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Abstract: We aim to solve the problem of multi-granularity action learning from1

demonstrations (LfD). To scale precision, traditional LfD approaches often rely2

on extensive fine-grained demonstrations to produce fixed-resolution actions. For3

memory-efficient learning and convenient granularity modulation, we propose a4

novel diffusion-SSM based policy (DiSPo) that learns from diverse coarse demon-5

strations and varying action scales using a state-space model, Mamba. Our eval-6

uations show that the adoption of Mamba and the proposed step-scaling method7

enable DiSPo to outperform in three coarse-to-fine benchmark tests with a maxi-8

mum 81% higher success rate than baselines. In addition, DiSPo improves infer-9

ence efficiency by generating coarse motions in less critical regions. We finally10

demonstrate the scalability through two real-world manipulation tasks.11

Keywords: multi-granularity learning, imitation learning, state-space model12

Figure 1: Overview of DiSPo: a diffusion-SSM based policy for coarse-to-fine imitation learning.
Leveraging the representation power of diffusion policy and the flexible discretization capabilities
of Mamba architecture, DiSPo learns from multi-granularity demonstrations (e.g., 2.5Hz and 5Hz)
and generates actions at user-intended frequencies. DiSPo demonstrates improved accuracy and in-
ference efficiency in fine-grained manipulation tasks compared to baseline methods.

1 Introduction13

Researchers have increasingly focused on endowing robots with dexterous, generalizable policies14

such as human manipulations. These manipulations are often a mixture of coarse to fine actions [1],15

we call multi-granularity actions. These involve large positioning movements alongside precise ma-16

neuvers critical for tasks such as screwing, welding, and insertion. Learning these locally precise17

behaviors is crucial to task success [2, 3, 4].18
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In this context, we aim to solve the problem of generating manipulation skills at multiple levels of19

granularity through imitation learning (IL), a process we call multi-granularity learning as shown20

in Fig. 1. This requires models to learn from both fine-grained and general coarse demonstrations.21

Further, the models need to generate precise actions across varying control scales according to user22

needs, understanding the temporal structure of demonstrations. We term it as multi-granularity re-23

production.24

Traditional IL methods, such as dynamic movement primitives [5], learn complex trajectories [6]. By25

adopting dynamics models, these methods allow for frequency adjustments in output, learning from26

a specific frequency of input trajectories. In the line of research, state-space models (SSMs), such as27

Mamba [7], offer memory-efficient, powerful encoding. However, their fixed action representations28

struggle to capture complex or multi-modal behaviors across diverse task conditions or modalities.29

Alternatively, neural IL methods, such as behavior transformers [8, 9, 10] and diffusion-based30

policies [11, 12, 13, 14], are increasingly acquiring attention with expressive power and ro-31

bustness. These approaches are capable of learning from diverse, high-dimensional multi-modal32

datasets [15, 16, 17, 18, 19]. However, most approaches learn from a specific frequency of tra-33

jectories [20] or an unspecified timescale of state-action pairs [15], without understanding multi-34

granularity. Further, modeling fine-grained skills typically requires high-frequency demonstrations35

causing storage and computational overhead.36

We propose a novel coarse-to-fine imitation learning algorithm, diffusion-SSM based policy37

(DiSPo), combining the representation power of diffusion policy with the flexible discretization38

power of SSM. We particularly adopt a state-of-the-art SSM, Mamba, to enable DiSPo to learn and39

reproduce trajectories at multi-granularity through data-efficient training strategies. We show that40

DiSPo is capable of producing varying scales of behavior, not only learning from multiple rates of41

coarse demonstrations but also modulating the discretization level of trajectories through a granu-42

larity predictor online. To the best of our knowledge, this is the first attempt to modulate Mamba’s43

discrete model for fine-grained manipulations. We introduce novel coarse-to-fine IL benchmarks44

evaluating our method against state-of-the-art visuomotor policy learning methods. The evaluation45

shows the modulation of step size in DiSPo generates finer movements with expert-like behaviors.46

2 Preliminaries47

An SSM describes a dynamic system that accepts inputs u ∈ CD, produces outputs y ∈ CD,48

and updates a set of internal states h ∈ CN , where D and N denote the dimensions of the input49

and state, respectively. The system consists of first-order differential equations, known as state and50

output equations: ḣ(t) = Ah(t) +Bu(t), y(t) = Ch(t), where A ∈ RN×N , B ∈ RN×D, and51

C ∈ RD×N are the state, input, and output parameters, respectively.52

For discrete computations, the SSM transforms the continuous-time system into a discrete-time53

system, defined over a discrete input sequence ut ∈ RL×D and output sequence yt ∈ RL×D at54

each time step t, where L denotes the sequence length. Given a step size ∆ ∈ RL×D, the discrete-55

time system is ht = Āht−1 + B̄ut, yt = Cht, where the discrete parameters are56

Ā = exp (∆A), B̄ = (∆A)−1(exp(∆A)− I) ·∆B, (1)

following the zero-order hold (ZOH) discretization rule. In this work, the discrete parameters are57

updated to Ā ∈ RL×N×N , B̄ ∈ RL×N×D, and C ∈ RL×D×N . In contrast to S4 [21] with fixed58

step sizes, Mamba makes parameters (B,C,∆) as a function of the input ut,59

Bt = fB(ut), Ct = fC(ut), ∆t = SoftPlus(f∆(ut)), (2)

where fB , fC , and f∆ are trainable linear layers, and SoftPlus is an activation function.60

3 Diffusion-SSM based Policy Model61

Fig. 2 illustrates our proposed model architecture, which incorporates a denoising diffusion prob-62

abilistic model (DDPM) [22] with NM stacked DiSPo blocks {Mi}NM
i=1 . Each DiSPo block is a63
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Figure 2: Illustration of the DiSPo architecture. DiSPo takes diffusion step k, step-scale factors rt,
encoded observations ot−To+1:t, and noisy actions a

(k)
t−To+1:t+Ta

. The model identifies the noise

ε̂
(k)
t−To+1:t+Ta

within the input noisy actions through stacked DiSPo blocks and utilizes the identified

noise to generate the less noisy action a
(k−1)
t−To+1:t+Ta

from the previous noisy action.

variant of the Mamba block. Inspired by the decoder-only Mamba (D-Ma) [23], we design the ar-64

chitecture to learn denoising networks ε(k)θ , parameterized by θ, generating a less noisy sequence of65

actions a(k−1) conditioned on a history of observations o, noisy actions a(k), and step-scale factors66

r at the k-th denoising step (k ∈ [1, . . . ,K]):67

a(k−1) = α
(
a(k) − γε

(k)
θ (k, r,o,a(k)) +N (0, σ2I)

)
, (3)

where α, γ, and σ are the noise schedule parameters following the DDPM formulation [22]. For68

notational simplicity, we omit the time index t. Starting from an initial Gaussian noise sample,69

a(K), DiSPo recursively applies the denoising process to generate an imitated action sequence.70

A distinct feature of DiSPo is the integration of step-scale factors rt into Mamba blocks, inspired71

by manual adjustment of rates in time-invariant SSMs [21, 24]. This allows DiSPo to learn from72

multiple rates of demonstrations and to adjust step sizes for discrete-time SSM parameters. We73

describe the details below.74

3.1 Mamba-based denoising process75

Consider an input sequence u
(1)
t ∈ RL×D in the k-th diffusion step and the time step t, where L76

and D are the length and dimension of the input sequence, respectively. Note that, to simplify the77

notation, we omit k and retain i for the variables defined in the k-th step below (e.g. u(k,1)
t = u

(1)
t ).78

The Mamba-based denoising network predicts the action noise ε̂(k) by updating the sequences u(i)
t79

with noise-relevant features through the {Mi}NM
i=1 blocks. Then it transforms the action component80

of the last updated sequence u
(NM+1)
a,t into the action noise through an output action head Ha,81

u
(i+1)
t = Mi(k, rt,u

(i)
t ) and ε̂(k) = Ha(u

(NM+1)
a,t ), (4)

where i ∈ [1, . . . , NM], k ∈ RD is an embedding for the diffusion step k, and rt ∈ RL. Each Mi82

block processes input sequences with the same size, u(i)
t ∈ RL×D. The denoising process consists83

of three parts: input encoding, diffusion process, and noise prediction.84

Input encoding: The first DiSPo block takes the input sequence u
(1)
t , a diffusion step embedding85

k, and step-scale factors rt at each k-th step. The input sequence u
(1)
t consists of observation and86

noisy-action embeddings over lengths To and To + Ta, respectively. We represent it as87

u
(1)
t = [ΓTE(fo,t−To+1), ...,ΓTE(fo,t),ΓTE(fa,t−To+1), ...,ΓTE(fa,t+Ta

)], (5)

where fo,t and fa,t are observation and action features, respectively. ΓTE : RD → RD represent88

type encoding, which injects a learnable vector to the input (∈ RD). Note that L = 2To + Ta.89
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An observation feature fo,t ∈ RD is an embedding vector of the observation ot ∈ RDo preprocessed90

from raw sensory observations rawot at a timestep t. The embedding process is a linear projection91

by fo,t = woot + bo with a weight matrix wo ∈ RD×Do and a bias bo ∈ RD. In this work, we use92

ot as a concatenated vector of an image encoding from ResNet18 [25] with attentional pooling [26]93

and a proprioception vector (e.g., end-effector positions) normalized in the range of [−1, 1].94

An action feature fa,t ∈ RD is an embedding vector of the action at ∈ RDa , obtained either by nor-95

malizing the raw action command rawat with noise during training or by denoising the noisy action96

from the previous diffusion step during inference. The embedding process is a linear projection by97

fa,t = waat + ba with a weight matrix wa ∈ RD×Da and a bias ba ∈ RD. In this work, we use a98

pose vector as a command, normalizing in the range of [−1, 1].99

Lastly, as a part of input conditions, we embed the diffusion step k into a D-dimensional vector100

k = ϕk(ΓPE(k)) by sinusoidal positional encoding ΓPE : R → RD followed by a multi-layer101

perceptron ϕk : RD → RD. We describe the step-scale factors rt in Sec. 3.2.102

Figure 3: (a) A DiSPo block Mi refines noise-
related features in the type encoded sequence u(i)

t
using adaLN conditioned on the diffusion step
embedding k. (b) A step-scaled Mamba block
takes rt and †u

(i)
t .

Figure 4: A step-scaled SSM takes input sequence
‡u

(i)
t and rt to scale ∆

(i)
t , and discretizes the

learned SSM parameters using the step sizes.

Diffusion process: At each diffusion step,103

we update the sequence u
(i)
t with noise-104

relevant features through stacked DiSPo blocks105

{Mi}NM
i=1 with skip connections. Fig. 3106

shows a DiSPo block that is a step-scaled107

Mamba block with adaptive layer normaliza-108

tion (adaLN) [27], performing dimension-wise109

scaling and shifting u
(i)
t into †u

(i)
t conditioned110

on the diffusion step embedding k. Taking111

†u
(i)
t , the step-scaled Mamba block adjusts the112

parameters of discrete-time SSM, according to113

user needs, i.e., a vector of step-scale factors114

rt ∈ RL
>0, and then updates the input sequence115

into †u
(i+1)
t via the internal step-scaled SSM.116

In contrast to conventional Mamba blocks, we117

exclude convolutional layers that limit handling118

diverse granularity of input sequences due to119

fixed-size receptive fields.120

Fig. 4 shows the proposed step-scaled SSM for121

multi granularity. Our SSM predicts the appro-122

priate step size ∆
(i)
t ∈ RL×D

>0 with respect to123

the input sequence ‡u
(i)
t , a non-linear projec-124

tion of †u
(i)
t , and the user-intended scales rt,125

∆
(i)
t = rt · SoftPlus

(
f
(i)
∆

(
‡u

(i)
t

))
, (6)

where f (i)
∆ is a block-wise trainable linear layer126

used in Eq. (2). We use ∆(i)
t to calculate Ā and127

B̄ following Eq. (1).128

Noise prediction: After NM times of feature updates, the action head Ha predicts the action noise129

ε̂
(k)
t−To+1:t+Ta

with respect to u
(NM+1)
a,t that corresponds to the noisy action input a(k)t−To+1:t+Ta

130

for the k-th denoising process. We then use the predicted noise to find the denoised action input131

a
(k−1)
t−To+1:t+Ta

for the next diffusion step k − 1, following Eq. (3) in inference.132

In addition, during training, we enable our model to reconstruct the given raw observation rawot133

decoding the updated sequence u(NM+1)
o,t through an observation head Ho. The reconstruction helps134

the model to keep capturing fine details in observations across layers. Here, the decoder consists of a135

linear layer for low-dimensional observation and a ResNet18 decoder for image-based observation.136
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Figure 5: Generating a pseudo demonstration for fine-tuning. Starting from Gaussian noise ε(K) and
a reference sequence τ0, the model iteratively denoises and replaces w0 frequency actions in the less
noisy action sequence with noise added aw0

∈ τ0. We repeat this process until the model generates
a noise-less action sequence at target frequency a

(0)
wtarget , which we refer to as a pseudo demonstration.

3.2 Multi-granularity reproduction137

To control the granularity of generated actions, DiSPo takes a vector of step-scale factors, rt =138

[rot−To+1, ..., r
o
t , r

a
t−To+1, ..., r

a
t , ..., r

a
t+Ta

], where rot and rat represent the step size scales, we call139

factors, of the observation ot and the action at relative to those of a reference sequence. We apply140

identical scales to the observation and past action sequences, such that rot−To+1:t−1 = rat−To+1:t−1.141

To define the reference step size, we use a mode selection approach that chooses the most frequently142

observed step size in demonstrations. DiSPo then allows for manual selection of the desired step-143

scale factors. For example, we set rt = 1t−To+1:t ++ 1t−To+1:t−1 ++ 0.5t:t+Ta
when we want to144

achieve twice finer actions and rt = 1t−To+1:t ++ 1t−To+1:t−1 ++ 2t:t+Ta for twice coarser actions.145

In addition, DiSPo includes a step-scale factor predictor ϕr, implemented as an MLP, which predicts146

a factor rt to accomplish the task given the observation ot.147

4 Multi-Granularity Policy Learning148

We introduce a multi-granularity learning scheme to improve the prediction performance of high-149

frequency actions that are not available in the demonstration dataset D. Our scheme consists of two150

steps: 1) pretraining with sample-rate augmentation and 2) fine-tuning with pseudo actions.151

In pretraining, to handle various granularities, we first augment the dataset D with random step-scale152

factors. We randomly draw a reference sequence τ0 = [(rawo1,
rawa1), ..., (

rawoT ,
rawaT )] ∈ D with153

length T and sample frequency ω0. By selecting a frequency ωj ≤ ω0, we resample a sequence154

τj with step-scale factors rj = 1L

(ωj/ω0)
from τ0. Repetition of these enhancements creates the Nω155

number of random frequency sequences: τ = {τ1, ..., τNω
}. We then introduce a total loss L =156

Lε
MSE + λ · Lo

MSE , where Lε
MSE , Lo

MSE , and λ are a noise prediction error loss, an observation157

reconstruction loss, and a weighting coefficient (∈ R>0), respectively. In detail, Lε
MSE uses the158

mean squared error (MSE) to minimize a variational bound on the KL divergence between the true159

denoising process and that modeled by DiSPo:160

Lε
MSE = MSE(ε(k), εθ(k, rt,ot,a

(0)
t + ε(k))). (7)

where k ∈ [0, . . . ,K]. Likewise, Lo
MSE is the MSE between an input observation rawot and its161

reconstruction from the observation head Ho.162

In fine-tuning, we co-finetune DiSPo on original and pseudo demonstration dataset to produce high-163

frequency actions not available in the dataset D. Fig. 5 shows the process of generating fine-grained164

pseudo demonstrations. We randomly draw a reference sequence τ0 with its frequency w0 and gen-165

erate a fine-grained sequence using the pretrained DiSPo by selecting a target frequency ωtarget > ω0166

with r = 1L

(ωtarget/ω0)
. In practice, starting from Gaussian noise, we perform the diffusion process167
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Figure 6: Illustrations of three simulation benchmarks, clamp passing, passage passing, and button
touch. Dots denote either demonstrations at 2.5Hz or predicted actions from DiSPo and baselines.

K times to generate a noise-less action sequence a
(0)
1:T ′ , where T ′ = T · ωtarget/ω0. However, the168

pretrained DiSPo is not sufficient to accurately produce high-frequency actions yet.169

To figure it out, we decompose the predicted high-frequency actions a(k)1:T ′ into a subset with ω0 fre-170

quency of actions a(k)w0 and its complement, a(k)1:T ′ \ a(k)w0 . At each k-th denoising process, we replace171

a
(k)
w0 with the demonstration actions in τ0 with noise, a1:T+ε(k). This replacement helps in producing172

fine-grained pseudo actions that remain close to the demonstrations. In addition, as DiSPo predicts173

an action chunk, it produces multiple actions at a timestep. We aggregate these repeated predictions174

by weighted averaging, following the temporal ensemble in ACT [28], to obtain the final fine-grained175

action sequence. In contrast, the generation of fine-grained observations remains challenging. Thus,176

we retain the original frequency ω0 of the observations by setting rot = 1 and rat = ω0/ωtarget in177

fine-tuning. We call each outcome sequence a pseudo demonstration. We fine-tune DiSPo using both178

pseudo demonstrations and original demonstrations. In practice, we repeat the generation of pseudo179

demonstrations and fine-tuning, gradually increasing the target frequency ωtarget. Note that we fine-180

tune the model with the loss L corresponding to a
(k)
w0 only since the predicted actions a(k)1:T ′ \a(k)w0 are181

not reliable as original demonstrations. However, sequential prediction with finer step-scale factors182

helps fine-tuning it as SSM internal state propagates through a sequence.183

5 Experimental Setup184

We conduct quantitative and qualitative evaluations using three simulated benchmarks and two real-185

world manipulation tasks. The benchmarks statistically assess the ability to generate fine-grained186

actions from coarse demonstrations. Below, we describe each benchmark in detail.187

Clamp passing: A gripper agent (yellow) manipulates a clamp (green) to precisely approach and188

pass through a 2D pipe (red) without collision, as shown in Fig. 6 (Left). The raw observation rawot189

comprises the agent’s pose (∈ R3) and two RGB images (∈ Z96×96×3), one focusing on the agent190

(Fig. 6 left local image) and the other capturing the entire scene. The raw action rawat is the agent’s191

target pose (∈ R3). We randomize the initial agent pose and vary the pipes’ geometric properties192

(length and thickness) and spatial pose (position and orientation) using Pybullet [29].193

Passage passing: A rectangular agent (pink) precisely maneuvers through a narrow 2D passage194

(gray) navigating corners without collision, as shown in Fig. 6 (Middle). The observation rawot195

includes the agent’s pose (∈ R2) and two RGB images as in the clamp passing benchmark. The196

action is the 2D target position aligning the agent with the passage boundary. We randomize the197

passage’s shape, width, and orientation using Pymunk [30] and Pygame [31].198

Button touch: A two-link planar arm precisely touches a button (blue) without causing a collision199

between the button and wall, as shown in Fig. 6 (Right). The observation rawot consists of the end-200

effector position (∈ R2) and an RGB image. The action rawat is the desired end-effector position (∈201

R2). We randomize the initial arm configuration and button placement, using Pymunk and Pygame.202

For evaluation, we collect 90 high-frequency demonstrations at 20Hz for each benchmark using203

the toppra path planning library [32]. We train our method and four baselines on coarsely sampled204

versions of demonstrations, selecting the best checkpoints based on performance over 50 random205
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Figure 7: Comparison of task success rates [%] across four frequencies of demonstrations per simu-
lated benchmark. We train each method with a source frequency (x-axis) of demonstrations and test
a 20Hz target frequency of actions in new environments. Note that tracker is a complexity indicator.

validation environments. We finally evaluate the approaches on 100 unseen test environments. The206

four baselines are as follows:207

• DiffusionPolicy-C (DP-C) and DiffusionPolicy-T (DP-T) [12]: CNN- and Transformer-based dif-208

fusion policies, respectively.209

• D-Ma [23]: A decoder-only variant of the Mamba-based diffusion model, MaIL.210

• VQ-BeT [9]: A vector-quantized behavior Transformer (BeT) tokenizing continuous actions.211

As baselines require fixed step sizes, we linearly interpolate their action sequences. In contrast,212

DiSPo generates fine-grained actions on demand using user-intended or predicted step-scale factors213

from the learned predictor ϕr. For comparison, we compute step-scale factors based on the demon-214

stration and required frequency. We also use relative poses as desired actions when advantageous for215

baselines; baselines adopt relative poses as action representations for the clamp passing and passage216

passing tasks except DP-C, known to perform better with absolute positions [12]. We also report the217

performance of tracker, following downsampled ground-truth motion, as a task complexity indicator.218

Finally, we demonstrate our method and a baseline, D-Ma, on real-world clamp passing and button219

touch tasks using a UR5e manipulator. Unlike the simulated benchmarks, we extend the action220

space to 3D translation and horizontal rotation (∈ R4) for clamp passing and 3D translation for221

button touch. Each task uses three RealSense cameras: two for local views and one for a fixed global222

view. We collect 95 human demonstrations at 10Hz and train both methods on coarsely sampled223

demonstrations: 2.5Hz for clamp passing and a mixture of 2.5Hz and 5Hz for button touch. We224

compare two methods in 10 random environmental setup for each task. For real-time control, we use225

the denoising diffusion implicit model (DDIM) [33].226

6 Evaluation227

We first evaluate coarse-to-fine IL performance across three benchmarks using demonstrations at228

various frequencies. As shown in Fig. 7, DiSPo consistently achieves the highest success rates of229

over 81% across all frequencies, whereas baseline performances significantly drop given 2.5Hz and230

5Hz demonstrations. For example, baseline methods usually fail at the corner of passage passing231

where DiSPo generates sharp motion as shown in Fig. 6. Occasionally, DiSPo without fine-tuning232

underperforms compared to baselines at tasks with fine-grained demonstrations, since the tasks are233

still solvable with low-frequencies demonstrations as the tracker’s 100% performances. Neverthe-234

less, our fine-tuning method improves performance by up to 19%, with an average gain of 6%,235

without additional data collection. In contrast, the tracker and baseline performances drop to near236

zero at 2.5Hz, failing to reproduce abrupt corner maneuvering. These results highlight DiSPo’s data237

efficiency and its ability to accurately learn feature spaces from coarse datasets.238

We also evaluate multi-granularity learning by training methods with demonstrations at mixed fre-239

quencies, 2.5Hz and 5Hz. As shown in Fig. 8, DiSPo achieves the highest success rate of 93%240

on the button touch task, outperforming all baselines. DiSPo distinguishes sample-wise frequency241

differences, enabling effective multi-granularity learning without performance degradation. In con-242
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trast, baselines naively model heterogeneous frequency of state-action pairs, producing actions at243

inappropriate speed that cause repetitive small back-and-force motions near the button.244

Using DiSPo trained on 5Hz demonstrations, we further evaluate the multi-granularity re-245

production capability of DiSPo applying adaptive step scaling guided by the proposed pre-246

dictor ϕr. As shown in Fig. 9, adopted scaling reduces the number of required steps by247

39% with only a minor drop in task success rate on the button touch task, still significantly248

outperforming all baselines. These results demonstrate that DiSPo effectively modulates ac-249

tion discretization levels online, producing coarse motions in less critical regions (e.g., free250

space) to reduce inference overhead while maintaining fine-grained control in critical areas.251

Table 1: Real world result success rate (%)

Method clamp passing button touch
D-Ma 20 20
DiSPo 70 90

Finally, we evaluate DiSPo and D-Ma on a UR5e ma-252

nipulator in two real-world tasks: clamp passing and253

button touch. As shown in Fig. 10, DiSPo success-254

fully inserts a square ring clamp with radial clearance255

2.5mm from random initial positions and precisely256

touches the shutter button by generating fine-grained,257

collision-free actions. Table 1 shows DiSPo achieves higher success rates than D-Ma in both setups.258

While D-Ma captures rough motions well, it often causes pipe scratching or stops near the button.259

Figure 10: Representative samples showing the UR5e manipulator performing clamp passing and
button touch from random initial and target positions in a real-world environment.

7 Conclusion260

We proposed DiSPo, a novel diffusion-SSM based policy for multi-granularity learning and repro-261

duction of coarse-to-fine demonstrations. DiSPo adaptively modulates the action step size via a step-262

scaling factor, enabling learning from various frequencies of coarse demonstrations and generating263

behaviors with varying scale of details. Furthermore, by integrating pseudo demonstration genera-264

tion and step-scale prediction, our method shows potential for reducing storage and computational265

overhead. Experimental results on new benchmarks demonstrate that DiSPo produces smoother and266

more accurate motions than state-of-the-art methods. We successfully demonstrate the applicability267

and superiority of DiSPo through real-world experiments.268
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8 Limitations269

Although DiSPo significantly outperforms baseline methods in tasks where the demonstration fre-270

quency is lower than that of the action execution, the performance gap between DiSPo and baselines271

becomes smaller when demonstrations are already fine-grained. We consider the exploration of high-272

frequency demonstration scenarios to be outside the primary scope of this work. Second, we use a273

fixed image resolution for all observation inputs, without mechanisms to selectively focus on spe-274

cific regions. In our real-world experiments, we find consistent performance improvements when we275

zoom into task-relevant regions. Future works can integrate recent advances in task-relevant region276

detection or visual attention mechanism. Additionally, we primarily focus on using 2D RGB images277

as observation, which lack explicit depth or geometric context. We acknowledge that incorporat-278

ing richer modalities such as RGB-D images or point clouds may enhance the capacity of model279

for finer action generation and spatial reasoning. Investigating the integration of such multimodal280

sensory inputs remains a direction of future work.281
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