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Abstract

Visual reasoning requires multimodal perception and commonsense cognition of
the world. Recently, multiple vision-language models (VLMs) have been proposed
with excellent commonsense reasoning ability in various domains. However, how
to harness the collective power of these complementary VLMs is rarely explored.
Existing methods like ensemble still struggle to aggregate these models with
the desired higher-order communications. In this work, we propose Cola, a
novel paradigm that coordinates multiple VLMs for visual reasoning. Our key
insight is that a large language model (LLM) can efficiently coordinate multiple
VLMs by facilitating natural language communication that leverages their distinct
and complementary capabilities. Extensive experiments demonstrate that our
instruction tuning variant, Cola-FT, achieves state-of-the-art performance on
visual question answering (VQA), outside knowledge VQA, visual entailment, and
visual spatial reasoning tasks. Moreover, we show that our in-context learning
variant, Cola-Zero, exhibits competitive performance in zero and few-shot
settings, without finetuning. Through systematic ablation studies and visualizations,
we validate that a coordinator LLM indeed comprehends the instruction prompts
as well as the separate functionalities of VLMs; it then coordinates them to enable
impressive visual reasoning capabilities.

A bus is traveling down a street with a bus.

Mass transportation system is the largest 
public transport system in the world.

One.

Two.

How many vehicles have headlights on? 

(A) One
(B) None
(C) Two
(D) Three

How many vehicles have 
headlights on?

Two.

Ensemble

Ensemble

Answer
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(a) Comparison between Paradigms 

(b) Example Visual Reasoning Task: VQA (c) Cola Solution to the Example VQA

Action ① - VLMs describe the visual context.

Action ③ - LLM coordinates and answers.

Action ② - VLMs answer the question.

VLM-1 VLM-2 VLM-1 VLM-2

Figure 1: We propose, Cola, using a coordinative language model for visual reasoning. Cola coor-
dinates multiple pretrained VLMs based on the visual context and plausible answers they provide.
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1 Introduction

Visual reasoning is a crucial task that demands models to not only comprehend and interpret visual
information but also to apply high-level cognition to derive logical solutions [40, 120, 60]. The field
has received significant attention from the machine learning community because of its potential
to enable a wide range of intelligent applications, such as intelligent tutoring systems [5, 94, 69],
automated image captioning [103], and virtual assistants [88, 50]. To perform visual reasoning
effectively, a model must possess both visual perception capabilities and strong logic reasoning
abilities.

While classic visual reasoners typically rely on complex architectures [117, 61, 116] or are unable
to generalize beyond the training dataset [121, 72], recent advancements in large pretrained models
have shown that vision-language models (VLMs) can achieve impressive performance on visual
reasoning tasks even under zero-shot settings [104, 52, 51, 49, 48, 3]. Meanwhile, large language
models (LLMs) have also demonstrated robust zero-shot commonsense reasoning abilities on the
natural language processing (NLP) applications [8, 15, 109]. Several recent studies have attempted
to combine such complementary VLMs and LLMs for visual reasoning. For example, PICa [115]
utilizes image captioning models to generate textual prompts for GPT-3 [8], and adapts GPT-3
to solve the visual question answering (VQA) tasks in an in-context few-shot learning manner.
Socratic Models [123] allow VLMs and LLMs to communicate through prompt engineering to unlock
zero-shot multimodal reasoning capabilities.

On the premise that current studies have focused on the interactions among heterogeneous models
(specifically, among VLM and LLMs), in this work, we shift to examine how to reconcile homoge-
neous expert models (e.g., multiple VLMs) with an LLM in a coordinative paradigm. Inspired by
the findings in CICERO [65] that LLMs capture strong strategic planning and negotiation abilities in
coordinating multiple agents, we propose Cola, a novel model ensemble approach that utilizes
an LLM as the coordinator in between multiple VLMs. A key finding of this study is that given
multiple VLMs with different preferred patterns in describing the visual context and predicting plausi-
ble answers in natural languages, an LLM can coordinate and integrate their respective strengths
efficiently and effectively. We present two variants of Cola, namely Cola-FT and Cola-Zero,
where FT corresponds to an instruction finetuning approach and Zero stands for an in-context learning
approach to adapt the coordinator LLM for visual reasoning. Figure 1 provides an overview of Cola
and conventional model ensemble approaches.

Existing work on model ensembles usually focuses on manipulating model weights [36] or predictions
[111, 22], while remaining cumbersome, if possible, to implement on prevalent end-to-end black box
model APIs, like GPT-4 [70], Google Bard, Anthropic Claude, etc. To address this issue, prompt
ensembles [107, 106, 73] sample model outputs (e.g., rationales) in natural languages to boost chain-
of-thought reasoning [109]. Recent studies on augmented LLM such as [86, 93, 58] have delved
into developing a comprehensive strategy that enables LLMs to utilize external tools. These tools
comprise multiple off-the-shelf models, web search engines, Python functions [97], and rule-based
modules, which are instrumental in performing complex tasks. Despite these efforts, the power of
prompt ensembles to aggregate multiple models remains untouched. In contrast, we show that Cola
leverages language prompts generated from multiple expert models to make model ensembles.

Systematic experiments demonstrate that Cola performs at the pinnacle of ability on VQA, out-
side knowledge VQA, visual entailment, and visual spatial reasoning tasks. Specifically, Cola-
FT achieves state-of-the-art performance on A-OKVQA [89], OK-VQA [63], e-SNLI-VE [21], and
VSR datasets [56], even when compared with methods that adopt larger models or require more
training computations. Cola-FT also demonstrates competitive capabilities on VQA v2 [27], and
compositional reasoning tasks (GQA [35] and CLEVR [40]). Perhaps surprisingly, we find that
Cola-Zero demonstrates comparable performance without finetuning, as an emerging ability of
larger language models. Compared to a single VLM and ensemble modeling, both Cola-FT and
Cola-Zero improve the performance substantially across most datasets. They are even effective with
the recent large multimodal models like InstructBLIP [18] which embeds a pretrained LLM inside
itself. Besides, we conduct a thorough analysis of perturbed VLM caption or plausible answer labels
and saliency visualization to investigate how Cola recognizes each VLM’s individual functionalities
and then performs coordination behaviors. We conjecture that, in principle, any language-expressing
reasoning task can be usefully augmented with coordinative language models that learn to aggregate
multiple expert models, even via in-context learning.
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In summary, our contributions are as follows:

• Cola: a novel paradigm that utilizes a language model as a coordinator between multiple
vision-language models to integrate their respective strengths for visual reasoning (§2).

• State-of-the-art performance: Cola achieves the pinnacles on a challenging suite of diverse
visual reasoning tasks and datasets(§3.2).

• Systematic analysis: our experiments reveal how Cola comprehends the instruction prompts,
then coordinates them to capture impressive visual reasoning capabilities (§3.3, §3.4, §3.6).

2 Cola

We formulate various visual reasoning tasks as a multi-class classification problem for simplicity.
Given an image v ∈ V and a question-like prompt q ∈ Q, the reasoner is required to select an answer
a from the candidate set A = {a}. In the case that the reasoner outputs a text sequence sv,q, we
map s to a prediction P (v, q) = sim(T (sv,q), T ({a})) where T transforms text sequences into text
embeddings (we use a all-mpnet-base-v2 model [81] here), and sim denotes cosine similarity.

Ensemble Modeling aggregates multiple models’ predictions in order to improve the overall
performance (Figure 1a). For instance, one common practice is averaging over n models:

P (v, q) =
1

n

n∑
i=1

Pi(v, q), (1)

where Pi(v, q) denotes the prediction of the ith model on input (v, q).

2.1 Cola & Templates General Prompt Template
Answer the following multiple-choice question by
OFA and BLIP’s description and their answers to
the visual question. OFA and BLIP are two differ-
ent vision-language models to provide clues.
OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>
Q: <Question>
OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>
Choices: <Choices to the question>
A:

Table 1: LM prompt template. The LM is instructed
to coordinate VLMs. Each question set defines visual
context, question (and choices), and plausible answers.

An overview of Cola is shown in Figure 1c.
We use OFA [104] and BLIP [52] as the
VLMs. LLMs include encoder-decoder
(FLAN-T5 [16]) and decoder-only (Vicuna-
1.5 [125], Mistral [39]) transformers. We
first prompt each VLM to output captions
and plausible answers independently. We
then concatenate the instruction prompt,
the question with choices, captions, and
plausible answers to fuse all contexts for
the LLM to reason, coordinate, and answer.

Image captioning gives important visual
context to reason from. We first employ ith

VLM to describe each image respectively to get visual descriptions ci(v). We use ofa-large for
OFA and blip-image-captioning-large for BLIP, both implemented by the Hugging Face
Transformers library [110].

Plausible answers by the VLMs to the question provide clues and patterns of VLMs for the LM to
consider and coordinate. Similar to captioning, we prompt each ith VLM using the image-question
pair to get a plausible answer âi(v, q). We use ofa-large for OFA and blip-vqa-base for
BLIP. Following OFA, our prompt template varies by task category. For the VQA tasks, we leave the
original question unchanged. For the visual entailment and visual spatial reasoning tasks, our prompt
template is " does the image describe "<text premise>" ?".

Prompt template is shown in Table 1. First, we designed an instruction prompt for LM to un-
derstand the requirement to coordinate VLMs to answer the visual reasoning question. We then
concatenate the captions from each VLM model, with the VLM identification labels in natural
languages (referred to as VLM caption labels in Figure 3), such as "OFA’s description: <OFA
caption>". Next, the question and its plausible answers provided by VLMs (with similar identi-
fication labels referred to as VLM answer labels in Figure 3) are concatenated. We follow [16] to
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include the choices of question (for multiple-choice questions in A-OKVQA, e-SNLI-VE, and VSR)
and "A:" to prompt for answers. Overall, the prompt for LLM input is given by:

Prompt(v, q) = Template({(ci(v), âi(v, q)) | i = 1, · · · , n}). (2)

More specific prompt templates on each dataset are provided in Appendix A.7.

2.2 Cola-FT

Instruction Tuning of Cola is initialized with pretrained checkpoints. Given the question q based
on the image v, the LM predicts the answer in the form of sequence

sv,q = LLM(Prompt(v, q)). (3)

To optimize the LLM, we use the language modeling loss for next-token prediction, with the teacher
forcing strategy. We only finetune the LLM (while not the VLMs) to follow the common paradigm of
ensemble modeling and simplify the method (Figure 1).

Inference deploys the same prompt as Table 1 to align with instruction tuning. We resort to the
greedy decoding strategy for conditional sequence generation at both instruction tuning and inference.

2.3 Cola-Zero

In-context learning is an emerging ability of the LLM models pretrained on documents of long-
range coherence. By learning input and output format from demonstration, in-context learners
learn to perform a downstream task simply by conditioning on a prompt consisting of input-output
examples [114]. The coordinator LLM, finetuned on instruction prompts with examples, is capable
of in-context few-shot learning and zero-shot learning (see Figures 6 and 7).

Cola-Zero is the in-context few-shot/zero-shot learning variant of Cola, without instruction tuning.
For in-context k-shot learning, we modify the prompt (Table 1) to include k input-output examples
sampled from the training set. For zero-shot learning, the prompt remains the same as Table 1.

3 Experiments

First, the experimental setups and basic methods are described in this section. The main quantitative
results are then presented in Table 2. Next, we analyze qualitative visualizations and scaling to verify
the effectiveness of the Cola paradigm in different settings. Further details on datasets, training,
evaluation, and experimental analysis can be found in Appendix A.

3.1 Baseline Methods

State-of-the-art Methods are in two broad categories, VLM alone, and VLM combined with LLM.
In Table 2, for a fair comparison, we detail the techniques (whether finetuning or in-context learning
is required) used for training VLMs and LLMs, and the number of training epochs.

Ensemble Modeling can be considered the most basic baseline for aggregating VLMs. It represents
the base performance that the combination of VLMs can achieve on the target task when not trained.
We implement an averaging ensemble (Equation (1)) of cosine similarity between VLM output and
each choice of a question as our ensemble baseline.

3.2 Overall Performance

In Table 2, we first observe that Cola-FT achieves state-of-the-art (SOTA) performance on four
datasets (A-OKVQA, OK-VQA, e-SNLI-VE, VSR), with merely 1 epoch of instruction tuning and
a medium-sized language model. In contrast, many previous SOTA methods require finetuning
more epochs than Cola-FT (e.g., VLC-BERT, PromptCap on A-OKVQA). Some also use much
larger language models, such as GPT-3 (175B) [8] and OPT (175B) [124]. Cola-FT outperforms
OFA-X on e-SNLI-VE, although the latter is finetuned on much more related tasks and data (c.f.
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Table 2: Overall performance. Model Spec. denotes specification where we summarize the detailed
VLMs and LMs adopted in each method and their parameters. FT and ICT denote finetuning and
in-context learning, respectively. Downward arrows indicate that fewer FT and ICT are more efficient.
The accuracy metric varies slightly in different datasets. In A-OKVQA, we report both val/test
accuracies, and val accuracy in VQA v2, OK-VQA, e-SNLI-VE, GQA, and CLEVR; test (zero-
shot split) accuracy in VSR. Upward arrows indicate higher accuracy is better. We mark the best
performance on each dataset with bold font and second-best with underlines.

Method Vision-language Model Large Language Model Accuracy ↑
Model Spec. FT ↓ Model Spec. ICL ↓ FT ↓

Visual Question Answering (VQA v2)
MetaLM [31] Pretrained Encoder 350k steps MetaLM (1.3B) - 350k steps 41.1

PNP-VQA [99] BLIP-Caption (446M) - UnifiedQAv2 [43] (11B) 0-shot - 63.3
BLIP-2 [51] CLIP [76] (1.2B trainable) 5 epochs FLAN-T5 (3B) - - 81.6
BLIP-2 [51] CLIP [76] (1.2B trainable) 5 epochs OPT [124] (6.7B) - - 82.2

Ensemble
BLIP+OFA (384M+472M)

- - - - 68.0
Cola-Zero - FLAN-T5 (11B) 2-shot - 69.1
Cola-FT - FLAN-T5 (11B) - 1 epoch 83.7

Outside Knowledge Visual Question Answering, Multiple Choice (A-OKVQA)
PromptCap [32] OFA (472M) 2 epochs GPT-3 (175B) 0-shot - - / 73.2

Img2Prompt [29] BLIP (384M) - OPT (175B) 0-shot - 42.9 / 40.7
Prophet-MC [90] MCAN-large [118] (56M) 6 epochs GPT-3 (175B) 16-shot - 76.4 / 73.6

Ensemble

BLIP+OFA (384M+472M)

- - - - 56.6 / 54.9
Cola-Zero - FLAN-T5 (11B) 0-shot - 65.4 / 61.6
Cola-Zero - FLAN-T5 (11B) 2-shot - 70.4 / 66.5
Cola-FT - FLAN-T5 (11B) - 1 epoch 77.7 / 74.0

Cola-Zero - FLAN-T5 (11B) 0-shot - 68.0 / 66.5
Cola-Zero - FLAN-T5 (11B) 2-shot - 72.3 / 72.3
Cola-FT InstructBLIP [18] - FLAN-T5 (11B) - 1 epoch 78.1 / 76.7

Cola-Zero XL+XXL - Vicuna (7B) 2-shot - 63.9 / 63.0
Cola-FT (3B+11B) - Vicuna (7B) - 1 epoch 68.6 / 66.9

Cola-Zero - Mistral (7B) 2-shot - 69.3 / 66.2
Cola-FT - Mistral (7B) - 1 epoch 74.3 / 71.8

Outside Knowledge Visual Question Answering, Direct Answer (OK-VQA)
PromptCap [32] OFA (472M) 2 epochs GPT-3 (175B) 0-shot - 58.8

Prophet [90] MCAN-large [118] (56M) 6 epochs GPT-3 (175B) 16-shot - 61.1

Ensemble

BLIP+OFA (384M+472M)

- - - - 39.2
Cola-Zero - FLAN-T5 (11B) 0-shot - 39.4
Cola-Zero - FLAN-T5 (11B) 2-shot - 39.4
Cola-FT - FLAN-T5 (11B) - 1 epoch 62.4

Visual Entailment (e-SNLI-VE)
e-UG [42] UNITE (86M) 400 epochs GPT-2 (117M) - 400 epochs 79.5

OFA-X [74] OFA (472M) 10 epochs - - - 80.9

Ensemble

BLIP+OFA (384M+472M)

- - - - 48.8
Cola-Zero - FLAN-T5 (11B) 0-shot - 56.2
Cola-Zero - FLAN-T5 (11B) 2-shot - 57.8
Cola-FT - FLAN-T5 (11B) - 1 epoch 81.6

Visual Spatial Reasoning (VSR)
VisualBERT [53] VisualBERT (110M) 100 epochs - - - 54.0
LXMERT [98] LXMERT (110M) 100 epochs - - - 63.2

ViLT [44] ViLT (88M) 30 epochs - - - 62.4

Ensemble

BLIP+OFA (384M+472M)

- - - - 51.4
Cola-Zero - FLAN-T5 (11B) 0-shot - 55.8
Cola-Zero - FLAN-T5 (11B) 2-shot - 54.9
Cola-FT - FLAN-T5 (11B) - 1 epoch 67.0

Compositional Question Answering, Real Images (GQA)
BLIP [52] BLIP (384M) - - - - 41.7
OFA [104] OFA (472M) - - - - 58.0

VisProg [30] ViLT (88M) - GPT-3 (175B) 8-shot - 50.5

Cola-FT BLIP+OFA (384M+472M) - FLAN-T5 (11B) - 1 epoch 60.3
Compositional Question Answering, Synthetic Images (CLEVR)

InstructBLIP [18] XL (3B) - - - - 33.7
XXL (11B) - - - - 16.6

Cola-Zero InstructBLIP - FLAN-T5 (11B) 2-shot - 34.4
Cola-FT XL+XXL (3B+11B) - FLAN-T5 (11B) - 1 epoch 54.3
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Question What type of shot is the 
man hitting? 

What appliance is next to 
an appliance that is highly 
decorated? 

Does this image describe 
"puppy running after a 
stick in grass" ? 

Does this image describe 
"The truck is away from 
the elephant" ? 

OFA caption tennis player hits a return 
to tennis player during 
their men's singles second 
round match at

a refrigerator covered in a 
variety of stickers. 

a coyote is seen in this 
undated file photo. (credit: 
ktla

an elephant is loaded onto 
a truck in yangon. photo: 
afp

BLIP 
caption

a man in a blue shirt is 
playing tennis 

a refrigerator with many 
pictures on it 

a dog running through the 
grass in a field 

a man riding a motorcycle 
with a truck behind him 

Choices ['forehand', 'backhand', 
'serve', 'dropshot'] 

['mixer', 'stove/oven', 
'refrigerator', 'microwave'] 

['yes', 'maybe', 'no'] ['yes', 'no']

OFA answer backhand stove/oven yes yes
BLIP answer forehand microwave no no
Cola-Zero 
answer

forehand stove/oven no no

Cola-FT 
answer

forehand stove/oven maybe no

Cola-FT 
answer
(swapped VLM 
answer labels)

backhand microwave maybe yes

Figure 2: Qualitative examples. The correct choices are underlined. Leftmost: a commonsense
question example of A-OKVQA; LLM follows the answer of BLIP. Left: a visual question example
of A-OKVQA; LLM follows the answer of OFA. Right: an example of e-SNLI-VE; LLM chooses
another option after coordination. Rightmost: an example of VSR; LLM predicts based on the caption
of OFA and the answer of BLIP. Cola-Zero answers are inferenced in zero-shot settings. The bottom
row, Cola-FT (swapped VLM answer labels), indicates that the LLM follows the answer of certain
VLMs based on their separate functionalities. LLM answers are associated with the distribution of
VLM answer labels.

Cola-FT is trained on each one dataset only in Table 2). In addition, the lighter variant Cola-Zero also
achieves comparable performance to most baseline methods through in-context few-shot and zero-
shot learning, without training any model parameter. To evaluate the performance of Cola with large
multimodal models that embed large language models inside, we also assembled InstructBLIP [18]
models based on FLAN-T5 XL and XXL and tested on A-OKVQA dataset. In Table 2, we report the
multiple-choice accuracies on A-OKVQA. See Appendix A.4 for direct answer results.

3.3 Qualitative Examples

In Figure 2, we exhibit several qualitative examples. The language coordinator determines the
correctness of VLM plausible answers implicitly, given their captions and the caption and answer
labels. The leftmost example (a tennis player playing) demonstrates a case when captions are not
informative to guide the LLM for predictions. Between OFA and BLIP’s plausible answers, the LLM
follows the answer of BLIP. In contrast, in the left example (an oven next to a fridge), again with
trivial captions, the LLM follows OFA’s plausible answer instead.

It’s all plausible answers, captions, VLM answer/caption labels, and the world knowledge the LLM
encodes in itself, that contribute to the final decision of the language coordinator. The rightmost
example presents the scenario of inconsistency between captions and answers. OFA describes the
image as "an elephant is loaded onto a truck in yangon." Though, it agrees that "the truck is away
from the elephant". With Cola-FT, The LLM coordinates OFA’s correct caption and BLIP’s correct
answer to make a reasonable prediction.

Notably, we observe a scenario in which captions can be more informative than plausible answers to
guide LLM. The right example (a puppy running) presents an uninformative image. Though neither
OFA nor BLIP succeeds in answering the question, the LLM chooses to answer with "maybe" based
on the given visual context. See Appendix A.5 and Appendix A.6 for more analysis on qualitative
examples and failure cases.
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3.4 Coordination Analysis

65 70 75
Accuracy (%)

FT: correct VLM answer labels
Eval: correct VLM answer labels

FT: correct VLM answer labels
Eval: swap VLM answer labels

FT: perturb VLM answer labels
Eval: perturb VLM answer labels

FT: perturb VLM caption labels
Eval: perturb VLM caption labels

VLMs' captions only

VLMs' plausible answers only

BLIP only + FLAN-T5

OFA only + FLAN-T5 #1

#2

#3

#4

#5

#6

#7

#8 (Cola-FT)

73.97

73.27

72.4

63.76

77.29

76.16

76.86

77.73

Figure 3: Ablation study results using a single VLM
(#1, #2 from top), VLMs’ plausible answers only (w/o
captions, #3), VLMs’ captions (w/o plausible answers, #4),
perturbed VLM caption/answer labels at instruction tuning
(#5, #6), and swapped answer labels at evaluation (#7). In
#6, the coordination prior cannot be learned by the LLM. In
#7, the coordination prior can be learned by the LLM, but
cannot be properly applied at evaluation. FT: instruction
tuning; Eval: evaluation.

Overall, Figure 3 validates the efficacy
of Cola to coordinate VLMs. All the ex-
periments use the same prompt template
as in Table 1 unless otherwise stated.
On A-OKVQA validation set, the per-
formance of a single VLM (w/o FLAN-
T5) is 50.83% for BLIP, or 54.75% for
OFA. To validate the effectiveness of
multi-VLM collaboration, we first ab-
late single-VLM variants of Cola-FT,
shown as #1 (OFA only, without BLIP)
and #2 (OFA only, without OFA) from
the top. As expected, both fall behind
Cola-FT (#8) by a large margin. With
both VLMs, we ablate VLMs’ captions
(#3) and VLMs’ plausible answers (#4),
which reveal that plausible answers are
much more significant in helping the
LLM answer visual reasoning questions.
Next, we perturb caption labels by swap-
ping the VLM caption labels at instruc-
tion tuning and evaluation (#5), specifi-
cally "OFA’s description: " and "BLIP’s
description: ", by a chance of 50%. Un-
der such settings, the LLM fails to ac-
quire the preferred patterns of VLM for
captioning, though the overall visual context is preserved. The results underperform Cola-FT, which
verifies that VLM caption labels improve Cola-FT performance. Notably, the VLM (plausible) answer
labels are more important to the LLM’s decision: a considerable gap exists between (#6) and Cola-FT.
In #6, the LLM fails to learn the separate functionalities of VLM when answer labels are perturbed.
This highlights that the performance gained from the coordination between BLIP and OFA, but not
the strong reasoning capabilities of the LLM, FLAN-T5.

Naturally, we ask what if the LLM can learn the patterns each VLM answers, but they cannot apply it
at inference? We input correct VLM answer labels at instruction tuning and swap labels at evaluation
(#7). Consequently, #7 falls behind Cola-FT with a smaller but still considerable margin. The
results suggest that learning and applying the separate functionalities of VLMs is important for the
coordinator LLM to make predictions. See Appendix A.9 for more ablation studies.

3.5 Scaling Cola

Methods A-OKVQA e-SNLI-VE

OFA-base (1) 45.76 52.60
OFA-base (2) 46.07 51.70
OFA-base (3) 45.73 52.33

Ensemble (majority voting) 44.79 52.71
Ensemble (average) 46.04 52.25

Cola-Zero (2-shot) 47.71 54.42
Cola-FT 48.85 56.92

Table 3: Performance of ensemble methods
based on three identical models.

Methods A-OKVQA e-SNLI-VE

OFA-tiny 39.03 50.20
OFA-medium 42.45 51.04
OFA-base 45.76 52.60

Ensemble (majority voting) 46.71 53.94
Ensemble (average) 46.62 54.41

Cola-Zero (2-shot) 49.37 57.63
Cola-FT 54.26 63.68

Table 4: Performance of ensemble methods
based on three different models.

Scaling Cola with More VLMs. By decoding the top-k (k=5) results from three identical (OFA-base)
models on the A-OKVQA validation set, both the answers and captions may exhibit slight variations.
Cola demonstrated significant performance improvements compared to a single VLM or ensemble, as
shown in Table 3. Furthermore, the performance gap between the ensemble baselines and Cola based
on three different models (OFA-tiny/medium/base) is even more substantial, as depicted in Table 4.
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2 4 6
# Models (OFA-Base)

47

48

49

Ac
cu
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cy

 (%
)

Cola-FT
Cola-Zero
(2-shot)

Figure 4: Scaling of #
Models.

We further scale the number of OFA-base and find that Cola-FT satures
at 5 VLMs (49.77%) and Cola-Zero (2-shot in-context learning) satures
at 3 VLMs (47.71%). We observe that long input harms the performance
of Cola-Zero, which is negative for scaling with more VLMs (Figure 4).
LMs with a larger context window size [12, 68, 9] are promising to further
improve the performance of Cola, which we leave for future works.

Scaling Model Size. We conduct experiments on scaling the coordina-
tor LLM size to see if there are ramifications when operating at a larger
scale. Figure 5 reveals that Cola-FT performance increases as the LLM
(FLAN-T5) model size increases. Notably, Cola-FT/small, with only 80M
parameters, could achieve 65% MC accuracy on A-OKVQA validation
set, which is far beyond our baseline methods (55%). Cola-Zero, under
the in-context learning paradigm, achieves competitive performance when the model grows to a
billion-parameter scale. This observation on Cola-Zero can be regarded as a proof-of-concept that
potentially reveals Cola-Zero’s emerging abilities (inherited from FLAN-T5 [16]) on visual reasoning
tasks at a relatively large scale. Cola-FT is effective with small models, but Cola-Zero is an emerging
ability on larger models only.

80M
Small

250M
Base

3B
XL

11B
XXL

Model size (# parameters)

40

50

60

70

80

Ac
cu

ra
cy

 (%
)

Cola-FT
Cola-Zero, in-context 2-shot learning
Cola-Zero, zero-shot learning

Figure 5: Cola performances versus the
LLM (FLAN-T5) sizes.
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Figure 6: Low-data Cola-FT and Cola-Zero perfor-
mances. x-axis is distorted for optimal display.

In-context Learning & Low-data Instruction Tuning. We conduct experiments on different data
scales to verify Cola’s performance varying from zero-shot to full-shot under in-context learning
and full-finetune paradigm. As shown in Figure 6, with Cola-Zero, few-shot exemplars substantially
improve performance compared to zero-shot learning. As [16, 108] revealed, exemplars potentially
help the model better understand the output format and understand the instructions in Table 1.
Cola-Zero for in-context few-shot learning outperforms zero-shot learning by a large margin, being
on par with low-data Cola-FT without instruction tuning. We also observe Cola-FT’s substantial
performance gain when finetuning shots increase to 1000 and beyond.

3.6 Saliency Visualization

As shown in Figure 7, we visualize the importance of the input prompt tokens by input-gradient
saliency feature attribution [19], implementing with Ecco [2]. The input tokens that are more relevant
to predict the output token "grass" are highlighted in darker colors. In the given example, both
Cola-FT and Cola-Zero predict the correct answer and find the relevant clues from visual context and
plausible answers. Figure 7(b) shows that Cola-Zero attributes the output more to the instructions in
the prompt template. This explains Cola-Zero’s competitive performance, a consequence of FLAN
instruction tuning [108]. After instruction tuning, Cola-FT focuses more on the most informative
parts of input: the question, choices, as well as VLMs’ plausible answers.

3.7 Can Cola-FT Explain its Answers?

We modify the prompt template of Cola so that the model would output the logical conduction
process, allowing us to observe the specific behaviors of the LLM during its coordination of VLMs.
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(a) Cola-FT Feature Attribution

(b) Cola-Zero Feature Attribution
Plausible answers

Question and choices

Instructions VLM labels
Figure 7: Visualization of input token saliency. We visualize the relevancy between input tokens
and the output token "grass" by feature attribution [19]. The more salient tokens are highlighted in
darker boxes. Cola-FT focuses on the question, choices, and VLMs’ plausible answers in (a). While
as shown in (b), Cola-Zero pays extra attention to instructions and VLM labels, as a consequence of
FLAN-T5 instruction tuning [16].

We finetune Cola-FT to output rationales before answers, by A-OKVQA ground truth rationales. In
the modified prompt, we ask the model to provide rationales. For the leftmost example of Figure 8,
Cola-FT outputs "Rationale: People might sit here to rest. The umbrellas are on the riverwalk. The
answer is:rest ". OFA gives a reasonable answer (but out of choices) to the question while BLIP gives
an irrelevant answer. In this case, both answers are wrong. However, either Cola-Zero or Cola-FT is
able to infer from captions and plausible answers to give the correct answer “to rest”. The rationale
suggests that the LLM understands the scene that the umbrellas are on the riverwalk and guesses that
people might sit here to rest based on commonsense. The final answer is correct. For the leftmost
example of Figure 11, the rationale output is "The bike is parked in a no parking zone. The bike
is parked next to a pedestrian crossing sign. The answer is:no parking". Both VLMs are wrong
in their plausible answers. OFA’s answer “boating” is semantically correct as the correct answer is
“kayaking”, though it’s not the correct answer because this is a multiple-choice question. Cola-Zero
gives a wrong answer “OFA” which is obviously wrong because “OFA” is the name of one of the
VLMs given in the prompt and it’s out of the choices too. However, Cola-FT gives the correct answer
“kayaking”, recognizing the correct choice based on prompts of captions and plausible answers after
being finetuned. Even though the OFA and BLIP captions fail to identify that the people in the water
are on a canoe. The LLM identifies that the people in the water are associated with the canoe. The
rationale is valid and helpful, though repetitive. The final answer is correct.

To force the LLM to output rationale does not improve the reasoning performance of Cola (w/t
rationale 74.3% vs. w/o rationale 77.7%, on A-OKVQA val set). This might be attributed to the
low-quality ground truth rationales provided by the A-OKVQA dataset that we use to train the
LLM. Such rationales are just short and objective descriptions of the scene, without suggesting the
underlying outside knowledge to answer the question. Therefore, training the LLM to output rationale
is harmful, though it derives insights into the LLM’s behaviors during reasoning.

3.8 Does Cola-FT Transfer across Tasks? Table 5: Cola-FT is generalizable across out-of-
distribution tasks. In most cases, the performances
surpass Cola-Zero (in-context 2-shot learning re-
sults in brackets) on target datasets.

Finetuned on A-OKVQA val e-SNLI-VE val VSR test

A-OKVQA 77.7 (70.4) 58.7 57.6

e-SNLI-VE 71.2 81.6 (57.8) 51.7

VSR 71.4 61.4 66.9 (55.8)

We examine Cola-FT’s generalization ability
across tasks. From Table 5, we observe the
zero-shot performances on target datasets after
instruction tuning on a certain source dataset.
Although each dataset varies in question types
and prompt templates (see detailed compar-
isons in Appendix A.7), we find that Cola-
FT maintains competitive performance when zero-shot transferred to a new task, outperforming
Cola-Zero in-context 2-shot learning and ensemble baselines (see also Table 2).

4 Related Work

Visual Reasoning. Beyond unimodal reasoning tasks such as question answering (QA) [100, 14, 119,
7], visual reasoning extends high-level cognition to visual domains, requiring an intelligent agent to
derive rational solutions [40, 35, 84, 120, 38, 112]. Several tasks have been introduced to address
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visual reasoning, such as VQA [1], in which models are expected to provide answers to questions
related to an image, and visual entailment [113], where the model is required to determine if a text
description is consistent with the visual content provided.

Classic visual reasoning methods employ an image encoder along with a reasoning block that utilizes
attention mechanisms [102, 121, 122, 105], neuro-symbolic methods [101, 117, 61], or external
knowledge [62, 28, 13].

Recent progress in large pretrained models has led to the development of LLMs that capture excep-
tional commonsense reasoning capabilities [78, 16, 15]. These LLMs can potentially replace the
reasoning module in visual reasoning tasks, and LLMs’ lack of perception can be compensated by
incorporating multiple VLMs trained on different domains [76, 104, 52]. However, there is still a
lack of research on how to harness the collective power of these separate VLMs for visual reasoning
tasks. More related works are in Appendix B.

Model Ensemble. Model ensemble is a powerful machine learning technique that combines the
predictions of multiple models to improve the overall performance of a given task [20]. The variance
and bias of the final predictions decrease, resulting in a more robust and accurate model [83]. To
this end, common methods include averaging [111], voting [37], interpolation [36], weighting the
predictions based on model performance [22], or stacking the models [10].

Ensemble methods have been challenging for generative tasks like visual reasoning, where a simple
combination is not applicable to heterogeneous models due to their enormous and varying input/output
token spaces. To address the issue, Socratic Models (SMs) [123] use prompt engineering to guide the
heterogeneous pretrained multimodal models through natural language discussions. With a similar
goal, [54] proposes a closed-loop iterative consensus optimization method to utilize the strengths of
individual models. However, previous methods do not fully adapt to the intrinsic patterns of different
models, particularly in the visual reasoning scenario. Recent studies, such as CICERO [65], have
shown that LLMs possess strong social intelligence in coordinating multiple agents, which inspires
us to reorganize pretrained mixed-modal models with a focus on adapting LLMs. More recently,
Toolformer [86] and HuggingGPT [93] further demonstrate LLMs’ abilities to leverage, coordinate,
and incorporate the results from external sources such as other models or even APIs to solve complex
tasks. While the external tools are called in sequential order in existing work, we study coordinating
multiple tools (specifically, expert models) in parallel in this work.

5 Discussion

Question Format. Datasets like VQA v2 and OK-VQA contain open-ended questions, while
A-OKVQA, e-SNLI-VE, and VSR use multiple-choice. Converting VQA v2 and OK-VQA to
classification introduces complexities for traditional ensemble methods, as evident in Table 2. Classic
methods struggle with generative models like API-based GPT-4, underscoring Cola’s value as an end-
to-end ensemble strategy for extensive (vision-)language models. Moreover, Cola-Zero’s efficiency
also relies on the question format – it’s easier for LLMs to answer when given choices like in
A-OKVQA. Conversely, Cola-FT finetunes LLMs to discern answer formats (Figure 7).

Limitations. Visual reasoning is a diverse topic. This work demonstrates the first step toward
applying end-to-end language models for visual reasoning. While the LLMs perform well on the
discussed datasets, there is a large body of visual reasoning tasks to evaluate in future works, such as
intention prediction and rationale explanation.

Future Works. First, exploring the use of non-parametric tools for visual reasoning would be
useful to enhance Cola’s performance. Second, Cola’s use can be extended to other reasoning and
planning tasks, such as image generation and action planning, by coordinating multiple models in
parallel. Third, by improving inter-model communications, Cola can be more interpretable and safe
for high-stakes applications.

Conclusion. In this paper, we have proposed a novel paradigm for visual reasoning that harnesses
the power of multiple VLMs by utilizing a coordination mechanism, where an LLM acts as a
coordinator who communicates with VLMs to integrate their respective strengths. Experiments show
that reasoning performance is substantially improved by LLM finetuning or in-context learning. Our
results provide a promising step towards building multi-component intelligent systems that capture
multimodal reasoning capabilities in a human-like way.
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A Experimental Details

In this section, we elaborate on our training and evaluation details, prompt templates, and more
qualitative examples for analysis.

A.1 Datasets

Our experiments are conducted on a challenging suite of three diverse visual reasoning tasks, including
outside knowledge VQA, visual entailment, and visual spatial reasoning. For each task, we select the
following dataset respectively.

Visual Question Answering v2 [27] (VQA v2) is a large-scale benchmark containing over 1
million images from the COCO dataset and more than 250,000 human-generated question-answer
pairs. The dataset is designed to test the ability of machine learning models to understand both the
visual content of an image and the meaning behind natural language questions. The questions in VQA
v2 cover a wide range of topics and are often open-ended, requiring models to reason and generalize
about the world. VQA v2 has been widely used to evaluate the performance of state-of-the-art models
in the field of computer vision and natural language processing.

Augmented Outside Knowledge VQA [89] (A-OKVQA) contains about 25k questions paired
with both multiple choice (MC) answer options. Unlike most existing VQA datasets, the questions in
A-OKVQA cannot often be answered by querying the knowledge base, but rather involve some type
of commonsense reasoning and outside knowledge about the situation portrayed in the image.

Outside Knowledge VQA [63] (OK-VQA) includes more than 14,000 questions that require
external knowledge to answer. The answers are provided in free-text direct answer form. Both
A-OKVQA and OK-VQA sample images from the COCO dataset, with no overlapping.

e-SNLI-VE [21] dataset is an extended version of SNLI-VE dataset [113], which contains about
190k question pairs and human-annotated natural language explanations for the ground-truth labels.
The text premise provides a statement about the contents of the image. The task is to determine
whether the statement is true or false based on the image content.

Visual Spatial Reasoning [56] (VSR) consists of 65 spatial relations (e.g., under, in front of, facing,
etc.) of instances in images. VSR has more than 10k question pairs, associated with 6940 images
from MS COCO [55].

GQA [35] dataset consists of 22M questions about various day-to-day images. The questions are
about compositional question answering based on scene graphs. In our evaluation, we only use the
text of the question as model input, but not the scene graphs.

Compositional Language and Elementary Visual Reasoning [40] (CLEVR) is a synthetic dataset
with questions that test various aspects of visual reasoning including attribute identification, counting,
comparison, spatial relationships, and logical operations. The dataset contains 700k questions in the
training set and 150k in the validation set.

A.2 Instruction Tuning Details

We adopt pretrained BLIP [52]1 and OFA [104]2 as VLMs unless specified otherwise, and freeze
their parameters without updating. The instruction tuning only happens on the language model part.
The training set of each dataset is used for finetuning. We use the whole training set unless otherwise
specified in the low-data instruction tuning discussion.

We use an AdaFactor optimizer [92] at the learning rate of 1e-4 for all Cola-FT experiments. The
batch size is by default set to 16, though we find Cola-FT insensitive to batch size. We finetune and
evaluate the models on NVIDIA V100 or A100 GPUs. The finetuning time is shown in Table 6.

1BLIP: https://github.com/salesforce/BLIP
2OFA: https://huggingface.co/OFA-Sys
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Following the common experiment protocols, we employ a teacher forcing and greedy decoding
strategy for fine-tuning.

V100 hours A-OKVQA e-SNLI-VE VSR GQA VQA v2 OK-VQA CLEVR

Cola-FT 12 8 8 24 80 12 24

Table 6: Cola-FT training time of FLAN-T5-XXL for each dataset. We finetune a subset of GQA.

A.3 Evaluation Details

As specified, we use the validation or test set multiple choice accuracy as the evaluation metric. In
A-OKVQA, we report val/test accuracy, and val accuracy in e-SNLI-VE, test (zero-shot split)
accuracy in VSR. For simplicity and consistency, we evaluate ablation experiments on A-OKVQA
validation set. Following the common experiment protocols [32, 74], we report the single run results
for performance comparison.

The exemplars at the inference of Cola-Zero are randomly sampled from the training set, i.e.,
supposedly help the LLM learn the input data distribution and output format but do not leak relevant
information to the evaluation question.

A.4 A-OKVQA Direct Answer Results

In addition to MC accuracy, we present the direct answer (DA) accuracy of models on the A-OKVQA
validation set in Tables 7 and 8.

FLAN-T5-Small FLAN-T5-Base FLAN-T5-XL FLAN-T5-XXL

Cola-FT 56.5 60.6 64.1 65.4
Cola-Zero (2-shot) 30.3 34.6 57.6 61.0
Cola-Zero (0-shot) 28.6 36.0 55.0 59.3

Table 7: A-OKVQA validation set DA performance. Extension of Figure 5.

1-shot 2-shot 3-shot 4-shot

Cola-Zero 60.2 61.0 60.7 59.2

Table 8: Cola-Zero in-context few-shot learning DA performance on A-OKVQA validation set.
Extension of Figure 6.

A.5 Qualitative Examples

In this section, we provide more qualitative examples on A-OKVQA (Figure 8), e-SNLI-VE (Fig-
ure 9), and VSR (Figure 10) datasets.

Due to the large span of the three figures, for better visibility, we put the detailed description directly
in each figure’s caption part. We illustrate how Cola-FT and Cola-Zero process the VLMs answers in
each example. Overall, in these examples, we can observe that even if BLIP and OFA provide wrong
answers, Cola can still present the correct answer based on the captions provided by OFA and BLIP,
as well as the choice set. This may illustrate how Cola amazingly accomplishes visual reasoning
tasks via coordinating BLIP and OFA.

A.6 Failure Cases

In Figure 11, we provide a few failed cases to analyze the specific behavior of Cola.

The leftmost example’s correct answer is kayaking, but there are no hints from OFA and BLIP’s
answers and captions. Therefore Cola-Zero incorrectly provides the answer OFA without sufficient
information as hints, while surprisingly Cola-FT answered correctly from OFA’s boating answer.
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Question Why might people sit 
here? 

The room can be 
described as what? 

In what type of location 
are they playing with the 
body board? 

What is in front of the 
monitor? 

OFA caption colorful umbrellas on the 
riverwalk

living room layout and 
decor medium size how to 
decorate a small living 
room dining combo mant

person, left, and person 
look at a painting of a 
great white shark. 

a desk with a computer, a 
lamp, a laptop, and a plant.

BLIP 
caption

a colorful umbrella 
umbrella with colorful 
umbrellas 

a dining room table with a 
glass table and chairs 

a man holding a surfboard 
while another man is 
standing next to him 

a desk with a computer 
and a lamp

Choices ['to testify', 'to rest', 'to 
shop', 'get tattoo'] 

['tidy', 'messy', 'on fire', 
'destroyed'] 

['room', 'beach', 'park', 
'store'] 

['keyboard', 'phone', 
'mouse', 'headphones'] 

OFA answer to eat living room bedroom a keyboard
BLIP answer yes dining room beach monitor
Cola-Zero 
answer

to rest tidy beach keyboard

Cola-FT 
answer

to rest tidy room keyboard

Figure 8: A-OKVQA qualitative examples. Leftmost: LLM doesn’t use BLIP and OFA’s answers,
but may observe from captions to derive the correct final answer. Left: As shown on the left, LLM
does not follow the wrong answers from OFA and BLIP but gets the correct answers from captions.
Right: With both OFA and BLIP answering incorrectly, LLM derives the correct one from both
VLMs’ captions and answers. Rightmost: After assessing the questions, answers, and captions, LLM
goes with OFA’s answer and rewrites it to match the expression in the choices. The correct choices
are underlined. Cola-Zero answers are given in zero-shot settings.

The left example again has insufficient information from captions. While BLIP answers no and OFA
answers yes, Cola-FT chooses to answer maybe, which looks natural but unfortunately picks the
wrong choice.

The right example’s captions contain enough information this time. But both Cola-FT and Cola-
Zero are misled by BLIP’s wrong answer no parking.

The rightmost example also has insufficient information from captions. In this situation, Cola has no
choice but to believe either BLIP or OFA’s answer, but it mistakenly prefers BLIP’s wrong answer.

A.7 Prompt Templates

Across three datasets, the prompt template is roughly the same, with minor differences mainly in
the format of the questions and choices. We list the prompt templates adopted in A-OKVQA and
e-SNLI-VE/VSR in Table 9 and Table 10, respectively.

A.8 Parameter-efficient Finetuning

To further reduce the computation cost in model adaptation, we explored parameter-efficient finetuning
(PEFT) techniques to reduce finetuning parameter counts. Specifically, we use (IA)3 [57], which
finetunes an overhead of 1 million parameters, equivalent to 0.01% of the full parameters of FLAN-
T5-XXL.

Compared to full finetuning, (IA)3 requires more iterations to converge. The performance of a
(IA)3 finetuned FLAN-T5-XXL model is on par with a fully finetuned FLAN-T5-Small (80 million
parameters) counterpart (Figure 5). Notably, the former is associated with more computation and
memory footprint as a consequence of more parameters in the forward pass.
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Question Does the image describe " 
A professional daredevil "?

Does the image describe " 
the dog is a shitz " ?

Does this image describe 
"Two twenty-somethings 
prepare to catch salmon 
while other older men 
catch catfish" ? 

Does this image describe 
"A little girl gets hit by a 
woman riding a bike" ? 

OFA caption person doing a flip on a 
mountain bike

a dog jumping out of the 
water.

men repairing fishing nets 
on the beach in zanzibar, 
tanzania

a man and a woman on a 
tandem bike 

BLIP 
caption

a man doing a trick on a 
bike in the air

a dog jumping over rocks 
in the water 

a man sitting on a boat 
with a fishing net net 

a man and woman riding a 
bicycle in a parking lot 

Choices ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no'] ['yes', 'maybe', 'no']

OFA answer yes no yes yes
BLIP answer yes no yes no
Cola-Zero 
answer

yes no no no

Cola-FT 
answer

maybe maybe maybe no

Figure 9: e-SNLI-VE qualitative examples. Leftmost: As the connection to daredevil is not obvious
in BLIP and OFA’s captions, although Cola-Zero is misled, Cola-FT correctly answers maybe. Left:
Similar to the left example, Cola-FT answer correctly as no obvious connections are seen from the
captions to this question. Right: Similar to the left example, the fact of catch catfish is not reasonable
from the captions, Cola-FT picks the correct answer maybe. Rightmost: As girl gets hit is not obvious
in BLIP and OFA’s captions and answers, Cola-Zero and Cola-FT both follow BLIP to choose the
correct answer no. The correct choices are underlined. Cola-Zero answers are given in zero-shot
settings.

A.9 Extended Ablation Studies

Do caption labels offer useful information to LLM? How would more prompt variations affect
the performance of Cola? We tested Cola-Zero with and without caption labels on A-OKVQA
validation set, observing a slight decrease in performance when without them (70.39% w/t vs. 69.97%
w/o). More ablative experiments showed that removing the VLM’s answer labels led to a substantial
drop in performance (70.39% w/t vs. 67.62% w/o). Removing the model characteristic descriptions
also led to a decrease (70.39% w/t vs. 68.37% w/o).

Do longer image captions improve reasoning performance? On A-OKVQA validation set, we
tested longer image descriptions (>50 tokens) but found no gain compared to Cola or single VLMs.
Longer captions decreased FLAN-T5+OFA’s accuracy by 0.61% and FLAN-T5 with BLIP by 0.69%
on the A-OKVQA validation set. Cola (captions <30 tokens) reached 77.73%, outperforming
individual VLMs. Longer captions lacked meaningful visual context, possibly due to short text and
image pairs in their training datasets. This experiment reaffirms Cola’s effectiveness in aggregating
individual VLM functionalities.

B Extended Related Works

B.1 Finetuning Large Language Models

Large language models [8, 71, 6] pretrained on massive amounts of unstructured data have gradually
demonstrated great performance by finetuning on additional task-specific instances. Finetuning
a large language model can be considerably more sample efficient than re-training from scratch,
although acceptable performance may still require a considerable quantity of data [95]. Recent
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Question Does this image describe 
"The truck contains the 
elephant" ? 

Does this image describe 
"The bed is under the 
handbag" ? 

Does this image describe 
"The couch is behind the 
hot dog" ? 

Does this image describe 
"The bowl contains the 
banana" ? 

OFA caption an elephant being 
transported on a truck in 
sri lanka

a black and white tuxedo 
cat with a white nose, 
yellow eyes, and white 

person enjoying a meal by 
the fire 

bananas and mangoes in a 
bowl

BLIP 
caption

a truck with a large 
elephant in the back of it 

a black cat laying on a bed 
with a pillow 

a man sitting on a couch 
with a plate of food 

a bowl of fruit is shown in 
this bowl 

Choices ['yes', 'no'] ['yes', 'no'] ['yes', 'no'] ['yes', 'no'] 

OFA answer yes no yes yes
BLIP answer no no yes no
Cola-Zero 
answer

no no no yes

Cola-FT 
answer

yes no no yes

Figure 10: VSR qualitative examples. Leftmost: As OFA caption mentioned elephant being
transported and OFA provides the correct answer, Cola-FT follows OFA’s choice. Left: As OFA and
BLIP provide the same answer, Cola-Zero and Cola-FT follow the choice. Right: As the captions
do not provide obvious information, even BLIP and OFA provide the same answer, Cola-Zero and
Cola-FT are not misled to the wrong choice. Rightmost: As the captions provide strong clue bananas
in a bowl, although BLIP’s answer is incorrect, Cola-Zero and Cola-FT still choose the correct answer.
The correct choices are underlined. Cola-Zero answers are given in zero-shot settings.

Question What are the people doing 
in the water? 

Does the image describe " 
The man is making a 
vase"?

What kind of zone is this 
bike parked in? 

Does this image describe 
"The motorcycle is beside 
the truck" ? 

OFA caption black and white photo of a 
man on a bike looking at a 
canoe in the river 

person on the potter's 
wheel

a city made by people 
bucharest

men walking past a truck 
in kabul, afghanistan. 

BLIP 
caption

a man and woman on a 
bike in a park 

a man is sitting on a chair 
and is using a wheel 

a bicycle parked next to a 
pedestrian crossing sign 

a man walking down the 
street in a city 

Choices ['surfing', 'fishing', 
'kayaking', 'swimming'] 

['yes', 'maybe', 'no'] ['temporary', 'pedestrian', 
'no parking', 'handicap'] 

['yes', 'no']

OFA answer boating yes pedestrian yes
BLIP answer swimming no no parking no
Cola-Zero 
answer

OFA no no parking no

Cola-FT 
answer

kayaking maybe no parking no

Figure 11: Failed cases. The correct choices are underlined. Cola-Zero answers are given in zero-shot
settings.

works have finetuned task-specific models that demonstrate amazing capabilities in many real-world
applications, such as Copilot for program synthesis [11].
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VQA Prompt Template
Answer the following multiple-choice question by OFA and BLIP’s description and their answers
to the visual question. OFA and BLIP are two different vision-language models to provide clues.

OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>

Q: <Question>

OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>

Choices: <Choices to the question>

A:
Table 9: VQA prompt template for the LLM, for VQA v2 / OK-VQA / A-OKVQA. The LLM is
instructed to coordinate VLMs. Each question set defines visual context, question with choices, and
plausible answers.

e-SNLI-VE / VSR Prompt Template
Answer the following multiple-choice question by OFA and BLIP’s description and their answers
to the visual question. OFA and BLIP are two different vision-language models to provide clues.

OFA’s description: <OFA caption>
BLIP’s description: <BLIP caption>

Q: does the image describe <hypothesis> ?

OFA’s answer: <OFA answer>
BLIP’s answer: <BLIP answer>

e-SNLI-VE Choices: [yes, no, maybe]
VSR Choices: [yes, no]

A:
Table 10: e-SNLI-VE/VSR prompt template for the LLM. The LLM is instructed to coordinate
VLMs. Each question set defines visual context, hypothesis, and plausible answers.

B.2 Instruction-based Learning

Recent advances in the capabilities of language models have piqued researchers’ curiosity in the field
of instruction-based learning [26, 64, 87, 24]. The core of instruction-based learning is to explore
the knowledge of the language model itself. In contrast to prompt learning to stimulate the language
model’s ability to complete blanks, instruction tuning more focuses on activating the language model’s
comprehension by giving obvious instructions to models and expecting correct feedback. Earlier
work [67] finetune BART [46] using instructions and few-shot exemplars in question answering, text
classification, and text modification. Their findings suggest that few-shot instruction tuning improves
performance on unseen tasks. [66] finetunes GPT-2 Large and also observes that few-shot exemplar
instruction tuning could improve performance. [85] finetunes T5-11B with more diverse instruction
templates and observe similar improvements in zero-shot learning. More recent work [108] performs
large-scale experiments with a 137B FLAN-T5 model and instruction-tune it on over 60 datasets
verbalized via instruction templates. They observe FLAN-T5 substantially improves over zero-shot
GPT-3 (175B) on 20 of 25 evaluation datasets. OpenAI also releases InstructGPT [71] based on
GPT-3 [8], it makes use of human annotations to steer desired model behavior through both instruction
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Accuracy # Finetuning Params
Finetuning 77.73 11B (100%)

PEFT, (IA)3 63.76 1M (0.01%)

Table 11: (IA)3 [57] parameter-efficient tuning (PEFT) performance. We finetune a FLAN-T5-
XXL model on the A-OKVQA training set and evaluate it on the A-OKVQA validation set.

tuning and reinforcement learning of human feedback. They discover that InstructGPT is favored by
humans over unmodified GPT-3.

B.3 Visual Reasoning

Beyond the uni-modal reasoning tasks such as question answering (QA) [100, 41, 14, 80, 79, 23,
75, 17, 96, 25, 127, 119, 7], visual reasoning requires models to not only understand and interpret
visual information but also to apply high-level cognition to derive rational solutions [40, 35, 4, 59,
60, 84, 120, 34]. Several tasks have been introduced to address visual reasoning, such as visual
question answering (VQA) [1], in which models are expected to provide answers to questions
related to an image and visual entailment (VE) [113], where the model is required to determine
the similarity or relationship between a given image and a description. Classic visual reasoning
methods have employed an image encoder and a text encoder, along with a reasoning block that
utilizes attention mechanisms [121, 72, 122, 105], neuro-symbolic methods [117, 61, 116], or external
knowledge [62, 28, 13] to perform reasoning.

Recent progress in large pre-trained models has led to the development of language models (LLMs)
that possess exceptional commonsense reasoning capabilities [78, 16, 15, 77]. These models can
potentially replace the reasoning block in visual reasoning tasks, and LLMs’ lack of perception
can be compensated by incorporating multiple vision-language models (VLMs) trained on different
domains [76, 104, 52]. For example, PICa [115] converts the image into captions that GPT-3 [8]
can understand, and adapts GPT-3 to solve the VQA task in a few-shot manner by providing a few
in-context VQA examples. However, there is still a lack of research on how to harness the collective
power of these complementary VLMs for visual reasoning tasks.

B.4 Model Ensembling

Model ensembling is a powerful machine learning technique that combines the predictions of multiple
models to improve the overall performance of a given task [20]. Classic model ensembling methods
include simple averaging, weighting the predictions based on model performance, and stacking the
models. By combining the predictions of multiple models, ensembling can reduce the variance and
bias of the final predictions, resulting in a more robust and accurate model [83]. Ensemble methods
have been shown to perform well in a wide range of tasks, including image classification, natural
language processing, and time series forecasting. However, when it turns to multimodal tasks such as
visual reasoning, a simple combination is not applicable to heterogeneous models as their inputs and
outputs vary.

The Mixture-of-Experts (MoE) [91, 82, 126, 45, 47] can be conceptualized as a model ensemble
strategy implemented at the level of network architecture. MoE-based multi-modal models [33] excel
in leveraging the specific strengths of each expert, thereby delivering the performance that often
outstrips that of any individual expert. In these networks, the credibility of each expert’s output is
dynamically weighted, facilitating a comprehensive and nuanced response to multimodal tasks.

However, even within this sophisticated framework, challenges can arise, particularly when managing
heterogeneous pre-trained multimodal models. To address this problem, an innovative approach
known as Socratic Models (SMs) [123] has been proposed. SMs employ prompt engineering to guide
these diverse models through multimodal discussions, effectively combining their varied knowledge.
This method promotes a more harmonious and effective integration of different models, enhancing
the ensemble’s ability to handle complex tasks.

With a similar goal, [54] proposes a closed-loop iterative consensus optimization method to utilize
the strengths of individual models. However, previous methods do not fully explore the potential of a
centralized solution or adapt to the separate functionalities of different models, particularly in the

25



visual reasoning scenario. Recent studies, such as CICERO [65], have shown that language models
possess strong capabilities in coordinating multiple agents, which inspires us to reorganize pre-trained
multimodal models with a focus on the language models.

Broader Impact

This study inherits ethical risks of biases from pretrained VLMs and LLMs, depending on their
training data. We suggest the users consider the possible biases in reasoning and prompt the model to
interpret its predictions in natural languages when necessary.
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