
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

ON THE MEASUREMENT AND EFFICIENT MITIGATION
OF LENGTH GENERALIZATION GAPS IN LARGE LAN-
GUAGE MODELS

Anonymous authors
Paper under double-blind review

ABSTRACT

Large Language Models (LLMs) typically train on short text due to the quadratic
complexity of their self-attention architectures. As a result, their performance
suffers drastically on inputs longer than those encountered during training, sub-
stantially limiting their applications in real-world tasks involving long contexts. In
this paper, we rigorously establish an upper bound on length generalization in the
measurement space and identify two length-related factors that limit performance.
Our theory explains two recent observations: (i) out-of-distribution positions in
longer contexts reduce length generalization, and (ii) fine-tuning on entire se-
quences is not necessary. Motivated by these insights, we propose Virtual-context
Learning (VCL), a flexible method that requires minimal modifications to most
fine-tuning approaches. Experiments on various tasks show that VCL allows LLMs
to generalize to 4× context windows while retaining perplexity and improving
performance on downstream tasks such as Passkey Retrieval and LongBench. VCL
brings substantial efficiency improvements, reducing decoding time and memory
usage by up to 50% compared with fine-tuning baselines.

1 INTRODUCTION

Large language models (LLMs) have recently advanced the state-of-the-art across various natural
language processing tasks (Achiam et al., 2023; Team, 2025; Meta, 2024). They typically remain
pre-trained on finite context windows primarily due to the computational overhead quadratic in
the input lengths of their self-attention architectures Touvron et al. (2023a;b). As a result, their
performance degrades significantly when applied to longer sequences (Ye et al., 2025; Bai et al., 2024;
Chen et al., 2024; Kuratov et al., 2024), limiting their applicability in tasks that require long-range
contexts, such as document retrieval, code generation, and story generalization (Bai et al., 2023;
Zhang et al., 2024; Meta, 2024; Qin et al., 2024).

In this paper, we first provide a rigorous analysis of the upper bound for length generalization in pure
self-attention using measure theory. Notably, attention matrices are discrete and of varying sizes
across sequence lengths, preventing direct comparison or standard matrix operations. To address
this question, we develop a measure-theoretic framework that maps token matrices and attention
updates into a continuous probability space, which allows us to quantify distributional differences
between short and long contexts and thereby analyze how attention distributions evolve as sequence
length increases. Based on this framework, we identify two length-related factors that underlie
generalization failures: (i) the shorter length N (usually the pre-training context window) at a rate of√

lnN ; (ii) the challenge of embedding distribution shifts for unseen or longer lengths. The increase
in the test length can affect the distribution shift, increasing the distance between token embeddings
and leading to failures in length generalization (Ye et al., 2025; Chen et al., 2023a).

Moreover, by connecting the bound factors of attention distribution distances to practical phenomena,
we can systematically elucidate the mechanisms behind recent empirical findings (Clark et al., 2018;
Chen et al., 2023a). (i) Longer contexts can diminish length generalization ability by introducing
Out-of-Distribution (OOD) positions, which enlarges the distribution shift term in the bound. Existing
position interpolation (PI) methods, such as Yarn (Peng et al., 2023), mitigate this effect by re-scaling
longer position indices and adjusting the frequency basis to align with the scale inherited from the

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

pre-trained model during fine-tuning. (ii) Fine-tuning on entire long target sequences is not necessary,
as only the short-length term appears in the bound directly. Instead, selecting a subset of important
tokens from long sequences for fine-tuning yields comparable performance to using all tokens Fang
et al. (2024); Hu et al. (2024). These selected tokens effectively mimic the long distribution and
reduce the generalization gap, verifying the theoretical feasibility of extending context windows to
even infinite lengths under limited computational resources.

Building on our theoretical insights, we introduce Virtual-context Learning (VCL), a simple and
effective method that updates parameters only on long-length tokens. It trains solely on unseen or
longer indices, reducing the quadratic cost of long inputs with minimal code changes in standard fine-
tuning methods (Peng et al., 2023; Chen et al., 2023a). VCL can also optionally combine with PI to
further alleviate token-distance effects caused by PE distribution shifts. Our experiments thoroughly
evaluate VCL on a variety of tasks. On Proof-pile (Azerbayev et al., 2022) and GovReport (Huang
et al., 2021), VCL facilitates length generalization against a wide range of PI series and PE-augmented
methods up to 4× length extension, retaining the language modeling perplexity and generation quality.
VCL improves scores on downstream tasks including Passkey Retrieval (Mohtashami & Jaggi, 2023)
and LongBench (Bai et al., 2023) which are two established benchmarks for long-context evaluation.
We observe that VCL remains nearly 100% accuracy on OOD length on Passkey Retrieval and an
average of 3.5 gain on LongBench. VCL also brings substantial efficiency improvements, reducing
50% training time and memory usage over full-length fine-tuning.

In summary, our key contributions are:

• From the theoretical perspective, we establish the upper bound of the length generalization
performance under measurement space and pinpoint two length-related factors underlying the
generalization failures: the shorter length term and the distribution shift distance of the different
length sequences, opening the way to provably predict length generalization capabilities.

• Built upon our theoretical conclusion, we clarify the mechanisms behind recent empirical findings.
Our results reveal that OOD positions in longer contexts reduce length generalization ability by
increasing the distribution shift distance. Additionally, fine-tuning on entire sequences is not
essential, as generalization performance is constrained solely by the short length, rather than
directly by the long length.

• Based on our close observation, we propose a simple and effective method Virtual-context Learn-
ing (VCL) with minimal code changes during the standard fine-tuning phase, reducing the GPU
usage and time consumption. Experiments across diverse benchmarks, including language model-
ing, passkey retrieval, and LongBench, demonstrate our VCL effectiveness in addressing length
generalization challenges and further validating our theoretical insights.

2 RELATED WORK

Length generalization Length generalization remains a critical challenge in neural networks, as
evidenced by extensive research (Delétang et al., 2022; Graves et al., 2016; Hupkes et al., 2020;
Zhang et al., 2022). Even Transformer-based large language models (LLMs) (Chowdhery et al.,
2023; Team, 2025), despite their sophisticated reasoning capabilities, struggle to process sequences
that exceed their training length (Anil et al., 2022; Ye et al., 2025). Current approaches to improve
length generalization, primarily focus on two aspects: enhancing positional encoding via fine-tuning
methods (Chen et al., 2023b; Peng et al., 2023; Chen et al., 2023a) and optimizing input formats
by zero-shot prompting (Quesnelle et al., 2023; Han et al., 2023b). Research has explored various
positional encoding alternatives, including relative positional encodings that encode token-to-token
distances (Dai et al.; McLeish et al., 2024), skip or randomized position encodings (Ruoss et al., 2023;
Zhu et al., 2023), and weighted attention mechanisms as substitutes for position embeddings (Chi
et al., 2022; Li et al., 2023; Press et al., 2021). Consequently, researchers have developed alternative
data formatting techniques specifically for pretrained LLMs, including scratchpad methods and chain-
of-thought approaches through in-context learning or fine-tuning (Xiao et al., 2023; Liu et al., 2024).
However, these methods are challenging to implement during post-training and not robust (Zhou
et al., 2024; Han et al., 2023a).

Length generalization theory in transformer Previous research (Bhattamishra et al., 2024; Liu
et al., 2022; Vuckovic et al., 2020; Huang et al., 2024) has focused on the mathematical properties

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

of attention mechanisms, particularly examining properties such as Lipschitz continuity (Wu et al.,
2024; Castin et al., 2023) or investigating the PE influence by modeling self-attention as a system
of self-interacting particles (Vuckovic et al., 2020; Wu et al., 2024). Zhou et al. (2023) first posits
the length generalization theory that transformers can achieve exact length generalization on algo-
rithmic tasks solvable by simple programs RASP-L. Huang et al. (2024) further generalized it and
provides a positive result for a specific idealized learning strategy under learnable PE. However,
these studies (Han et al., 2023a; Press et al., 2022) often impose constraints on specific PEs and
rely on numerous assumptions about input-output relationships. In this paper, we avoid making
specific assumptions about PEs or input distributions; first investigate the influence of self-attention
architectures on length generalization via the probability transformation.

3 PROBLEM SETUP

(Measurement) Notation We use the shorthand [n] := {1, 2, ..., n}. Let ∥ • ∥1 be the 1-norm
and 1 be the indicator function. For a real-valued function f , we use ∥f∥Lip := supx ̸=y |f(x) −
f(y)|/d(x, y) as the Lipschitz semi-norm. Throughout the analysis in the paper, we formalize the
attention to be the kernel A in the probability space. Formally, let (E, E) denote a subset of Rd

endowed with its Borel σ-algebra, and P(E) be the space of all probability measures on E. We
define the Markov kernels {ΨG(ν)}ν∈P(E) by

ΨG(ν)(dx) :=
G(x) ν(dx)

ν(G)
, ν ∈ P(E),

where G is a measurable function and ν(G) :=
∫
E
G(x) ν(dx). For A ∈ E , the kernel satisfies

ΨG(ν)(x,A) :=

∫
A

ΨG(x,·)(ν)(dy).

For a function G of two variables, G : E × E → R, we let ∥G∥Lip,∞ := supy∈E ∥G(•, y)∥Lip

and ∥G∥∞,Lip := supx∈E ∥G(x, •)∥Lip. In the attention mechanism, the measurable function G is
expressed in exponential form G(x, y) = exp(xyT). A lookup kernel L(x, dy) is a Markov kernel
that maps P(X) to distributions on P(Y). Formal definitions are provided in Appendix E.

Furthermore, we will use the measurement-theoretic terminology (see Figure 1 for illustration):

Definition 3.1 (Wasserstein Distance) Let P(E) be the set of probability measures, µ, ν ∈ P(E),
and C(µ, ν) be the set of distributions on (E ×E, E × E) with marginals µ, ν on the first and second
components, respectively. The Wasserstein distance between µ, ν ∈ P(E) is

W(µ, ν) := inf
π∈C(µ,ν)

∫∫
E×E

∥x− y∥1π(dx, dy). (1)

Attention Mechanism Let X = {X1, . . . , XN} ∈ RN×d be the token matrix, where N is the
length and Xi ∈ Rd represent the i-th token vector. The raw attention score matrix is computed
as Z = XWQ(XWK)T /

√
dQK where WQ,WK ∈ Rd×d′

are the query, key matrices respectively,
and dQK is a temperature term to control the scale of raw attention scores. Without loss of generality,
we assume dQK = 1 in our analysis. To enforce attention, we create an attention matrix A ∈ RN×N

where we normalize the attention scores among all tokens,

Aij := softmax(Z) =
exp(Zij)∑N
k=1 exp(Zik)

. (2)

Attention Update For our analysis, we consider single-head self-attention networks (SAs). The
layerwise update rule can be written as:

A(t) = softmax(X(t)W
(t)
Q (X(t)W

(t)
K)T /

√
dQK)

X(t+1) := A(t)X(t)W
(t)
V , (3)

where W
(t)
V ∈ Rd×d′

is the value matrix. For simplicity, throughout the paper, we assume that
d = d′,WQ = W

(t)
Q ,WK = W

(t)
K ,WV = W

(t)
V . Yet the results can be easily generalized to the

multi-layer case through iteration.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

4 A MEASURE-THEORETIC FRAMEWORK FOR LENGTH GENERALIZATION

While the previous section formalizes the attention mechanism and its update rule, these formulations
are insufficient for rigorously analyzing length generalization, since the attention outputs at different
sequence lengths correspond to matrices of incompatible sizes that cannot be directly compared. To
understand how attention distributions change as the sequence length grows, we need a framework
that can measure distributional differences between short and long contexts; therefore, we map the
attention mechanism into the continuous probability spaces (Vuckovic et al., 2020; Kim et al., 2021)
by (i) representing queries, keys, and values as empirical measure mapping and (ii) the attention
interaction as a Markov kernel transport. This abstraction allows us to use tools from measure theory,
in particular the Wasserstein distance, to formally analyze how much attention distribution shifts
under longer contexts and to derive theoretical bounds on length generalization.

4.1 ATTENTION KERNEL: A MEASURE THEORY VIEW

For simplicity, let Q(t) = X(t)WQ, K(t) = X(t)WK , and V (t) = X(t)WV . Throughout this paper,
we represent any X ∈ {Q(t),K(t), V (t)} by its empirical measure m(X) = {δXi

}Ni=1, regarded as
a probability measure P(X). Here the Dirac measure δx(E) to a set E assigns 1 if x ∈ E and 0
otherwise. We then map the attention scores A to the probability space via nonlinear Markov kernel
transport on m(Q(t)) and m(K(t)) as follows:

Proposition 4.1 (Attention Score Kernel) For the function G(q, k) = exp(qkT /dqk) where dqk is
a temperature term to control the scale of raw attention scores, the attention score kernel AS is the
family of Markov kernels {ΨG(ν)}ν∈P(E). Specifically, for m(Q(t)) and m(K(t)), we have

m(Q(t))ΨG(m(K(t))) =
1

N

N∑
t=1

N∑
s=1

G(Q
(t)
t ,K

(t)
s)∑N

r=1 G(Q
(t)
t ,K

(t)
r)

δ
K

(t)
s

. (4)

The detailed proof is provided in Appendix F.1. This formula converts the attention scores matrix A
for queries and keys into a conditional probability representation AS using Markov kernels, with
the non-linear function G expressed in exponential form. Finally, we present the attention as the
interaction between attention scores and values in the form of a probability measure as follows:

Proposition 4.2 (Self-attention Kernel) The self-attention kernel Aµ is the composition of the at-
tention score kernel AS , the lookup kernel L(k, dv) =

∑
i=N 1k = kiδvi(dv) and the projection Π,

defined for x ∈ E and µ ∈ P(E) as:
Aµ(x, dz) := Π[ΨG(x,•)(µ)L](dz). (5)

Specifically, we have:

m(X(t+1)) 7→
{
δ
Q

(t)
1
Am(K(t)), . . . , δQ(t)

N

Am(K(t))

}
(6)

implements an attention mechanism.

The detailed proof is provided in Appendix F.2.

Finally, we adopt the following assumptions in our analysis:

Assumption 4.3 There exists C ∈ R such that

maxt∈N{∥G(Q(t),K(t))∥Lip + ∥G(Q(t),K(t))∥∞} ≤ C

Assumption 4.4 The empirical measures P(E) ∈ {m(Q(t)),m(K(t)),m(V (t))} all have finite first
moments that

∫
E
∥x∥1dP(x) < ∞.

A 4.3 states that the Lipschitz semi-norm and supremum norm of the exponential kernel G remain
uniformly bounded with respect to sequence length, which is essential for ensuring stable and efficient
attention computation in practice (Kim et al., 2021; Castin et al., 2023), whereas A 4.4 guarantees
that the Wasserstein distance between empirical measures is well-defined and finite for any t > 0,
enabling the subsequent analysis of distributional shifts (Vuckovic et al., 2020).

4.2 LENGTH GENERALIZATION UPPER BOUND: 2 LENGTH-RELATED FACTORS

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Short-context distribution
Long-context distribution

𝕎 𝑋!
(#$%), 𝑋'

(#$%)

In this hot weather, the
sun shines brightly in the
sky, the temperature has
clearly risen, making it
very uncomfortable.

The weather is hot.

Figure 1: Intuition of our theoretical framework. Given
two sentences with similar semantics, we measure the
Wasserstein distance W between their attention-kernel
outputs in probability space, which should yield similar
representations.

Building on the probabilistic representation of
the attention kernel A, we formalize length
generalization as the Wasserstein distance
between attention outputs under short and
long contexts. As shown in Figure 1, if
two token matrices convey similar semantics,
their attention-induced measures should satisfy
W(m(X

(t+1)
N),m(X

(t+1)
M)) ≈ 0, reflecting the

desired property of length generalization that
representations remain close even when extend-
ing from short to long contexts (M > N). For
example, the short sentence “The weather is hot.”
and the longer variant “In this hot weather, the
sun shines brightly in the sky, the temperature
has clearly risen, making it very uncomfortable.” convey the same meaning and should yield similar
distributions. This view provides a principled metric to quantify how model behavior shifts with
length and underpins our theoretical bounds.

Remark 4.5 The Wasserstein distance W aligns with interpretable metrics for analyzing length
generalization, such as JS distance, KL divergence, and perplexity. See Appendix C for empirical
evidence under various settings in LLMs.

Formally, based on the attention kernel A, our goal is to measure W between the output of the
attention kernel given two token matrices XN of length N and input XM of arbitrary longer length
M > N with similar meanings. Finally, we prove the length generalization bound as follows:

Theorem 4.6 (Length Generalization Upper Bound) Suppose two representations with different
length X

(t)
N =

{
X

(t)
1 , . . . , X

(t)
N

}
and X

(t)
M =

{
X

(t)
1 , . . . , X

(t)
M

}
, N ≤ M, and the attention kernel

A. Let Π be the usual projection. Then under A 4.3 and 4.4, for µ = m(X
(t)
N) and ν = m(X

(t)
M),

W
(
m(X

(t+1)
N),m(X

(t+1)
M)

)
≤ 2c(Π)c(L)

[
√
d

√
lnN +

1

2e
∥G∥Lip + ∥G∥∞ +

√
d+ 2

]
W(µ, ν),

(7)

where c(Π), c(L) are some constants to be determined and the detailed expressions of ∥G∥∞ and
∥G∥Lip are seen in Appendix F.3.

The detailed proof of Theorem 4.6 is provided in Appendix F.4. This result extends the findings
of Vuckovic et al. (2020), which primarily analyzed the Lipschitz constant of attention but did not
explicitly address how sequence length affects generalization. Under A 4.3, the terms ∥G∥∞ and
∥G∥Lip are intrinsic properties of the exponential similarity function G defined on the space E and
remain bounded regardless of input length; similarly, c(Π), c(L), and the embedding dimension d are
independent of sequence size.

Consequently, only two length-dependent factors govern generalization performance:

(i) Shorter-length
√
lnN : depends only on the shorter length N and thus does not grow when

evaluating on longer sequences, fortunately, which means that simply increasing test length does not
worsen the bound through this factor.

(ii) Distribution shift distance W(µ, ν): captures how the probability distributions of short and long
contexts diverge, which is the primary factor driving length generalization failures with the test length
increase and the key target for improvement.

5 OUR THEORY-INSPIRED PROPOSAL: VIRTUAL-CONTEXT LEARNING

Having analyzed the Wasserstein distance of the attention kernel in probability space and established
its dependence on sequence length, we now bridge theory with practice. Specifically, we examine
(i) how positional encodings and their induced interpolation methods affect the distribution shift

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

term W(µ, ν), and (ii) whether full-length fine-tuning is an efficient way to extend context length.
These insights motivate our proposed training strategy, Virtual-context Learning, which controls the
effective training length while directly adapting to out-of-distribution positions.

5.1 A CLOSE LOOK AT POSITION ENCODINGS AND FULL-LENGTH FINE-TUNING

0

0.02

0.04

0.06

0.08

0.1

W
as

se
rs

te
in

 D
is

ta
nc

e

RoPENoPE

512 1k 2k 4k

(a) Wasserstein Distance
under various PEs

Alibi

0

200

400

600

800

1000

256 512 1k 2k

(b) PPL under short,
long, and detach settings.

PP
L

512256 detach

The evaluation length The evaluation length

Figure 2: Implications of theorem. (a) OOD positions cause
the distribution shift (W explosion). (b) Gradient backprop-
agation only on the longer length (detach) is comparable to
full-length (512) parameter updates.

Out-of-distribution (OOD) positions on
longer contexts reduce length general-
ization. A key source of length gener-
alization failure lies in positional encod-
ings: when extrapolated to unseen lengths,
they distort the representation space and
increase distributional mismatch (Kazem-
nejad et al., 2023; Gao et al., 2024). Our
theoretical framework explains this phe-
nomenon: OOD positions enlarge the dis-
tribution shift term W(µ, ν) in our bound,
since the geometry of embeddings at un-
seen positions deviates from that observed
during training. Notably, we follow Vuck-
ovic et al. (2020); Castin et al. (2023) in
encoding structural information (positions,
adjacency, semantics) in the token matrix X , which makes our theoretical framework applicable
to diverse positional encodings, including RoPE (Su et al., 2022), Alibi (Press et al., 2022), and
interpolation-based variants.

We empirically validate this explanation on CodeLlama with GovReport up to 4k tokens: Figure 2(a)
shows that the average Wasserstein distance grows substantially once the evaluate sequence length
exceeds the context window (1k). Existing position interpolation (PI) methods, such as Yarn (Peng
et al., 2023), mitigate this effect by re-scaling longer position indices and adjusting the frequency
basis to match the scale inherited from the pre-trained model during fine-tuning.

Full-length fine-tuning on entire sequences is not necessary. Recent works (Fang et al., 2024; Hu
et al., 2024) show that selecting only a subset of important tokens from long sequences for fine-tuning
yields comparable performance to using all tokens. Our theorem explains: perhaps counter-intuitively,
increasing the training length M does not inevitably harm length generalization, since only the
short-length term appears in the bound. Thus, fine-tuning on carefully chosen tokens that reflect the
long-context distribution is sufficient, rather than updating on the full sequence. In particular, OOD
positions are the main source of discrepancy between short and long distributions; updating only on
these positions can effectively mimic the long distribution and reduce the generalization gap.

To mitigate the effects of relative positional encodings and length extrapolation techniques applied
in current base LLMs, such as Llama (Meta, 2024) and Qwen (qwe), we pre-train NanoGPT from
scratch using the NoPE configuration. As empirical evidence shown in Figure 2(b), we establish a
baseline with context windows of 256 and an oracle setting with 512, evaluating performance across
different lengths using perplexity (PPL). Additionally, we present the results of pre-training on the
RoPE versions in Appendix H.1. To verify that not all tokens are needed, we introduce a detach
variant: in the 512-length setting, gradients from the first 215 tokens in each attention layer are frozen,
and only the latter 215 tokens contribute to the loss. The results show that this detached method
achieves performance on par with full-length (512) training, despite updating parameters only on the
latter half of the sequence, consistent with our theoretical prediction.

5.2 EFFICIENT METHOD: NOT ALL TOKENS ARE NEEDED FOR TRAINING

Motivated by our previous analysis of length generalization, we propose Virtual-context Learning
(VCL), which updates model parameters using only the latter, out-of-distribution tokens. Given
a token matrix X , a language model θ is trained to maximize the conditional likelihood Pθ(Xi |

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 1: PPL across different methods. Blue marks the best. Calculation in loss means the token lengths used for
loss during fine-tuning, while the evaluation context window size varies from 4k to 16k. VCL retains the low
PPL even when the evaluation length 4× than the calculation length.

Methods Calculation GovReport Proof-pile
in Loss 4k 8k 10k 12k 16k 4k 8k 10k 12k 16k

Vanilla - 4.59 >100 >100 >100 >100 3.59 96.0 >100 >100 >100
RandPE 4k 5.12 8.0 9.63 11.06 14.0 4.19 5.28 5.91 6.47 8.0
PoSE 4k 4.78 5.63 6.72 9.06 17.75 3.78 3.89 4.38 5.31 11.25
Linear 8k 4.59 4.66 10.94 30.13 >100 3.63 3.11 7.75 23.13 90.0
NTK-aware 8k 4.59 4.66 7.34 20.13 74.5 3.59 3.16 4.97 14.69 60.0
Yarn 8k 4.59 4.66 8.5 23.88 >100 3.63 3.11 5.94 16.13 72.5

without PI
VCL-4k 4k (8k-4k) 6.22 5.81 6.06 6.88 10.25 5.41 4.28 4.16 4.38 5.72

with Yarn (Peng et al., 2023)
VCL-1k 3k (4k-1k) 4.63 4.66 4.59 4.56 4.59 3.66 3.16 3.03 2.92 2.72
VCL-2k 4k (6k-2k) 4.94 4.84 4.94 4.81 4.97 3.92 3.36 3.17 3.08 2.92
VCL-4k 4k (8k-4k) 4.66 4.66 4.59 4.56 4.63 3.72 3.16 3.03 2.92 2.73

X<i), i ∈ [N]. Standard fine-tuning minimizes the loss over all tokens, while our objective becomes:

LVCL = − 1

M − l

M∑
i=l

logPθ(Xi | X<i), (8)

where l > 0 specifies tokens (0 ∼ l) used only in forward propagation without contributing to
backpropagation. By excluding early tokens from gradient updates, VCL shortens the effective
training length and reduces the distribution shift between short and long contexts, thereby improving
length generalization. It can be seamlessly combined with position interpolation methods (e.g., Linear,
NTK-aware, Yarn) to further minimize the embedding-space distance. Overall, VCL controls training
length while adapting to unseen positions, lowering computation cost and mitigating overfitting to
excessively long contexts.

6 EXPERIMENTS

Experiment Settings. We train the LLaMA-2-7B (Touvron et al., 2023b) with a context window of
4096, which does not expand the context window during the post-training phase like Qwen (qwe) or
LLaMA-3 (Meta, 2024), to verify the effectiveness of our proposed methods without compromising
generalization. We fine-tune all the baselines and our method on a dataset sourced from the Pile
following (Zhu et al., 2023). The training uses a learning rate of 2× 10−5 with a linear scheduler,
includes 10 warmup steps, and utilizes the AdamW optimizer with default hyperparameters, along
with Flash Attention V2 (Dao, 2023). This process consists of 200 steps, employing a global batch
size of 128 across 8 A100 GPUs with Deepspeed ZeRO stage 3 (Rajbhandari et al., 2020).

We choose the offset l ranging from {1k, 2k, 4k} and the target length M from
{4k, 8k, 10k, 12k, 16k} where k is 1024. For evaluation, we use a single A100 GPU, making it
possible to evaluate long documents of up to 16k tokens. We examine the ability of long text model-
ing on three tasks: language modeling with Perplexity (PPL), passkey retrieval (Mohtashami & Jaggi,
2023) with retrieval accuracy, and LongBench (Bai et al., 2023) with accuracy following with the
length more than 8k.

Baselines. Full-length: We train the LLMs on the full target context length, serving as a baseline.
RandPE: Ruoss et al. (2023) is initially designed to train an encoder-only model from scratch for
length extrapolation. We include it for a comprehensive comparison. PoSE: Zhu et al. (2023) improve
RandPE by dividing the original context window into two chunks and applying distinct skipping bias
terms to manipulate the position indices of each chunk. Linear & NTK-aware: Chen et al. (2023b)
involves a proportional down-scaling of the position index and NTK-aware methods defined in Peng
et al. (2023) alter the base of RoPE, effectively modifying the rotational speed of each dimension of
RoPE. Yarn: Peng et al. (2023) employs a ramp function to combine position interpolation methods
such as Linear and NTK interpolation at varying proportions across different dimensions. We adopt
the baseline implementation settings following Zhu et al. (2023).

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 2: Accuracy on LongBench with extreme length (more than 8k).
Blue marks best. We combined VCL with various position interpolation
methods. Among the 6 categories of all the tasks, VCL performs best.

Methods Single-Doc Multi-Doc Summar- Few-shot Synthetic Code AvgQA QA ization Learning Task Completion
LLama2-7b

Vanilla 4.12 3.19 9.54 65.32 1.00 58.00 26.74
FT(8k) 9.33 7.62 15.11 62.47 3.08 56.94 28.58
RandPE 9.79 7.92 17.01 58.96 5.46 56.88 28.54

PoSE 11.85 8.38 16.91 62.53 4.07 53.01 28.93
NTK 11.39 7.47 15.79 61.53 4.01 56.75 28.88
Yarn 8.96 7.87 16.77 60.33 3.72 57.55 28.52

VCL
+Linear 8.23 8.73 22.16 61.91 4.50 60.02 30.23
+NTK 10.73 8.77 17.63 61.83 4.96 59.20 29.85
+Yarn 13.20 8.15 16.87 62.94 6.12 55.73 29.92

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

LLaMA2 PoSE

Context length

VCL-8k-yarn

2k 4k 6k 8k 10k 12k 16k

VCL-6k-yarn
8k-yarn 6k-yarn

Figure 3: VCL shows best perfor-
mance on the retrieval task, espe-
cially in a longer context than the
fine-tuning.

6.1 LANGUAGE MODELING

First, we investigate the impacts of different fine-tuning methods on long sequence language modeling
using the GovReport and Proof-pile datasets. Table 1 presents the PPL of scaling to evaluation length
to 16k under vanilla, RandPE, PoSE, Yarn, and VCL with and without Yarn. In VCL, for the train
length of 4k, we set the offset l = 1k; for lengths greater than 4k, we set l = 2k, 4k. We observe
that there is little difference in perplexity between different methods for short lengths. However, for
extended lengths, with approximately twice the fine-tuning length, we see a significantly larger gap
in perplexities, indicating a notable difference in the ability of length generalization. We suppose it is
because our VCL focuses on updating the parameters on the longer OOD position tokens, thereby
mitigating the distribution shift between the long and short contexts, is consistent with our theoretical
implications.

6.2 PASSKEY RETRIEVAL FOR EFFECTIVE CONTEXT WINDOW

To effectively measure the maximum distance that a token can attend to during the inference stage,
we adopt the passkey retrieval test proposed by Mohtashami & Jaggi (2023). In this test, models are
tasked with recovering a random passkey hidden within a lengthy document. The prompt template
used for this task is presented in Figure 7(a) in the Appendix. We vary the prompt length from 2k to
16k. For each length, we conduct the passkey retrieval test 50 times, with a random passkey of 5 digits
generated and placed at a random position inside the prompt. Figure 3 illustrates the results where
6k-yarn and 8k-yarn represent fine-tuning on 6k and 8k context windows with Yarn. VCL-6k-yarn
and VCL-8k-yarn indicate fine-tuning on 6k and 8k context windows with VCL integrating Yarn.
For the original, PoSE, and Yarn models, their retrieval accuracy rapidly drops to 0 with a maximum
of 8k. In contrast, VCL-Yarn-6k / 8k models manage to maintain a high retrieval accuracy (nearly
100%) scaling to 16k. This indicates that models fine-tuned via VCL genuinely possess the capability
to attend to all tokens both in the training length and the out-of-distribution length, verifying our
theoretical insights.

6.3 EVALUATION ON LONG-CONTEXT BENCHMARK

To verify the complete performance of VCL in real-world scenarios, we further conduct an evaluation
on the LongBench (Bai et al., 2023) with zero-shot setting. We fine-tune the llama2-7B on the
GovReport dataset by employing VCL with constrained train lengths of 4k, combining the position
interpolation tricks like Linear, NTK-aware, and Yarn. Table 2 shows that VCL generally outperforms
other generalization methods, especially those with solely position interpolation methods, like Yarn.
In the specific domain of QA, VCL remains competitive with or even surpasses the Full-length,
demonstrating VCL’s superior length generalization ability. This substantiates the considerable
potential of our theory insight for generalizing the context length to excel in long-context applications.
Moreover, we adapt our VCL to other LLMs in the Appendix H.2.

6.4 ABLATION AND EFFICIENCY ANALYSIS

We now conduct detailed ablations to investigate the efficacy of the components in VCL:

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0

5

10

15

Context length
2k 4k 8k 10k 12k 16k

VCL-8

0

5

10

15

Context length
2k 4k 8k 10k 12k 16k

yarn VCL-8VCL-64Vanilla VCL

(b) Ablation on Yarn scaling factors

yarn VCL-32Vanilla VCL

0

10

20

30

40

50

PP
L

Context length
2k 4k 8k 10k 12k 16k

1k 2k 4k

(a) Ablation on calculation length in loss

Llama2-7b

Figure 4: Ablation study of different hyperparameters of VCL. (a) varying the calculation length in loss M − l
from 1k to 4k, where l is fixed with 4k. (b) (left) different yarn scaling factors under M = 6k. (right) different
yarn scaling factors under M = 8k. yarn means fine-tuning on M length and vanilla VCL means VCL without
combining PI. VCL-x means VCL combined with Yarn with the scaling factors set to x.

Enhance the calculation length in loss can be beneficial for the out-of-distribution length. We add
different lengths of context under our VCL to simulate the long context and test them on GovReport,
ranging from 1k to 4k. We take the llama2-7b as the base model. In Figure 4(a), we discovered that a
longer length improves the length generalization performance of our VCL, indicating the essentiality
of the long context in VCL, aligning with common sense that fine-tuning on extended long contexts
can improve the length generalization ability.

Integrating the position interpolation with VCL can achieve greater length generalization
ability. To mitigate the Wasserstein Distance between the different length inputs induced by the
positional encodings, we choose the classic PI strategy—Yarn to integrate with VCL. To enhance
the generalization ability, we experiment on two train lengths 6k and 8k with offset l = 2k, 4k,
respectively. The results in Figure 4(b) show that integrating VCL with the PI strategy outperforms
using PI or VCL alone, with a significant decline in generalization ability when either is used
separately. Furthermore, we observe that a larger extrapolation scale in Yarn does not improve length
generalization ability, as noted in previous works (Chen et al., 2023a), a factor of 8 outperforms
factors of 32/64. Therefore, the optimal factor must be carefully selected in practice.

36.5

54.3

67.9

5

20

35

50

65

80

Full-lengthVCL-4k VCL-6k

M
em

or
y(

G
B

)

(a) Memory usage

53.3

85.0
91.4

0

15

30

45

60

75

90

Full-lengthVCL-4k VCL-6k

T
im

e(
m

in
)

(b) Time consumption

Figure 5: Efficiency of VCL compared to vanilla full-
length fine-tuning. VCL effectively reduces the memory
usage and time consumption for training.

VCL enhances the memory and computation
efficiency . We study the memory and time ef-
ficiency of VCL compared with Full-length fine-
tuning (8k). The results of the experiment under
the same training settings are shown in Figure 5,
illustrating the memory and time consumption
for 200 steps of Full-length versus VCL. Since
VCL only updates the long-index tokens through
the loss, it requires a small amount of memory
and time for context extension, which is signifi-
cantly lower compared to full-length fine-tuning.
Consequently, we can confidently say that our
proposed approach is both memory-efficient and
time-efficient while enhancing the length gener-
alization ability, further highlighting the superiority of our theory-based method VCL.

7 CONCLUSION

In this work, we introduce a measure-theoretic framework to analyze length generalization in self-
attention, revealing that the bound depends on the shorter length N as

√
lnN and the geometric

distance among input embeddings. Based on our theoretical framework, we provide the interpretation
and empirical verifications for recent findings that out-of-distribution positions in longer contexts
reduce length generalization, and that full-length fine-tuning on entire sequences is not necessary.
Furthermore, we propose the theory-inspired Virtual-context Learning (VCL), a fine-tuning method
that reduces computational costs and enhances length generalization by optimizing loss on long-token
sequences. Experiments across diverse benchmarks validate VCL and support our theoretical findings,
providing a principled understanding of enhancing generalization in LLMs.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility statement To ensure the reproducibility of our work, we have implemented several
measures that are detailed throughout the paper and its supplementary materials. We commit to
open-sourcing our code upon publication, which will allow others to replicate our experiments easily.
In the appendix, we provide comprehensive explanations of the theoretical assumptions underpinning
our results, along with complete proofs to substantiate our claims. Additionally, we have included a
thorough description of the datasets used in our experiments, along with the specific data processing
steps undertaken. We believe these resources will facilitate reproducibility and encourage further
exploration of our findings.

REFERENCES

Introducing Qwen-7B: Open foundation and human-aligned models (of the state-of-the-arts). URL
https://github.com/QwenLM/Qwen-7B/blob/main/tech_memo.md.

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman, Shyamal Anadkat, et al. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774, 2023.

Cem Anil, Yuhuai Wu, Anders Andreassen, Aitor Lewkowycz, Vedant Misra, Vinay Ramasesh,
Ambrose Slone, Guy Gur-Ari, Ethan Dyer, and Behnam Neyshabur. Exploring length generalization
in large language models. Advances in Neural Information Processing Systems, 35:38546–38556,
2022.

Zhangir Azerbayev, Edward Ayers, , and Bartosz Piotrowski. Proof-pile, 2022. URL https:
//github.com/zhangir-azerbayev/proof-pile.

Yushi Bai, Xin Lv, Jiajie Zhang, Hongchang Lyu, Jiankai Tang, Zhidian Huang, Zhengxiao Du, Xiao
Liu, Aohan Zeng, Lei Hou, et al. Longbench: A bilingual, multitask benchmark for long context
understanding. arXiv preprint arXiv:2308.14508, 2023.

Yushi Bai, Shangqing Tu, Jiajie Zhang, Hao Peng, Xiaozhi Wang, Xin Lv, Shulin Cao, Jiazheng Xu,
Lei Hou, Yuxiao Dong, Jie Tang, and Juanzi Li. Longbench v2: Towards deeper understanding
and reasoning on realistic long-context multitasks. arXiv preprint arXiv:2412.15204, 2024.

Satwik Bhattamishra, Michael Hahn, Phil Blunsom, and Varun Kanade. Separations in the represen-
tational capabilities of transformers and recurrent architectures, 2024.

Valérie Castin, Pierre Ablin, and Gabriel Peyré. How smooth is attention?, 2023.

Guanzheng Chen, Xin Li, Zaiqiao Meng, Shangsong Liang, and Lidong Bing. Clex: Continuous
length extrapolation for large language models. arXiv preprint arXiv:2310.16450, 2023a.

Shouyuan Chen, Sherman Wong, Liangjian Chen, and Yuandong Tian. Extending context window of
large language models via positional interpolation, 2023b. arXiv: 2306.15595.

Yukang Chen, Shengju Qian, Haotian Tang, Xin Lai, Zhijian Liu, Song Han, and Jiaya Jia. Longlora:
Efficient fine-tuning of long-context large language models. arXiv preprint arXiv:2309.12307,
2023c.

Zhi Chen, Qiguang Chen, Libo Qin, Qipeng Guo, Haijun Lv, Yicheng Zou, Wanxiang Che, Hang
Yan, Kai Chen, and Dahua Lin. What are the essential factors in crafting effective long context
multi-hop instruction datasets? insights and best practices. arXiv preprint arXiv:2409.01893, 2024.

Zihui Cheng, Qiguang Chen, Xiao Xu, Jiaqi Wang, Weiyun Wang, Hao Fei, Yidong Wang, Alex Jin-
peng Wang, Zhi Chen, Wanxiang Che, et al. Visual thoughts: A unified perspective of understanding
multimodal chain-of-thought. arXiv preprint arXiv:2505.15510, 2025.

Ta-Chung Chi, Ting-Han Fan, Peter J Ramadge, and Alexander Rudnicky. Kerple: Kernelized
relative positional embedding for length extrapolation. Advances in Neural Information Processing
Systems, 35:8386–8399, 2022.

10

https://github.com/QwenLM/Qwen-7B/blob/main/tech_memo.md
https://github.com/zhangir-azerbayev/proof-pile
https://github.com/zhangir-azerbayev/proof-pile

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, et al. Palm:
Scaling language modeling with pathways. Journal of Machine Learning Research, 24(240):1–113,
2023.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try ARC, the AI2 Reasoning
Challenge, 2018. arXiv: 1803.05457.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Carbonell, Quoc V Le, and Ruslan Salakhutdinov.
Transformer-xl: Attentive language models beyond a fixed-length context. arxiv 2019. arXiv
preprint arXiv:1901.02860.

Tri Dao. Flashattention-2: Faster attention with better parallelism and work partitioning, 2023. arXiv:
2307.08691.

Grégoire Delétang, Anian Ruoss, Jordi Grau-Moya, Tim Genewein, Li Kevin Wenliang, Elliot Catt,
Chris Cundy, Marcus Hutter, Shane Legg, Joel Veness, et al. Neural networks and the chomsky
hierarchy. arXiv preprint arXiv:2207.02098, 2022.

Lizhe Fang, Yifei Wang, Zhaoyang Liu, Chenheng Zhang, Stefanie Jegelka, Jinyang Gao, Bolin Ding,
and Yisen Wang. What is wrong with perplexity for long-context language modeling?, 2024.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster, Jason Phang,
Horace He, Anish Thite, Noa Nabeshima, Shawn Presser, and Connor Leahy. The Pile: An 800gb
dataset of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Tianyu Gao, Alexander Wettig, Howard Yen, and Danqi Chen. How to train long-context language
models (effectively), 2024.

Alex Graves, Greg Wayne, Malcolm Reynolds, Tim Harley, Ivo Danihelka, Agnieszka Grabska-
Barwińska, Sergio Gómez Colmenarejo, Edward Grefenstette, Tiago Ramalho, John Agapiou, et al.
Hybrid computing using a neural network with dynamic external memory. Nature, 538(7626):
471–476, 2016.

Chi Han, Qifan Wang, Hao Peng, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. Lm-
infinite: Zero-shot extreme length generalization for large language models. arXiv preprint
arXiv:2308.16137, 2023a.

Chi Han, Qifan Wang, Wenhan Xiong, Yu Chen, Heng Ji, and Sinong Wang. LM-Infinite: Simple
on-the-fly length generalization for large language models, 2023b. arXiv: 2308.16137.

Zhiyuan Hu, Yuliang Liu, Jinman Zhao, Suyuchen Wang, Yan Wang, Wei Shen, Qing Gu, Anh Tuan
Luu, See-Kiong Ng, Zhiwei Jiang, and Bryan Hooi. Longrecipe: Recipe for efficient long context
generalization in large language models, 2024.

Luyang Huang, Shuyang Cao, Nikolaus Parulian, Heng Ji, and Lu Wang. Efficient attentions for long
document summarization. arXiv preprint arXiv:2104.02112, 2021.

Xinting Huang, Andy Yang, Satwik Bhattamishra, Yash Sarrof, Andreas Krebs, Hattie Zhou, Preetum
Nakkiran, and Michael Hahn. A formal framework for understanding length generalization in
transformers, 2024.

Dieuwke Hupkes, Verna Dankers, Mathijs Mul, and Elia Bruni. Compositionality decomposed: How
do neural networks generalise? Journal of Artificial Intelligence Research, 67:757–795, 2020.

Amirhossein Kazemnejad, Inkit Padhi, Karthikeyan Natesan Ramamurthy, Payel Das, and Siva
Reddy. The impact of positional encoding on length generalization in transformers, 2023. arXiv:
2305.19466.

Hyunjik Kim, George Papamakarios, and Andriy Mnih. The lipschitz constant of self-attention. In
International Conference on Machine Learning, pp. 5562–5571. PMLR, 2021.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuri Kuratov, Aydar Bulatov, Petr Anokhin, Ivan Rodkin, Dmitry Sorokin, Artyom Sorokin, and
Mikhail Burtsev. Babilong: Testing the limits of llms with long context reasoning-in-a-haystack,
2024.

Shanda Li, Chong You, Guru Guruganesh, Joshua Ainslie, Santiago Ontanon, Manzil Zaheer, Sumit
Sanghai, Yiming Yang, Sanjiv Kumar, and Srinadh Bhojanapalli. Functional interpolation for
relative positions improves long context transformers. arXiv preprint arXiv:2310.04418, 2023.

Bingbin Liu, Jordan T. Ash, Surbhi Goel, Akshay Krishnamurthy, and Cyril Zhang. Transformers
learn shortcuts to automata, 2022.

Xiaoran Liu, Ruixiao Li, Qipeng Guo, Zhigeng Liu, Yuerong Song, Kai Lv, Hang Yan, Linlin Li, Qun
Liu, and Xipeng Qiu. Reattention: Training-free infinite context with finite attention scope, 2024.

Sean McLeish, Arpit Bansal, Alex Stein, Neel Jain, John Kirchenbauer, Brian R. Bartoldson, Bhavya
Kailkhura, Abhinav Bhatele, Jonas Geiping, Avi Schwarzschild, and Tom Goldstein. Transformers
can do arithmetic with the right embeddings, 2024.

AI Meta. Introducing meta llama 3: The most capable openly available llm to date, 2024. URL
https://ai. meta. com/blog/meta-llama-3/. Accessed on April, 26, 2024.

Amirkeivan Mohtashami and Martin Jaggi. Landmark attention: Random-access infinite context
length for transformers, 2023. arXiv: 2305.16300.

Bowen Peng and Jeffrey Quesnelle. Ntk-aware scaled rope allows llama models to have extended
(8k+) context size without any fine-tuning and minimal perplexity degradation, 2023.

Bowen Peng, Jeffrey Quesnelle, Honglu Fan, and Enrico Shippole. Yarn: Efficient context window
extension of large language models. arXiv preprint arXiv:2309.00071, 2023.

Ofir Press, Noah A Smith, and Mike Lewis. Train short, test long: Attention with linear biases
enables input length extrapolation. arXiv preprint arXiv:2108.12409, 2021.

Ofir Press, Noah Smith, and Mike Lewis. Train Short, Test Long: Attention with linear biases enables
input length extrapolation. In International Conference on Learning Representations, 2022.

Libo Qin, Qiguang Chen, Xiachong Feng, Yang Wu, Yongheng Zhang, Yinghui Li, Min Li, Wanxiang
Che, and Philip S Yu. Large language models meet nlp: A survey. arXiv preprint arXiv:2405.12819,
2024.

Jeffrey Quesnelle, Enrico Shippole, and "Kaiokendev". Llongma: Scaling rotary embeddings
through linear positional interpolation. https://huggingface.co/conceptofmind/
LLongMA-2-7b/, 2023.

Samyam Rajbhandari, Jeff Rasley, Olatunji Ruwase, and Yuxiong He. Zero: Memory optimizations
toward training trillion parameter models. In SC20: International Conference for High Performance
Computing, Networking, Storage and Analysis, pp. 1–16. IEEE, 2020.

Anian Ruoss, Grégoire Delétang, Tim Genewein, Jordi Grau-Moya, Róbert Csordás, Mehdi Bennani,
Shane Legg, and Joel Veness. Randomized positional encodings boost length generalization of
transformers. arXiv preprint arXiv:2305.16843, 2023.

F. Santambrogio. Optimal Transport for Applied Mathematicians: Calculus of Variations, PDEs,
and Modeling. Progress in Nonlinear Differential Equations and Their Applications. Springer
International Publishing, 2015. ISBN 9783319208282. URL https://books.google.ca/
books?id=UOHHCgAAQBAJ.

Rituraj Singh, Rahul Kumar, and Vivek Sridhar. NLMs: Augmenting negation in language models.
In Findings of the Association for Computational Linguistics: EMNLP 2023, 2023.

Jianlin Su, Yu Lu, Shengfeng Pan, Ahmed Murtadha, Bo Wen, and Yunfeng Liu. RoFormer: Enhanced
transformer with rotary position embedding, 2022. arXiv: 2104.09864.

Kimi Team. Kimi k1.5: Scaling reinforcement learning with llms. 2025.

12

https://huggingface.co/conceptofmind/LLongMA-2-7b/
https://huggingface.co/conceptofmind/LLongMA-2-7b/
https://books.google.ca/books?id=UOHHCgAAQBAJ
https://books.google.ca/books?id=UOHHCgAAQBAJ

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timothée
Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, Aurelien Rodriguez, Armand
Joulin, Edouard Grave, and Guillaume Lample. LLaMA: Open and efficient foundation language
models, 2023a. arXiv: 2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cris-
tian Canton Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu,
Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee,
Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra,
Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi,
Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh
Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen
Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurelien Rodriguez, Robert Stojnic,
Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models,
2023b.

James Vuckovic, Aristide Baratin, and Remi Tachet des Combes. A mathematical theory of attention,
2020.

Xinyi Wu, Amir Ajorlou, Yifei Wang, Stefanie Jegelka, and Ali Jadbabaie. On the role of attention
masks and layernorm in transformers, 2024.

Guangxuan Xiao, Yuandong Tian, Beidi Chen, Song Han, and Mike Lewis. Efficient streaming
language models with attention sinks, 2023.

Xi Ye, Fangcong Yin, Yinghui He, Joie Zhang, Howard Yen, Tianyu Gao, Greg Durrett, and Danqi
Chen. Longproc: Benchmarking long-context language models on long procedural generation,
2025.

Xinrong Zhang, Yingfa Chen, Shengding Hu, Zihang Xu, Junhao Chen, Moo Hao, Xu Han, Zhen Thai,
Shuo Wang, Zhiyuan Liu, et al. bench: Extending long context evaluation beyond 100k tokens. In
Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics (Volume
1: Long Papers), pp. 15262–15277, 2024.

Yi Zhang, Arturs Backurs, Sébastien Bubeck, Ronen Eldan, Suriya Gunasekar, and Tal Wagner.
Unveiling transformers with lego: a synthetic reasoning task. arXiv preprint arXiv:2206.04301,
2022.

Yuhui Zhang, Michihiro Yasunaga, Zhengping Zhou, Jeff Z. HaoChen, James Y. Zou, Percy Liang,
and Serena Yeung. Beyond positive scaling: How negation impacts scaling trends of language
models. ArXiv, 2023.

Meizhi Zhong, Chen Zhang, Yikun Lei, Xikai Liu, Yan Gao, Yao Hu, Kehai Chen, and Min Zhang.
Understanding the rope extensions of long-context llms: An attention perspective. arXiv preprint
arXiv:2406.13282, 2024.

Hattie Zhou, Arwen Bradley, Etai Littwin, Noam Razin, Omid Saremi, Josh Susskind, Samy Bengio,
and Preetum Nakkiran. What algorithms can transformers learn? a study in length generalization,
2023.

Yongchao Zhou, Uri Alon, Xinyun Chen, Xuezhi Wang, Rishabh Agarwal, and Denny Zhou. Trans-
formers can achieve length generalization but not robustly, 2024.

Dawei Zhu, Nan Yang, Liang Wang, Yifan Song, Wenhao Wu, Furu Wei, and Sujian Li. Pose:
Efficient context window extension of llms via positional skip-wise training. arXiv preprint
arXiv:2309.10400, 2023.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Appendix

CONTENTS

A LLM Usage Statement 15

B Limitations and Broader Impacts 15

C Wasserstein distance and Other methods 15

D More Related works 16

E Measure Theory Notations 16

F Proof 17

F.1 Proof of Proposition 4.1 . 17

F.2 Proof of Proposition 4.2 . 18

F.3 Proof of Proposition F.1 . 18

F.4 Proof of Theorem 4.6 . 19

G Useful and Failure cases of Theorem 4.6 24

H Experiments 24

H.1 Pre-training Experiments . 24

H.2 More LLMs experiments . 26

H.3 Metrics on CodeLLM-1b . 26

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

W distancePPL JS. distance

0

0.02

0.04

0.06

0.08

0.1

0

100

200

300

PP
L

512 1k 2k 4k

KL divergence

D
is
tr
ib
ut
io
n

The evaluation length

Figure 6: Comparasion of Wasserstein distance and other metrics for length generalization. They
have the similiar test behaviors on evaluation length.

A LLM USAGE STATEMENT

LLM Usage Statement We employed a large language model (LLM) as a supportive tool during
the preparation of this manuscript. The LLM’s involvement was strictly limited to enhancing the
clarity and readability of the text, which included tasks such as grammar correction, spelling checks,
rephrasing for conciseness, and refining sentence structure. The LLM did not contribute to any core
research elements, including method ideation, theoretical derivation, experimental design, or result
analysis. The authors have carefully reviewed all suggested edits and assume full responsibility for
the content presented in this paper.

B LIMITATIONS AND BROADER IMPACTS

Limitations. Due to limited computational resources and time, the proposed method has not been
evaluated on texts with even larger lengths, such as ranging from 100k 1M. VCL is designed for
fine-tuning, it can be adapted to pre-training, where it may offer greater effectiveness. Preliminary
experiments on NanoGPT in Appendix H.1 suggest its potential, but due to resource limitations, we
do not provide results on larger-scale LLMs, leaving this for future work.

Broader Impacts. In this paper, we first propose a measure theory to quantify the length gener-
alization bound of LLMs. This enables a deep understanding of the length generalization failure
and thus points out the shortcomings of a wide range of length generalization methods. Based on
our in-depth theoretical analysis, we reveal the mechanisms of empirical findings and propose a
plug-and-play method Virtual-context Learning. We hope that our work can provide new insights
and the underlying mechanisms of length generalization. For social impact, this work has a certain
impact on the controllable and explainable AGI.

C WASSERSTEIN DISTANCE AND OTHER METHODS

A common approach to analyze length generalization in LLMs is to visualize attention or output
distributions and quantify their shift using metrics such as Jensen–Shannon (JS) distance or KL
divergence (Zhong et al., 2024; Cheng et al., 2025). We adopt the Wasserstein distance W(µ, ν) as
our primary measure, which is consistent with these metrics and closely linked to the widely used
perplexity (PPL) (Quesnelle et al., 2023; Ye et al., 2025; Bai et al., 2024), defined as the inverse
geometric mean of token probabilities. We empirically support this by plotting JS distance, KL
divergence, PPL, and Wasserstein distance against context length on CodeLlama (Figure 6), all
showing similar upward trends: for unseen long contexts, the distances grow with length. Results
under different metrics and PEs are provided in Appendix H.3, confirming that our measurement-
based approach and theoretical framework generalize across settings.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

D MORE RELATED WORKS

Position Interpolation methods While existing PI techniques can reduce the PE shift and thus
alleviate the second challenge, fine-tuning on longer sequences is not necessary, as it theoretically
extends the training length term of the upper bound. Extensive efforts have been devoted to addressing
this length generalization challenge. Position Interpolation (PI) series methods such as Yarn (Peng
et al., 2023) and CLEX (Chen et al., 2023a) have been proposed to extend the pretrain context
windows, which fine-tune on the target length by position indices scaling and frequency basis
scaling, hoping to avoid model failures due to unseen position embeddings (PEs). Meanwhile,
position-augmented fine-tuning methods such as RandPE (Ruoss et al., 2023) and PoSE (Zhu et al.,
2023) simulating longer inputs within a fixed window by adjusting position indices. Although
position-augmented methods can reduce the memory overhead compared to PI methods, they disrupt
local sentence structures and leave a significant gap in understanding token relationships across the
sequence.

Fine-tuning LLMs for longer context. Recently, a variety of length generalization methods have
been developed to extend the context window of pre-trained LLMs (Fang et al., 2024; Chen et al.,
2023a; Peng et al., 2023; Chen et al., 2023b). A straightforward approach is to fine-tune these
models on target extensive texts. To mitigate the distribution shift of LLMs, Chen et al. (2023b) first
down-scaled position indices to match original context size through Linear Position Interpolation.
Subsequently, various Positional Interpolation (PI) strategies have been introduced, including NTK-
aware (Peng & Quesnelle, 2023), Yarn (Peng et al., 2023), and CLEX (Chen et al., 2023a). Meanwhile,
position-augmented fine-tuning methods such as RandomPE (Ruoss et al., 2023), FIRE (McLeish
et al., 2024), and POSE (Zhu et al., 2023) simulate longer inputs within a fixed window by adjusting
position indices. Although position-augmented methods can reduce the memory overhead compared
to PI methods, they disrupt local sentence structures and leave a significant generalization gap in
understanding token relationships across the sequence. Besides, LongLora (Chen et al., 2023c)
proposes to shift short attention to approximate full attention. All of these methods seek to extend the
context window length in more efficient fine-tuning ways.

Self-attention. Formally, self-attention is defined as follows: WQ,WK ,WV ∈ Rd×d′
are the query,

key, and value matrices respectively, and τ be the temperature, self-attention is:

SA(XiWQ, XWK , XWV) :=

N∑
j=1

softmax(XiWQ, XjWK)XjWV , (9)

where softmax(XiWQ, XjWK) is defined as

softmax(XiWQ, XjWK) :=
exp(XiWQ(XjWK)T /τ

√
d)∑N

s=1 exp(XiWQ(XsWK)T /τ
√
d)

. (10)

For simplicity, throughout the paper, we assume that d = d′, Q = XWQ, K = XWK , and
V = XWV , thus SA(XiWQ, XWK , XWV) can be expressed as SA(Qi,K, V). Moreover, while
SA(Qi,K, V) is defined point-wise for a given token Xi, it is almost always used to process a
set of tokens X = {X1, . . . , XN} in parallel. Thus, we write the sequence-wise self-attention
SA(Q,K, V) := {SA(Qi,K, V))}Ni=1.

E MEASURE THEORY NOTATIONS

We will use the following constructions from measure theory: Let (E, E) denote a subset of Rd

endowed with its Borel σ-algebra, and P(E) be the space of all probability measures on E.

Definition E.1 (Dirac Measure) Denote Pδ(E) := {δx | x ∈ E} be the subset of Dirac measures
in P(E), where the Dirac measure δx is a measure defined by:

δx(E) =

{
1, if x ∈ E,

0, if x /∈ E.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Definition E.2 (Empirical Measure Mapping) For X = {x1, . . . , xN} ⊂ E, the empirical mea-
sure associated with X is the probability measure m(X) defined by:

X 7→ m(X) :=
1

|N |

N∑
t=1

δxt . (11)

Definition E.3 (Markov Kernel) A Markov kernel is an E-indexed family of probability measures
M(x,dy) ∈ P(E) such that ∀A ∈ E , x 7→ M(x,A) is measurable.

Definition E.4 (Lookup Kernel) Let the key space (K,K) and value space (V,V) be measurable,
lookup kernel is a Markov kernel, L : K × V → [0, 1], also denoted L(k,dv), that maps keys to
distributions on values. When the mapping is a deterministic lookup table, we have L(k, dv) =∑N

i=1 1k=kiδvi(dv).

Definition E.5 (Moment Encoding and Subspace) Let F : E → E′ ⊂ Rl be a measurable map
representing an l-dimensional feature map. (1) We say that a measure µ ∈ P(E) encodes a moment
vector f ∈ E′ with respect to function F if µ(F) = f . (2) Suppose we have identified an injective
mapping f 7→ νf ∈ P(E) such that νf encodes the moment vector f w.r.t. F . Then we denote by
FF = {νf | f ∈ E′} the moment subspace of all such distributions.

Definition E.6 (Moment Projection) For simplify, we omit the subscript F in FF . Let the moment
projection ΠF : P(E) → F be ΠF (µ) = νµ(F) where ΠF (µ) is the unique measure in F that
encodes the moments f := µ(F)

Definition E.7 (Finite First Moment) We say that a measure P(E) has a finite first moment if∫
E
∥x∥1dP(x) < ∞ .

Initially, the input matrices Q,K, V are mapped to the measurable probability space Pδ(•) via
empirical measure mapping. Through the softmax kernel, Pδ(•), a finite-dimensional feature space,
is transformed into the infinite-dimensional probability space P(•). To recover the matrix-level
self-attention outputs, P(•) must be projected back onto the finite-dimensional feature space Pδ(•),
which is achieved using the moment projection. We claim that the averaging to input values is
accomplished by the moment projection Π := ΠF described in Definition E.6, with F = Pδ(Q) and
F (x) = x.

F PROOF

F.1 PROOF OF PROPOSITION 4.1

Consider a “query” representation δq and “key” representations K = {δk1
, . . . , δkN

} and the empiri-
cal measure m(K). The softmax kernel models the interaction between q and K using the left-action
of the Markov kernels ΨG(m(K)) on the Dirac measure δq induced by integration:

δqΨG(m(K)) =

∫
δq(dq

′)ΨG(q′,•)(m(K)) = ΨG(q,•)(m(K)) =

N∑
s=1

G(q, ks)∑N
r=1 G(q, kr)

δks
.

Furthermore, given set of queries Q = {δq1 , . . . , δqM }, we can leverage the linearity of integration to
model the interaction between the two sets of representations Q and K using the same principle:

m(Q)ΨG(m(K)) =
1

M

M∑
t=1

∫
δqt(dq)ΨG(q,•)(m(K))

=
1

M

M∑
t=1

ΨG(qt,•)(m(K)) =
1

M

M∑
t=1

N∑
s=1

G(qt, ks)∑N
r=1 G(qt, kr)

δks .

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

F.2 PROOF OF PROPOSITION 4.2

Using the proposition 4.1, for q ∈ Q, we have:

[ΨG(q,•)(m(K))L](dv) =

N∑
j=1

∫
G(q, kj)∑N
p=1 G(q, kp)

δkj
(dk)L(k, dv) =

N∑
j=1

G(q, kj)∑N
p=1 G(q, kp)

δvj (dv).

Applying Π thus yields: Am(K)(q,dv) = δ∑N
j=1

G(q,kj)∑N
p=1 G(q,kp)

vj
(dv). Using the (linear) left-action of

this kernel on δqt , we then obtain:

δqtAm(K)(dv) =

∫
δqt(dq)Am(K)(q,dv) = δ∑N

j=1

G(qt,kj)∑N
p=1 G(qt,kp)

vj
(dv).

Plugging in the definition of G and using the usual bijection δx ↔ x concludes the proof.

F.3 PROOF OF PROPOSITION F.1

Proposition F.1 Let G(q, k) = exp(q⊤k/τ), then we have

∥G∥Lip =
1

τ
sup
q,k

∥q∥∥k∥ exp
(
∥q⊤k∥

τ

)
, (12)

∥G∥∞ = sup
q,k

exp

(
∥q∥∥k∥

τ

)
. (13)

To analyze the Lipschitz norm and supremum norm of the function G(q, k) = exp(q⊤k/τ), we
proceed as follows.

Step 1: Compute the Lipschitz norm ∥G∥Lip

By definition, the Lipschitz norm of G is given by

∥G∥Lip = sup
q,k ̸=q′,k′

|G(q, k)−G(q′, k′)|
∥(q, k)− (q′, k′)∥

. (14)

We first compute the gradient of G(q, k):

∇G(q, k) =
1

τ
G(q, k)(k, q). (15)

Thus, the operator norm (i.e., the Lipschitz constant) is given by

∥∇G(q, k)∥ = sup
q,k

1

τ
∥G(q, k)(k, q)∥. (16)

Since G(q, k) = exp(q⊤k/τ), we obtain

∥G∥Lip =
1

τ
sup
q,k

∥q∥∥k∥ exp
(
∥q⊤k∥

τ

)
. (17)

Step 2: Compute the supremum norm ∥G∥∞
By definition, the supremum norm is given by

∥G∥∞ = sup
q,k

|G(q, k)|. (18)

Since G(q, k) = exp(q⊤k/τ), we take the supremum over all possible values of q⊤k, leading to

∥G∥∞ = sup
q,k

exp

(
∥q∥∥k∥

τ

)
. (19)

This completes the proof.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

F.4 PROOF OF THEOREM 4.6

To prove the theorem, we need the following lemma.

Lemma F.2 1. Suppose that Φ,Γ : P(E) → P(E) are (possibly nonlinear) mappings. Then

τ(Φ ◦ Γ) ≤ τ(Φ)τ(Γ).

2. Suppose K : E × E → [0, 1] is an integral kernel. Then

τ(K) = sup
x̸=y

W1(K(x, •),K(y, •))
d(x, y)

.

3. Suppose K1,K2 : E × E → [0, 1] are two integral kernels and ν ∈ P(E). Then:

W1(νK1, νK2) ≤
∫

ν(dx)W1(K1(x, •),K2(x, •)).

Proof.

1. This is a standard result on Lipschitz constants. We include it for completeness:

τ(Φ ◦ Γ) = sup
µ̸=ν

W1(Φ ◦ Γ(µ),Φ ◦ Γ(ν))
W1(µ, ν)

= sup
µ̸=ν

W1(Φ ◦ Γ(µ),Φ ◦ Γ(ν))
W1(Γ(µ),Γ(ν))

W1(Γ(µ),Γ(ν))

W1(µ, ν)

≤ sup
η ̸=γ

W1(Φ(η),Φ(γ))

W1(η, γ)
· sup
µ̸=ν

W1(Γ(µ),Γ(ν))

W1(µ, ν)

= τ(Φ)τ(Γ).

2. Since W1(δx, δy) = d(x, y) and δxK = K(x, •) we have:

sup
x ̸=y

W1(K(x, •),K(y, •))
d(x, y)

= sup
δx ̸=δy

W1(δxK, δyK)

W1(δx, δy)
≤ sup

µ̸=ν

W1(µK, νK)

W1(µ, ν)
.

For the reverse inequality,

W1(µK, νK) = sup
f∈Lip(1)

|µK(f)− νK(f)|

= sup
f∈Lip(1)

|µ(Kf)− ν(Kf)|

≤ sup
f∈Lip(1)

∥Kf∥Lip(1) · sup
g∈Lip(1)

|µ(g)− ν(g)|

≤ sup
f∈Lip(1)

∥Kf∥Lip(1) ·W1(µ, ν)

and

sup
f∈Lip(1)

∥Kf∥Lip(1) = sup
f∈Lip(1)

sup
x ̸=y

∫
K(x,dz)f(z)−

∫
K(y,dz)f(z)

d(x, y)

= sup
f∈Lip(1)

sup
x̸=y

∫
[K(x,dz)−K(y,dz)]f(z)

d(x, y)

= sup
x̸=y

W1(K(x, •),K(y, •))
d(x, y)

.

Dividing by W1(µ, ν) gives us the reverse inequality and concludes the proof.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

3. By definition, we have:

W1(νK1, νK2) = sup
f∈Lip(1)

|νK1(f)− νK1(f)|

= sup
f∈Lip(1)

∣∣∣∣∫∫ ν(dx)K1(x, dy)f(y)−
∫∫

ν(dx)K2(x, dy)f(y)

∣∣∣∣
≤ sup

f∈Lip(1)

∫
ν(dx)

∣∣∣∣∫ K1(x, dy)f(y)−K2(x, dy)f(y)

∣∣∣∣
≤

∫
ν(dx)W1(K1(x, •),K2(x, •)).

Lemma F.3 For any f : Rd → R, we have

∥f∥Lip = sup
x ̸=y,∥x−y∥≤1

|f(x)− f(y)|
∥x− y∥

. (20)

proof Let x ̸= y and L := supx̸=y,∥x−y∥≤1
|f(x)−f(y)|

∥x−y∥ ≤ ∞. First, assume ∥f∥Lip, L < ∞. It is
clear that L ≤ ∥f∥Lip since {x ̸= y, ∥x− y∥ ≤ 1} ⊂ {x ̸= y}. For the reverse inequality, we split
the segment [x, y] into the minimum number of chunks of lengths smaller than 1: x = z1 → z2 →
· · · → zk = y (in particular, if ∥x− y∥ ≤ 1 then z2 = y). Then

|f(x)− f(y)| ≤
∑

1≤i≤k−1

|f(zi)− f(zi+1)|

≤ L
∑

1≤i≤k−1

∥zi − zi+1∥ = L∥x− y∥.

which gives ∥f∥Lip ≤ L so L = ∥f∥Lip. Now if ∥f∥Lip = ∞ but L < ∞, by applying the above
argument we can obtain a contradiction. Finally, it suffices to note that the case where ∥f∥Lip < ∞
but L = ∞ is impossible since ∥f∥Lip ≥ L.

Lemma F.4 For any n and (z1, · · · , zn) ∈ Rn
+:

f(z1, · · · , zn) :=
∑n

i=1 zie
−z2

i

1 +
∑n

i=1 e
−z2

i

≤
√

lnn+
1

2e
. (21)

proof f is clearly bounded on Rn
+ (zie−z2

i → 0 when zi → ∞). Let us now compute the partial
derivatives of f . For a given zi:

∂f

∂zi
=

e−z2
i

1 +
∑n

k=1 e
−z2

k

[1− 2z2i + 2zif(z1, · · · , zn)].

There is only one positive solution of 1− 2z2i + 2zif
∗ = 0, meaning that f reaches its maximum

when all its coordinates are equal. We thus only need to study:

g(x) :=
nxe−x2

1 + ne−x2 =
xelnn−x2

1 + elnn−x2 . (22)

The change of variable y = lnn− x2 gives g(y) =
√
lnn−yey

1+ey ≤
√
lnn−y
1+e−y with y ∈]−∞, lnn].

On [0, lnn], we clearly have g(y) ≤
√
lnn. Let us consider y ∈] − ∞, 0]. We get g2(y) =

lnn−y

(1+e−y)2
≤ lnn−y

e−2y ≤ lnn + 1
2e with since (2e)−1 is the maximum of of ze−2z on R+. This

concludes the proof.

Lemma F.5 Let µ1, µ2, ν1, ν2 ∈1 (Rd). Then

W1(µ1 ⊗ µ2, ν1 ⊗ ν2) ≤ W1(µ1, ν1) +W1(µ2, ν2)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

proof Let γ1 ∈ (µ1, ν1), γ2 ∈ (µ2, ν2) be optimal for c(x, y) = ∥x − y∥1. Note that γ1 ⊗ γ2 ∈
(µ1 ⊗ µ2, ν1 ⊗ ν2), i.e. γ1 ⊗ γ2 is a transfer plan with the correct marginals, by considering∫

X×X

dγ1 ⊗ γ2(x1, x2, y1, yy) =

∫
X×X

dγ1(x1, y1)dγ(x2, y2)

=

∫
X

dγ1(x1, y1)

∫
X

dγ2(x2, y2)

= ν1(dy1)ν2(dy2) = dν1 ⊗ ν2(y1, y2)

and same for the other marginals.

Thus we have

W1(µ1 ⊗ µ2, ν1 ⊗ ν2) = inf
γ∈(µ1⊗µ2,ν1⊗ν2)

∫
∥(x1, x2)− (y1, y2)∥dγ(x1, x2, y1, y2)

= inf
γ∈(µ1⊗µ2,ν1⊗ν2)

∫
(∥x1 − y1∥+ ∥y1, y2∥)dγ(x1, x2, y1, y2)

= inf
γ∈(µ1⊗µ2,ν1⊗ν2)

∫
∥x1 − y1∥dγ(x1, x2, y1, y2) + · · ·

· · ·+ inf
γ∈(µ1⊗µ2,ν1⊗ν2)

∫
∥x2 − y2∥dγ(x1, x2, y1, y2)

≤
∫

∥x1 − y1∥dγ1 ⊗ γ2(x1, x2, y1, y2) +

∫
∥x2 − y2∥dγ1 ⊗ γ2(x1, x2, y1, y2)

=

∫
∥x1 − y1∥dγ1(x1, y1) +

∫
∥x2 − y2∥dγ2(x2, y2)

= W1(µ1, ν1) +W1(µ2, ν2)

Then using the previous lemma, we prove the following proposition at first.

Proposition F.6 Let E=Rd and suppose X = {X1, . . . , XN} and Y = {Y1, . . . , YM}. Let
G(x, y) = exp(−∥x − y∥22), L(x, dy) = δl(x)(dy), and Π be the usual projection onto Fδ. Then
for µ = m(X) and ν = m(Y),

W1(µAµ, νAν) ≤ 2τ(Π)τ(L)

[
√
d

√
ln(min(N,M)) +

1

2e
∥G∥Lip + ∥G∥∞ +

√
d+ 2

]
W1(µ, ν).

proof We use the Kantorovich formulation of W1. Let f be a function with ∥f∥Lip ≤ 1. We can
assume without loss of generality that f(y) = 0. For simplicity, we write G(x, •) = Gx. We wish to
upper-bound the quantity |ΨGx

(µ)(f)−ΨGy
(ν)(f)|.

Because ΨGx and ΨGy are homonegeous in their measure argument, and for the sake of simplicity,
we write µ =

∑
i δxi

ν =
∑

i δyi
(which is equivalent to simplifying by 1/N in e.g. the numerator

and denominator of ΨGx
). This guarantees in particular that µ(Gx) ≥ 1 and ν(Gy) ≥ 1 (x and y are

in µ and ν resp.) and equivalently that 1/µ(Gx) ≤ 1 and 1/ν(Gy) ≤ 1.

Then:

|ΨGx
(µ)(f)−ΨGy

(ν)(f)| = 1

µ(Gx)ν(Gy)
|ν(Gy)µ(Gxf)− µ(Gx)ν(Gyf)|

=
1

µ(Gx)ν(Gy)
|ν(Gy)µ(Gxf)− ν(Gy)ν(Gyf) + ν(Gy)ν(Gyf)− µ(Gx)ν(Gyf)|

≤ ν(Gy)

µ(Gx)ν(Gy)
|µ(Gxf)− ν(Gyf)|+

ν(Gyf)

µ(Gx)ν(Gy)
|ν(Gy)− µ(Gx)|.

(23)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

We start by bounding the second term of equation 23. We have:
ν(Gyf)

µ(Gx)ν(Gy)
|ν(Gy)− µ(Gx)| =

ν(Gyf)

µ(Gx)ν(Gy)
|(δx ⊗ µ)(G)− (δy ⊗ ν)(G)|

≤ ν(Gyf)

µ(Gx)ν(Gy)
∥G∥LipW1(δx ⊗ µ, δy ⊗ ν).

Here, δx ⊗ µ denotes the product of the two measures on E × E. Since f(y) = 0, we see that
f(z) ≤ f(y) + ∥f∥Lip∥y − z∥1 ≤ ∥y − z∥1. This gives:

ν(Gyf)

ν(Gy)
=

∫
Gy(z)f(z)ν(dz)∫
Gy(z)ν(dz)

≤
∫
Gy(z)∥y − z∥1ν(dz)∫

Gy(z)ν(dz)

≤
∑N

i=1 G(y, yi)∥y − yi∥1∑N
i=1 G(y, yi)

≤
√
d

∑N
i=1 e

−∥y−yi∥2
2∥y − yi∥2∑N

i=1 e
−∥y−yi∥2

2

,

where we applied Cauchy-Schwartz for the last inequality. Since y = yi for a given i, we are

interested in the quantity
∑N−1

i=1 zie
−z2i

1+
∑N−1

i=1 e−z2
i

for arbitrary zi ≥ 0. Applying Lemma F.4 with n = N − 1

gives an upper-bound of
√
lnN + 1

2e .

Let us now consider the first term of equation 23:
ν(Gy)

µ(Gx)ν(Gy)
|µ(Gxf)− ν(Gyf)| =

1

µ(Gx)
|µ(Gxf)− ν(Gyf)|

≤ 1

µ(Gx)
∥Gf∥LipW1(δx ⊗ µ, δy ⊗ ν).

To estimate ∥Gf∥Lip we have

∥Gf∥Lip = sup
(x,w)̸=(y,z)

|G(x,w)f(w)−G(y, z)f(z)|
∥(x,w)− (y, z)∥1

where additionally, we can assume that ∥(x,w)− (y, z)∥ ≤ 1 (see Lemma F.3). We have:
|G(x,w)f(w)−G(y, z)f(z)| = |G(x,w)f(w)−G(x,w)f(z) +G(x,w)f(z)−G(y, z)f(z)|

≤ |G(x,w)||f(w)− f(z)|+ |f(z)||G(x,w)−G(y, z)|.
For the first term, we see that

|G(x,w)||f(w)− f(z)| ≤ ∥G∥∞,∞∥f∥Lipd(w, z)

≤ ∥G∥∞,∞∥f∥Lip(d(w, z) + d(x, y)).

For the second term, we have

|f(z)||G(x,w)−G(y, z)| ≤ ∥y − z∥1|G(x,w)−G(y, z)|
≤ ∥y − z∥1∥∇G(t1, t2))∥∞∥(x,w)− (y, z)∥1,

for t1 in the segment [x, y] and t2 in the segment [w, z] (this follows directly from the mean value
theorem, note that the gradient is taken with respect to both variables). We used f(y) = 0 and
f(z) ≤ f(y) + ∥f∥Lip∥y − z∥1 = ∥y − z∥1 in the first line.

In the Gaussian case:
∥y − z∥1∥∇G(t1, t2))∥∞ ≤ (∥y − t1∥1 + ∥t1 − t2∥1 + ∥t2 − z∥1)2∥t1 − t2∥∞e−∥t1−t2∥2

2

≤ 2(2 + ∥t1 − t2∥1)∥t1 − t2∥∞e−∥t1−t2∥2
2 ,

where we used the fact that ∥y − t1∥1 ≤ 1 and ∥t2 − z∥1 ≤ 1 (t1 is in the [x, y] segment and
∥x− y∥1 ≤ 1 by assumption). That upper bound is uniformly bounded with respect to t1 and t2, we
let C denote that constant. A loose upper-bound on C is

√
d+ 2 (which we use in the statement of

the proposition).

To conclude, it suffices to note that by Lemma F.5 we have
W1(δx ⊗ µ, δy ⊗ ν) ≤ W1(δx, δy) +W1(µ, ν).

Finally, we can prove the theorem based on the previous lemma and proposition.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Proof. Firstly, using Proposition 4.2, we know that µAµ is another empirical measure concentrated
on {Attention(xi, X,X)}, similarly, νAν is concentrated on {Attention(yi, Y, Y)}. This fact
allows us to use the following result from Santambrogio (2015) Equation 6.2

W1(µ, ν) = min

∑
i,j

γijd(xi, yj)γi,j ≥ 0,
∑
i

γij =
1

M
,
∑
j

γij =
1

N

 ,

Applied to W1(µAµ, νAν), it gives

W1(µAµ, νAν) = min
{∑

i,j

γijd(Attention(xi, X,X),Attention(yj , Y, Y))

γi,j ≥ 0,
∑
i

γij =
1

M
,
∑
j

γij =
1

N

}
= min

{∑
i,j

γijW1(Aµ(xi, •), Aν(yi, •))

γi,j ≥ 0,
∑
i

γij =
1

M
,
∑
j

γij =
1

N

}
.

Using Lemma F.2 for each term, we have

W1(Aµ(xi, •), Aν(yj , •)) ≤ τ(Π)τ(L)W1(ΨG(xi,•)(µ),ΨG(yj ,•)(ν)).

Now, from Proposition F.6 (xi belongs to µ and yj to ν), we get

W1(ΨG(xi,•)(µ),ΨG(yj ,•)(ν))

≤

[
√
d

√
lnN +

1

2e
∥G∥Lip + ∥G∥∞ +

√
d+ 2

]
(d(xi, yj) +W1(µ, ν)).

Substituting this back into the above formula, we obtain

W1(µAµ, νAν)

≤ min
{∑

i,j

γijW1(Aµ(xi, •), Aν(yi, •))γi,j ≥ 0,
∑
i

γij =
1

M
,
∑
j

γij =
1

N

}

≤ τ(Π)τ(L)min
{∑

i,j

γij

[
√
d

√
lnN +

1

2e
∥G∥Lip + ∥G∥∞ +

√
d+ 2

]
(d(xi, yj) +W1(µ, ν))

γi,j ≥ 0,
∑
i

γij =
1

M
,
∑
j

γij =
1

N

}

= τ(Π)τ(L)

[
√
d

√
lnN +

1

2e
∥G∥Lip + ∥G∥∞ +

√
d+ 2

](
W1(µ, ν)+

min
{∑

i,j

γijd(xi, yj)γi,j ≥ 0,
∑
i

γij =
1

M
,
∑
j

γij =
1

N

})
= τ(Π)τ(L)

[√
d

√
lnN +

1

2e
∥G∥Lip + ∥G∥∞ +

√
d+ 2

]
(W1(µ, ν) +W1(µ, ν))

= 2τ(Π)τ(L)
[√

d

√
lnN +

1

2e
∥G∥Lip + ∥G∥∞ +

√
d+ 2

]
W1(µ, ν),

where we used in particular
∑

i,j γij = 1. The inequality being valid for both M and N , taking the

min gives the result. Let m(X
(t+1)
M) = µAµ and m(X

(t+1)
N) = νAν , then the Theorem 4.6 proof is

finished.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 3: Perplexity (PPL) and Accuracy (ACC) on language modeling with evaluation lengths from
IID (256) to OOD (4k). We train the NanoGPT-124M on the OpenWebText2 from scratch.

Methods Train Evaluate Length
Length 256 512 1024 2048 4096

PPL↓ ACC↑ PPL↓ ACC↑ PPL↓ ACC↑ PPL↓ ACC↑ PPL↓ ACC↑
NoPE

NanoGPT 256 30.15 38.33 44.10 34.45 369.15 20.47 >1000 10.43 >1000 5.30
NanoGPT 512 28.42 38.33 27.15 39.04 51.12 33.14 531.02 17.62 >1000 9.51
detach 256+256 29.83 38.44 29.24 38.26 60.09 31.77 832.53 16.62 >1000 8.60
random 256+256 30.58 38.14 33.11 36.93 72.92 29.02 148.33 22.51 240.41 19.54

RoPE
NanoGPT 256 28.87 38.81 44.22 34.09 118.31 24.60 272.91 17.95 534.82 14.18
NanoGPT 512 26.90 39.59 25.66 39.81 52.61 32.69 172.67 22.80 425.46 17.39
detach 256+256 42.03 35.25 39.73 35.73 49.49 33.27 101.26 25.37 172.44 20.62
random 256+256 42.89 35.44 41.61 35.48 63.62 30.92 131.61 23.46 213.40 19.48

G USEFUL AND FAILURE CASES OF THEOREM 4.6

Successful case: similiar semantic meanings. When µ and ν are sampled from the same un-
derlying distribution P ′, that is to say: limN→∞m(X) = limM→∞m(Y). In this case, W1(µ, ν)
can be bounded to the constant C(P ′) even as the test length M increases and thus the distance
W1

(
µÂN

µ , νÂN
ν

)
is fixed with the length term

√
lnN , resulting that the pure self-attention can

generalize to out-of-distribution length sentences. This observation is consistent with the findings
in Bhattamishra et al. (2024) suggesting that transformer decoders can easily copy long strings
and Liu et al. (2022) showing that transformers can in theory simulate many finite-state automata in
principle. The consistency in these behaviors arises because both long and short sequences follow
identical underlying rules for such tasks, allowing sequences of varying lengths to be modeled within
the same distributional framework.

Failure case: diverge semantic meanings and minor permutation. Our theoretical analysis
of length generalization is fundamentally driven by the relationship between word embeddings
and sentence-level semantic meanings. We identify two critical scenarios where self-attention
mechanisms may fail to generalize effectively: (1) If W1(µ, ν) diverges, the upper bound established
in Theorem 4.6 grows significantly, making our theoretical bound uninformative. This weakens the
constraint and ultimately reduces the length generalization capability. (2) When the geometry of
the embeddings aligns closely while the semantic meanings of the two sentences differ significantly,
it demonstrates a capacity for ineffective generalization. For example, the transformers may fail
to distinguish the pair of negated sentences (Singh et al., 2023; Zhang et al., 2023) because word
embeddings are similar while the semantic meaning of the whole sentence is quite different. This
observation aligns with findings in Zhou et al. (2024); Huang et al. (2024).

H EXPERIMENTS

H.1 PRE-TRAINING EXPERIMENTS

Given a token matrix X , a language model θ is trained to maximize the conditional likelihood
Pθ(Xi | X<i), i ∈ [N]. Standard fine-tuning minimizes the loss over all tokens:

L = − 1

M

M∑
i=1

logPθ(Xi | X<i), (24)

which adapts the model to the entire long sequence.

To show that VCL is effective in the pre-training phase, we train NanoGPT-124M from scratch using
our methods. The training process comprises 6000 steps, employing a global batch size of 24 and
gradient accumulation steps of 5 × 8 on 8 A100 GPUs. We use a learning rate 6e− 4 and a weight
decay 1e− 1, with 2000 warm-up steps. We use AdamW optimizer with its default hyperparameters
setup. Since the default positional encoding from NanoGPT is the absolute PE with no extrapolation

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0

0.2

0.4

0.6

0.8

1

Ac
cu

ra
cy

LLaMA2 PoSE

Context length

VCL-8k-yarn

2k 4k 6k 8k 10k 12k 16k

VCL-6k-yarn
8k-yarn 6k-yarnThere is an important info hidden inside a lot of irrelevant text.

Find it and memorize them. I will quiz you about the important
information there.

The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. (repeat x times)

The pass key is 36860. Remember it. 36860 is the pass key.

The grass is green. The sky is blue. The sun is yellow. Here we go.
There and back again. (repeat y times)

What is the pass key? The pass key is

(a) Passkey prompt (b) Performance

Figure 7: (a) Prompt template used for passkey retrieval; (b) Retrieval accuracy for VCL compared
with other baselines. 6k-yarn and 8k-yarn stand fine-tuning on 6k and 8k context windows with yarn.
VCL-6k-yarn and VCL-8k-yarn stand fine-tuning on 6k and 8k context windows with VCL integrating
yarn.

0

0.02

0.04

0.06

0.08

0.1

0

100

200

300

PP
L

Wasserstein DistancePPL

512 1k 2k 4k
0

0.02

0.04

0.06

0.08

0.1

0

100

200

300

512 1k 2k 4k
0

0.02

0.04

0.06

0.08

0.1

0

100

200

300

512 1k 2k 4k
(a) Rotary PE (b) NoPE (c) Alibi

Figure 8: PPL v.s. Wasserstein Distance on different lengths. We compare CodeLLM-1B (Kazemnejad et al.,
2023) pre-training on the fixed context window 1024 under the same settings on different positional encodings:
RoPE (Su et al., 2022), NoPE (Kazemnejad et al., 2023), and Alibi (Press et al., 2022). The left y-axis is for PPL
and the right y-axis is for Wasserstein Distance. The x-axis is for different context window sizes ranging from
512 to 4096.

ability, we adopt the NoPE and RoPE for the default settings. The pretraining dataset is sourced
from the OpenWebText2 (Gao et al., 2020), with a train block size ranging from 256 to 512 as the
baseline and oracle respectively. We use the traditional loss function and our VCL loss to pre-train
the NanoGPT from scratch as following:

Lpre−train = αL+ (1− α)LVCL (25)

We select α from {0.1, 0.5, 0.9} and observed that the smaller α induced a better performance of the
length extrapolation.

detach means that we fix k=256 with the real tokens and the whole input sequence is M =512. random
means that we fix k=256 with the randomly generated tokens with the Gaussian distribution of the
latter 256 tokens’ mean and variance while the whole input sequence is M =512. Since all of the PPLs
are very close to each other (around 1.0), we did not divide the loss by the length to better distinguish
them among different methods. Table 3 shows that VCL is on par with or even better than the oracle
under the NoPE settings by only adding one actual token, especially in the out-of-distribution length
(more than 1024). All three methods on NanoGPT outperform the initial pertaining models, verifying
the superiority of our insight that alleviates the length term while enhancing the ability of length
generalization simultaneously. Furthermore, we extend our VCL pertaining methods to the RoPE
setting.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Table 4: Accuracy on LongBench with extreme length (more than 8k).

Methods Single-Doc Multi-Doc Summarization Few-shot Synthetic Code AvgQA QA Learning Task Completion
llama2-7b

Original 4.12 3.19 9.54 65.32 1.00 58.00 26.74
Full-length (8k) 9.33 7.62 15.11 62.47 3.08 56.94 28.58

RandPE 9.79 7.92 17.01 58.96 5.46 56.88 28.54
PoSE 11.85 8.38 16.91 62.53 4.07 53.01 28.93

NTK-aware 11.39 7.47 15.79 61.53 4.01 56.75 28.88
Yarn 8.96 7.87 16.77 60.33 3.72 57.55 28.52

VCL-Linear-1k 8.23 8.73 22.16 61.91 4.50 60.02 30.23
VCL-NTK-1k 10.73 8.77 17.63 61.83 4.96 59.20 29.85
VCL-Yarn-1k 13.20 8.15 16.87 62.94 6.12 55.73 29.92

llama2-7b-chat-4k
Original 24.9 22.6 24.7 60.0 5.9 48.1 31.0

VCL-Linear-1k 13.86 26.64 24.44 62.47 7.38 54.64 33.95
VCL-NTK-1k 12.61 25.19 24.95 62.25 4.96 56.27 33.44
VCL-Yarn-1k 19.52 26.20 25.38 62.74 4.75 53.66 34.41

H.2 MORE LLMS EXPERIMENTS

We also trained our methods VCL on the llama2-chat model as seen in Table 4.

H.3 METRICS ON CODELLM-1B

Here we give the distribution metrics and the ppl on different contexts window size across RoPE,
NoPE, and Alibi. We demonstrate the Wasserstein Distance, JS Distance, and KL Divergence, as
well as the PPL in the following tables.

Table 5: Performance Metrics for RoPE

Context Window Size PPL Wasserstein Distance JS Distance KL Divergence
512 30.625 0.0132 0.0256 0.0026
760 27.500 0.0047 0.0162 0.0010

1024 25.750 0.0000 0.0000 0.0000
1600 48.250 0.0391 0.1214 0.0630
2048 115.500 0.0633 0.1981 0.1705
2560 153.000 0.0695 0.2378 0.2429
3072 230.000 0.0673 0.2531 0.2725
4096 444.000 0.0646 0.2660 0.3063

Table 6: Performance Metrics for NoPE

Context Window Size PPL Wasserstein Distance JS Distance KL Divergence
512 32.000 0.0216 0.0357 0.0051
760 28.750 0.0088 0.0213 0.0018

1024 28.375 0.0000 0.0000 0.0000
1600 27.875 0.0190 0.0350 0.0050
2048 48.250 0.0376 0.0722 0.0213
2560 102.000 0.0495 0.1021 0.0428
3072 174.000 0.0567 0.1237 0.0629
4096 392.000 0.0643 0.1536 0.0970

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 7: Performance Metrics for Alibi

Context Window Size PPL Wasserstein Distance JS Distance KL Divergence
512 30.625 0.0234 0.0452 0.0082
760 27.875 0.0097 0.0305 0.0037

1024 27.875 0.0000 0.0000 0.0000
1600 26.250 0.0212 0.0387 0.0060
2048 37.000 0.0410 0.0593 0.0139
2560 54.500 0.0575 0.0787 0.0242
3072 68.000 0.0687 0.0935 0.0337
4096 123.000 0.0835 0.1169 0.0515

27

	Introduction
	Related Work
	Problem Setup
	A Measure-Theoretic Framework for Length Generalization
	Attention Kernel: a Measure Theory View
	Length Generalization Upper bound: 2 Length-related Factors

	Our Theory-Inspired Proposal: Virtual-context Learning
	A Close Look at Position Encodings and Full-length Fine-tuning
	Efficient Method: Not all tokens are needed for Training

	Experiments
	Language Modeling
	Passkey Retrieval for Effective Context Window
	 Evaluation on Long-Context Benchmark
	Ablation and Efficiency Analysis

	Conclusion
	LLM Usage Statement
	Limitations and Broader Impacts
	Wasserstein distance and Other methods
	More Related works
	Measure Theory Notations
	Proof
	Proof of Proposition 4.1
	Proof of Proposition 4.2
	Proof of Proposition F.1
	Proof of Theorem 4.6

	Useful and Failure cases of Theorem 4.6
	Experiments
	Pre-training Experiments
	More LLMs experiments
	Metrics on CodeLLM-1b

