Addressing Format Faithfulness Challenges in Language Models

Anonymous ACL submission

Abstract

The zero- and few-shot prompting paradigms
in large language models (LLMs) have signifi-
cantly improved the accessibility and flexibil-
ity in language-related tasks, where the need
for task-specific architecture design or supervi-
sion is eliminated. Along with the convenience,
these paradigms also introduce the require-
ments of output format specifications, thereby
mandating users to devise an output format
and include it in the prompt as a request for
LLMs to faithfully adhere to. To study the
ability of LLMs to comply with format spec-
ifications, we identify the concept of format
faithfulness. Based on the formal definition
and the detailed taxonomization of format faith-
fulness, we present FORMATBENCH, a bench-
mark that covers full categories of format faith-
fulness in our taxonomy and a wide range of
LLM application scenarios. Extensive exper-
iments on FORMATBENCH reveal that state-
of-the-art LLMs can still have difficulties in
generating basic structured output as instructed.
To improve the format faithfulness of LLMs,
we design and implement three adaptation ap-
proaches, namely format regulation, format tun-
ing, and format refinement. Detailed analyses
of these approaches validate their effectiveness
in improving format faithfulness rate by up to
9.8%. Our codes and datasets are publicly avail-
able at Anonymous_Link.

1 Introduction

Recent years have witnessed a significant upsurge
in the development and deployment of large lan-
guage models (LLMs) (Brown et al., 2020; Tou-
vron et al., 2023b; Achiam et al., 2023). With
their exceptional zero-shot and few-shot capabil-
ities, LLMs have revolutionized the paradigm of
language-related tasks, where a question can be
understood and solved to the best without task-
specific architecture or supervision (Radford et al.).

The zero- and few-shot prompting paradigms
have introduced a new problem in task solving

Tasks with Output Format Requirements

4 YA YA

Complete followin: Please write an Please act as an
consﬁituenc 9 acrostic poem autonomous agent
ing t ky whose first letters
parsing tasks form the given string || legal commands:
. go north
\NOt thishvear:) \TIME U take tomato
i Standard Generation
((FRAG N\ Y4
(RB Not)
(TIE/gJT this) Time is fleeting,
is 8 s
Ticking away,
(NN year) M()mcit< "vmsinu > go south t%l
i) FRAG > passiag, an
) T~ Every second.
. Not |\ AN
Format Errors
(E " " D)) N
Err1."TMP" is not a Err1. The first . .
legal label. letters of each line Err1. "go south" is
Err2. parentheses d t I out th not an admissible
are not properly W%rfzjo';IF’J\/TE"OU S command.
\closed.))))
s + 2
Format Adaptions:
Regulation £ Tuning §, Refinment @
J
Valid Format
@:RAG \
(RB Not)
N?[/?[K[this)) 'ITimc isé]lcctiﬂgi
year nexorably moving,
) RS Moments passing, > go north T
)) RB Nf Every second. é
N‘o(oT NN t“l
|
\ this year D

Figure 1: LLMs have difficulties in adhering to format-
ting instructions in NLP tasks (left), artistic creation
(mid), and agent simulation (right). Consequently, this
inability of LLMs results in format errors.

procedure, namely, the specification of the output
format. To elaborate, LLMs’ task solving paradigm
mandates that users must devise an output format
and include it in the prompt as a request for LLMs
to adhere to. The format specification holds sig-
nificant importance in tasks of wide concern as
illustrated in Figure 1:

* The rigorous output format is necessary for

Anonymous_Link

various natural language processing (NLP)
tasks, such as named entity recognition, text-
to-data conversion, and syntactic parsing.

* Certain creative works, such as poems, in-
trinsically possess rigorous forms, including
acrostic, sonnet, and numerous others.

* LL.M-based autonomous agents need to ad-
here a pre-defined format to interact with in-
ternal and external environments.

To summarize, the ability to adhere to pre-
defined format specifications is of utmost impor-
tance in the deployment of LLMs. This ability,
which we refer to as format faithfulness, is a cru-
cial aspect to consider in many real-world tasks.

However, a comprehensive study of format faith-
fulness is still lacking. Firstly, there is a significant
gap in the literature regarding the establishment of
benchmarks to evaluate this capability. While a few
works have introduced datasets related to format-
ting, they have primarily focused on one specific
task, such as tool using (Qin et al., 2023), text-
to-data (Tang et al., 2023), and code generation
(Skreta et al., 2023). Secondly, there is still a lack
of holistic evaluation and comparison of adaptation
approaches aimed at improving format faithfulness.

To address the gap in comprehensive bench-
marks, we offer a formal definition and a detailed
taxonomy of format faithfulness. Based on the
taxonomy, we propose FORMATBENCH, a bench-
mark consisting of a wide range of tasks to com-
prehensively evaluate the format faithfulness of
LLMs. FORMATBENCH fully covers the categories
in our format faithfulness taxonomy, thus ensur-
ing the measurement completeness. Extensive ex-
periments on the benchmark reveal that FORMAT-
BENCH poses significant challenges to even the
most capable models with simple format require-
ments, such as selecting among legal options.

To fill the gap in adaptation approaches, we fur-
ther design and implement format regulation, for-
mat tuning, and format refinement to improve for-
mat faithfulness. We compare these three methods
on FORMATBENCH, reveal their strength in enhanc-
ing LLMs’ format following capability, and also
point out their weakness in stability or robustness.
We also show that the improvement of format faith-
fulness leads to improved general output quality.
These insightful analyses can not only pave the path
for future studies on format faithfulness, but also
offer useful references in practical deployment.

Our contributions are summarized as follows:

* We introduce the concept of format faithful-
ness and its taxonomy, as a means to inves-
tigate the ability of LLMs to adhere to for-
mat specifications, which holds significant im-
portance within the zero-shot and few-shot
prompting paradigms.

* To evaluate format faithfulness, we develop
FORMATBENCH, a comprehensive bench-
mark covering a diverse range of tasks, in-
cluding two datasets of our own construction.
Experiments show FORMATBENCH is chal-
lenging for even the most capable LLMs.

* We design and implement three format adap-
tation approaches, namely format regulation,
format tuning, and format refinement. Anal-
yses of these approaches validate their effec-
tiveness in improving format faithfulness.

2 Related Work

Controllable Text Generation Controllable text
generation (CTG) aims to steer a generative model
to generate desired text according to given control
conditions (Prabhumoye et al., 2020; Zhang et al.,
2023a). Both our proposed format faithfulness and
CTG involve improving controllability in LLMs,
but the two concepts are different in tasks and meth-
ods. In the task aspect, CTG usually introduces
soft control conditions like sentiment, topic, and at-
tributes (Keskar et al., 2019; Xu et al., 2020), with
a few exceptions (Li et al., 2020; Lin et al., 2020).
However, format faithfulness is focused on hard
control conditions relating to format, which will
be elaborated in Section 3. In the method aspect,
common CTG methods either adopt specially de-
signed fine-tuning schema or modify the sampling
procedure in decoding steps (Miao et al., 2019; Qin
et al., 2022; Kumar et al., 2022), but format adap-
tations mainly considers techniques that allow for
easy adaptation and quick deployment.

LLM Benchmarks In recent years, there has
been significant attention paid to benchmarks and
evaluation metrics in language modeling fields.
Several notable benchmarks have been developed
to evaluate the holistic effectiveness of LLMs
(Wang et al., 2018; Wang et al.; Liang et al.,
2022; Srivastava et al., 2023). Additionally, a few
benchmarks have been proposed to evaluate format-
related aspects (Qin et al., 2023; Tang et al., 2023).
However, all previous format-related benchmarks
are task-specific, failing to provide a comprehen-
sive evaluation of overall format faithfulness. Un-

like previous works, we develop an LLM-centric
benchmark covering all categories of format faith-
fulness in our proposed taxonomy, thus ensuring
the completeness of the evaluation.

LLM Adaptations Foundation models can ac-
quire general language understanding and problem
solving abilities, but on specific tasks, further adap-
tation of LLMs can be beneficial (Zhao et al., 2023).
One way to adapt LLMs to specific goals is to aug-
ment LLMs with reasoning or tools, and another is
to conduct adaptation tuning (Mialon et al., 2023).
To adapt LLMs for better understanding and obedi-
ence of format instructions, we utilize these LLM
adaptation techniques to design format regulation,
format tuning, and format refinement.

3 Definition and Taxonomization

In this section, we delve into a comprehensive dis-
cussion on the definition and the taxonomization
of format faithfulness.

3.1 Definition

Although both format requirements and other con-
ditioned generation requirements (e.g. emotion and
topic constraints) necessitate a generative model
to produce text with specified features, there is a
fundamental distinction to consider, namely, dis-
criminability. To be specific, the fulfillment of a
format requirement can be ascertained by determin-
ing if the output can be recognized by the corre-
sponding formal computational model, such as a
deterministic finite automaton.

Therefore, format faithfulness, as the ability to
adhere to format requirements, can be defined as
the extent to which generative models can under-
stand format-related instructions, and ensure the
generated text are within the corresponding decid-
able language. Formally, the format faithfulness of
a language model M can be formulated as,

EreT[M(t) € Li] (1)

where E is the expectation symbol, 7 denotes the
set of all input instructions, M (t) is the model
output, and L; represents the language of a compu-
tational model corresponding to instruction .

3.2 Taxonomy

In addition to providing a theoretical definition,
we provide a taxonomy of format faithfulness in a
comprehensive manner inspired by previous work
(Schopf et al., 2023). The categorization of format

content
constrained

position
constrained

relation
constrained

generation

format
faithfulness

linearized

Figure 2: Taxonomy of format faithfulness. The con-
straints in the sub-types of generation tasks (upper part)
form a containment relationship, i.e., the inner con-
straints contain the outer ones.

faithfulness requirements is firstly conducted based
on task types including classification, sequence
labelling, and generation. Subsequently, we further
refine the categorization by format requirements
within each task, as depicted in Figure 2.

Classification tasks refer to the process of cate-
gorizing given input into pre-defined classes based
on specific semantics. The common format require-
ment in classification tasks is to ensure that the
generated answer is among the legal options. We
further categorize these tasks into static classifica-
tion and dynamic classification, where the legal
option set remains the same throughout the pro-
cessing period in the static ones, but can change
from step to step in the dynamic ones.

Sequence labelling tasks involve assigning la-
bels to each word within the input text. Gener-
ally, encoder-based models, such as BERT (Ken-
ton and Toutanova, 2019), are well-suited for such
tasks. However, generative language models need
adapted output formats to effectively handle these
tasks. We classify sequence labelling tasks based
on the adapted format, including the copied format
and the linearized format. The copied format di-
rectly replicates the span in the input that requires
the label assignment, while the linearized format
transcribes the entire input and incorporates tags to

represent the labels. Both methods should adhere to
the original input without any modifications, while
the linearized format additionally requires the in-
clusion of tags to be valid in terms of format.

Generation tasks involve the generation of new
text using given input instructions and pre-defined
rules. The basic constraints in generation tasks
are about generated content (the outermost circle
in Figure 2), such as what should be included or
excluded. Further constraints (the middle circle)
additionally specify the position of the constrained
content. Even further, in addition to the content
and position, the relation constraints (the innermost
circle) ensure a certain level of consistency among
the constrained parts, rather than treating them as
independent elements.

4 FORMATBENCH

We endeavor to conduct a comprehensive evalu-
ation of format faithfulness. To this end, we in-
clude various tasks in FORMATBENCH to cover
all categories of the format faithfulness taxonomy.
The tasks included in the benchmark are either
adapted from established NLP datasets, or built on
our own as novel datasets. The aggregated statis-
tics of FORMATBENCH are presented in Table 1.
In this section, we provide an introduction to FOR-
MATBENCH and outline the specific format require-
ments other than common ones for each task.

Task Category ITrainl |[Testl
QC C:static 5,452 500
Agent C:dynamic 4,440 514
QA S:copied 86,821 5,928
NER S:linearized 14,041 3,453
CapGen S:linearized 229,703 542
MTT G:content - 2,951
AcroP G:position - 987
FTime G:position - 5,036
Parse G:relation - 3,912
XDLGen G:relation - 660

Table 1: The statistics of FORMATBENCH. The "Cate-
gory" column indicates the format faithfulness category
to which the task belongs, where "C", "S" and "G" rep-
resent classification, sequence labelling and generation
tasks respectively. Tasks shown in bold use our own
collected or labeled data.

4.1 Classification Tasks

QC The Text TRtrieval Conference (TREC)
Question Classification (QC) (Li and Roth, 2002;

Hovy et al., 2001) is a task that, given a question,
maps it to one of the given classes, which provides
a semantic constraint on the sought-after answer.
QC is a static classification task, where the legal
option set remains the same in all questions.

Agent The First TextWorld Problems (FTWP)
(Adam et al., 2019) is to build an Al agent that
moves automatically and efficiently in a text simu-
lated world according to text feedback, and finally
completes the given goal. Agent task offers a dy-
namic classification scenario where the admissible
choice options can vary from one turn to another
as the agent interacts with the environment.

4.2 Sequence Labelling Tasks

QA Stanford Question Answering Dataset
(SQuAD) (Rajpurkar et al., 2016) is a reading
comprehension dataset, where the answer to every
question is a segment of text, or span, from the
corresponding reading passage. We use a copied
format in this task, i.e., requiring LLMs to directly
copy the span of the passage without modification.

NER CoNLL-2003 (Sang and De Meulder, 2003)
is a named entity recognition (NER) task to detect
and categorize named entities. Under the linearized
format, an LLM should strictly copy the given sen-
tence, with added part-of-speech tags forming a
legal flat NER schema.

CapGen We adapt MuST-Cinema (Karakanta
et al., 2020) dataset, a multilingual speech transla-
tion corpus built from TED subtitles, to construct
the Caption Generation (CapGen) task. CapGen
involves inserting end-of-block and end-of-line
tags in the raw English text to represent the split
of captions in videos, thus simulating the genera-
tion of English video captions. Apart from com-
mon requirements of linearized format, two simple
but meaningful heuristic format requirements are
posed, including (1) each subtitle block must con-
tain no more than two lines, and (2) each subtitle
line must contain no more than 42 characters.

4.3 Generation Tasks

MTT WMT 2023 Terminology Shared Task (Se-
menov et al., 2023) is a Germany-English machine
terminology translation (MTT) task that challenges
machine translation systems to accurately and effec-
tively translate technical terms and specialized vo-
cabulary. MTT belongs to the content-constraints-
only category, where we examine whether a target

term is included in the translation if the correspond-
ing source term appears in the source sentence.

AcroP An acrostic poem is a literary form in
which the initial letter of each line is arranged to
spell out a hidden message. We combine existing
datasets and acrostic poems crawled from the In-
ternet as detailed in Appendix C, introducing the
task of Acrostic Poetry Generation (AcroP). In this
task, an LLM is challenged to compose an acrostic
poem, adhering to the format of having the first
letter of each line spell out the intended message.
AcroP falls under the position constrained category,
as both the content and position of generated text
should be subject to constraints.

FTime Formatted Time Generation (FTime) task
is to generate formatted time representations
based on natural language instructions. This task
holds particular relevance in reminder applications,
which involve the translation of natural languages
into formatted time strings. Examples of FTime
task are provided in Table 2, where the illustrations
of both single-trigger and repetitive-trigger time
format are displayed. Detailed requirements, con-
struction procedures, and quality control of FTime
are shown in Appendix C. FTime also poses a posi-
tion constraint to generated time representations.

Ref. 20021019T140000: Saturday

Inst. ... soup will be ready in 20 minutes ...
Res. 20021019T142000

Ref. 20121215T090000: Saturday

Inst. ... walk my dog at 10 a.m. every Monday.
Res. R-1/20121217T100000/PQYOM7DTOHOMOS

Table 2: In FTime, an LLM is to generate a time string
(Res.) referred to by the instruction (Inst.), assuming
that the instruction is issued at the reference time (Ref.).
The output should be in accordance with the single-
trigger (top) or repetitive-trigger (bottom) format.

Parse We conduct constituency parsing on the
open source subset of the Penn Treebank (PTB)
(Marcus et al., 1993) using the bracket sequence
representation of a constituency tree. Our im-
plementation requires the output to form a legal
bracket sequence, and use legal labels in each node
of the tree. The requirement constitutes a relation
constraint, as it involves considering bracket match-
ing as a whole instead of independent components.

XDLGen XDL (Chemical Description Lan-
guage) (Seifrid et al., 2022) is an XML-based pro-

gramming language used in chemical synthesis
specification and experimental procedure transfer
among robots and laboratories. Following previous
work (Skreta et al., 2023), we conduct XDL Gener-
ation (XDLGen) task by examining the ability of
LLMs to generate compilable XDL programs given
the description of XDL. The format requirement of
XDLGen task also constitutes a relation constraint.

5 Format Adaptation Methods

In this section, we introduce the adaptation meth-
ods employed to improve the format faithfulness.

5.1 Format Regulation

Format regulation refers to a non-parametric pro-
cess based on prescribed rules aiming at steering
LLM generation for format requirements, and it
can be divided into generation-time intervention
and post-generation editing.

Generation-time intervention incorporates logits
processors into decoding modules to directly mod-
ify the prediction scores of LLMs. This method
can be easily adopted for classification tasks in-
cluding QC and Agent by masking all the illegal
generation tokens and only allowing for admissi-
ble options. It can also applied to Acrop task by
forcing an acrostic character after each line break.

Post-generation editing approaches directly mod-
ify the text generated by LLMs to ensure format
faithfulness (De Cao et al., 2020; Zhang et al.,
2023b). In Parse task, we use the same strategy
as Bai et al. (2023) to guarantee that the bracket
sequence achieves a balance by adding left brackets
to the beginning of the output or appending right
brackets to the right.

5.2 Format Tuning

The abilities of LLMs can be further adapted ac-
cording to specific goals by fine-tuning (Zhao et al.,
2023). For example, instruction tuning (Wei et al.,
2021; Ouyang et al., 2022; Chung et al., 2022)
improves zero-shot performance on unseen tasks.
More relevantly, recent work (Tang et al., 2023)
fine-tunes LLMs to generate well-structured data
on specific tasks.

Inspired by these works, we propose to conduct
format tuning on LLMs to improve the overall
format faithfulness. Format tuning is to organize
format-related instructions and their corresponding
answers into formatted training data, and to train
LLMs with given data. It is expected that models

will gain better format faithfulness within trained
tasks, and the format understanding and obeying
ability can generalize to unseen tasks.

We sample the training set of QC, QA, NER, and
CapGen to construct our format tuning data. After
fine-tuning, we evaluate the models on all tasks
in FORMATBENCH, including both in-training and
out-of-training tasks.

5.3 Format Refinement

User

[]
Task: Please complete following
constituency parsing tasks

T
Vo

t%l Answer: (FRAG (RB Not) (TMP
) (DT this) (NN year) (. .))

v

LLM

Compiler
Error: The answer contains <
following format error(s) s \
\
LLM ¢ ® (optional) !
1
*_%1 Thoughts: To fix these format 1
errors, | should @ 1
(o o o] 1
1
LLM i @ !

t%l Corrected Answer: (FRAG (RB | '
& | Not) (VP (DT this) (VN yean) (.)

Figure 3: The workflow of format refinement. Given
an instruction containing format requirements (), an
LLM often generates incorrectly formatted content,
whose format errors can be detected by a non-parametric
format compiler (). Optionally, the LLM can reflect
based on the compilation errors and generate revising
thoughts (®). Finally, the corrected answer is given
based on all the information (@). The iteration can
repeat until no compilation error is detected, or a certain
stopping criterion is reached (3).

There have been many impressive works on aug-
menting LL.Ms with internal reflection (Wei et al.,
2022; Madaan et al., 2023) and external tools (Peng
et al., 2023; Gou et al., 2023) to refine their initial
content, and a few works among them focus on gen-
erating well-structured codes (Skreta et al., 2023).
However, none of these works endeavor to improve
the format faithfulness of LLMs on all tasks.

To fill this gap, we propose format refinement
as a general prompt schema for improving format
faithfulness on all tasks. Format refinement is de-

signed guided by the decidable nature of the format.
Specifically, the format faithfulness of any task is
defined by a formal language, enabling the imple-
mentation of a format compiler that can detect for-
mat errors. The detailed implementation is shown
in Figure 3, where an LLM iteratively polishes the
output format according to error information from
a format compiler. Optionally, we further augment
the refinement process with LLM internal thoughts.

6 Experiments

6.1 Settings

We conduct evaluation experiments on FORMAT-
BENCH with LLaMA (Touvron et al., 2023a),
LLaMA2 (Touvron et al., 2023b), and GPT-3.5
(gpt-3.5-turbo-instruct) (OpenAl, 2021). We
implement format regulation and format refinement
on all three models whenever applicable, and addi-
tionally conduct format tuning on locally deployed
LLaMA and LLaMA2. The generation configu-
ration and the detailed implementation of three
approaches are shown in Appendix A.

The evaluation metric employed in the experi-
ment is format faithfulness rate. This metric mea-
sures the percentage of the generated text that ad-
heres faithfully to the specified format. The for-
mat correctness depends on the specific task, as is
broadly outlined in Section 4, and comprehensively
defined in Appendix B.1.

6.2 Results

The main results are presented in Table 3.

Models Comparing the three models, GPT-3.5
exhibits significantly better faithfulness to format
specifications than others, as the average format
faithfulness rate of GPT-3.5 (63.3) surpasses that
of LLaMA (45.9) and LLaMA?2 (50.8) by a con-
siderable margin. Moreover, a format faithfulness
improvement is observed among three format adap-
tation methods. A detailed comparison among the
three methods is conducted in Section 7.

Tasks It can be observed that some format tasks
are still highly challenging for even the most ca-
pable models like GPT-3.5. The limited perfor-
mance of LLMs to adhere to format specifications,
which appear straightforward and do not require
expert-level language understanding and manipula-
tion ability, indicates the current LLMs’ deficiency
in maintaining format faithfulness.

Q
o <3 & g ¥ o &
s o S 3 & <

Models OC’) V% S é&’ CJ@ $ $ é Q:? A§’ avg.
LLaMA 89.6 81.7 885 741 221 297 00 728 03 0.0 459

+ regulation 100.0 100.0 - - - - 85.9 - 2.5 - -
+ tuning 814 942 950 76.0 223 489 0.1 306 1.3 0.0 450
+refinement 944 872 89.0 742 221 338 00 734 06 00 475
+ refinement* 98.8 877 892 74.1 221 377 00 836 06 0.0 494
LLaMA2 974 737 869 839 255 399 01 998 03 0.0 50.8

+ regulation 100.0 100.0 - - - - 89.8 - 3.5 - -
+ tuning 98.6 834 957 93.1 223 516 0.1 882 5.1 0.0 538
+refinement 98.0 852 874 840 255 449 0.1 999 1.1 0.0 526
+ refinement* 99.8 837 89.6 840 255 463 0.1 999 1.1 0.0 53.0
GPT-3.5 99.0 710 89.7 953 458 560 445 954 362 00 633

+ regulation - - - - - - - - 69.0 - -
+refinement 99.8 88.1 978 96.1 625 73.1 465 954 388 0.0 69.8
+ refinement* 100.0 90.1 97.1 96.7 723 83.8 50.1 955 412 44 731

Table 3: Format faithfulness rate (%) on FORMATBENCH. Format refinement with thoughts are noted with an

asterisk (*). The dash symbol (-) signifies that format regulation is not applicable to the task.

In classification tasks, while LLMs succeed in
selecting legal options in static classification (QC),

7.1 Format Faithfulness Perspective

they still suffer from a format faithfulness drop in Format Format Format
dynamic scenarios (Agent). In sequence labelling Regulation Tuning Refinement
tasks, although capable LLMs can easily adapt to magnitude) () ()
both linearized and copied strategies, they may stability o o) ®
face challenges when dealing with tasks related to robustness O o ®

text length (CapGen). Finally, in the most flexible
generation tasks, even the best LLMs obtain only
limited format faithfulness when dealing with unfa-
miliar formats (MTT, AcroP, XDLGen) or number-
related tasks (Parse), due to the lack of format in-
struction understanding and obedience.

Outlier Discussion There is an intriguing ex-
ception found in Agent task, where smaller mod-
els demonstrate superior faithfulness compared to
larger ones. It is important to note that this does
not necessarily imply that smaller models produce
better planning and action, as is demonstrated in
Section 7.2. In fact, smaller models can choose le-
gal but futile action in the agent process, resulting
in a action trace that adheres faithfully to format
specifications but lacks practical utility, as the ex-
ample given in Appendix D.

7 Analysis

In this section, we comprehensively compare for-
mat regulation, format tuning, and format refine-
ment with respect to their effectiveness in improv-
ing format faithfulness and general quality.

Table 4: Comparison among format adaptation methods
in terms of magnitude, stability, and robustness in im-
proving format faithfulness. Symbols @, @, and O refer
to high, medium and low performance respectively.

We assess and compare the adaptation meth-
ods for improving format faithfulness, considering
three key aspects: (1) magnitude, which pertains to
the level of improvement; (2) stability, referring to
the consistency of the improvement; and (3) gener-
alization, indicating the extent to which the method
can be applied to unseen tasks. The summarized
findings are presented in Table 4.

Format regulation is proven to be highly effec-
tive in applied tasks. However, this approach needs
specific design and implementation for each task
and is not applicable in all tasks. Moreover, logits
are unavailable for API calling models like GPT-
3.5, thus restricting the application of generation-
time intervention approaches.

Format tuning demonstrates effectiveness in both
fine-tuned tasks (such as QA and NER) and other
tasks (such as Agent and MTT), validating the

Models QC Agent QA NER CapGen MTT AcroP FTime Parse
Acc Score Fl1 F1 F1 BLEU Score Acc F1
LLaMA 250 2.1 61.8 53.2 10.7 14.5 0.0 40.6 0.2
+ regulation 140 43 - - - - 53.9 - 3.8
+ tuning 11.2 14 683 557 55.3 8.5 0.1 6.1 0.3
+ refinement 254 2.2 61.8 533 10.7 14.7 0.0 40.7 0.3
+ refinement* 26.0 2.1 61.8 53.2 10.7 14.9 0.0 46.8 0.3
LLaMA?2 358 58 613 620 54.9 17.0 0.1 54.1 0.6
+ regulation 34.6 34 - - - - 57.1 - 4.7
+ tuning 69.6 27 739 78.1 58.7 14.6 0.1 47.5 0.3
+refinement 36.0 6.0 614 62.0 54.9 17.2 0.1 54.1 0.8
+ refinement* 36.0 6.0 613 62.0 54.9 17.3 0.1 54.1 0.8
GPT-3.5 71.6 115 70.0 83.6 53.0 17.7 39.1 77.9 18.7
+ regulation - - - - - - - - 30.3
+refinement 722 134 72,1 843 54.7 18.5 40.8 77.9 19.8
+ refinement* 71.8 13.6 71.6 84.7 53.3 19.1 439 77.9 20.8

Table 5: General quality on FORMATBENCH. All values are scaled by 100. Format refinement with thoughts are
noted with an asterisk (*). The dash symbol (-) signifies that format regulation is not applicable to the task.

hypothesis that fine-tuning on certain tasks can
improve the holistic format faithfulness of LL.Ms.
However, it is noted that the improvement is not
consistent due to the task feature variance and the
catastrophic forgetting phenomenon.

Format refinement exhibits stable and favorable
effects in improving format faithfulness, and in-
troducing reflecting thoughts does have a signif-
icant positive effect. It is worth noting that, the
effectiveness of refinement is closely related to the
capabilities of LLMs, as GPT-3.5 benefits signifi-
cantly from refinement, while the improvement is
relatively modest for LLaMA and LLaMA?2. This
phenomenon is consistent with the observations in
related work (Madaan et al., 2023), that smaller
models struggle significantly in the refinement pro-
cess. Specifically, LLaMA and LLaMA?2 often fail
to generate meaningful critics feedback (thoughts),
and tend to repeat the same output as previous ones.

7.2 General Quality Perspective

In practical scenarios, both format faithfulness and
general quality should be taken into consideration.
For example, a commercial machine translation
system with a terminology module should not only
comply with prescribed rules for accurately trans-
lating trademarks and terminologies, but also pro-
vide precise translations for general language. Con-
sequently, it is crucial to assess the efficacy of adap-
tation methods in ensuring the general quality.
The evaluation of general quality on FORMAT-

BENCH is presented in Table 5. Comparing the
results with the format faithfulness rate in Table 3,
it can be observed that format refinement leads to
an enhancement in both general quality and format
faithfulness. The improvement is especially signifi-
cant with GPT-3.5 which exhibits better reflection
and refinement ability. Meanwhile, the improve-
ment in general quality is not consistent for format
tuning, as fine-tuned models tend to suffer from
catastrophic forgetting on unfine-tuned tasks.

8 Conclusion

In this paper, we introduce the concept of format
faithfulness for the first time, thereby examining
the capacity of LLMs in adhering to format spec-
ifications. A formal definition and a comprehen-
sive taxonomy of format faithfulness are provided.
Based on the taxonomy, we develop FORMAT-
BENCH, a collection of extensive tasks for LLM
format faithfulness evaluation. In the construction
of FORMATBENCH, apart from adapting existing
datasets, we introduce two novel tasks to fully
cover the categories in the taxonomy. Experimental
results on FORMATBENCH reveal the limitations of
current LLMs in adhering to format specifications
and generating well-structured text. Furthermore,
we design and implement format adaptation ap-
proaches, including format regulation, format tun-
ing, and format refinement. The effectiveness of
these approaches in improving format faithfulness
is validated on FORMATBENCH.

Limitations

In this paper, we design and implement format tun-
ing, as a means to improve the overall format faith-
fulness of LLMs by fine-tuning on format-related
tasks. Experimental results confirm the efficacy of
format tuning and demonstrate its ability to gen-
eralize to out-of-training tasks, particularly those
with similar format requirements. However, it is
also noted that format tuning suffers from signif-
icant catastrophic forgetting among tasks, which
leads to unbalanced or even decreased performance
in format faithfulness and general quality. Two
limitations in format tuning implementation con-
tribute to the catastrophic forgetting phenomenon.
Firstly, the data used in fine-tuning lack variations,
as only four specific tasks are utilized and no gener-
ation task is incorporated. Secondly, no regulation
technique is employed in fine-tuning to mitigate
catastrophic forgetting. A more diverse training set
encompassing a broader range of categories within
our proposed taxonomy combined with advanced
regulation techniques could potentially alleviate
the catastrophic forgetting problem.

In conclusion, our implemented format tuning
may not fully realize its potential in improving
format faithfulness due to the inadequacy in fine-
tuning data and the absence of regulation tech-
niques. We leave the investigation into more effec-
tive format tuning as a direction for future research.

Ethical Considerations

Dataset Collection We respect the terms of use
of all the datasets we used with respect to academic
purposes. In the event that it is required, our redis-
tribution of the adapted datasets is under the same
license as the original ones. Moreover, the detailed
dataset collection process is shown in Appendix C.

Human Annotation Two authors of this paper
serve as the annotators of our proposed FTime task.
The annotators are informed to avoid and reject
harmful annotations related to attacks or discrim-
ination. After annotation, we randomly sample
3% data to conduct a cross-validation involving
re-annotation by a different annotator. The con-
sistency between the initial annotation and the re-
annotation is found to be 98.01%, thereby confirm-
ing the trustworthiness of our annotated data.

Further Implications The lack of format faith-
fulness can pose a significant risk to the safety of
LLM, particularly in the context of LLM-based

agent grounding in the real world, as format errors
may lead to unexpected behaviors. We believe this
paper can inspire future research into the safety of
LLMs.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Trischler Adam, C6té Marc-Alexandre, and Lima Pedro.
2019. First textworld problems, the competition:
Using text-based games to advance capabilities of ai
agents.

Rajat Agarwal and Katharina Kann. 2020. Acrostic
poem generation. arXiv preprint arXiv:2010.02239.

Xuefeng Bai, Jialong Wu, Yulong Chen, Zhongqing
Wang, and Yue Zhang. 2023. Constituency parsing
using llms. arXiv preprint arXiv:2310.19462.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Hyung Won Chung, Le Hou, Shayne Longpre, Bar-
ret Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi
Wang, Mostafa Dehghani, Siddhartha Brahma, et al.
2022. Scaling instruction-finetuned language models.
arXiv preprint arXiv:2210.11416.

Nicola De Cao, Gautier Izacard, Sebastian Riedel, and
Fabio Petroni. 2020. Autoregressive entity retrieval.
arXiv preprint arXiv:2010.00904.

Zhibin Gou, Zhihong Shao, Yeyun Gong, Yelong
Shen, Yujiu Yang, Nan Duan, and Weizhu Chen.
2023. Critic: Large language models can self-correct
with tool-interactive critiquing. arXiv preprint
arXiv:2305.11738.

Eduard Hovy, Laurie Gerber, Ulf Hermjakob, Chin-
Yew Lin, and Deepak Ravichandran. 2001. Toward
semantics-based answer pinpointing. In Proceedings
of the First International Conference on Human Lan-
guage Technology Research.

Edward J Hu, Phillip Wallis, Zeyuan Allen-Zhu,
Yuanzhi Li, Shean Wang, Lu Wang, Weizhu Chen,
etal. 2021. Lora: Low-rank adaptation of large lan-
guage models. In International Conference on Learn-
ing Representations.

Alina Karakanta, Matteo Negri, and Marco Turchi. 2020.
MuST-cinema: a speech-to-subtitles corpus. In Pro-
ceedings of the Twelfth Language Resources and
Evaluation Conference, pages 3727-3734, Marseille,
France. European Language Resources Association.

https://www.microsoft.com/en-us/research/blog/first-textworld-problems-the-competition-using-text-based-games-to-advance-capabilities-of-ai-agents/
https://www.microsoft.com/en-us/research/blog/first-textworld-problems-the-competition-using-text-based-games-to-advance-capabilities-of-ai-agents/
https://www.microsoft.com/en-us/research/blog/first-textworld-problems-the-competition-using-text-based-games-to-advance-capabilities-of-ai-agents/
https://www.microsoft.com/en-us/research/blog/first-textworld-problems-the-competition-using-text-based-games-to-advance-capabilities-of-ai-agents/
https://www.microsoft.com/en-us/research/blog/first-textworld-problems-the-competition-using-text-based-games-to-advance-capabilities-of-ai-agents/
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://www.aclweb.org/anthology/H01-1069
https://aclanthology.org/2020.lrec-1.460

Jacob Devlin Ming-Wei Chang Kenton and Lee Kristina
Toutanova. 2019. Bert: Pre-training of deep bidirec-
tional transformers for language understanding. In
Proceedings of NAACL-HLT, pages 4171-4186.

Nitish Shirish Keskar, Bryan McCann, Lav R Varshney,
Caiming Xiong, and Richard Socher. 2019. Ctrl: A
conditional transformer language model for control-
lable generation. arXiv preprint arXiv:1909.05858.

Sachin Kumar, Biswajit Paria, and Yulia Tsvetkov. 2022.
Gradient-based constrained sampling from language
models. In Proceedings of the 2022 Conference on
Empirical Methods in Natural Language Processing,
pages 2251-2277.

Piji Li, Haisong Zhang, Xiaojiang Liu, and Shuming
Shi. 2020. Rigid formats controlled text generation.
In Proceedings of the 58th annual meeting of the
association for computational linguistics, pages 742—
751.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Percy Liang, Rishi Bommasani, Tony Lee, Dimitris
Tsipras, Dilara Soylu, Michihiro Yasunaga, Yian
Zhang, Deepak Narayanan, Yuhuai Wu, Ananya Ku-
mar, et al. 2022. Holistic evaluation of language
models. arXiv preprint arXiv:2211.09110.

Bill Yuchen Lin, Ming Shen, Wangchunshu Zhou, Pei
Zhou, Chandra Bhagavatula, Yejin Choi, and Xiang
Ren. 2020. Commongen: A constrained text genera-
tion challenge for generative commonsense reason-
ing. In Automated Knowledge Base Construction.

Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler
Hallinan, Luyu Gao, Sarah Wiegreffe, Uri Alon,
Nouha Dziri, Shrimai Prabhumoye, Yiming Yang,
et al. 2023. Self-refine: Iterative refinement with
self-feedback. arXiv preprint arXiv:2303.17651.

Mitchell Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a large annotated
corpus of english: The penn treebank.

Grégoire Mialon, Roberto Dessi, Maria Lomeli, Christo-
foros Nalmpantis, Ram Pasunuru, Roberta Raileanu,
Baptiste Roziere, Timo Schick, Jane Dwivedi-Yu,
Asli Celikyilmaz, et al. 2023. Augmented language
models: a survey. arXiv preprint arXiv:2302.07842.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and Lei
Li. 2019. Cgmh: Constrained sentence generation
by metropolis-hastings sampling. In Proceedings
of the AAAI Conference on Artificial Intelligence,
volume 33, pages 6834-6842.

OpenAl. 2021.
openai.com.

gpt-3.5-turbo-instruct. https://

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.

10

2022. Training language models to follow instruc-
tions with human feedback. Advances in Neural
Information Processing Systems, 35:27730-27744.

Baolin Peng, Michel Galley, Pengcheng He, Hao Cheng,
Yujia Xie, Yu Hu, Qiuyuan Huang, Lars Liden, Zhou
Yu, Weizhu Chen, et al. 2023. Check your facts and
try again: Improving large language models with
external knowledge and automated feedback. arXiv
preprint arXiv:2302.12813.

Shrimai Prabhumoye, Alan W Black, and Rus-
lan Salakhutdinov. 2020. Exploring control-
lable text generation techniques. arXiv preprint
arXiv:2005.01822.

Lianhui Qin, Sean Welleck, Daniel Khashabi, and Yejin
Choi. 2022. Cold decoding: Energy-based con-
strained text generation with langevin dynamics. Ad-

vances in Neural Information Processing Systems,
35:9538-9551.

Yujia Qin, Shihao Liang, Yining Ye, Kunlun Zhu, Lan
Yan, Yaxi Lu, Yankai Lin, Xin Cong, Xiangru Tang,
Bill Qian, et al. 2023. Toolllm: Facilitating large
language models to master 16000+ real-world apis.
arXiv preprint arXiv:2307.16789.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, Ilya Sutskever, et al. Language mod-
els are unsupervised multitask learners.

Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and
Percy Liang. 2016. Squad: 100,000+ questions for
machine comprehension of text. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 2383-2392.

Erik Tjong Kim Sang and Fien De Meulder. 2003. In-
troduction to the conll-2003 shared task: Language-
independent named entity recognition. In Proceed-
ings of the Seventh Conference on Natural Language
Learning at HLT-NAACL 2003, pages 142-147.

Tim Schopf, Karim Arabi, and Florian Matthes. 2023.
Exploring the landscape of natural language process-
ing research. In Proceedings of the 14th Interna-
tional Conference on Recent Advances in Natural
Language Processing, pages 1034—1045.

Martin Seifrid, Robert Pollice, Andres Aguilar-Granda,
Zamyla Morgan Chan, Kazuhiro Hotta, Cher Tian
Ser, Jenya Vestfrid, Tony C Wu, and Alan Aspuru-
Guzik. 2022. Autonomous chemical experiments:
Challenges and perspectives on establishing a self-
driving lab. Accounts of Chemical Research,
55(17):2454-2466.

Kirill Semenov, Vilém Zouhar, Tom Kocmi, Dongdong
Zhang, Wangchunshu Zhou, and Yuchen Eleanor
Jiang. 2023. Findings of the wmt 2023 shared task
on machine translation with terminologies. In Pro-
ceedings of the Eighth Conference on Machine Trans-
lation, pages 663-671.

https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://www.aclweb.org/anthology/C02-1150
https://openai.com
https://openai.com
https://openai.com

Marta Skreta, Naruki Yoshikawa, Sebastian Arellano-
Rubach, Zhi Ji, Lasse Bjgrn Kristensen, Kourosh
Darvish, Alan Aspuru-Guzik, Florian Shkurti,
and Animesh Garg. 2023. Errors are useful
prompts: Instruction guided task programming with
verifier-assisted iterative prompting. arXiv preprint
arXiv:2303.14100.

Aarohi Srivastava, Abhinav Rastogi, Abhishek Rao,
Abu Awal Md Shoeb, Abubakar Abid, Adam Fisch,
Adam R Brown, Adam Santoro, Aditya Gupta, Adria
Garriga-Alonso, et al. 2023. Beyond the imitation
game: Quantifying and extrapolating the capabili-
ties of language models. Transactions on Machine
Learning Research.

Xiangru Tang, Yiming Zong, Yilun Zhao, Arman Cohan,
and Mark Gerstein. 2023. Struc-bench: Are large
language models really good at generating complex
structured data? arXiv preprint arXiv:2309.08963.

Hugo Touvron, Thibaut Lavril, Gautier [zacard, Xavier
Martinet, Marie-Anne Lachaux, Timothée Lacroix,
Baptiste Roziere, Naman Goyal, Eric Hambro, Faisal
Azhar, et al. 2023a. Llama: Open and effi-
cient foundation language models. arXiv preprint
arXiv:2302.13971.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Al-
bert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti
Bhosale, et al. 2023b. Llama 2: Open founda-
tion and fine-tuned chat models. arXiv preprint
arXiv:2307.09288.

Leandro von Werra, Younes Belkada, Lewis Tun-
stall, Edward Beeching, Tristan Thrush, Nathan
Lambert, and Shengyi Huang. 2020. Trl: Trans-
former reinforcement learning. https://github.
com/huggingface/trl.

Alex Wang, Yada Pruksachatkun, Nikita Nangia, Aman-
preet Singh, Julian Michael, Felix Hill, Omer Levy,
and Samuel R Bowman. Superglue: A stickier bench-
mark for general-purpose language understanding
systems.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel Bowman. 2018. Glue:
A multi-task benchmark and analysis platform for
natural language understanding. In Proceedings of
the 2018 EMNLP Workshop BlackboxNLP: Analyz-
ing and Interpreting Neural Networks for NLP, pages
353-355.

Jason Wei, Maarten Bosma, Vincent Zhao, Kelvin Guu,
Adams Wei Yu, Brian Lester, Nan Du, Andrew M
Dai, and Quoc V Le. 2021. Finetuned language mod-
els are zero-shot learners. In International Confer-
ence on Learning Representations.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in Neural
Information Processing Systems, 35:24824-24837.

11

Peng Xu, Mostofa Patwary, Mohammad Shoeybi, Raul
Puri, Pascale Fung, Animashree Anandkumar, and
Bryan Catanzaro. 2020. Megatron-cntrl: Control-
lable story generation with external knowledge using
large-scale language models. In Proceedings of the
2020 Conference on Empirical Methods in Natural
Language Processing (EMNLP), pages 2831-2845.

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,
and Dawei Song. 2023a. A survey of controllable
text generation using transformer-based pre-trained
language models. ACM Computing Surveys, 56(3):1-
37.

Kexun Zhang, Honggiao Chen, Lei Li, and William
Wang. 2023b. Syntax error-free and generalizable
tool use for llms via finite-state decoding. arXiv
preprint arXiv:2310.07075.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang,
Xiaolei Wang, Yupeng Hou, Yingqian Min, Beichen
Zhang, Junjie Zhang, Zican Dong, et al. 2023. A
survey of large language models. arXiv preprint
arXiv:2303.18223.

A Detailed Implementation

In this section, we outline the detailed implemen-
tations of (1) standard generation without format
adaptation, (2) format regulation, (3) format tun-
ing, and (4) format refinement. Notably, during the
entire process of LLM generation, we employ the
greedy decoding strategy, where beam search is not
utilized and the token with the highest probability
is selected.

A. Standard Generation C. Format Refinement

Instruction .
{task description} #4#4# Instruction
{format specification} {task description}

{format specification}

{few-shot examples}
{few-shot examples}

Example

{input} ### Example
{input}
Answer:
Answer:

B. Format Tuning (e ameriess)

'The answer contains
,following format error(s):
1{format errors}

1

Instruction
{task description}
{format specification}

1
1
1
1
1
1 x N
1
1
1
1
1

Example 1 Thoughts:
{input} 1{thoughts}
1
Answer: :Corrected Answer:
{answer} e e oo

Figure 4: The prompt templates for standard generation
(A), foramt tuning (B), and format refinement (C).

A.1 Standard Generation

The vanilla approach involves combining task in-
structions with few-shot examples to formulate a

https://github.com/huggingface/trl
https://github.com/huggingface/trl
https://github.com/huggingface/trl

prompt. Subsequently, LLMs generate the answer
directly based on the provided prompt. The prompt
design is illustrated in Figure 4 A.

A.2 Format Regulation

QC & Agent In classification tasks including
QC and Agent, we aim at constraining the LLM
generation to exclusively legal options. In doing
so, we build a Trie consisting only token sequence
representations of the legal options and mask all
the tokens that do not fall within the Trie during
the generation process.

AcroP In the case of AcroP, similar to classifica-
tion tasks, we enforce the LLMs to produce the des-
ignated character in the given message. However,
the constraints are only applied when the generated
text ends with a line break. Moreover, we actively
terminate the generation process once the acrostic
message has been fully composed and a new line
break is generated.

Parse In the post-generation edition of the Parse
task, we determine the number of left and right
brackets. Based on this calculation, we add left
brackets to the beginning of the output if there is
an excess of right brackets, or append right brack-
ets if there is an excess of left brackets. Through
this editing process, we guarantee that the bracket
sequence achieves a balance.

A.3 Format Tuning

Data Processing We randomly sample 4,000 in-
stances from each of the QC, QA, NER and Cap-
Gen tasks, resulting in a fine-tuning set contain-
ing 16,000 instances. We adapt each instance into
a piece of text by applying the prompt template
shown in Figure 4 B.

Tuning Configuration We conduct format tun-
ing with trl (von Werra et al., 2020) library. We
employ a completion only fine-tuning, where the
only the tokens of generated answers contribute
to gradients. Additionally, we use a parameter-
efficient tuning approach, namely Low-Rank Adap-
tation (LoRA) (Hu et al., 2021).

Hyper-Parameters The hyper-parameters of for-
mat tuning are listed in Table 6.

Computational Usage We use one NVIDIA
A800 80GB GPU to conduct format tuning.

12

learning rate 2e¢ — b
optimizer adamw
adam betas (0.9,0.999)
epoch 3
batch size 256

Ir schedule cosine
warm ratio 0.1

o 8
dropout 0
rank 16

target modules attention layers

Table 6: Format tuning hyper-parameters. The bottom
four lines are specifically related to LoRA.

A.4 Format Refinement Implementation

As is shown in Figure 3, format refinement includes
compiler errors and LLM reflections to improve
the format faithfulness. The employed prompt tem-
plate is shown in Figure 4 C.

The stopping criterion of the refinement process
includes (1) the format compiler detects no for-
mat errors, (2) the refinement step reaches the pre-
defined limit (five in our implementation), (3) the
prompt exceeds the maximum length supported by
the model, and (4) the model repeats one of the
previous answers.

B Detailed Metrics

B.1 Format Faithfulness

In this subsection, we list the format requirements
for each task in FORMATBENCH. An answer is
deemed to be faithfulness in format if it satisfies all
specified requirements.

QC The answer should be among the legal class
options.

Agent The answer should be among the admissi-
ble actions given by the game simulation engine.

QA The answer should be a segment of text, or
span, from the corresponding reading passage.

NER (1) The sentence after the insertion of NER
tags must be the same as the original sentence.
(2) Every opening tag (<PER>, <ORG>, <LOC> or
<MISC>) must be closed with a corresponding clos-
ing tag (</PER>, </ORG>, </LOC> or </MISC>).

CapGen (1) The sentence after the insertion of
separator signs must be the same as the original
sentence. (2) Each block must contain no more

than 2 lines. (3) Each line must contain no more
than 42 characters.

MTT The terms in the source language should
be translated as corresponding terms in the target
language according to the terminology translation
rules.

AcroP The first letter of each line should spell
the given string.

FTime (1) For non-recurring times, the format
should follow “YYYYMMDDTHHMMSS”, where “T” is
a separator. In cases where the “HHMMSS” part is
unspecified in the instruction, the use of "?" with
equal length is allowed for placeholder process-
ing. (2) For recurring times, the number of recur-
rences should follow "Rn", where "n" is the num-
ber of cycles, "-1" for infinite recurrence. The
triggering time adheres to the same format re-
quirements as non-recurring times. For the re-
curring time section, the format strictly follows
"PnYnMnDTnHNMnS". The three parts are spliced to-
gether to get the final result following the format
"Rn/YYYYMMDDTHHMMSS/PnYnMnDTnHNMnS".

Parse (1) The final outcome should be a string
with properly closed parentheses. (2) The sentence
after the insertion of brackets and tags must be the
same as the original sentence. (3) Labels should be
selected from the given label set. (4) Word-level
label must be assigned to a word in a leaf node. (5)
Phrase-level label must be assigned to a text span
in a non-leaf node. (6) Each subtree or word must
be specific to a given label, and vice versa.

XDLGen Generated XDL codes should pass the
compilation successfully without errors.

B.2 General Quality

This subsection outlines the metrics adopted in gen-
eral quality evaluation in Table 5.

QC We calculate the accuracy, which is the per-
centage of correctly predicted instances out of the
total instances in the test set, to evaluate classifica-
tion performance in the QC task.

Agent We take the inner score of the game pro-
vided by the game engine, representing the extent
to which the agent has reached the final goal. This
score is then divided by the maximum score to
assess the performance of the agent action trace.

13

QA We calculate the F1 score to measure the
average overlap between the prediction and ground
truth as previous works (Rajpurkar et al., 2016).

NER Similar to QA tasks, we use the F1 score
by treating the prediction and the ground truth as
bags of words (Sang and De Meulder, 2003).

CapGen As previous works (Karakanta et al.,
2020), we calculate the F1 score by counting the
correct_breaks and the total_breaks in prediction
and ground truth respectively.

MTT We calculate the BLEU-4 score between
the reference translation and the hypothesis for
MTT task evaluation.

AcroP Following previous work (Agarwal and
Kann, 2020), we utilize GPT-4-0125-preview to
score generated acrostic poems based on four as-
pects: poetic essence, thyme, content, and readabil-
ity. Each aspect is scored from O to 5, with 0 being
the lowest and 5 being the highest.

* Poetic essence: Does the poem embody the
spirit of poetry and feel like a genuine piece
of verse?

* Rhyme: Does the poem display a sense of
rhyme?

* Content: How closely does the content of the
poem relate to the provided acrostic words?

» Readability: How coherent are the vocabulary
and grammar used in the poem?

Poems that fail to meet the requirements of the
acrostic format often cannot form a poem. There-
fore, we directly assign them zero scores in total.

FTime We evaluate the accuracy of the results.
We give a full score if the result matches the refer-
ence exactly, and grant partial credit for partially
correct answers. Specifically, for non-cyclic cases,
if the result is misclassified as cyclic but the trigger-
ing time is correct, we assign % score. For cyclic
cases composed of three parts, each correct part
earns % If the answer is misclassified as non-cyclic
but the triggering time matches, % score is awarded.

Parse We calculate the F1 score as previous
study!. Combining symbol, beginning, and ending
into a constituent, we can get candidate brackets
and gold standard brackets in prediction and ground
truth respectively.

1https://www.cs.princeton.edu/courses/archive/
fall19/cos484/lectures/lec1@.pdf

https://www.cs.princeton.edu/courses/archive/fall19/cos484/lectures/lec10.pdf
https://www.cs.princeton.edu/courses/archive/fall19/cos484/lectures/lec10.pdf

C Dataset Details

AcroP We collect the acrostic poem dataset from
Poem Hunter?, focusing on the acrostic category to
gather 927 acrostic poems via web scraping. We ad-
ditionally combine Kaggle Poems Dataset® acros-
tic poems with these data. To ensure data quality
and consistency, we eliminate redundant punctu-
ation and standardize poem lines, retaining only
the acrostic portion. Moreover, we filter out po-
ems that do not meet acrostic requirements, such
as initial letters failing to form coherent words or
lacking relevance, to maintain data accuracy. The
processed dataset undergoes manual inspection to
verify quality and integrity, resulting in a dataset of
987 valid acrostic poems.

FTime Following ISO 8061 standard*, we
define the time format for FTime and cat-
egorize them into non-recurring time format
and recurring time format. The non-recurring
format is represented as "YYYYMMDDTHHMMSS",
and the recurring format is represented as
"Rn/YYYYMMDDTHHMMSS/PnYnMnDTnHNMNS".

In the definition of FTime task, we categorize
the instructions into three classes. In the first cat-
egory, the provided instruction contains an event
interval (such as "remind me in 20 minutes"), and
the final result is the reference time plus this time
interval. In the second category, the instruction pro-
vided contains a specific time (such as "tomorrow
morning at 8 o’clock"). The final result needs to be
obtained based on the reference time and the time
in the instruction. In the third category, the instruc-
tion provided includes a recurring event (such as
"at 10 a.n. every Monday"). The final outcome re-
quires determining the number of recurrences, the
recurrence interval, and identifying the time of the
first event trigger based on the reference time. The
format in the first and second categories forms a
non-recurring time, which that in the third category
constitutes a recurring time. An LLM is to generate
a time representation in accordance to the format
based on the reference time, the given instruction,
and the category to which the instruction pertains.

In the construction of FTime, three components
need to be considered, namely reference time, nat-
ural language instruction, and the result. All the
reference times and their corresponding category

2https://www.poemhunter . com/

3https ://www.kaggle.com/datasets/michaelarman/
poemsdataset

*https://en.wikipedia.org/wiki/IS0_8601

14

tags are automatically generated in advance. We
compose the instruction part through two meth-
ods, including slot filling and manual composition.
For slot filling method, we first design templates
with placeholders for a time slot and an event slot.
Then, for each of the three classifications men-
tioned above, we prepare a set of events to be filled
in. Subsequently, several templates are randomly
selected for each event, and the event slot is filled
accordingly. In this way, we generated 4537 in-
struction instances. To diversify the data, we man-
ually compose another 500 instruction instances.
These manually composed data are not limited by
the slot filling framework, thus obtaining better
flexibility and higher difficulty. Combining the
two parts together, we develop 5036 pieces of in-
struction in total. Given a reference time and a
instruction, the corresponding result is annotated
manually. After annotation, we randomly sample
3% data to conduct a cross-validation involving
re-annotation by a different annotator. The con-
sistency between the initial annotation and the re-
annotation is found to be 98.01%, thereby confirm-
ing the trustworthiness of our annotated data.

D Futility Analysis

An example of futility phenomenon in LLaMA?2 is
shown in Figure 5.

Engine

‘ﬁ Check the cookbook in the ketchen for the

H-j recipe. Once done, enjoy your meal.
LLaMA2

-]

e > go west

ao
Engine

‘ﬁ -= Livingroom =-

H-j You are in the place called livingroom......
LLaMA2

-]

o > go east

ao
Engine

‘ﬁ -= Bedroom =-

H-j You've entered a bedroom
LLaMA2

*-% > go west

ao
Engine

:ﬁ -= Livingroom =-

H-j You are in the place called livingroom......

Figure 5: An instance of Agent task, where LLaMA2
repeatedly performs "go east" and "go west". The repeti-
tive futile behavior results in an action trace that adheres
faithfully to format, but lacks practical utility.

https://www.poemhunter.com/
https://www.kaggle.com/datasets/michaelarman/poemsdataset
https://www.kaggle.com/datasets/michaelarman/poemsdataset
https://en.wikipedia.org/wiki/ISO_8601

	Introduction
	Related Work
	Definition and Taxonomization
	Definition
	Taxonomy

	FormatBench
	Classification Tasks
	Sequence Labelling Tasks
	Generation Tasks

	Format Adaptation Methods
	Format Regulation
	Format Tuning
	Format Refinement

	Experiments
	Settings
	Results

	Analysis
	Format Faithfulness Perspective
	General Quality Perspective

	Conclusion
	Detailed Implementation
	Standard Generation
	Format Regulation
	Format Tuning
	Format Refinement Implementation

	Detailed Metrics
	Format Faithfulness
	General Quality

	Dataset Details
	Futility Analysis

