distribution is sufficient, rather than updating on the full sequence. In particular, OOD
positions are the main source of discrepancy between short and long distributions; updating only on
these positions can effectively mimic the long distribution and reduce the generalization gap.

To mitigate the effects of relative positional encodings and length extrapolation techniques applied
in current base LLMs, such as Llama (Meta, 2024) and Qwen (qwe), we pre-train NanoGPT from
scratch using the NoPE configuration. As empirical evidence shown in Figure 2[b), we establish a
baseline with context windows of 256 and an oracle setting with 512, evaluating performance across
different lengths using perplexity (PPL). Additionally, we present the results of pre-training on the
ROPE versions in Appendix To verify that not all tokens are needed, we introduce a detach
variant: in the 512-length setting, gradients from the first 215 tokens in each attention layer are frozen,
and only the latter 215 tokens contribute to the loss. The results show that this detached method
achieves performance on par with full-length (512) training, despite updating parameters only on the
latter half of the sequence, consistent with our theoretical prediction.

5.2 EFFICIENT METHOD: NOT ALL TOKENS ARE NEEDED FOR TRAINING

Motivated by our previous analysis of length generalization, we propose Virtual-context Learning
(VCL), which updates model parameters using only the latter, out-of-distribution tokens. Given
a token matrix X, a language model @ is trained to maximize the conditional likelihood Py(X; |
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Table 1: PPL across different methods. Blue marks the best. Calculation in loss means the token lengths used for
loss during fine-tuning, while the evaluation context window size varies from 4k to 16k. VCL retains the low
PPL even when the evaluation length 4 x than the calculation length.

Methods Calculation GovReport Proof-pile

in Loss 4k 8k 10k 12k 16k 4k 8k 10k 12k 16k
Vanilla - 459 >100 >100 >100 =>100 | 3.59 96.0 >100 >100 >100
RandPE 4k 512 8.0 9.63 11.06 140 | 419 528 5091 6.47 8.0
PoSE 4k 478 563 672 9.06 1775 | 378 3.89 438 531 11.25
Linear 8k 459 466 1094 30.13 >100| 3.63 | 3.11 7.75 23.13 90.0
NTK-aware 8k 459 466 734 2013 745 359 3116 497 1469 60.0
Yarn 8k 459 4.66 85 23.88 >100 | 3.63 3.1 594 16.13 725

without PI
VCL-4k 4k (8k-4k)  6.22  5.81 606 688 1025] 541 428 416 438 572
with Yarn (Peng et al.|[2023)

VCL-1k 3k (4k-1k)  4.63 466 459 456 459 [ 366 3.16 3.03 292 272
VCL-2k 4k (6k-2k) 494 484 494 4381 497 | 392 336 317 3.08 292
VCL-4k 4k (8k-4k)  4.66 = 4.66 459 456 463 | 372 316 303 292 273

X<i), € [N]. Standard fine-tuning minimizes the loss over all tokens, while our objective becomes:

M
1
L = log Py(X; | X5
veL M_lig;og 0 (Xi | X<i), )

where [ > 0 specifies tokens (0 ~ [) used only in forward propagation without contributing to
backpropagation. By excluding early tokens from gradient updates, VCL shortens the effective
training length and reduces the distribution shift between short and long contexts, thereby improving
length generalization. It can be seamlessly combined with position interpolation methods (e.g., Linear,
NTK-aware, Yarn) to further minimize the embedding-space distance. Overall, VCL controls training
length while adapting to unseen positions, lowering computation cost and mitigating overfitting to
excessively long contexts.

6 EXPERIMENTS

Experiment Settings. We train the LLaMA-2-7B (Touvron et al.,[2023b)) with a context window of
4096, which does not expand the context window during the post-training phase like Qwen (qwe) or
LLaMA-3 (Meta, 2024), to verify the effectiveness of our proposed methods without compromising
generalization. We fine-tune all the baselines and our method on a dataset sourced from the Pile
following (Zhu et al., 2023). The training uses a learning rate of 2 X 10~° with a linear scheduler,
includes 10 warmup steps, and utilizes the AdamW optimizer with default hyperparameters, along
with Flash Attention V2 (Daol 2023)). This process consists of 200 steps, employing a global batch
size of 128 across 8 A100 GPUs with Deepspeed ZeRO stage 3 (Rajbhandari et al., 2020).

We choose the offset [ ranging from {1k,2k,4k} and the target length M from
{4k, 8k, 10k, 12k, 16k} where k is 1024. For evaluation, we use a single A100 GPU, making it
possible to evaluate long documents of up to 16k tokens. We examine the ability of long text model-
ing on three tasks: language modeling with Perplexity (PPL), passkey retrieval (Mohtashami & Jaggi,
2023) with retrieval accuracy, and LongBench (Bai et al., |2023)) with accuracy following with the
length more than 8k.

Baselines. Full-length: We train the LLMs on the full target context length, serving as a baseline.
RandPE: Ruoss et al.|(2023)) is initially designed to train an encoder-only model from scratch for
length extrapolation. We include it for a comprehensive comparison. PoSE:|{Zhu et al.|(2023)) improve
RandPE by dividing the original context window into two chunks and applying distinct skipping bias
terms to manipulate the position indices of each chunk. Linear & NTK-aware: Chen et al.|(2023b)
involves a proportional down-scaling of the position index and NTK-aware methods defined in|Peng
et al.| (2023) alter the base of RoPE, effectively modifying the rotational speed of each dimension of
RoPE. Yarn: Peng et al.|(2023)) employs a ramp function to combine position interpolation methods
such as Linear and NTK interpolation at varying proportions across different dimensions. We adopt
the baseline implementation settings following Zhu et al.| (2023)).
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LLaMA2 -4 PoSE 8k-yarn 6k-yarn
— 4 - VCL-6k-yarn VCL-8k-yarn

Table 2: Accuracy on LongBench with extreme length (more than 8k).

Blue marks best. We combined VCL with various position interpolation - 1 T T
methods. Among the 6 categories of all the tasks, VCL performs best. B 0.8 1
E 0.6
Single-Doc  Multi-Doc ~ Summar- Few-shot ~ Synthetic Code 3
Methods QA ization  Learning Task Completion Avg < 0.4 1
LLama2-7b
Vanilla 412 3.19 954 65.32 1.00 5800 2674 0:2 1
FT(8K) 933 7.62 15.11 62.47 3.08 5694 2858 o -
RandPE 9.79 7.92 17.01 58.96 5.46 56.88 2854 3k 4k 6k 8k iok 1k ek
PoSE 11.85 8.38 16.91 62.53 4.07 53.01 28.93 Context length
NTK 11.39 747 15.79 61.53 401 5675 28.88
Yarn 8.96 7.87 16.77 60.33 372 57.55 2852
VCL : . g
+Linear 823 873 2216 6191 430 6002 3023 Figure 3: VCL shows best perfor-
+NTK 10.73 8.77 17.63 61.83 4.96 59.20 29.85 mance on the retrieval task, espe-
+Yarn 1320 8.15 16.87 62.94 6.12 5573 29.92

cially in a longer context than the
fine-tuning.

6.1 LANGUAGE MODELING

First, we investigate the impacts of different fine-tuning methods on long sequence language modeling
using the GovReport and Proof-pile datasets. Table[I] presents the PPL of scaling to evaluation length
to 16k under vanilla, RandPE, PoSE, Yarn, and VCL with and without Yarn. In VCL, for the train
length of 4k, we set the offset [ = 1k; for lengths greater than 4k, we set [ = 2k, 4k. We observe
that there is little difference in perplexity between different methods for short lengths. However, for
extended lengths, with approximately twice the fine-tuning length, we see a significantly larger gap
in perplexities, indicating a notable difference in the ability of length generalization. We suppose it is
because our VCL focuses on updating the parameters on the longer OOD position tokens, thereby
mitigating the distribution shift between the long and short contexts, is consistent with our theoretical
implications.

6.2 PASSKEY RETRIEVAL FOR EFFECTIVE CONTEXT WINDOW

To effectively measure the maximum distance that a token can attend to during the inference stage,
we adopt the passkey retrieval test proposed by Mohtashami & Jaggi| (2023). In this test, models are
tasked with recovering a random passkey hidden within a lengthy document. The prompt template
used for this task is presented in Figure[7(a) in the Appendix. We vary the prompt length from 2k to
16k. For each length, we conduct the passkey retrieval test 50 times, with a random passkey of 5 digits
generated and placed at a random position inside the prompt. Figure [3|illustrates the results where
6k-yarn and 8k-yarn represent fine-tuning on 6k and 8k context windows with Yarn. VCL-6k-yarn
and VCL-8k-yarn indicate fine-tuning on 6k and 8k context windows with VCL integrating Yarn.
For the original, PoSE, and Yarn models, their retrieval accuracy rapidly drops to 0 with a maximum
of 8k. In contrast, VCL-Yarn-6k / 8k models manage to maintain a high retrieval accuracy (nearly
100%) scaling to 16k. This indicates that models fine-tuned via VCL genuinely possess the capability
to attend to all tokens both in the training length and the out-of-distribution length, verifying our
theoretical insights.

6.3 EVALUATION ON LONG-CONTEXT BENCHMARK

To verify the complete performance of VCL in real-world scenarios, we further conduct an evaluation
on the LongBench (Bai et al. [2023)) with zero-shot setting. We fine-tune the llama2-7B on the
GovReport dataset by employing VCL with constrained train lengths of 4k, combining the position
interpolation tricks like Linear, NTK-aware, and Yarn. Table[2]shows that VCL generally outperforms
other generalization methods, especially those with solely position interpolation methods, like Yarn.
In the specific domain of QA, VCL remains competitive with or even surpasses the Full-length,
demonstrating VCL’s superior length generalization ability. This substantiates the considerable
potential of our theory insight for generalizing the context length to excel in long-context applications.
Moreover, we adapt our VCL to other LLMs in the Appendix

6.4 ABLATION AND EFFICIENCY ANALYSIS

We now conduct detailed ablations to investigate the efficacy of the components in VCL:
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Figure 4: Ablation study of different hyperparameters of VCL. (a) varying the calculation length in loss M — [
from 1k to 4k, where [ is fixed with 4k. (b) (left) different yarn scaling factors under M = 6k. (right) different
yarn scaling factors under M = 8k. yarn means fine-tuning on M length and vanilla VCL means VCL without
combining PI. VCL-x means VCL combined with Yarn with the scaling factors set to x.

Enhance the calculation length in loss can be beneficial for the out-of-distribution length. We add
different lengths of context under our VCL to simulate the long context and test them on GovReport,
ranging from 1k to 4k. We take the llama2-7b as the base model. In Figure [d[a), we discovered that a
longer length improves the length generalization performance of our VCL, indicating the essentiality
of the long context in VCL, aligning with common sense that fine-tuning on extended long contexts
can improve the length generalization ability.

Integrating the position interpolation with VCL can achieve greater length generalization
ability. To mitigate the Wasserstein Distance between the different length inputs induced by the
positional encodings, we choose the classic PI strategy— Yarn to integrate with VCL. To enhance
the generalization ability, we experiment on two train lengths 6k and 8k with offset | = 2k, 4k,
respectively. The results in Figure d[b) show that integrating VCL with the PI strategy outperforms
using PI or VCL alone, with a significant decline in generalization ability when either is used
separately. Furthermore, we observe that a larger extrapolation scale in Yarn does not improve length
generalization ability, as noted in previous works (Chen et al.l [2023a)), a factor of 8 outperforms
factors of 32/64. Therefore, the optimal factor must be carefully selected in practice.

VCL enhances the memory and computation
efficiency . We study the memory and time ef- (O veL-4k0 veL6k O Fulldength|  [FIveL k0] VeL 6k O FullTength
ficiency of VCL compared with Full-length fine- 80

9T

tuning (8k). The results of the experiment under ~ _ ¢ o7 90 550

the same training settings are shown in Figure] & 243 g7

. . . . > 50 g 60 53.3
illustrating the memory and time consumption  § 36.5 T 45

for 200 steps of Full-length versus VCL. Since 5 s £ 30

VCL only updates the long-index tokens through 20 15

the loss, it requires a small amount of memory 5 o

(a) Memory usage (b) Time consumption

and time for context extension, which is signifi-
cantly lower compared to full-length fine-tuning.
Consequently, we can confidently say that our Figure 5: Efﬁ(}iency of VCL f:ompared to vanilla full-
proposed approach is both memory-efficient and length ﬁne-.tunmg. VCL effectlvely fet.iuces the memory
time-efficient while enhancing the length gener- “$%€¢ and time consumption for training.

alization ability, further highlighting the superiority of our theory-based method VCL.

7 CONCLUSION

In this work, we introduce a measure-theoretic framework to analyze length generalization in self-
attention, revealing that the bound depends on the shorter length N as v/In N and the geometric
distance among input embeddings. Based on our theoretical framework, we provide the interpretation
and empirical verifications for recent findings that out-of-distribution positions in longer contexts
reduce length generalization, and that full-length fine-tuning on entire sequences is not necessary.
Furthermore, we propose the theory-inspired Virtual-context Learning (VCL), a fine-tuning method
that reduces computational costs and enhances length generalization by optimizing loss on long-token
sequences. Experiments across diverse benchmarks validate VCL and support our theoretical findings,
providing a principled understanding of enhancing generalization in LLMs.
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Reproducibility statement To ensure the reproducibility of our work, we have implemented several
measures that are detailed throughout the paper and its supplementary materials. We commit to
open-sourcing our code upon publication, which will allow others to replicate our experiments easily.
In the appendix, we provide comprehensive explanations of the theoretical assumptions underpinning
our results, along with complete proofs to substantiate our claims. Additionally, we have included a
thorough description of the datasets used in our experiments, along with the specific data processing
steps undertaken. We believe these resources will facilitate reproducibility and encourage further
exploration of our findings.
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A LLM USAGE STATEMENT

LLM Usage Statement We employed a large language model (LLM) as a supportive tool during
the preparation of this manuscript. The LLM’s involvement was strictly limited to enhancing the
clarity and readability of the text, which included tasks such as grammar correction, spelling checks,
rephrasing for conciseness, and refining sentence structure. The LLM did not contribute to any core
research elements, including method ideation, theoretical derivation, experimental design, or result
analysis. The authors have carefully reviewed all suggested edits and assume full responsibility for
the content presented in this paper.

B LIMITATIONS AND BROADER IMPACTS

Limitations. Due to limited computational resources and time, the proposed method has not been
evaluated on texts with even larger lengths, such as ranging from 100k 1M. VCL is designed for
fine-tuning, it can be adapted to pre-training, where it may offer greater effectiveness. Preliminary
experiments on NanoGPT in Appendix suggest its potential, but due to resource limitations, we
do not provide results on larger-scale LLMs, leaving this for future work.

Broader Impacts. In this paper, we first propose a measure theory to quantify the length gener-
alization bound of LLMs. This enables a deep understanding of the length generalization failure
and thus points out the shortcomings of a wide range of length generalization methods. Based on
our in-depth theoretical analysis, we reveal the mechanisms of empirical findings and propose a
plug-and-play method Virtual-context Learning. We hope that our work can provide new insights
and the underlying mechanisms of length generalization. For social impact, this work has a certain
impact on the controllable and explainable AGI.

C WASSERSTEIN DISTANCE AND OTHER METHODS

A common approach to analyze length generalization in LLMs is to visualize attention or output
distributions and quantify their shift using metrics such as Jensen—Shannon (JS) distance or KL
divergence (Zhong et al., 2024} |Cheng et al,|2025)). We adopt the Wasserstein distance W (u, v) as
our primary measure, which is consistent with these metrics and closely linked to the widely used
perplexity (PPL) (Quesnelle et al., 2023} [Ye et al.| [2025; [Bai et al., [2024), defined as the inverse
geometric mean of token probabilities. We empirically support this by plotting JS distance, KL
divergence, PPL, and Wasserstein distance against context length on CodeLlama (Figure E]), all
showing similar upward trends: for unseen long contexts, the distances grow with length. Results
under different metrics and PEs are provided in Appendix confirming that our measurement-
based approach and theoretical framework generalize across settings.
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D MORE RELATED WORKS

Position Interpolation methods While existing PI techniques can reduce the PE shift and thus
alleviate the second challenge, fine-tuning on longer sequences is not necessary, as it theoretically
extends the training length term of the upper bound. Extensive efforts have been devoted to addressing
this length generalization challenge. Position Interpolation (PI) series methods such as Yarn (Peng
et al.l 2023) and CLEX (Chen et al., |2023a) have been proposed to extend the pretrain context
windows, which fine-tune on the target length by position indices scaling and frequency basis
scaling, hoping to avoid model failures due to unseen position embeddings (PEs). Meanwhile,
position-augmented fine-tuning methods such as RandPE (Ruoss et al.,[2023)) and PoSE (Zhu et al.,
2023) simulating longer inputs within a fixed window by adjusting position indices. Although
position-augmented methods can reduce the memory overhead compared to PI methods, they disrupt
local sentence structures and leave a significant gap in understanding token relationships across the
sequence.

Fine-tuning LLMs for longer context. Recently, a variety of length generalization methods have
been developed to extend the context window of pre-trained LLMs (Fang et al.l 2024; |Chen et al.,
2023a; Peng et al., 2023; (Chen et al., [2023b). A straightforward approach is to fine-tune these
models on target extensive texts. To mitigate the distribution shift of LLMs, [Chen et al.|(2023b)) first
down-scaled position indices to match original context size through Linear Position Interpolation.
Subsequently, various Positional Interpolation (PI) strategies have been introduced, including NTK-
aware (Peng & Quesnellel2023)), Yarn (Peng et al.,[2023), and CLEX (Chen et al.|[2023a). Meanwhile,
position-augmented fine-tuning methods such as RandomPE (Ruoss et al.| 2023)), FIRE (McLeish
et al.;,2024), and POSE (Zhu et al., 2023) simulate longer inputs within a fixed window by adjusting
position indices. Although position-augmented methods can reduce the memory overhead compared
to PI methods, they disrupt local sentence structures and leave a significant generalization gap in
understanding token relationships across the sequence. Besides, Longl.ora (Chen et al., [2023c)
proposes to shift short attention to approximate full attention. All of these methods seek to extend the
context window length in more efficient fine-tuning ways.

Self-attention. Formally, self-attention is defined as follows: Wq, Wx, Wy, € R%<4" are the query,
key, and value matrices respectively, and 7 be the temperature, self-attention is:

N
SA(X;Wa, XWi, XWy) := Y _ softmax(X;Weq, X; Wk ) X; Wy, 9)
j=1
where softmax(X;Wq, X;Wi) is defined as
) ) T
softmax(X:Wo, X;Wi) 1= —SPXIWo(X; W) [TVd) (10)

Soom exp(XiWo (X Wik)T /7Vd)|

For simplicity, throughout the paper, we assume that d = d’, Q = X Wqo, K = XWkg, and
V = XWy, thus SA(X;Wq, XWi, XWy) can be expressed as SA(Q;, K, V). Moreover, while
SA(Q;, K,V) is defined point-wise for a given token X;, it is almost always used to process a
set of tokens X = {X,..., Xy} in parallel. Thus, we write the sequence-wise self-attention
SA(Q7 K7 V) = {SA(Q“ K7 V)) ?Ll‘

E MEASURE THEORY NOTATIONS

We will use the following constructions from measure theory: Let (E, &) denote a subset of R?
endowed with its Borel o-algebra, and P(E) be the space of all probability measures on E.

Definition E.1 (Dirac Measure) Denote Ps(E) := {3, | * € E} be the subset of Dirac measures
in P(E), where the Dirac measure 0, is a measure defined by:

_J1, ifr ek,
5I(E)_{o, ifré¢ E.
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Definition E.2 (Empirical Measure Mapping) For X = {z1,...,zy} C E, the empirical mea-
sure associated with X is the probability measure m(X) defined by:

X = m(X): O, - (11
INI Z

Definition E.3 (Markov Kernel) A Markov kernel is an E-indexed family of probability measures
M (z,dy) € P(E) such thatVA € €,z — M(x, A) is measurable.

Definition E.4 (Lookup Kernel) Ler the key space (KC,K) and value space (V,V) be measurable,
lookup kernel is a Markov kernel, L : I x V — [0, 1], also denoted L(k,dv), that maps keys to
distributions on values. When the mapping is a deterministic lookup table, we have L(k,dv) =

S Dg, b, (dv).

Definition E.5 (Moment Encoding and Subspace) Let ' : E — E' C R! be a measurable map
representing an l-dimensional feature map. (1) We say that a measure 1 € P(E) encodes a moment
vector f € E' with respect to function F if p(F) = f. (2) Suppose we have identified an injective
mapping f — vy € P(E) such that vy encodes the moment vector f w.r.t. F. Then we denote by
Fr ={vy| f € E'} the moment subspace of all such distributions.

Definition E.6 (Moment Projection) For simplify, we omit the subscript F' in Fr. Let the moment
projection Iy : P(E) — F be llx(u) = v,y where Il (1) is the unique measure in F that
encodes the moments f := pu(F)

Definition E.7 (Finite First Moment) We say that a measure P(E) has a finite first moment if
Jg lz][1dP(z) < oo

Initially, the input matrices @), K,V are mapped to the measurable probability space Ps(e) via
empirical measure mapping. Through the softmax kernel, Ps(e), a finite-dimensional feature space,
is transformed into the infinite-dimensional probability space P(e). To recover the matrix-level
self-attention outputs, P (e) must be projected back onto the finite-dimensional feature space Ps(e),
which is achieved using the moment projection. We claim that the averaging to input values is
accomplished by the moment projection II := ITz described in Deﬁnition with 7 = Ps(Q) and
F(z) =x.

F PROOF

F.1 PROOF OF PROPOSITION [4.]]

Consider a “query” representation d, and “key” representations K = {dx, , ..., O, } and the empiri-
cal measure m(K). The softmax kernel models the interaction between ¢ and K using the left-action
of the Markov kernels ¥ (m(K)) on the Dirac measure J, induced by integration:

N
G(q7 k‘ls)
S Va(m(K)) = [ 8,00 NWaiya(m(K)) = Vg (mlK) = Y i L5,
sz:; Zr:l G(q’ kT)
Furthermore, given set of queries ) = {4, , .. ., dq,, }» We can leverage the linearity of integration to

model the interaction between the two sets of representations () and K using the same principle:

m(Q)We(m MZ [ 3100V (mE)

17



Under review as a conference paper at ICLR 2026

F.2 PROOF OF PROPOSITION [£.2]
Using the proposition for g € Q, we have:

N N
[Y(q.0) (M(K)L)(dv) = 3 / m(skj (dk)L(k,dv) = 3 ENG(QGZ)M
=1 p=1 P j=1 Lup=1 y Kp

Applying IT thus yields: A,, k) (q,dv) = 0 Gla.kj) (dv). Using the (linear) left-action of

. Py v e— O
=1 N J
I=1 SN0 Glakyp)

dy; (dv).

this kernel on d,, , we then obtain:

5q,,Am(K) (dv) = /6(11, (dq)Am(K) (q,dv) = 5 N G(qt,kj) (dl})

e = —————— U,
I=1 2N Glatkp) 7

Plugging in the definition of G and using the usual bijection §, <+ x concludes the proof.

F.3 PROOF OF PROPOSITION [E1]

Proposition F.1 Let G(q, k) = exp(q' k/T), then we have

1 Tk
||GHLZ.,,:,suquHHk”eXp(Hq ”), (12)
T q,k T
k
|Gloe = supexp (W) . (13)
q,k T

To analyze the Lipschitz norm and supremum norm of the function G(q,k) = exp(q'k/7), we
proceed as follows.

Step 1: Compute the Lipschitz norm || G||L;p
By definition, the Lipschitz norm of G is given by
|G(Q7 k) — G(qla k/)|

IGllLip = sup . (14)
U qkta e (@ k) = (¢ )]
We first compute the gradient of G(q, k):
1
Thus, the operator norm (i.e., the Lipschitz constant) is given by
1
IVG(q, k)| = sup —lIG(a, k) (R, 9)ll- (16)
'
Since G(q, k) = exp(q' k/7), we obtain
1 q'k
161250 = - sup gl exp (1221, a7
T q.k T
Step 2: Compute the supremum norm ||G /|
By definition, the supremum norm is given by
|Glloo = sup |G(g, k)|. (18)
q,k
Since G(q, k) = exp(q " k/T), we take the supremum over all possible values of ¢ "k, leading to
k
|G|loc = sup exp <|q|||| |> . (19)
ak T

This completes the proof.
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F.4 PROOF OF THEOREM [4.6]
To prove the theorem, we need the following lemma.
Lemma F.2 1. Suppose that ®,T' : P(E) — P(E) are (possibly nonlinear) mappings. Then

T(®oT) <7(®)r(T).

2. Suppose K : E x £ — [0, 1] is an integral kernel. Then

- su Wl(K(xv .)7 K(yv .))
T(K) B m;élqj d(l‘vy) ‘

3. Suppose K1, K5 : E x £ — [0, 1] are two integral kernels and v € P(E). Then:
Wl(VKl, I/KQ) S / V(dz)Wl(Kl(z, .), KQ(CC, 0))

Proof.

1. This is a standard result on Lipschitz constants. We include it for completeness:

W1 (@ ol(u),®o(v))

T(@ol) = it;py) Wi (0, 0)
_ o Pa(® 0 T(), D 0 T()) W (T(10).I()
nFv Wl (F(M)? F(V)) Wl (/”'a V)

<su W1 (2(n), 2(7)) - sup Wi (L(p), P(v))
Tty Wiln,v) ptv Wi(p,v)
= 7(®)7(T).

2. Since W1 (0,,9,) = d(z,y) and 6, K = K (z, ) we have:

sup Wi (K (x,e),K(y,e)) — sup W1 (0, K, 0, K) < Wy (uK,vK)
TAyY d(x,y) S F6y Wl((sm(sy) nFv Wl (,U,, V)
For the reverse inequality,

Wi(uK,vK) = sup [uK(f)—vK(f)

fe€Lip(1)
= sup |u(Kf)—v(K[)
feLip(1)
< sup  [|KfllLipay - sup  |u(g) —v(9)]
feLip(1) g€ Lip(1)
< sup K fllLipa) - Wiy, v)
f€Lip(1)

and

sup ||Kfllrip(y = sup sup
feLip(1) e(1) feLip(1) zy d(x,y)
K(z,dz) — K(y,d
e K 2) - K21 ()
feLip(1) zy d(z,y)
= sup Wl(K(xv.)vK(ya.)).

Dividing by W1 (u, v) gives us the reverse inequality and concludes the proof.
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3. By definition, we have:

Wy (vKy,vKy) = sup |[vKi(f) — vEKi(f)]

feLip(1)
= feSLl;;E(l) // v(dx)Ky(z, dy) f(y) — // y(dm)Kg(x,dy)f(y)‘
< fESLl;}))(l)/V(dx) /Kl(x,dy)f(y) - Kz(x,dy)f(y)‘

< /u(dm)Wl(Kl(x, o), Ky(z,9)).

Lemma F.3 Forany f : R? — R, we have

Vlp=  sup L=

(20)
sty llo—yl<t 1=yl

proof Letz #yand L :=sup,., jo—y|<1 W

clear that L < || f|1sp since {x # y, ||z — y|| < 1} C {z # y}. For the reverse inequality, we split
the segment [z, y] into the minimum number of chunks of lengths smaller than 1: © = 23 — 20 —
-+« = z = y (in particular, if ||z — y|| < 1 then 25 = y). Then

f@) = fl < Y0 1f(z) = fzis)
1<i<k—1

<L > lzi— 2zl = Lllz —yll-
1<i<k—1

< oo. First, assume || f||ip, L < 00. It is

which gives || f||ip < L so L = || f||ip- Now if || f|| ip = 0o but L < oo, by applying the above
argument we can obtain a contradiction. Finally, it suffices to note that the case where || f|| i, < 00
but L = oo is impossible since || f||ip > L.

Lemma F.4 Foranynand (2, -+ ,2,) € Rl

1 )i i T F @)
21yt s 2p) = e <{/Inn+ —.
' 1+ 30, e 2e

—z

proof f is clearly bounded on R} (z;e ! = 0 when z; — 00). Let us now compute the partial

derivatives of f. For a given z;:

of e=% 9
= —————— 11— 22 + 22 f (21, -, 2n)].
8Zi 1_'_22,:1 e_zz[ f( 1 )]

There is only one positive solution of 1 — 222 + 2z; f* = 0, meaning that f reaches its maximum
when all its coordinates are equal. We thus only need to study:

2
nre=* xelnnfz

1 + ne—=* 1 + elnn—a?’

g(x): (22)

_ VInn—yeY < Inn—y

The change of variable y = Inn — 22 gives g(y) e < e

with y €] — oo, Inn).
On [0,1nn], we clearly have g(y) < vInn. Let us consider y €] — 0o0,0]. We get ¢g%(y) =

Inn—y Inn—y 1 : -1 3 : —2z 3
rev? < 5% < Inn + 5 with since (2¢)7" is the maximum of of ze™** on R,. This

concludes the proof.

Lemma F.5 Let iy, pio, v1,v5 €1 (R?). Then
Wi (g1 @ pa,v1 @ va) < Wy (pg, 1) + Wa(pe, v2)
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proof Letvy; € (u1,v1),7v2 € (u2,v2) be optimal for ¢(z,y) = ||z — y||1. Note that v; ® 72 €
(11 ® p2,v1 @ o), 1.e. 71 ® 72 is a transfer plan with the correct marginals, by considering

/ dy @ ya(x1, 22, y1,Yy) = / dyi (@1, y1)dy (w2, y2)
XxX XxX

:/ d’)’l(xl,yl)/ d’YQ(ﬂ?z,yz)
X X
vi(dy1)ve(dys) = dvi @ va(y1, y2)

and same for the other marginals.

Thus we have

Wi ® po,v1 @ v2) = inf / |(x1,22) — (y1,y2) |[dy(z1, T2, Y1, ¥2)
YE(pn1@p2,v1Q@r2)
= inf /(Ilml =yl + lyr, v2l)dy(z1, 22, Y1, 92)
YE(p1®p2,v1Qr2)

inf /lel —ylldy(zy, 22, y1,92) + - -
YE(11®p2,v1®rs)
ot inf / |z2 — y2|dy (1, 22, Y1, y2)
YE (11 Qpu2,v1 ®@va)
< / lz1 — yilldyr ® yo(z1, 22,91, y2) + / |2 — yalldyr @ y2(w1, 22, Y1, ¥2)

- / o1 -y ld (22, 30) + / 22 — g lldya (e, u2)
= Wi (u1,v1) + Wi(ug, ve)

Then using the previous lemma, we prove the following proposition at first.

Proposition F.6 Let E=R% and suppose X = {Xi,.... Xy} and Y = {Y1,...,Yy}. Let
G(x,y) = exp(—|lz — y|13), L(x,dy) = 0y(,)(dy), and I1 be the usual projection onto Fs. Then
foru=m(X)andv =m(Y),

Wi (pAy,vAy) < 27(I)7(L) [\/3 In(min(N, M)) + 2*16||GHLip + [ Glloo + Vd +2| Wi (u,v).

proof We use the Kantorovich formulation of W;. Let f be a function with || f||z;, < 1. We can
assume without loss of generality that f(y) = 0. For simplicity, we write G(z, ®) = G,. We wish to
upper-bound the quantity [V, (1)(f) — Y, (v)(f)]-

Because W, and ¥, are homonegeous in their measure argument, and for the sake of simplicity,
we write =) . 05, v = >, d,, (which is equivalent to simplifying by 1/N in e.g. the numerator
and denominator of U, ). This guarantees in particular that 1(G,) > 1 and v(G,) > 1 (z and y are
in p and v resp.) and equivalently that 1/4(G;) < 1and 1/v(Gy) < 1.

Then:
1
e, (m)(f) = ¥e, W)l = PERIED (G )(Gef) = (G ) (Gy f
1
= GG W(Gy)i(Gaf) = v(Gy)v(Gy f) + v(Gyv(Gyf) — w(Ga)v(Gy f)|
1(Gy) iy _vG)
< GGy M) — V(o) + s (Gy) = ()l

(23)
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We start by bounding the second term of equation[23] We have:

G e o

M(GI)V(Gy)| (Gy) — n(Ga) M(Gm)l/(Gy)Kém@“)(G) (6, ®)(@)|
Gy )

< M(Gm)y(Gy)HGHLlle((Sm®'u75y® ).

Here, §, ® p denotes the product of the two measures on E x E. Since f(y) = 0, we see that
f(2) < fW) + I fllwiplly — 2l < lly — 2|1 This gives:
v(Gyf) _ JGy()f(Av(dz) _ [ Gy(2)lly — 2[av(d2)

v(Gy) [ Gy(z)v(dz) [ Gy(2)r(dz)
< T Cwly —will i e Ry — g
T XLiGww) T = F

where we applied Cauchy-Schwartz for the last inequality. Since y = y; for a given i, we are

N—-1_ —22
% for arbitrary z; > 0. Applying Lemma[F4{withn = N —1
i=1 ¢

interested in the quantity

gives an upper-bound of |/In N + 2%

Let us now consider the first term of equation 23}

v(Gy) _y _ 1

3 (G f) = v(Gyf)

-Q

= Gy

IGfllLipW1 (02 ® p, 0y @ ).

=

To estimate |G f||ip we have
|Gz, w) f(w) = G(y, 2) [ (2)]
GfllLip =
L N AT BT
where additionally, we can assume that [|(z, w) — (y, z)|| < 1 (see Lemma|F3). We have:
|Gz, w)f(w) = Gy, 2) f(2)| = |G(z, w) f(w) = G(z,w) f(2) + G(z,w) f(2) = Gy, 2) ()]
<Gz, w)|[f(w) = f(2)] + [ (2)]|G(z,w) = Gy, 2)|.

For the first term, we see that
|Gz, w)||f(w) = f(2)] < IGlloo,00ll fllLipd(w, 2)
< ”GHOO’OOHfHLip(d(wv z) +d(x,y)).
For the second term, we have

[f (G (z,w) = Gy, 2)| < [ly — 2[1]G(z, w) = G(y, 2)|
<y = 2L VGt t2)) oo [| (2, w) = (y, 2) 1,

for ¢ in the segment [z, y] and ¢, in the segment [w, z] (this follows directly from the mean value
theorem, note that the gradient is taken with respect to both variables). We used f(y) = 0 and

f(2) < f(y) + [ fllLiplly — 2ll1 = |ly — z|[1 in the first line.
In the Gaussian case:
ly — 2l VG (1, t2) oo < (ly — talls + [t — tally + [tz — 2ll1)2t1 — taflsce™ 02 t20
<202+ [ty = tall)lltr = tafl eI 715,

where we used the fact that ||y — ¢1]]7 < 1 and ||ta — z||; < 1 (¢; is in the [z, y] segment and
|l — y|l1 < 1 by assumption). That upper bound is uniformly bounded with respect to ¢; and to, we

let C' denote that constant. A loose upper-bound on C'is v/d + 2 (which we use in the statement of
the proposition).

To conclude, it suffices to note that by Lemma@ we have
Wl(dx & Hy (Sy & V) < Wl((sza 5y) + Wl(,ufa V)~
Finally, we can prove the theorem based on the previous lemma and proposition.
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Proof. Firstly, using Proposition we know that ;1 A,, is another empirical measure concentrated
on {Attention(z;, X, X)}, similarly, ¥A, is concentrated on {Attention(y;,Y,Y)}. This fact
allows us to use the following result from [Santambrogio| (2015) Equation 6.2

. 1 1
Wi (p, v) = min Z%jd(i%yj)%‘,j >0, Z%‘j =M Z%’j =N (
0] 4 J

Applied to Wy (A, vA,), it gives

Wi(pA,,vA,) = min { Z vi;d(Attention(z;, X, X), Attention(y,;,Y,Y"))

%]
1 1
Yi,j = 0, Z’Yij = Z%‘j = N}
% J

= min { ZVile(AM(mh 0)7Au(yi7 0))
2,7 ) ]
Vi =0, Y i = e Y = N}'
i J

Using Lemma[F2] for each term, we have
Wi(Au(zi, o), Au(yj, 0)) < TADTL)W1(Y G (ar,0) (1), Yary,,0) (V))-

Now, from Proposition [F.6|(z; belongs to 1 and y; to v/), we get

Wi (\IJG(M,O) (:u‘)vqu(yj ,0) (V))

1
< [ﬁ InN + 276||G||sz + ||G||oo + \/Cj+ 2 (d(xz,yj) +W1(M, I/))

Substituting this back into the above formula, we obtain

Wi(pdy, vA,)
< min{Z%jwl(z‘lu(%')7Au(yu°))%,j 20, Z%‘J’ = % Z%j - %}
— i j
(d(zi, y;) + Walp, v))
Y5 > 0, Z;%j = %’ Zj:%'j - %}
(Wl(u,I/H

min{;%]‘d(ﬂfuyj)%,j 20, Xi:%j - %’ zj_:%j - %})

= (L) [Vay N + Gy + Gl + VA + 2] (W1 (1, ) + W1 (41,9))

. 1
< 7(I1)7(L) min { Z%j l\/g InN + %\|G||Lip +|Glloe + Vd +2

]

1
= ()7 (L) [\/3 N+ lGllzip + 1Gllee + Vi +2

1
= 2r(I)7(L)[Va\ [ In N + -Gl ip + [ Gllow + Vad + 2| Wi (11, 0),
where we used in particular ;.7 Yis = 1. The inequality being valid for both M and N, taking the

min gives the result. Let m (X ](Vt;rl)) = A, and m(X ](\?H)) = vA,, then the Theoremproof is
finished.
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Table 3: Perplexity (PPL) and Accuracy (ACC) on language modeling with evaluation lengths from
IID (256) to OOD (4k). We train the NanoGPT-124M on the OpenWebText2 from scratch.

. Train Evaluate Length
Methods 1 ¢ oth 256 512 1024 2048 4096
PPL] ACC] PPL] ACCT PPL] ACC] PPL] ACCf PPL] ACCT
NoPE

NanoGPT 256 30.15 3833 44.10 3445 369.15 2047 >1000 1043 >1000 5.30
NanoGPT 512 2842 3833 27.15 39.04 51.12 33.14 531.02 17.62 >1000 9.51
detach 2564256  29.83 38.44 2924 3826 60.09 31.77 83253 16.62 >1000 8.60
random 256+256 30.58 38.14 33.11 3693 7292 29.02 14833 2251 24041 19.54
RoPE
NanoGPT 256 28.87 38.81 4422 3409 11831 24.60 27291 1795 53482 14.18
NanoGPT 512 2690 39.59 25.66 39.81 52.61 32.69 172.67 22.80 42546 17.39
detach 256+256 42.03 35.25 39.73 3573 4949 3327 101.26 2537 17244 20.62
random 256+256 42.89 3544 41.61 3548 63.62 3092 131.61 2346 21340 1948

G USEFUL AND FAILURE CASES OF THEOREM [4.6]

Successful case: similiar semantic meanings. When p and v are sampled from the same un-
derlying distribution P’, that is to say: limy_m(X) = limp;_oom(Y). In this case, Wy (u, v)
can be bounded to the constant C'(P’) even as the test length M increases and thus the distance

W, (;LAN I/A]VV ) is fixed with the length term v/InN, resulting that the pure self-attention can

o
generalize to out-of-distribution length sentences. This observation is consistent with the findings
in Bhattamishra et al| (2024) suggesting that transformer decoders can easily copy long strings
and |Liu et al.| (2022) showing that transformers can in theory simulate many finite-state automata in
principle. The consistency in these behaviors arises because both long and short sequences follow
identical underlying rules for such tasks, allowing sequences of varying lengths to be modeled within
the same distributional framework.

Failure case: diverge semantic meanings and minor permutation. Our theoretical analysis
of length generalization is fundamentally driven by the relationship between word embeddings
and sentence-level semantic meanings. We identify two critical scenarios where self-attention
mechanisms may fail to generalize effectively: (1) If Wy (u, v/) diverges, the upper bound established
in Theorem 4.6 grows significantly, making our theoretical bound uninformative. This weakens the
constraint and ultimately reduces the length generalization capability. (2) When the geometry of
the embeddings aligns closely while the semantic meanings of the two sentences differ significantly,
it demonstrates a capacity for ineffective generalization. For example, the transformers may fail
to distinguish the pair of negated sentences (Singh et al., 2023 [Zhang et al., [2023)) because word
embeddings are similar while the semantic meaning of the whole sentence is quite different. This
observation aligns with findings in|Zhou et al.|(2024); |[Huang et al.|(2024).

H EXPERIMENTS

H.1 PRE-TRAINING EXPERIMENTS

Given a token matrix X, a language model @ is trained to maximize the conditional likelihood
Py(X; | X<;),1 € [N]. Standard fine-tuning minimizes the loss over all tokens:

M
1
L= ~ leogpg(xi | X2i), (24)

which adapts the model to the entire long sequence.

To show that VCL is effective in the pre-training phase, we train NanoGPT-124M from scratch using
our methods. The training process comprises 6000 steps, employing a global batch size of 24 and
gradient accumulation steps of 5 x 8 on 8 A100 GPUs. We use a learning rate 6e — 4 and a weight
decay le — 1, with 2000 warm-up steps. We use AdamW optimizer with its default hyperparameters
setup. Since the default positional encoding from NanoGPT is the absolute PE with no extrapolation
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i Therg isan |mport§nt info hlddgn |n§|de alot oflrrelgvant text. : (A LLaMAz & PoSE  Sicyarn 6k-yarn
: fmd it an_d memorize them. | will quiz you about the important ! — A-VCL-6k-yarn VCL-8k-yarn
, information there. .
1 . j QI JOSCE— D
1
1 The grass is green. The sky is blue. The sun is yellow. Here we go. ; 0.8 |
: There and back again. (repeat x times) : B .
! ! g 0.6 -
1 The pass key is 36860. Remember it. 36860 is the pass key. : 3
: 1 < 0.4 -
1 The grass is green. The sky is blue. The sun is yellow. Here we go. : 0.2
1 . . . -
; There and back again. (repeat y times) ;
1 1 Y
(o] t t 3t 3 o 3 ¥
| What is the pass key? The pass key is : 2k 4k ok 8k 10k 12k 46k
““““““““““““““““““““““ Context length
(a) Passkey prompt (b) Performance

Figure 7: (a) Prompt template used for passkey retrieval; (b) Retrieval accuracy for VCL compared
with other baselines. 6k-yarn and 8k-yarn stand fine-tuning on 6k and 8k context windows with yarn.
VCL-6k-yarn and VCL-8k-yarn stand fine-tuning on 6k and 8k context windows with VCL integrating
yarn.
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Figure 8: PPL v.s. Wasserstein Distance on different lengths. We compare CodeLLM-1B (Kazemnejad et al.,
2023)) pre-training on the fixed context window 1024 under the same settings on different positional encodings:
ROPE (Su et al.| 2022), NoPE (Kazemnejad et al., 2023)), and Alibi (Press et al.,2022). The left y-axis is for PPL
and the right y-axis is for Wasserstein Distance. The x-axis is for different context window sizes ranging from
512 to 4096.

ability, we adopt the NoPE and RoPE for the default settings. The pretraining dataset is sourced
from the OpenWebText2 (Gao et al., [2020), with a train block size ranging from 256 to 512 as the
baseline and oracle respectively. We use the traditional loss function and our VCL loss to pre-train
the NanoGPT from scratch as following:

Lpre—train =al + (1 - Q)LVCL (25)

We select o from {0.1,0.5,0.9} and observed that the smaller o induced a better performance of the
length extrapolation.

detach means that we fix k=256 with the real tokens and the whole input sequence is M =512. random
means that we fix k=256 with the randomly generated tokens with the Gaussian distribution of the
latter 256 tokens’ mean and variance while the whole input sequence is M =512. Since all of the PPLs
are very close to each other (around 1.0), we did not divide the loss by the length to better distinguish
them among different methods. Table [3]shows that VCL is on par with or even better than the oracle
under the NoPE settings by only adding one actual token, especially in the out-of-distribution length
(more than 1024). All three methods on NanoGPT outperform the initial pertaining models, verifying
the superiority of our insight that alleviates the length term while enhancing the ability of length
generalization simultaneously. Furthermore, we extend our VCL pertaining methods to the RoPE
setting.
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Table 4: Accuracy on LongBench with extreme length (more than 8k).

Single-Doc  Multi-Doc L Few-shot  Synthetic Code
Methods QA QA Summarization Learning Task Completion Avg
1lama2-7b
Original 4.12 3.19 9.54 65.32 1.00 58.00 26.74
Full-length (8k) 9.33 7.62 15.11 62.47 3.08 56.94 28.58
RandPE 9.79 7.92 17.01 58.96 5.46 56.88 28.54
PoSE 11.85 8.38 1691 62.53 4.07 53.01 28.93
NTK-aware 11.39 7.47 15.79 61.53 4.01 56.75 28.88
Yarn 8.96 7.87 16.77 60.33 3.72 57.55 28.52
VCL-Linear-1k 8.23 8.73 22.16 61.91 4.50 60.02 30.23
VCL-NTK-1k 10.73 8.77 17.63 61.83 4.96 59.20 29.85
VCL-Yarn-1k 13.20 8.15 16.87 62.94 6.12 55.73 29.92
1lama2-7b-chat-4k

Original 24.9 22.6 24.7 60.0 59 48.1 31.0
VCL-Linear-1k 13.86 26.64 24.44 62.47 7.38 54.64 33.95
VCL-NTK-1k 12.61 25.19 24.95 62.25 4.96 56.27 33.44
VCL-Yarn-1k 19.52 26.20 25.38 62.74 4.75 53.66 34.41

H.2 MORE LLMS EXPERIMENTS

We also trained our methods VCL on the 1lama2-chat model as seen in Table[d]

H.3 METRICS ON CODELLM-1B

Here we give the distribution metrics and the ppl on different contexts window size across RoPE,
NoPE, and Alibi. We demonstrate the Wasserstein Distance, JS Distance, and KL Divergence, as
well as the PPL in the following tables.

Table 5: Performance Metrics for RoPE

Context Window Size PPL Wasserstein Distance JS Distance KL Divergence

512 30.625 0.0132 0.0256 0.0026
760 27.500 0.0047 0.0162 0.0010
1024 25.750 0.0000 0.0000 0.0000
1600 48.250 0.0391 0.1214 0.0630
2048 115.500 0.0633 0.1981 0.1705
2560 153.000 0.0695 0.2378 0.2429
3072 230.000 0.0673 0.2531 0.2725
4096 444.000 0.0646 0.2660 0.3063

Table 6: Performance Metrics for NoPE

Context Window Size PPL Wasserstein Distance JS Distance KL Divergence

512 32.000 0.0216 0.0357 0.0051
760 28.750 0.0088 0.0213 0.0018
1024 28.375 0.0000 0.0000 0.0000
1600 27.875 0.0190 0.0350 0.0050
2048 48.250 0.0376 0.0722 0.0213
2560 102.000 0.0495 0.1021 0.0428
3072 174.000 0.0567 0.1237 0.0629
4096 392.000 0.0643 0.1536 0.0970

26



Under review as a conference paper at ICLR 2026

Table 7: Performance Metrics for Alibi

Context Window Size PPL Wasserstein Distance JS Distance KL Divergence

512 30.625 0.0234 0.0452 0.0082
760 27.875 0.0097 0.0305 0.0037
1024 27.875 0.0000 0.0000 0.0000
1600 26.250 0.0212 0.0387 0.0060
2048 37.000 0.0410 0.0593 0.0139
2560 54.500 0.0575 0.0787 0.0242
3072 68.000 0.0687 0.0935 0.0337
4096 123.000 0.0835 0.1169 0.0515
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