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Abstract

We introduce FindingEmo, a new image dataset containing annotations for 25k
images, specifically tailored to Emotion Recognition. Contrary to existing datasets,
it focuses on complex scenes depicting multiple people in various naturalistic,
social settings, with images being annotated as a whole, thereby going beyond
the traditional focus on faces or single individuals. Annotated dimensions include
Valence, Arousal and Emotion label, with annotations gathered using Prolific.
Together with the annotations, we release the list of URLs pointing to the original
images, as well as all associated source code.

1 Introduction

Computer vision has known an explosive growth over the past decade, most notably due to the
resurgence of Artificial Neural Networks (ANNs). For many vision-related tasks, computer models
have been developed that match or exceed human performance, e.g., image classification [1] and
mammographic screening [2]. Many of these tasks, however, are relatively simplistic in nature:
detecting the absence or presence of an object, or naming an item in the picture. When it comes
to more complex tasks, Artificial Intelligence (AI) still has a long way to go. Affective Computing
[3], a field that combines disciplines such as computer science and cognitive psychology to study
human affect and attempt to make computers understand emotions, is an example of such a complex
problem. This paper is concerned in particular with the subtask of Emotion Recognition, i.e., building
AI models to recognize the emotional state of individuals, in our case from pictures. This problem
has many applications, ranging from psychology [4], to human-computer interaction [5], to robotics
[6]. It is, however, complex: in the field of psychology, the concept of what an emotion is exactly
is heavily debated [7, 8, 9], resulting in several ways of describing emotions, either by means of
continuous dimensions [10, 11], or by means of labels, with different competing label classification
schemes existing [12, 13, 14].
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The application of computer vision techniques toward Emotion Recognition has historically largely
focused on detecting emotions from human facial expressions, with the problem still being actively
investigated [15, 16, 17, 18, 19, 20, 21]. However, the importance of context in emotion recognition
is increasingly being acknowledged in psychology [22, 23]. This led to the release of the computer
vision dataset EMOTIC [24], presenting photos of people in natural settings, rather than face-focused
close-ups, and leading the way to more complex ANN systems that attempt to combine multiple
information streams extracted from these images [25, 26, 27].

Figure 1: Photo courtesy The Kitcheners (https://
thekitcheners.co.uk/).

Nevertheless, even these more recent efforts
focus on the emotional state of one particular
individual within the picture. In this paper,
we present the FindingEmo dataset, which
is the first to target higher-order social cog-
nition. The dataset was developed as part
of an interdisciplinary project in which re-
searchers from the fields of Psychology, Psy-
chiatry and Computer Science investigate
the use of ANNs to simulate Social Cogni-
tion, as a way to better understand the cor-
responding mechanisms in the human brain,
and how these mechanisms are affected by
conditions that correlate with atypical social
behavior, in particular ASD and FTD [28].
Each image in the dataset depicts multiple
people in a specific social setting, and has
been annotated for the overall emotional con-
tent of the entire scene, instead of focusing
on a single individual. We hope this data can be used by AI practitioners and psychologists alike
to further the understanding of Emotion Recognition, and more broadly, Social Cognition. This is
a complex process, consisting of many layers. Consider, e.g., the photograph depicted in Figure 1.
Looking only at the bride’s face, one could easily assume she is very sad, or even distressed. Taking
also her wedding gown into account, a positive setting is suddenly suggested; perhaps her tears are
tears of joy? Only when looking at the full picture does it become clear that the bride is overcome
with emotion in a positive way, as conveyed by the setting, the groom reading a prepared text and the
clearly supportive bystanders. Thus, full understanding of the bride’s emotional state requires the full
scene, including the groom and the solemnly smiling bystanders. This example illustrates how Social
Cognition involves detection of relevant elements, extracting relations among these and attributing
meaning to construct a coherent whole.

The source code for the scraper and annotation interface used to create the dataset are available from
our dedicated repository1, together with the URLs of the annotated images and their corresponding
annotations. To mitigate the issue of broken URLs, we provide multiple URLs for a same image
whenever possible, and are continuously expanding the set of images for which multiple URLs are
provided (about 10k so far). For copyright reasons, we do not share the images themselves. More
information with regard to legal compliance can be found in §A.2.

The data collection process was approved by the KU Leuven Ethics Committee.

The remainder of the paper is structured as follows. In Section 2 the data collection process and dataset
are described in detail. Next, baseline results for emotion classification and valence and arousal
regression problems based on popular ImageNet ANN architectures, as well as Visual Transformers
CLIP and DINOv2, are presented in Section 3. We build upon this by investigating the effect of
merging the features and predictions of several models in Section 4. Finally, we conclude with a
discussion in Section 5.

1https://gitlab.com/EAVISE/lme/findingemo
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2 Dataset Description

The dataset is split into a publicly released set of annotations for 25,869 unique images, and a privately
kept set of 1,525 images.2 Each image depicts multiple people in various, naturalistic, social settings.
We follow Emotic [24] in creating a training (=our public) set with one annotation per image, and
a test (=our private) set with multiple annotations per image. In total, 655 participants—a short
description of whom can be found in §A.8—contributed annotations. In what follows, we list the
most important annotation dimensions; for a full list, see §A.3.

Figure 2: Plutchik’s Wheel of Emotions.

Valence and Arousal We used Russell’s con-
tinuous Valence and Arousal dimensions [10],
with integer scales [−3,−2, . . . , 3] for Valence
and [0, 1, . . . , 6] for Arousal. Arousal was
named “Intensity” in our annotation interface,
as we felt “Arousal” might carry a sexual con-
notation for some users.

Emotion Users had to pick an emotion from
Plutchik’s discrete Wheel of Emotions (PWoE)
[13], shown in Figure 2. We opted for this
particular emotion classification scheme as it
strikes a balance between the more limited and
sometimes contested Ekman’s 6 [12], and the
more expansive, and potentially more confus-
ing, Geneva Emotion Wheel [14]. It defines 24
primary emotions, grouped into 8 groups of 3,
with emotions within a group differing in in-
tensity. It is depicted as a flower with the 24
emotions organized in 8 leaves and 3 concentric
rings. Each leaf represents a group of 3, with
opposite leaves representing opposite emotions.

The rings represent the intensity levels, from most intense at the center to least intense at the outside.
An additional advantage of PWoE is that one can easily opt to use all 24 emotions, or instead limit
oneself to the 8 groups, allowing some granularity control. We refer to these choices as “Emo24” and
“Emo8” respectively, and refer to the groups as “emotion leaves”.

2.1 Positioning Versus Existing Datasets

Although research in automated Emotion Recognition has been gaining in popularity over the years,
progress is still hampered by a lack of data. Earlier work tended to focus solely on recognizing
emotions from faces. In their recent review paper, Khare et al. [29] list no less than 21 publicly
available datasets of facial images for this purpose, typically annotated with Ekman’s 6, potentially
extended with a “neutral” category, or custom defined emotion categories. Some of the more popular
such datasets, like JAFFE [30] and CK+ [31], make use of a limited number of actors (resp. 10 and
123) who were instructed to act out a certain emotion, resulting in caricatural emotional expressions.

Publicly available datasets going beyond the face are few in number. First, there is EMOTIC [24], a
23,571 image dataset depicting people in the wild, and with natural expressiveness. An explicit goal
of EMOTIC is to take context into account when assessing a person’s emotional state. One or more
individual subjects are delineated by a bounding box in each picture for a total of 34,320 subjects,
each annotated for Valence, Arousal, Dominance and one of 26 custom defined emotion categories.

CAER-S is a dataset of 70,000 stills taken from 79 TV shows. The stills were extracted from 13,201
video clips that were annotated for Ekman’s 6 + neutral. Each still contains at least one visible face.
The aim of the dataset is to allow augmenting facial emotion recognition with contextual features.

Similar to EMOTIC, there is HECO, a dataset of 9,385 images taken from previously released Human-
Object Interaction datasets, films and the internet. Like EMOTIC, 19,781 individual subjects were

2This set is kept private to allow us to use it as a test set for dedicated workshops organized at a later date.
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annotated in the pictures for Valence, Arousal, Dominance, 8 discrete emotion categories comprised
of Ekman’s 6 + Excitement and Peace, and two novel dimensions, Self-assurance and Catharsis.

Table 1 groups these dataset descriptions, together with ours, for easy comparison.

Table 1: Comparison of relevant datasets. “V/A/D” indicates which of the Valence, Arousal and
Dominance dimensions were annotated.
Name Nb. images Image source Annotation target V/A/D Emotions scheme Reference

EMOTIC 23,571 COCO + Ade20k + inter-
net

Single person V/A/D 26 custom emotion cate-
gories

[24]

CAER-S 70,000 TV Shows Single person (face visible) – Ekman’s 6 + neutral [32]
HECO 9,385 HICO-DET + V-COCO +

film + internet
Single person V/A/D Ekman’s 6 + Excitement

and Peace
[27]

FindingEmo 25,869 Internet Whole image V/A Plutchik’s Wheel of Emo-
tions

This paper

2.2 Dataset Creation Process

The creation of the dataset was split into two phases. The first phase focused on gathering a large set
of images, prioritizing quantity over quality. The second phase consisted of collecting the annotations.
We present a brief summary of both phases here, and refer to §A.4 for more details.

Phase 1 Images were gathered using a custom built image scraper that generates random search
queries, each consisting of three terms selected from predefined lists of, respectively, emotions,
groups of people (e.g., “adults”, “seniors”, etc.) and social settings/environments. For each query,
the first N results were retrieved, filtered and downloaded. As obviously not all downloaded images
satisfied our criterion of depicting multiple people in a natural setting, one particular filtering step
involved labeling and classifying images as being either “keep” (useful) or “reject” (no use). In total
1,041,105 images were collected.

Phase 2 Annotations were gathered using a custom web interface (see §A.5 for a screenshot).
Annotators were recruited through the Prolific3 platform, and first required to agree to an Informed
Consent clause, followed by detailed instructions (see §A.6 for a copy). To monitor the process
closely, we performed many (51, to be exact) runs, each with a limited number (around 10 to 15) of
participants. For each run, the Prolific user selection criteria were the same: fluent English speaker,
(self-reported) neurotypical4, and a 50/50 split male/female. Candidates were informed of a total
expected task duration of 1h, and offered a £10 reward. Analysis of the durations (see §A.7) show
our time estimation to be fair. In total, data collection costs were £10k, including fees and taxes.

2.3 Annotator Grading and Annotator Overlap

To assess the reliability of annotators, we used a set of 5 fixed images, referred to as “fixed overlap
images”, chosen specifically for being unambiguous.5 For each image, a default annotation was
defined consisting of the “keep/reject” choice (4 keeps, 1 reject), Valence (value range), Arousal
(value range) and Emotion (emotion leaf). This results in 4 datapoints per image, or 20 datapoints
in total. Annotators’ submissions for these images were compared to the reference, earning 1/20
point per matching datapoint, resulting in a final “overlap score” s ∈ [0, 1]. Users with s >= 0.8
were automatically accepted. An alternative score salt was computed which ignored those overlap
images whose reference value was “keep”, but were annotated as “reject”. The reason for this is
that it quickly became clear that despite the system providing a “Skip” option in case users rather
not annotate a certain image, some chose to “reject” these images instead. Also, one of the “keep”
images shows a bit of text, which users were instructed to reject. Some users were more strict than
others in applying this rule.

We defined a system parameter pR that controls when overlap images (i.e., images already
annotated by others) are shown to users. For each new image request, an overlap image

3https://www.prolific.com/
4Prolific users specify themselves whether or not they are neurotypical in their profile; we did not perform

any screening ourselves.
5This amounts to an average of 10% of the shown images, similar to Emotic [24] who “randomly [inserted] 2

control images in every annotation batch of 20 images”.
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is served with probability pR, starting with the 5 fixed overlap images, in a fixed sequence.
Once these are annotated, the system serves other, non-fixed, already annotated images. At
first, these were randomly chosen from all annotated images, but this resulted in too many
images with only 2 annotations. Hence, we created a process that limits the pool of im-
ages to choose from, and attempts to strive for 5 annotations per (non-fixed) overlap image.

Figure 3: Distribution of Emotion annotations for
the public set per Plutchik emotion leaf.

Using this system, we obtained a dataset with
80.9/19.1 split single label/multi-label annota-
tions. These multi-label images make up the
private set. Detailed inter-annotator statistics
on this private set are reported in §A.9, indicat-
ing that for 26.2% of the images, all annotators
agreed on the emotion leaf, while for 46.6% of
the images two labels were given. Out of these
two-label annotations, 42.8% refer to adjacent
emotion leafs. Annotators agree less on Arousal
(average min-max difference of 2.7 ± 1.4) than
on Valence (average min-max difference of 1.8
± 1.2). Importantly, average Valence disagree-
ment plateaus close to 2 with increasing number
of annotations per image, while a linearely in-
creasing trend is apparent for Arousal.

2.4 Statistics and Observations

This section presents statistics for the 8 leaves of PWoE. For the full 24 emotions, see §A.10.

Figure 4: Association between Valence and
Arousal values. The bigger the disc, the more often
the (Valence, Arousal)-pair appears in the dataset.

Figure 3 shows the distribution of annotations
per emotion leaf. An imbalance is obvious,
with in particular “joy” and “anticipation” being
overrepresented, and “surprise” and “disgust”
heavily underrepresented, despite an added bal-
ancing mechanism (see §A.4.2). A similar im-
balance is found in popular facial expression
datasets, such as FER2013 [33] (only 600 “dis-
gust” images versus nearly 5,000 for other Ek-
man’s 6 labels) and AffectNet [34] (134,915
“happy” faces, 25,959 “sad” faces, 14,590 “sur-
prise” faces, 4,303 “disgust” faces). Although
EMOTIC [24] uses custom emotion labels, mak-
ing a one-to-one comparison more difficult, it
is also heavily skewed towards positive labels
(top 3: “engagement”, “happiness” and “an-
ticipation”; bottom 3: “aversion”, “pain” and
“embarassement”). Compared to these other
datasets, ours exhibits less imbalance.

In Table 2, we group average annotation values
for Arousal, Valence and Ambiguity per emotion leaf. Figure 20 in §A.10 plots the distribution
of Arousal and Valence annotations per emotion leaf, showing clear tendencies toward normal
distributions, validating the use of averages and standard deviations. As expected, perceived “negative”
emotions (“fear”, “sadness”, “disgust” and “anger”) have a negative average Valence, with the
inverse being true for “positive” emotions (“joy”, “trust”). Somewhat undecided are “surprise” and
“anticipation”, which can go either way. The highest Arousal values are reserved for “anger, “sadness”
and “fear”. We hypothesize the unexpectedly high Arousal value for “sadness” might be due to
naming this dimension “Intensity” in our interface; although a grieving person is generally considered
to have low arousal, the emotion of sadness itself is felt intensely. Further analysis on the full
emotion set reported in §A.10 verifies that also at this more fine-grained level, annotations conform
to expectations, with Arousal levels increasing along with the intensity level of the PWoE ring, and
Valence levels analogously increasing for “positive” and decreasing for “negative” emotions.
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Table 2: Average Arousal, Valence and Ambiguity annotation values for the public set, per emotion
leaf. Format xy: x = average, y = standard deviation.

Joy Trust Fear Surprise Sadness Disgust Anger Anticipation

Nb. 7026 3549 2401 888 2665 1000 2439 5901
Arousal 2.960.96 2.571.09 3.241.24 2.571.41 3.421.29 2.441.23 3.591.17 2.461.21

Valence 1.900.96 1.411.09 −1.341.24 0.481.41 −1.571.29 −0.881.23 −1.581.17 0.561.21

Ambiguity 1.581.66 1.881.64 2.091.61 2.391.68 1.841.66 2.221.65 1.991.63 2.151.61

Figure 4 shows the association between Arousal and Valence annotations, indicating as expected a
collinearity between higher Arousal values and the extremes of the Valence range. Scatterplots per
opposite Emo8 pairs are grouped in Figure 21 in §A.10.

2.5 Cross-cultural Analysis

Most Prolific users participating in our task shared their country of birth and ethnicity with us (see
A.8). To verify to what extent annotations are consistent accross people of different backgrounds, we
performed the following two experiments.

To check the consistency between geographic regions, we first mapped countries of birth to the
geographic regions they are embedded in. For pairs of regions with at least 100 common images
(i.e., images annotated by members of both regions), we analysed the distribution of, and agreement
between Arousal, Valence and Emo8 annotations. Seven pairs were left: Central Europa (C.Eur.)–
Southern Africa (S.Afr.), C.Eur–Western Europe (W.Eur.), Eastern Europe (E.Eur.)–S.Afr, E.Eur–
W.Eur, North America (N.Am.)–S.Afr, N.Am–W.Eur. and S.Afr.–W.Eur. We computed the similarity
between the distributions, as well as inter-annotator agreement between annotation vectors for each
region in the pair, where the average annotation value was used in case of multiple annotations from
the same region, with results grouped in Figure 17 and Table 4, §A.9. For all pairs and all annotation
dimensions, the Jensen-Shannon (JS) distance between the distributions stayed within the range
[0.040, 0.229], and all passed the two-sample Kolmogorov-Smirnov (KS) test (p > 0.95) except for
Arousal in C.Eur.–S.Afr. and N.Am.–S.Afr., and Valence in N.Am.–S.Afr. Spearman’s R between
all pairs and dimensions was significant (p << 0.05) and varied in the range [0.170, 0.617], except
for Arousal in C.Eur.–W.Eur. (0.102, p = 0.203) and N.Am.–S.Afr. (0.116, p = 0.168). Highest
values were observed for Valence, lowest for Arousal. Overall, although there are differences between
regions, tendencies are clearly similar.

We performed the same experiment based on users’ ethnicities, resulting in 5 ethnicity pairs: Black–
Mixed, Black–Other, Black–White, Mixed–White and Other–White. The resulting plots and metrics
are grouped in Figure 18 and Table 5 respectively, both in §A.9. Interestingly, for Arousal 3 out of
5 pairs fail the KS test, namely Black–Mixed, Black–Other and Other–White. For Emo8, all pairs
pass the test, while for Valence only Black–Other fails it. For both Valence and Emo8 all pairs have
a significant Spearman’s R (p < 0.001) in the range [0.433, 0.590] for Valence and [0.255, 0.346]
for Emo8, while for Arousal Spearman’s R is not significant for Black–Mixed (−0.061, p = 0.476)
and Black-Other (0.112, p = 0.220). In short, Arousal annotations appear more consistent among
geographic regions than among ethnicities, although it is important to note that the low number of
datapoints does not allow for strong conclusions.

3 Baseline Model Results

Baseline results are obtained by applying transfer learning to popular ImageNet-based ANN architec-
tures AlexNet [35], VGG16 [36], ResNet 18, 50 and 101 [37] and DenseNet 161 [38].6 For each, we
use the default PyTorch implementations and weights, and replace the last layer with a new output
layer that matches the chosen task (see below). Only this last layer is trained. We do the same
experiment for some of these same architectures trained from scratch on the Places365 dataset [39],
using the official PyTorch models. We also consider EmoNet [40], a model for labeling images with
one out of 20 custom emotion labels reflecting the emotion elicited in the observer, obtained by
applying transfer learning to AlexNet and trained on a private database. In this case, we first process

6Our GitLab repository contains all logs used to generate all reported results, and includes additional results
for models like VGG19, ResNet34 and DenseNet121, that were in line with other same-architecture models.
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the image with EmoNet, and then send the resulting 20-feature vector through a new linear layer. We
use the EmoNet PyTorch port by the main author7. Lastly, we also use Visual Transformer models
CLIP [41] (ViT-B/32) and DINOv2 [42] (ViT-B/14 distilled with registers)8, using both models to
obtain embeddings for input images, and like with EmoNet, use these as input to a single linear layer.

We distinguish three tasks: Emo8 classification, where we predict one of the 8 primary emotions
defined by the emotion leaves of PWoE; Arousal regression, where we predict the numerical arousal
value; Valence regression, where we predict the numerical valence value.

Figure 5: Test data baseline performance on the Emo8 classification and Arousal and Valence
regression tasks. Metrics are: Weighted F1 (W.F1) and Average Precision (AP) for classification,
and Mean Absolute Error (MAE) and Spearman R correlation coefficient (S.R) for regression. The
starting learning rate and loss corresponding to each model are displayed above the training bars.
(U)CE = (Unbalanced)CrossEntropyLoss, (W)MSE = (Weighted)MeanSquaredError loss, p365 =
original model trained on Places365 dataset.

For classification, we apply a softmax to the output of the final layer. Target values for regression
problems are reduced to the range [0, 1] using an appropriate linear rescaling. Hence, we apply a
sigmoid function to the model output. Network outputs are transformed back to the original problem
domain by using the inverse scaling.

Preprocessing for ImageNet models consisted in scaling images to an 800x600 resolution, keeping
the original ratio and centering and padding with black borders where necessary, followed by
normalization using default ImageNet pixel means and standard deviations. For Places365 and
EmoNet models, we followed the preprocessing steps described in the respective papers. For CLIP,
we use the default preprocessing chain that comes with the model, and for DINOv2 we use the same
preprocessing as for the ImageNet models, but with a rescaling to 798x602.

For each task, and each model, we trained 10 models per starting learning rate lr0
and per loss function L. For classification, we used lr0 ∈ [10−1, 10−2, 10−3, 10−4]
and L ∈ [CrossEntropyLoss,UnbalancedCrossEntropyLoss]; for regression we used lr0 ∈
[10−3, 10−4, 10−5, 10−6, 10−7] and L ∈ [MSELoss,WeightedMSELoss]. UnbalancedCrossEn-
tropyLoss is a novel extension of the traditional CrossEntropyLoss, created to allow giving different
weights to different misclassifications. WeightedMSELoss is a natural extension of MSELoss that
takes into account class imbalance. Full technical details for both can be found in §A.11.

All experiments use the public dataset, Adam loss with default PyTorch parameter values, and the
custom lr update rule lre = lr0/

√
(e//3)+1, with lre the learning rate at epoch e. By virtue of the floor

division (//), this means we update the learning rate once every 3 epochs. The data was randomly
split 80/20 train/test, making sure that each target label was also split according to this same rule.

7https://gitlab.com/EAVISE/lme/emonet
8More specifically the ‘Pretrained heads for image classification’, loaded in PyTorch using

torch.hub.load(‘facebookresearch/dinov2’, ‘dinov2_vitb14_reg_lc’). We also experimented
with the smaller vits14 variant, obtaining results typically a few percentage points behind the vitb14 model.
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Reported metrics are: for classification, Average Precision (AP)—as computed using the
scikit-learn package—and Weighted F1 (W.F1); for regression, Mean Average Error (MAE)
computed in the original problem domain, and Spearman Rank Correlation (S.R). Training stopped
when either the epoch with the best loss (or the best W.F1 score for classification) on the test set lies 6
epochs behind the current epoch, or 250 epochs were reached, with the corresponding best model put
forward as the final trained model. Only results for the (lr0,L)-combination yielding the best average
Weighted F1 or Mean Average Error performance over the corresponding 10 models are reported.

All our experiments were implemented in Python using PyTorch, and split over an Intel Xeon W-2145
workstation with 32GB RAM and two nVidia GeForce RTX 3060 GPUs with 12GB VRAM, and
an Intel i7-12800HX laptop with 32GB RAM and an nVidia GeForce RTX 3060 Laptop GPU with
12GB VRAM. Test results are plotted in Figure 5, with the graph for train data, and tables containing
the numerical results grouped in §A.12. In order to speed up training, we buffered model activations
whenever possible.9

Apparent from these results is that these are hard problems. ImageNet-trained models slightly outper-
form their Places365-trained counterparts. This suggests that the natural object features extracted
from the ImageNet dataset are more salient toward emotion recognition than are place-related features.
In 9 out of 13 cases, our UnbalancedCrossEntropyLoss has the edge over regular CrossEntropyLoss.
Predicting Arousal appears more difficult than predicting Valence, which aligns with lesser annotator
agreement for Arousal than Valence, as analyzed in §A.9. As for the architectures, VGG is a clear
winner, with ResNet second. Although twice as large, ResNet101 performs very similar to ResNet50.
The larger depth of the DenseNet model does not translate in better performance. A breakdown of
model performance per Emo8 class can be found in §A.12, showing overall best performance on
“joy” and “anger”. Worst performance is registered for “surprise” and “disgust” which, perhaps not
surprisingly, are also the emotions for which the least annotations are available.

Interestingly, as explored in §A.14, when a model deviates from the target Emo8 annotation there is a
strong tendency toward “nearby” emotions. Most often this is the adjacent leaf, with more distant
leaves increasingly more unlikely. This behavior is reminiscent of the kind of disagreements we find
among our human annotators (see §A.9).

4 Beyond the Baseline

To build upon the baseline established in Section 3, we built multi-stream models by applying the
popular technique of late fusion [24, 25, 26, 27]. Concretely, we combine streams by concatenating
their corresponding feature or output vectors, and sending the resulting vector through an extra linear
layer. This section reports results for Emo8 classification; the analogous discussion for Arousal and
Valence regression can be found in §A.13.

We consider the following streams for combinations: Emo8 predictions: for each considered architec-
ture, we trained an Emo8 model, and took the predictions from this model as an 8-feature vector;
Baseline features: we take the model features from the penultimate layer, vector size depends on the
architecture; EmoNet predictions: applying the model gives us a 20-feature vector (see Section 3);
YoLo v3 trained on Open Images + Facial Emotion Recognition (OIToFER): we apply YoLo v310 [43],
using LightNet [44], to each image and extract the detected “Human face” regions with probablity
p > 0.005. We then apply the FER2013-trained ResNet18 model by X. Yuan11 to the extracted faces,
resulting in a 7-feature vector per face. We generate two 7-feature vectors from this, one containing
the vector averages, the other the standard deviations, and concatenate both to obtain a final 14-feature
vector; Places365 ResNet18 predictions: applying the ResNet18 model trained on the Places365
dataset gives us a 365-feature vector per image; Places365 ResNet18 features: we take the model
activations from the penultimate layer, giving us a 512-feature vector.

The experimental setup is identical to Section 3, except that for time considerations, we only consider
CrossEntropyLoss.12 The test results for Emo8 classification are shown in Figure 6. Training
results, as well as numerical training and test results, are included in §A.13. A first observation

9I.e., we precomputed the output of the frozen part of the model, and stored it on disk for easy reuse.
10We used the Open Images weights available from https://pjreddie.com/darknet/yolo/.
11https://github.com/LetheSec/Fer2013-Facial-Emotion-Recognition-Pytorch
12Indeed, our UnbalancedCrossEntropyLoss code is not yet optimized, and slower than CrossEntropyLoss.
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Figure 6: Test data results for extensions beyond the baseline by applying late fusion with Facial
Emotion Recognition predictions (OIToFER), EmoNet predictions (EmoNet) and Places365 (P365)
predictions or features. For all models, predictions on the dataset (Emo8) are concatenated and sent
through a linear layer, except when ‘(f)’ is shown, indicating model features are concatenated. The
starting learning rate corresponding to each model is displayed above the training bars.

is that improving upon the baseline appears non-trivial; except for VGG16, the obtained gains are
modest. Second, the highest gains clearly come from adding facial emotion features. Third, even
though adding EmoNet and OIToFER features separately has a positive effect for VGG16, adding
both together does not result in a compounded improvement. Fourth, the added dimensionality of
concatening features instead of predictions in the case of Places365 does not result in markedly
different results, in some cases even leading to worse results. Finally, not a single stream combination
resulted in improved performance for CLIP and DINOv2, with the best VGG16 results nearing
CLIP/DINOv2 performance.

5 Discussion

Findings The analysis of our dataset shows the annotations to conform to expectations, with
Valence and Arousal values following the expected trends. Furthermore, when annotators disagree
on the emotion label, they tend to choose nearby emotions in PWoE nonetheless. Our experiments
show that, for the Emo8 prediction task on our dataset, modern ViT models do not seem to really
outperform older CNN architectures, with VGG16 even (slightly) outperforming DINOv2 when both
baselines are augmented with Facial Emotion features. For Arousal and Valence prediction however,
the ViT models are clearly superior.

Limitations 1) While images in our private set have multiple annotations, we have followed the
approach of Emotic [24] and gathered only a single annotation per image in our public set. This
choice has allowed us to gather a larger data set, but may cause concerns about reliability. These
concerns are alleviated by the clear tendency observed on the private set toward similar emotions
in case of multiple labels (§A.9), combined with trained models exhibiting this same tendency to
strongly favor nearby emotion leaves when deviating from the annotation (§A.14). In short: the
models trained using single annotations showed similar statistics to the human multi-label annotations.
2) Concerning potential biases in the images themselves, as they were scraped from the internet
the dataset inherits the same biases the internet exhibits. In particular, we have not performed any
analysis concerning potential representation issues. As such, there is an unverified possibility that
models trained on our dataset wrongly associate “negative” emotions more strongly with certain
minority groups. 3) Since legal issues (see §A.2) prevent us from sharing the actual images, we had
to resort to sharing URLs. While URLs can break, we mitigate this risk by offering multiple different
URLs for the same image where possible.

Impact Statement This paper presents work whose goal is to advance the fields of Machine
Learning, Psychology and Psychiatry. Our own interest lies with non-commercial applications with
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respect to the understanding of Emotion Recognition and Social Cognition in individuals, and how
these can be affected by neurological conditions. In particular, we hope that our (future) work will be
of help in assisting people with impaired Social Cognition to navigate life.

Nevertheless, the data, and possible future Machine Learning advances inspired by it, could very well
lead to commercial (e.g., personalized ads tailored to one’s mood) and surveillance (e.g., general
crowd monitoring, detection of aggression within crowds, etc.) applications that we strongly feel
warrant a public debate with regard to their desirability, and even legality.

Furthermore, the use of web-scraped images entails that not only our dataset risks inheriting biases
present on the web, but that our dataset contains images of and by people (i.e., subjects and authors)
that would not necessarily agree to their likeliness or work being used for the purposes described in
this paper. For this reason, we offer an opt-out option to anyone who wants their likeliness or work
removed from out dataset.

Conclusion We present FindingEmo, a dataset of 25k image annotations for Emotion Recognition
that goes beyond the traditional focus on faces or single individuals, and is the first to target higher-
order social cognition. The dataset creation process has been discussed in detail, and the annotations
have been shown to align with expectations. A cross-cultural analysis of the annotations was
performed, showing similar tendencies between regions and ethnicities for Valence and Emo8, with
Arousal annotations somewhat less aligned. It is however important to note that the limited amount
of datapoints does not allow to make strong, definitive statements. Baseline results are presented
for Emotion, Arousal and Valence prediction, as well as first steps to go beyond the baseline. These
results show the dataset to be complex, and the tasks hard, with even modern models like CLIP and
DINOv2 struggling. This suggests that in order to solve these tasks, novel Machine Learning roads
might need to be explored. Our annotation interface and code for model training are made open
source.
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(c) Did you discuss any potential negative societal impacts of your work? [Yes] See
Section 5.

(d) Have you read the ethics review guidelines and ensured that your paper conforms to
them? [Yes]
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3. If you ran experiments (e.g. for benchmarks)...
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mental results (either in the supplemental material or as a URL)? [Yes] See footnote
1.

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they
were chosen)? [Yes] See Section 3.

(c) Did you report error bars (e.g., with respect to the random seed after running ex-
periments multiple times)? [Yes] The graphs show error bars and the tables contain
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anonymized personal data, except for 1 user. Not all datapoints are available for all
users.” Beyond us only having anonymized personal data, we do not share this data
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applicable? [Yes] See §A.6.
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Board (IRB) approvals, if applicable? [N/A] There were no participant risks identified.
As mentioned in Section 1, the process to collect the annotations was approved by our
insitution’s Ethics Committee.
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A Appendix

A.1 Dataset Logo

The logo of the dataset is depicted in Figure 7.

Figure 7: Logo for the FindingEmo dataset.

A.2 Legal Compliance

Concerning the legal status of the dataset, two question arise: 1) are we allowed to share URLs to
(potentially) copyrighted content, and 2) are we allowed to use (potentially) copyrighted material to
train our models?

With regard to 1, we verified this with copyright experts at our institute who assured us that this is
legal. With regard to 2, we point to Title II, Article 3, “Text and data mining for the purposes of
scientific research”, of the so-called InfoSoc Directive 13, which provides an exception to copyright
obligations for (members of) research organisations. As members of KU Leuven, we fall under this
law. If you are not a member of a European research or cultural heritage institution, you will need to
check with your local regulation whether or not you have the right to use this material for research
purposes.

We are the rightful owners of the annotations, so no potential copyright issues arise for this data. We
expressly distribute the dataset under a non-commercial CC BY-NC-SA 4.0 license.

A.3 Additional Annotation Dimensions

These are the remaining annotation dimensions that were not mentioned in the main text for brevity.

Age group Users had to tick one or more boxes from “Children”, “Youth”, “Young Adults”, “Adults”
and “Seniors”, indicating the age groups present in the image.

Deciding factor(s) for emotion Users had to tick one or more boxes from “Neutral”, “Body lan-
guage”, “Conflict context vs. person”, “Facial expression” and “Staging”, indicating what prompted
them to choose for a particular emotion.

Ambiguity Lastly, users could indicate by means of an integer scale [0, 1, . . . , 6] how ambiguous
the emotional content exhibited by the entire photograph was, or alternatively, how much difficulty
they had in annotating the picture.

A.4 Details of the Dataset Creation Process

This section describes in more detail the two phases in the dataset creation process introduced in §2.2.

13https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A32019L0790
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A.4.1 Phase 1: Gathering Images

Phase 1 consisted in building a customized, Python-based DuckDuckGo14 image scraper, programmed
to generate random image search queries as follows. Three sets of keywords were defined: one
containing a diverse set of emotions; one referring to groups of people (e.g., ‘people’, ‘adults’,
‘youngsters’, etc.); and one containing social settings and environments (e.g., ‘birthday’, ‘workplace’,
etc.).15 By taking all possible combinations of the elements in these sets, the system generated
a multitude of queries, such as, e.g., “happy youngsters birthday”. The first N results were then
retrieved and filtered to exclude a number of manually blacklisted domains (e.g., stock photography
providers) and by image size. Query results that passed the filtering steps were downloaded.

We started with N = 500 and image width 800px < w < 1600px, and later extended this to
N = 1000 and 800px < w < 3200. Obviously, not all downloaded images satisfied our criterion of
depicting multiple people in a natural setting. Hence, as a further filtering step, one of the authors
annotated 3097 images as either “keep” (useful) or “reject” (no use). These images were used in a
random 80/20 split to train a CNN to perform the same task, achieving an accuracy of 77.6%. This
model was used to further filter downloaded images, in particular to identify spurious images such as,
e.g., drawings, images with lots of text, etc.: if the CNN labeled the downloaded image as “reject”,
the image was discarded. If the downloaded image was labeled as “keep”, it entered the pool of
images that could be selected for annotation.

In total 1,041,105 images were collected.

A.4.2 Phase 2: Gathering Annotations

The annotations were gathered using a custom web interface written in Python, HTML and JavaScript.
Annotators were recruited through the Prolific platform. For this, a job would be created, which
we refer to as a “run”, to which users could subscribe. After doing so, they received a URL that
allowed them to log on to our system and, after agreeing to an Informed Consent clause, perform the
annotations. First, users were presented with detailed instructions, a copy of which are provided in
§A.6, after which the data collection proper began. To be able to monitor the process closely, and to
cope with hardware limitations of our server, we opted to only perform runs with a limited number
of participants, most often 10 or 15. For each run, the Prolific user selection criteria were the same:
fluent English speaker, (self-reported) neurotypical, and a 50/50 split male/female.

In total, annotations were collected over 51 runs. Candidates were informed of an expected task
duration of 1h, including reading the instructions, and offered a £10 reward. Analysis of the durations
(see §A.7) show our time estimation to be fair. We spent a total of £10k, which includes annotators
whose contributions were filtered out, and most importantly, Prolific fees and taxes.

A screenshot of the interface is included in §A.5. The interface presents users with images on the
left side, and dimensions to annotate on the right side. At the top left, users are presented with two
buttons: one to skip an image if they so wish, and one to save the current annotation and move on to
the next image.

Upon being presented an image, the first choice users needed to make was, just like the filtering CNN,
whether to “keep” or “reject” the image, according to the provided instructions. Essentially, users
were asked to reject images that contained no people, were watermarked, were of bad quality, etc. If
users opted to “reject” an image, no further annotation was needed. This step was needed to further
filter images that passed through the CNN. If the choice was “reject”, no further action (besides
saving) was required. Optionally, users could choose to select one of several tags indicating why they
opted to reject the image from “Bad quality photo”, “Copyright”, “Watermark”, “No interaction”, “No
people”, “Text” and “Not applicable”. Each user was asked to annotate 50 “keep” images; “rejects”
did not count towards the total goal. Despite this, some users still performed full annotations on
images they rejected. If users opted to “keep” the image, they were expected to annotate all other
dimensions as well.

Although the frontend (i.e., user interface) remained essentially unchanged, the backend underwent
some changes as annotations were collected, and some lessons were learned, which we discuss here.

14https://www.duckduckgo.com
15The full list of keywords is available from our code repository.
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Initial iteration Initially, an image was randomly selected from the corpus, and processed by an
updated “keep/reject” CNN (see §A.4.1) with an accuracy of 83.6%. If the “keep” probability pk was
< 0.75, a new random image would be selected and tested, until one was found with pk ≥ 0.75. If
this image had already been annotated, the process would start over, until a valid image was found,
which would then be shown to the annotator.

Second iteration At first, the annotating of all dimensions was not enforced; users could select
the “keep” checkbox, save the annotation without annotating anything else, and move on to the next
image. Most did their job diligently, but nevertheless we opted to update the interface to require
all dimensions be annotated in case of a “keep”, before the “Save” option became available. This
frequently prompted messages from users complaining the “Save” option was not available to them.
A further update explained this to users who prematurely clicked on the “Save” button.

Third iteration Over the course of the first few thousand annotations, it became clear that two
emotion leaves were particularly overrepresented, namely “joy” and “anticipation”, respectively
accounting for 35.9% and 23.0% of all annotations by the time of Run 9. In an attempt to counter
this, we came up with the following system.

Besides the “keep/reject” CNN, we trained a second CNN to predict the Emo8 label. We then first
computed all “keep/reject” predictions for all images in the corpus, and followed this up by predicting
Emo8 labels for all “keep”-labeled images. Upon starting the annotation server, these predictions are
loaded into memory. When selecting an image to show to a user, first an emotion label is chosen, with
odds inversely proportional to the number of images that were tagged (by the CNN) with a certain
label. Second, out of all images tagged with this label, one that had not previously been annotated by
an annotator would be chosen. The CNN used to make the predictions was retrained at several steps
along the annotation gathering process. Using this system, we managed to decrease “joy” down to
28.4%, and up “sadness” from 6.3% to 10.5%.

A.5 Annotation Interface

A screenshot of the annotation interface is shown in Figure 8.

A.6 Copy of the Annotator Instructions

Welcome

It is recommended to set your browser to “full-screen” mode. Typically, this mode can be toggled by
using the ‘F11’ key.

This interface was designed for screen resolutions with a width of 1920 pixels. In case your screen
has a higher/lower resolution, the interface should automatically resize itself so as to fully fit on your
screen, but this might come at the price of reduced image sharpness.

Thank you for your willingness to participate in this annotation task!

In this experiment, you will be expected to annotate 50 “good” images, i.e., annotated as “Keep”,
after which you will receive a URL that will direct you to the Prolific completion page for this task.
Please take the time to read these annotation instructions before continuing.

Note that if for any reason you get logged out at some point, you should be able to log back in using
the same URL provided to you by Prolific, and pick up right where you left.

We want to build a database of photographs with an emotional content. You will be shown randomly
selected images from a large corpus, and we ask you to evaluate photographs regarding 2 consecutive
issues.

First, regardless of the emotional content, all photographs should adhere to the following criteria:

• Each photograph must display a realistic situation, e.g., no drawings, no watermark, no
fantasy content (i.e., digitally manipulated photos), no horror, etc.

• The formal quality of the photograph should be sufficient, i.e., no fuzzy/blurry photographs.

16



Figure 8: A screenshot of the annotation interface. Displayed photo by David Shankbone, source: WikiMedia.
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• Each picture must display at least 2 people that are clearly visible. Alternatively, if only one
person is shown, but this person is clearly a part of a larger context, the image can also be
suitable.

• The main feature of the photograph must not consist of a textual element. For instance, if
a cardboard displaying ‘stop racism’ is a central feature of the picture, the picture is not
suitable.

If an image does not adhere to each of these criteria, or you are not certain, please rate it as not
suitable by choosing the “Reject” option. Else, mark it as “Keep”, in which case all other dimensions,
except for “tags”, need to be annotated before you can proceed! Even if you want to keep the default
value of a slider, you still need to click the slider first.

Images can further be described by a number of tags:

• Bad quality photo: when a picture is too blocky/blurry.
• Copyright: a copyright, contrary to a watermark, is not repeated but appears only once.

Typically, this leads to the picture being rejected, unless possibly the copyright is only small
in size and could be cropped out without losing the essence of the picture.

• Watermark: a watermark is a specific pattern, typically containing the name of the copyright
holder, that is repeated over an entire image.

• No interaction: the people in the picture don’t have a direct interaction.
• No people: the picture does not depict any people.
• Text: the image contains a lot of text, either typeset on top of it, or present on, e.g., banners

held by subjects depicted in the picture. If the text is typeset, this is disqualifying (i.e., the
picture is rejected). If the text is present in the picture itself, it is disqualifying if it is too
prominent. Use your own discretion to determine what is “too prominent” and what is not.
A good rule of thumb is: if your attention is immediately drawn to the textual elements
when viewing the picture, then it is too prominent and the picture is disqualified.

• Not Applicable: typically used for images that are actually a collage of more than one photo,
or that are rejected but don’t fit any of the other tags.

If a photograph is not rated as suitable (i.e., “Reject”), no further assessment is required; click “Save”
to proceed to the next paragraph. Else, for “Keep” or “Uncertain” photos, you are also expected to
annotate the age group of the main participants in the picture. These labels are of course not clear
cut; feel free to use your own discretion as to which label applies best.

Second, we want you to focus on the emotional labelling of the photographs. Concretely, we ask you
to annotate the image on a number of dimensions

We ask you to indicate the emotional characteristic of the ENTIRE SCENE displayed in the photo-
graph, independent of your own political/religious/sexual orientation. So a black lives matter protest
is typically negative (= the participants are not happy) independent of whether you support BLM.
Specifically, we ask you to rate the valence (“Negative/Positive”) of the overall emotional gist of the
photograph on a 7-point Likert scale from negative (-3) over neutral (0) to positive (+3), and also the
intensity, ranging from not intense at all (0) to very intense (6) by using the appropriate sliders.

We also ask to indicate an emotional label by means of a mouse click on an emotion wheel called
“Plutchik’s Wheel of Emotions”. If you can’t find the perfect emotional label then you choose
the ‘next best thing’, i.e., the one that reflects it most. In case no particular emotion fits, i.e., the
participants all display a neutral expression, you can opt to select no emotion, although such cases are
expected to be rare. For a more detailed description of each emotion depicted in this wheel, see, e.g.,
https://www.6seconds.org/2020/08/11/plutchik-wheel-emotions/. Additional info for
each emotion will be displayed when hovering over its corresponding cell.

Please also rate how straightforward the emotional content that is exhibited by the entire photograph
is using the scale indicated with “Ambiguity”. For instance, if there are approximately as much
emotionally positive as emotionally negative cues in the photograph, the emotional content would not
be clear (6), while only positive cues or only negative cues would result in a very high clarity (0).

Finally, the options under the “Deciding factor(s) for emotion” header ask which aspects of the photo
influenced you most when assessing the emotion, i.e., facial expressions, bodily expressions, the type
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of interaction (‘Staging’) among the persons (e.g., fighting, dancing, talking), type of context (e.g.,
wedding, funeral, protest, etc.), objects in the photograph (e.g., gun, chocolate) or a possible conflict
between context and person(s) (i.e., somebody exuberantly laughing at a funeral). If none of these
apply, and/or the emotion is rather neutral, the “Neutral” tag can be used, although just as for the
emotion case, we expect these occasions to be rare.

If for some reason you would rather not annotate the current image being served to you, you can
press the “Skip” button to be served a new picture and have the annotation interface be reset, without
your current settings being saved.

If on the other hand you are happy with your current annotation, press “Save” to let it be saved
and move on to the next image. If this button is greyed out, this means you have not yet annotated
all necessary dimensions. Once you have reached the required number of annotations, you will
automatically get to see the URL that will direct you to the Prolific completion page for this task.

At the top of this screen, you can see your annotation statistics: “Rejected/Accepted” = how many
images you marked “Reject” and “Keep” respectively, and “Left” = number of “Keep” images left to
annotate.

You can always check these instructions again whilst annotating by clicking the -icon next to each
criterium. (Click once more to close the infobox again.)

A.7 Task Duration Analysis

A histogram of time taken per annotator to complete the task is shown in Figure 9. These are the
durations as reported by Prolific. An important remark to make is that for Prolific users, the clock
starts ticking once they subscribe to a job. By default, per the Prolific rules, for a job expected to
take 1h users are allowed a maximum of 140 minutes to complete the job. It appears that many
users subscribe to a job, and then leave their browser tab open for a while before starting the job
proper. (Some never start, leading to a time-out.) Taking this into account, the shown distribution is a
“pessimistic” picture, including many idled minutes. The average time taken per user, including users
that were ultimately filtered out of the dataset, was 64 ± 27 minutes. With all of the above in mind,
we conclude our alloted time was fair.

Figure 9: Distribution of minutes taken to complete the task. The plot does not include 7 outliers.

A small negative correlation manifests between the task completion time and the annotator score
(SpearmanR= −0.122, p = 0.002 for s, SpearmanR= −0.086, p = 0.029 for salt).

A.8 Annotator Statistics

Annotations were collected from 655 annotators. Prolific provided us with anonymized personal data,
except for 1 user. Not all datapoints are available for all users.
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Of the annotators, 337 are male, 317 are female, and 1 unknown. 651 annotators were spread over
49 countries, with country for the remaining 4 unknown. Most popular were South Africa (176
annotators), Poland (127 annotators) and Portugal (104 annotators). From there, numbers drop rapidly,
with follow-up Greece accounting for only 32 annotators. The full distribution of annotators per
country is shown in Figure 10. The age distribution of the 653 users who shared that info is shown
in Figure 11, indicating a large bias towards the early 20’s. 654 annotators shared their ethnicity,
consisting in 424 users identifying as White, 166 identifying as Black, 34 identifying as Mixed, 18
identifying as Other and 12 identifying as Asian.

Figure 10: Distribution of country of origin of 651 annotators.

Figure 11: Distribution of age of 653 annotators.

A.9 Inter-annotator Agreement

Recall from Section 2 that we hold a private set of 1,525 images that have each been annotated
by multiple users16, amounting to a combined 6115 annotations. Table 3 shows how many images
have been annotated by N different annotators. Of these, 1294 images have a majority of “Keep”
annotations, 137 are mainly “Reject” and 94 are undecided.

16This set does not include the fixed overlap images.
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We do not report the often used Cohen’s Kappa and/or Krippendorf’s Alpha scores, as these metrics
are only meaningful when most pairs of annotators have both annotated a substantial set of shared
images. In our case, however, by design, the number of images that have been annotated by any
two annotators is low (1 or 2 at most, and very often zero). As such, we feel these metrics are not
applicable. We explicitly opted to have a large number of annotators annotate a small number of
images each, in order to have the annotations better be a reflection of “the population at large”, rather
than of a few annotators.

Table 3: Number of images (“# imgs.”) that have been annotated by N different annotators (“# ants.”).

# ants. 2 3 4 5 6 7 8
# imgs. 245 328 283 524 127 17 1

Focusing on the 1294 “Keep” images, Figure 12 shows how many images have been annotated with
N different emotion labels, both for Emo8 and Emo24 labels. For 26.2% of images, all annotators
chose the same emotion leaf, and 46.6% were annotated with 2 different Emo8 labels. For the
finegrained Emo24 labels, 80.1% of images have been annotated with a maximum of 3 different
labels.

Figure 12: Number of images with N different Emo8 and Emo24 labels. The y-axis is shared between
both plots.

Figure 13: Number of images with a maximum distance D between their Emo8 and Emo24 labels,
for images annotated with more than one label. The y-axis is shared between both plots.
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Turning to the question of how different the separate emotion labels for a same image are, Figure 13
shows the distribution of maximum distance between labels, for images annotated with more than one
label. The distances for 24 emotions are computed by also giving an ordinal to each emotion within a
leaf, as shown in Figure 14. No less than 42.8% of the times an image has been annotated with more
than one Emo8 label, those labels represent adjacent emotion leaves, while in 15.5% of the cases they
represented opposite leaves, most often the pairs (“anger”, “fear”) and (“anticipation”, “surprise”).

Figure 14: Plutchik’s Wheel of Emotions: ordinals of emotions. The outer numbers represent the
ordinal of the leaf, the numbers within the upper central leaf the ordinals of the emotions within a
leaf. E.g., “joy” = 0.66 and “boredom” = 5.33. The distance between them then becomes 3.33, being
the sum of the distance between the leaves (3) and the “intra-leaf” distance (0.33).

To get a better idea of what Emo8 labels often appear together, we focused on images with 2
Emo8 labels, and plotted how often each emotion pair occurs. The result is shown in Figure 15,
demonstrating the pairs (“joy”, “anticipation”), (“joy”, “trust) and (“anticipation”, “trust”) make up
the bulk of the pairs. As for opposite emotions, the pairs (“anticipation”, “surprise”) and (“anger”,
“fear”) appear markedly more ofthen than (“joy”, “sadness”) and (“disgust”, “trust”).

Figure 15: Prevalence of Emo8 label pairs for images annotated with 2 labels. The bigger the disc,
the more often the pair appears in the dataset.

22



To analyze the Arousal and Valence values, we compute the maximum distance between annotated
values for both dimensions over all “keep” images. For Arousal, the average maximum distance is 2.7
± 1.4, while for Valence this is 1.8 ± 1.2. This suggests that people agree much more on the Valence
dimension, than they do on the Arousal dimension. This is confirmed when we compute the average
maximum distance values as a function of the number of annotations for a given image, the result of
which is shown in Figure 16. For Arousal, a clear increasing maximum distance trend is visible with
a stable standard deviation, going from ±1.75 to more than 4. For Valence annotations on the other
hand, the maximum distance appears to plateau at close to 2.

Figure 16: Distribution of maximum distance between Arousal and Valence annotations as a function
of the number of annotations per image. The y-axis is shared between both plots.

Histograms comparing the distribution of Arousal, Valence and Emo8 annotations between pairs of
geographic regions with at least 100 annotated images in common are included in Figure 17, with
statistical data comparing both distributions per pair grouped in Table 4. Analogously for pairs of
annotator ethnicities, histograms and statistics can be found in Figure 18 and Table 5 respectively.

A.10 Extra Dataset Analysis

Barplots showing the distribution of Arousal, Valence and Ambiguity annotation values for the public
dataset are depicted in Figure 19. Barplots showing the distribution for the public dataset of Arousal
and Valence annotations per Emo8 emotion are grouped in Figure 20, showing a clear tendency
toward normal distributions. Scatterplots depicting the association between Arousal and Valence
annotations per pair of opposite Emo8 emotions (e.g., “joy” and “sadness”) are collected in Figure 21
Annotation statistics per Emo24 emotion are collected in Table 6. The table is made up of three rows,
each row corresponding to a ring in Plutchik’s Wheel of Emotions, from the top row corresponding
to the outer (least intense) ring, to the bottom row corresponding to the inner (most intense) ring. The
annotations follow this ordering, with average Arousal annotations consistently increasing from least
to most intense emotion ring. Valence annotations follow suit, either increasing for positive emotions,
or decreasing for negative emotions. The sole exception to this rule is center ring “Disgust” having a
slightly lower average Valence rating (-1.62) than the inner ring “Loathing” (-1.57).

A.11 UnbalancedCrossEntropyLoss and WeightedMSELoss

Table 7 compares baseline results obtained using CrossEntropyLoss vs. UnbalancedCrossEntropyLoss
for Emo8 classification, and MSELoss vs. WeightedMSELoss for Arousal/Valence regression. In
what follows, we detail the workings of UnbalancedCrossEntropyLoss and WeightedMSELoss. We
observe that UnbalancedCrossEntropyLoss presents a clear benefit over CrossEntropyLoss for the
classification problem under consideration, while WeightedMSELoss typically does not manage to
positively influence model performance for regression problems.
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Figure 17: Distribution of annotations; a comparison between geographic regions. The y-axes are
shared between all plots, the x-axes are shared between all plots within the same column. Between
brackets the number of images annotated by members of both geographic regions. Emotion indices
follow Figure 14.
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Figure 18: Distribution of annotations; a comparison between ethnicities. The y-axes are shared
between all plots, the x-axes are shared between all plots within the same column. Between brackets
the number of images annotated by members of both ethnicities. Emotion indices follow Figure 14.
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Table 4: Comparison of annotations between geographic regions. Regions: “C/E/W.Eur.” = Cen-
tral/Eastern/Western Europa, “S.Afr.” = Southern Africa, “N.Am.” = North America. Metrics: “JS” =
Jensen-Shannon distance, “KS” = two-sample Kolmogorov-Smirnov test, “Kα” = Krippendorff’s
Alpha, “S.R” = Spearman’s R. Format: .xy with 0.x the metric value and y the p-value, if applicable.
JS and KS computed between the histograms depicted in 17, Kα and S.R computed using vectors
containing the average annotations per region, per overlapping image. Header: numbers between
brackets = number of common annotated images.
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Arousal
JS .145 .068 .188 .088 .172 .107 .132

KS .4290.575 .1431.000 .2860.963 .1431.000 .4290.575 .2860.963 .2860.963

Kα .029 .009 −.010 −.029 .050 −.002 −.012

S.R .2620.004 .1020.203 .2170.001 .2730.000 .1160.168 .1700.023 .2250.000

Valence
JS .229 .110 .121 .080 .197 .114 .150

KS .1431.000 .1431.000 .2860.963 .1431.000 .4290.575 .2860.963 .1431.000

Kα .443 .246 .281 .234 .492 .259 .269

S.R .4820.000 .5840.000 .5360.000 .6170.000 .4320.000 .5750.000 .5460.000

Emo8
JS .128 .107 .100 .083 .040 .113 .057

KS .2500.980 .2500.980 .2500.980 .1251.000 .2500.980 .1251.000 .2500.980

Kα .264 .351 .310 .274 .323 .351 .264

S.R .3690.000 .2370.003 .2830.000 .2860.000 .2680.001 .2810.000 .3400.000

Figure 19: Distribution of Arousal, Valence and Ambiguity annotations. The y-axis is shared between
all plots.
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Table 5: Comparison of annotations between ethnicities. Metrics: “JS” = Jensen-Shannon distance,
“KS” = two-sample Kolmogorov-Smirnov test, “Kα” = Krippendorff’s Alpha, “S.R” = Spearman’s
R. Format: .xy with 0.x the metric value and y the p-value, if applicable. JS and KS computed
between the histograms depicted in 18, Kα and S.R computed using vectors containing the average
annotations per ethnicity, per overlapping image. Header: numbers between brackets = number of
common annotated images.
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Arousal
JS .205 .147 .133 .071 .204

KS .4290.575 .4290.575 .2860.963 .1431.000 .4290.575

Kα .153 .042 −.032 −.007 −.012

S.R −.0610.476 .1120.220 .2560.000 .2190.001 .2670.000

Valence
JS .249 .064 .157 .074 .116

KS .2860.963 .4290.575 .1431.000 .2860.963 .1431.000

Kα .340 .414 .257 .172 .227

S.R .4790.000 .4330.000 .5550.000 .5560.000 .5900.000

Emo8
JS .074 .157 .060 .082 .120

KS .2500.980 .2500.980 .3750.660 .2500.980 .1251.000

Kα .253 .285 .242 .281 .310

S.R .3410.000 .3460.000 .3370.000 .2550.000 .2790.000
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Figure 20: Distribution of Arousal and Valence annotations per Emo8 emotion. The x- and y-axes
are shared between all plots.
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Figure 21: Association between Arousal and Valence per opposite Emo8 emotion pair. The x- and
y-axes are shared between all plots. Disc sizes have been normalized between emotions.
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Table 6: Average Arousal, Valence and Ambiguity annotation values for the public set, per emotion. Emotions are grouped per “ring” in Plutchik’s Wheel of
Emotions: from outer, least intense ring (top row) to inner, most intense ring (bottom row). The percentage of total annotations per emotion is shown in square
brackets. Format: x.xxy.yy should be read as average = x.xx, standard deviation = y.yy.

Serenity Acceptance Apprehension Distraction Pensiveness Boredom Annoyance Interest
Nb. 1972 [7.6%] 1388 [5.4%] 1400 [5.4%] 356 [1.4%] 706 [2.7%] 587 [2.3%] 1008 [3.9%] 2688 [10.4%]
Arousal 2.241.00 2.211.05 2.731.12 2.041.11 2.531.17 1.650.94 2.781.02 2.030.99

Valence 1.461.00 1.141.05 −0.961.12 −0.061.11 −0.901.17 −0.360.94 −1.201.02 0.790.99

Ambiguity 1.831.65 2.001.65 2.261.61 2.711.65 2.331.63 2.301.63 2.211.55 2.161.62

Joy Trust Fear Surprise Sadness Disgust Anger Anticipation
Nb. 3971 [15.4%] 1145 [4.4%] 679 [2.6%] 311 [1.2%] 1092 [4.2%] 248 [1.0%] 985 [3.8%] 1780 [6.9%]
Arousal 3.040.86 2.571.05 3.761.13 2.761.41 3.441.18 3.311.08 3.991.11 2.581.26

Valence 2.020.86 1.491.05 −1.791.13 0.351.41 −1.651.18 −1.621.08 −1.801.11 0.491.26

Ambiguity 1.471.60 1.751.59 1.921.53 2.211.70 1.821.61 2.121.59 1.861.63 2.241.55

Ecstasy Admiration Terror Amazement Grief Loathing Rage Vigilance
Nb. 1083 [4.2%] 1016 [3.9%] 322 [1.2%] 221 [0.9%] 867 [3.4%] 165 [0.6%] 446 [1.7%] 1433 [5.5%]
Arousal 3.970.93 3.061.09 4.341.37 3.141.31 4.121.29 3.931.41 4.541.38 3.131.41

Valence 2.270.93 1.701.09 −2.031.37 1.511.31 −2.011.29 −1.571.41 −1.921.38 0.221.41

Ambiguity 1.521.83 1.841.66 1.691.65 2.131.61 1.461.64 2.071.79 1.801.72 2.021.66
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A.11.1 UnbalancedCrossEntropyLoss

As stated in the main text, UnbalancedCrossEntropyLoss (LUCE) allows to give different weights
to different misclassifications. E.g., it allows to penalize classifying a “joy” as a “sadness” image
heavier than classifying it as “anticipation”. It is defined as

LUCE =

{
wt log pt t = h

wt log pt + wt,h log 1− ph t ̸= h
(1)

with t the target class with predicted probability pt, h the class with the highest predicted probability
ph, wt the weight of the target class, and wt,h the weight for misclassifying a sample of class t as
class h. In case t = h, this reverts to regular CrossEntropyLoss.

To be able to use UnbalancedCrossEntropy loss, a distance needs to be defined between each pair of
output classes. For the Emo8 task, we use the shortest number of leaves between two emotions. E.g.,
the distance between “joy” and “surprise” is 3, and the distance between “joy” and “anger” is 2.

The class weight wi for class i was computed according to

wi =
N

Nc ·Ni
, (2)

with N the total number of samples, Nc the number of classes and Ni the number of samples of class
i.

Finally, the weight wi,j for misclassifying a sample from class i as class j was computed as

wi,j =
di,j

1 + wj
· wi, (3)

with wi the weight for class i, wj the weight for class j and di,j the distance between classes i and j.

A.11.2 WeightedMSELoss

WeightedMSELoss (LWMSE) is a natural extension of the standard MSELoss to include class weights.
Its mathematical formulation reads

LWMSE =
1

N

N∑
i=1

(
wi · (oi − ti)

2
)
, (4)

with N the number of samples, wi the class weights as defined in Eq.2 and oi and ti the network
output and target value for sample i respectively.

A.12 Additional Baseline Results

Baseline results for train data are depicted in Figure 22. Numerical baseline results on the train and
test sets have been grouped in Tables 8 and 9 respectively. A breakdown per Emo8 for train and test
sets is shown in Tables 10 and 11 respectively. For per class results, no Average Precision scores are
reported, as we did not collect these.

A.13 Additional Beyond Baseline Results

The beyond baseline Emo8 classification results on train data are shown in Figure 23. Barcharts
depicting the beyond baseline results for the Arousal and Valence regression tasks are grouped in
Figures 24 and 25 respectively.

For the Arousal and Valence regression tasks, we dropped experiments with Places365 models in
favor of precomputed Emo8 predictions using the same model architecture. E.g., for the Arousal
task and AlexNet architecture, we combine the 8-feature vector obtained by applying a pretrained
AlexNet Emo8 classifier with the 1-feature vector obtained by applying a pretrained AlexNet Arousal
regressor. We also changed the merger network from simply concatenating the stream features to
first reducing the second stream features to 1D by means of a linear layer + sigmoid, and then
concatening both 1D features (from the precomputed Arousal/Valence regression + reduced second
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Figure 22: Train data baseline classification performance on the Emo8 classification and
Arousal/Valence regression tasks. Metrics are: Weighted F1 (W.F1) and Average Precision (AP) for
classification, and Mean Average Error (MAE) and Spearman R (S.R) for regression. The starting
learning rate and loss corresponding to each model are displayed above the training bars. (U)CE
= (Unbalanced)CrossEntropyLoss, (W)MSE = (Weighted)MeanSquaredErrorLoss, p365 = original
model trained on Places365 dataset.
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Table 7: Loss comparison for Emo8 classification and Arousal/Valence regression tasks, comparing test results for baseline models. Performance metrics format:
.xxxyy should be read as average = 0.xxx (or z.xxx if z is specified), standard deviation = .0yy, taken over 10 runs. Best results in bold
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Emo8

C
E

Start LR 0.0001 0.0001 0.0001 0.001 0.0001 0.0001 0.001 0.0001 0.001 0.0001 0.001 0.001
Weighted F1 .17816 .27318 .23716 .31108 .29304 .28107 .32813 .28909 .33909 .31608 .29812 .44007

Avg.Prec. .14802 .19606 .16206 .23205 .22303 .21506 .24905 .22806 .25003 .24705 .23102 .34605

U
C

E Start LR 0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001 0.001
Weighted F1 .19618 .27618 .25814 .31007 .29822 .28412 .33507 .29613 .33509 .32704 .30109 .43108

Avg.Prec. .14602 .18310 .15007 .23003 .22304 .21003 .25104 .22703 .24703 .24403 .22806 .34003

Arousal

M
SE

Start LR 0.001 1e− 05 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.001 0.001 0.0001 0.001
MAE 1.35401 1.33303 1.34403 1.32006 1.33403 1.33303 1.31106 1.32703 1.31404 1.32003 1.32604 1.26006

Spearman R .09412 .20310 .17313 .23814 .21412 .21207 .26410 .22605 .25412 .25110 .23113 .34410

W
M

SE Start LR 1e− 05 0.0001 0.0001 1e− 05 0.0001 0.0001 0.0001 1e− 05 0.0001 0.0001 0.0001 1e− 05
MAE 1.35302 1.35007 1.36106 1.32406 1.33804 1.33505 1.31805 1.33204 1.31706 1.31905 1.33004 1.26507

Spearman R .07218 .19310 .17111 .23813 .20811 .21311 .25009 .21910 .25411 .24913 .22710 .34009

Valence

M
SE

Start LR 0.001 1e− 05 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001
MAE 1.51603 1.36308 1.39809 1.31208 1.38505 1.38207 1.29007 1.34406 1.27606 1.33611 1.35506 1.01507

Spearman R .11712 .38310 .34210 .43409 .39413 .37811 .47707 .41409 .48708 .44014 .40810 .68505

W
M

SE Start LR 0.001 1e− 05 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001 0.001
MAE 1.56402 1.39309 1.42410 1.34111 1.41209 1.40910 1.31012 1.37009 1.29508 1.35307 1.37808 1.03309

Spearman R .11812 .38612 .34713 .43209 .39509 .37409 .47114 .41311 .48309 .43907 .41010 .67606
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Table 8: Training results: Emo8 classification and Arousal/Valence regression performance for baseline models. Performance metrics format: .xxxyy should be read
as average = 0.xxx (or z.xxx if z is specified), standard deviation = .0yy, taken over 10 runs.
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Emo8
Loss UCE UCE UCE CE UCE UCE UCE UCE CE UCE UCE CE CE
Start LR 0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001 0.0001 0.001
Accuracy .16322 .23110 .19115 .34024 .24805 .24705 .33911 .26812 .35505 .28705 .28104 .47804 .44504

F1 .14417 .21109 .17514 .31526 .22205 .22304 .30813 .24412 .32105 .25805 .24904 .34505 .39206

Weighted F1 .17224 .24510 .20615 .35023 .26106 .26304 .35112 .28412 .36605 .30105 .29304 .44905 .45905

Avg.Prec. .14205 .17607 .14504 .28721 .20805 .20603 .27710 .23010 .28203 .24005 .22804 .34407 .37005

Arousal
Loss WMSE MSE MSE MSE MSE MSE MSE MSE MSE WMSE MSE MSE MSE
Start LR 1e− 05 1e− 05 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.001
MAE 1.35200 1.39342 1.38722 1.29903 1.34101 1.33502 1.31002 1.32602 1.30903 1.33102 1.32802 1.25703 1.25105

Spearman R 0.07105 0.13026 0.11511 0.28807 0.17706 0.19605 0.25906 0.22405 0.26005 0.22503 0.21605 0.35406 0.36108

Valence
Loss MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE
Start LR 0.001 1e− 05 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001
MAE 1.51502 1.43551 1.44015 1.31514 1.41203 1.40403 1.29805 1.36805 1.28704 1.36807 1.38104 1.09814 1.01002

Spearman R 0.12103 0.31330 0.28412 0.43118 0.31306 0.32605 0.45505 0.36907 0.46505 0.37111 0.35505 0.62712 0.68902
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Table 9: Test results: Emo8 classification and Arousal/Valence regression performance for baseline models. Performance metrics format: .xxxyy should be read as
average = 0.xxx (or z.xxx if z is specified), standard deviation = .0yy, taken over 10 runs.
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Emo8
Loss UCE UCE UCE CE UCE UCE UCE UCE CE UCE UCE CE CE
Start LR 0.001 0.0001 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001 0.0001 0.001
Accuracy .19222 .28021 .25922 .30310 .30119 .28616 .32707 .29613 .32911 .33013 .29410 .45007 .42707

F1 .15210 .21909 .20109 .25107 .24014 .22607 .27505 .23511 .27706 .26005 .24508 .32008 .36507

Weighted F1 .19618 .27618 .25814 .31108 .29822 .28412 .33507 .29613 .33909 .32704 .30109 .42407 .44007

Avg.Prec. .14602 .18310 .15007 .23205 .22304 .21003 .25104 .22703 .25003 .24403 .22806 .31005 .34605

Arousal
Loss WMSE MSE MSE MSE MSE MSE MSE MSE MSE WMSE MSE MSE MSE
Start LR 1e− 05 1e− 05 0.0001 0.0001 0.0001 0.0001 0.001 0.0001 0.001 0.0001 0.0001 0.0001 0.001
MAE 1.35302 1.33303 1.34403 1.32006 1.33403 1.33303 1.31106 1.32703 1.31404 1.31905 1.32604 1.27607 1.26006

Spearman R 0.07218 0.20310 0.17313 0.23814 0.21412 0.21207 0.26410 0.22605 0.25412 0.24913 0.23113 0.32212 0.34410

Valence
Loss MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE MSE
Start LR 0.001 1e− 05 0.0001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.0001
MAE 1.51603 1.36308 1.39809 1.31208 1.38505 1.38207 1.29007 1.34406 1.27606 1.33611 1.35506 1.10712 1.01507

Spearman R 0.11712 0.38310 0.34210 0.43409 0.39413 0.37811 0.47707 0.41409 0.48708 0.44014 0.40810 0.61809 0.68505
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Table 10: Training results: Emo8 Recall, Precision and F1 metrics per emotion leaf for baseline
models. Format: 0.xx.yy with 0.xx = average, 0.yy = standard deviation over 10 runs.

Joy Trust Fear Surprise Sadness Disgust Anger Anticipation

alexnet
Recall 0.25.01 0.20.01 0.25.01 0.19.02 0.30.02 0.20.01 0.32.02 0.16.01

Precision 0.46.02 0.21.01 0.20.01 0.05.01 0.23.01 0.07.01 0.23.01 0.33.02

F1 0.33.02 0.20.01 0.22.01 0.08.01 0.26.02 0.10.01 0.27.01 0.21.01

alexnet p365
Recall 0.21.02 0.17.01 0.21.02 0.18.02 0.23.03 0.19.03 0.23.03 0.15.00

Precision 0.41.03 0.18.01 0.16.01 0.05.01 0.19.02 0.06.01 0.18.02 0.30.03

F1 0.27.02 0.18.01 0.18.02 0.08.01 0.21.03 0.09.01 0.20.02 0.20.01

vgg16
Recall 0.36.02 0.28.03 0.36.02 0.36.07 0.45.03 0.35.06 0.47.02 0.23.02

Precision 0.56.02 0.30.02 0.29.02 0.12.02 0.34.02 0.14.03 0.33.02 0.47.03

F1 0.44.02 0.29.03 0.32.02 0.18.04 0.39.03 0.20.04 0.39.02 0.31.02

resnet18
Recall 0.29.00 0.20.01 0.27.01 0.16.02 0.32.01 0.21.02 0.36.01 0.15.01

Precision 0.48.01 0.22.01 0.22.01 0.05.00 0.24.01 0.07.01 0.24.01 0.36.01

F1 0.36.01 0.21.01 0.24.01 0.08.01 0.27.01 0.11.01 0.29.01 0.22.01

resnet18 p365
Recall 0.29.01 0.19.01 0.25.01 0.18.01 0.31.01 0.24.02 0.35.01 0.17.01

Precision 0.47.01 0.22.01 0.21.01 0.06.00 0.24.01 0.08.00 0.24.01 0.37.01

F1 0.36.01 0.21.01 0.23.01 0.09.01 0.27.01 0.12.01 0.29.01 0.23.01

resnet50
Recall 0.38.01 0.28.02 0.34.01 0.29.04 0.46.01 0.30.03 0.46.02 0.23.01

Precision 0.57.01 0.29.01 0.30.01 0.11.01 0.34.02 0.12.01 0.33.01 0.46.01

F1 0.46.01 0.28.01 0.32.01 0.16.02 0.39.01 0.17.02 0.38.01 0.31.01

resnet50 p365
Recall 0.30.01 0.20.01 0.27.02 0.22.03 0.34.02 0.26.03 0.38.01 0.19.01

Precision 0.50.01 0.23.01 0.23.01 0.07.01 0.27.01 0.09.01 0.27.01 0.39.02

F1 0.38.01 0.22.01 0.25.01 0.10.02 0.30.01 0.13.02 0.32.01 0.25.02

resnet101
Recall 0.40.00 0.28.01 0.37.01 0.28.02 0.49.01 0.31.02 0.47.01 0.25.01

Precision 0.58.01 0.30.01 0.31.01 0.11.01 0.35.01 0.13.01 0.33.01 0.47.01

F1 0.47.01 0.29.01 0.33.01 0.16.01 0.41.01 0.19.01 0.39.01 0.33.01

densenet161
Recall 0.34.01 0.23.01 0.30.01 0.19.03 0.39.01 0.25.02 0.40.01 0.18.01

Precision 0.52.01 0.24.01 0.25.01 0.07.01 0.29.01 0.08.01 0.29.00 0.40.01

F1 0.41.01 0.24.01 0.27.01 0.10.01 0.33.01 0.13.01 0.34.01 0.25.01

densenet161 p365
Recall 0.33.01 0.21.01 0.28.01 0.15.02 0.37.01 0.24.02 0.42.01 0.19.01

Precision 0.50.01 0.24.01 0.23.01 0.07.01 0.27.00 0.09.00 0.26.01 0.40.01

F1 0.40.01 0.22.01 0.25.01 0.09.01 0.31.01 0.13.01 0.32.01 0.26.01

DINOv2
Recall 0.71.00 0.22.01 0.27.01 0.00.00 0.51.01 0.04.01 0.43.01 0.59.01

Precision 0.56.00 0.41.01 0.37.01 0.27.12 0.53.00 0.32.04 0.47.01 0.42.00

F1 0.62.00 0.28.01 0.31.01 0.01.00 0.52.01 0.07.01 0.45.01 0.49.00

CLIP
Recall 0.57.01 0.37.01 0.35.01 0.25.03 0.56.01 0.34.02 0.56.01 0.33.01

Precision 0.69.01 0.35.01 0.33.01 0.11.01 0.53.01 0.15.01 0.45.00 0.52.01

F1 0.62.00 0.36.01 0.34.01 0.15.01 0.55.01 0.21.01 0.50.01 0.40.01

stream) and send these through a final linear layer + sigmoid. Finally, we only consider MSELoss,
and lr0 ∈ [10−3, 10−4, 10−5].

A numerical comparison of the baseline to the (overall best performing) “Baseline+OIToFER”
model for all three tasks is included in Table 12. From this, it is apparent that obtainable gains are
architecture-dependent, with the VGG16 and ResNet50 architectures obtaining most gains and the
DenseNet161, CLIP and DINOv2 architectures barely improving, regardless of task. Obtained gains
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Table 11: Test results: Emo8 Recall, Precision and F1 metrics per emotion leaf for baseline models.
Format: 0.xx.yy with 0.xx = average, 0.yy = standard deviation over 10 runs.

Joy Trust Fear Surprise Sadness Disgust Anger Anticipation

alexnet
Recall 0.38.09 0.18.10 0.24.08 0.05.05 0.36.09 0.08.05 0.38.08 0.23.08

Precision 0.46.04 0.22.02 0.20.02 0.04.01 0.25.04 0.07.01 0.25.03 0.35.02

F1 0.40.06 0.18.05 0.21.03 0.04.02 0.29.01 0.07.02 0.29.02 0.27.05

alexnet p365
Recall 0.40.09 0.17.08 0.24.09 0.10.09 0.28.08 0.08.06 0.24.08 0.20.09

Precision 0.42.02 0.22.02 0.19.02 0.05.01 0.24.04 0.05.02 0.23.03 0.33.03

F1 0.40.04 0.18.05 0.20.03 0.06.02 0.25.02 0.05.03 0.22.04 0.24.06

vgg16
Recall 0.40.04 0.20.03 0.26.05 0.09.04 0.38.04 0.14.05 0.40.08 0.25.07

Precision 0.50.01 0.24.02 0.23.02 0.05.01 0.30.02 0.07.02 0.30.05 0.38.03

F1 0.44.02 0.21.02 0.24.02 0.06.02 0.33.02 0.09.02 0.34.02 0.29.04

resnet18
Recall 0.36.09 0.31.11 0.37.09 0.04.04 0.30.11 0.09.05 0.33.10 0.27.07

Precision 0.50.05 0.22.02 0.23.02 0.04.03 0.31.07 0.10.02 0.30.03 0.36.04

F1 0.40.08 0.24.04 0.28.02 0.03.03 0.28.06 0.09.02 0.31.04 0.30.04

resnet18 p365
Recall 0.36.08 0.19.07 0.30.09 0.04.02 0.30.10 0.12.06 0.35.08 0.28.10

Precision 0.47.03 0.24.02 0.19.02 0.06.03 0.27.04 0.08.02 0.25.03 0.35.03

F1 0.40.04 0.20.04 0.23.03 0.04.02 0.27.03 0.08.02 0.28.03 0.30.07

resnet50
Recall 0.39.05 0.25.04 0.32.06 0.07.02 0.44.06 0.13.02 0.44.04 0.28.03

Precision 0.54.02 0.24.02 0.27.03 0.06.02 0.33.03 0.08.01 0.31.02 0.40.02

F1 0.45.03 0.24.02 0.29.02 0.06.01 0.37.02 0.10.01 0.36.01 0.33.02

resnet50 p365
Recall 0.38.08 0.19.11 0.31.10 0.06.06 0.30.07 0.10.05 0.33.09 0.30.11

Precision 0.49.05 0.24.02 0.21.02 0.04.02 0.31.05 0.07.01 0.30.05 0.35.03

F1 0.42.04 0.19.06 0.24.03 0.04.03 0.30.02 0.08.02 0.30.03 0.31.05

resnet101
Recall 0.42.03 0.23.04 0.34.05 0.08.03 0.45.04 0.15.05 0.42.03 0.25.04

Precision 0.54.01 0.25.01 0.26.02 0.05.01 0.33.02 0.08.01 0.31.01 0.43.03

F1 0.47.02 0.24.02 0.29.02 0.06.01 0.38.01 0.10.02 0.36.01 0.31.03

densenet161
Recall 0.48.07 0.17.06 0.26.07 0.06.05 0.39.09 0.13.09 0.43.05 0.27.05

Precision 0.49.03 0.28.02 0.25.02 0.04.02 0.31.04 0.08.02 0.31.02 0.38.01

F1 0.48.02 0.20.04 0.25.04 0.04.03 0.34.02 0.09.02 0.36.01 0.31.04

densenet161 p365
Recall 0.38.03 0.20.03 0.27.04 0.05.03 0.38.02 0.15.02 0.43.03 0.22.03

Precision 0.49.02 0.23.01 0.23.01 0.04.01 0.28.01 0.08.01 0.25.02 0.38.01

F1 0.43.02 0.21.02 0.25.02 0.04.02 0.32.02 0.10.01 0.32.01 0.28.03

DINOv2
Recall 0.67.05 0.23.05 0.25.07 0.00.00 0.47.02 0.02.02 0.42.05 0.55.04

Precision 0.56.03 0.36.03 0.32.01 0.00.00 0.49.04 0.17.08 0.42.03 0.40.01

F1 0.61.01 0.27.04 0.28.04 0.00.00 0.48.02 0.04.03 0.42.02 0.46.01

CLIP
Recall 0.57.03 0.33.03 0.35.05 0.17.02 0.54.02 0.21.03 0.52.03 0.34.04

Precision 0.67.01 0.33.01 0.32.02 0.08.01 0.52.03 0.11.01 0.43.02 0.48.01

F1 0.61.02 0.33.02 0.33.03 0.11.01 0.53.02 0.14.01 0.47.01 0.40.02
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are highest for the Emo8 task (absolute 13.7% AP gain, or relative 59%, for VGG16). Gains for the
Arousal and Valence tasks are somewhat less straightforward to compare, as changes in MAE and
Spearman R do not always agree. Compare, e.g., for ResNet50, for the Valence task an absolute
0.121 MAE and 0.120 Spearman R improvement, or relative 9.0% and 22.5% respectively, to an
absolute 0.039 MAE and 0.087 Spearman R improvement, or relative 2.9% and 38% respectively for
the Arousal task.

Figure 23: Training data results for extensions beyond the ImageNet baseline by applying late
fusion with EmoNet predictions (EmoNet), Facial Emotion Recognition predictions (OIToFER) and
Places365 (P365) predictions or features. For all models, predictions on the dataset are concatenated
and sent through a linear layer, except when ‘(f)’ is shown, indicating model features are concatenated.
The starting learning rate corresponding to each model is displayed above the training bars.

A.14 A Note on the Fuzziness of Emotion Recognition

As shown in §A.9, if there is disagreement between annotators concerning the emotion depicted in
an image, then it is typically among similar emotions. So, although annotators often disagree, the
different labels provided for a same image are far from random, instead showing clear tendencies
toward a specific region of the emotion spectrum.

This fuzzyiness in assigned labels is a feature of human psychology. Emotion recognition is hard,
nuanced, and multidimensional. With more raters, one would obtain a distribution of responses, but
still no perfect agreement. To compound this issue, the estimate of the distribution per image would
be poor unless one has many raters per image (tens of raters for tens of thousands of images!). This
is, for many reasons not least of which financially, highly impractical.

Having one rater per image gives uncertainty if one is interested in a single image, but the average
performance across many images is still meaningful. To demonstrate this, we perform the following
experiment: for several architectures, we train an Emo8 prediction model on our dataset using the
approach described in Section 3, and once trained, we let the model make predictions for each image in
the full public dataset (i.e., train + test splits). We train 5 models per lr0 ∈ [10−1, 10−2, 10−3, 10−4]
using CrossEntropyLoss, and keep the one with the highest Weighted F1 score as the winner. For
these models, we list in Table 13 how often the annotated emotion was ranked N (out of 8), and
in Table 14 we show the distance between the top predicted and annotated emotions. Except for
AlexNet, all other models show a nice downward sloping behavior as either the rank (Table 13) or
distance (Table 14) increases. In other words, the “mistakes” made by these models are clearly not
random, but show behavior that is similar to those observed in the human annotators. This confirms
that even with a single annotation per image, already valuable results and insights can be obtained.

A.15 Author Responsibility Statement

We, the authors, confirm that we bear all responsibility in case of any violation of rights during the
collection of the data or other work, and that we will take appropriate action if and when needed,
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Table 12: Baseline vs. +OIToFER: A comparison of Emo8 classification and Arousal/Valence
regression performance on the test data.
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Emo8

B
as
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in

e Start LR 0.0001 0.001 0.0001 0.001 0.001 0.0001 0.0001 0.001
Accuracy .27125 .30310 .28804 .31717 .32911 .30809 .45007 .42707

F1 .22110 .25107 .24204 .27110 .27706 .26108 .32008 .36507

Weighted F1 .27318 .31108 .29304 .32813 .33909 .31608 .42407 .44007

Avg.Prec. .19606 .23205 .22303 .24905 .25003 .24705 .31005 .34605

+O
IT

oF
E

R Start LR 0.001 0.001 0.001 0.001 0.001 0.001 0.01 0.1
Accuracy .29904 .39005 .31506 .36605 .36707 .34304 .45103 .47510

F1 .24303 .36305 .23906 .32104 .32107 .27805 .28805 .32216

Weighted F1 .29604 .39905 .29907 .37204 .37207 .33904 .39505 .43020

Avg.Prec. .23705 .36905 .23202 .31105 .31306 .26903 .36007 .38406

Arousal

B
as

el
in

e Start LR 1e− 05 0.0001 0.0001 0.001 0.001 0.001 0.0001 0.001
MAE 1.33303 1.32006 1.33403 1.31106 1.31404 1.32003 1.27607 1.26006

Spearman R .20310 .23814 .21412 .26410 .25412 .25110 .32212 .34410

+O
IT

oF
E

R Start LR 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01
MAE 1.33003 1.29005 1.32904 1.28805 1.27906 1.30804 1.25106 1.24507

Spearman R .22011 .30512 .22610 .31309 .32611 .27209 .36911 .37414

Valence

B
as

el
in

e Start LR 1e− 05 0.001 0.001 0.001 0.001 0.001 0.001 0.0001
MAE 1.36308 1.31208 1.38505 1.29007 1.27606 1.33611 1.10712 1.01507

Spearman R .38310 .43409 .39413 .47707 .48708 .44014 .61809 .68505

+O
IT

oF
E

R Start LR 0.01 0.001 0.01 0.01 0.01 0.01 0.001 0.01
MAE 1.32406 1.23706 1.32407 1.22306 1.21306 1.27406 1.07708 1.00507

Spearman R .43807 .52206 .44407 .53406 .54107 .48309 .64907 .69305

Table 13: Percentage of times, with respect to the full public dataset, the annotated emotion was
ranked N in the model predictions.

0 1 2 3 4 5 6 7

alexnet 22.5 15.7 13.5 11.8 11.0 10.1 8.9 6.5
vgg16 41.8 20.3 13.2 9.0 6.0 4.7 3.1 2.0
resnet18 31.3 19.2 13.3 10.6 8.4 6.9 5.8 4.5
resnet50 38.1 19.4 13.5 9.5 7.0 5.5 4.0 2.9
resnet101 38.4 20.2 13.2 9.4 6.8 5.1 4.0 3.0
densenet161 33.3 18.7 13.4 10.4 8.4 6.5 5.2 4.0

Table 14: Percentage of times, with respect to the full public dataset, the distance between the
annotated and predicted emotions was equal to N in the model predictions.

0 1 2 3 4

alexnet 22.5 19.7 19.1 23.7 15.0
vgg16 41.8 21.4 15.2 14.0 7.7
resnet18 31.3 26.1 17.0 17.0 8.6
resnet50 38.1 21.7 16.2 15.7 8.3
resnet101 38.4 23.1 16.9 14.1 7.5
densenet161 33.3 22.8 18.4 16.8 8.7
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Figure 24: Arousal regression results for extensions beyond the baseline by applying late fusion
with precomputed Emo8 predictions of the same architecture (Emo8), Facial Emotion Recognition
predictions (OIToFER) and EmoNet predictions (EmoNet). For all models, precomputed predictions
on the dataset (Aro1) are concatenated and sent through a linear layer. Metrics are: Mean Average
Error (MAE) and Spearman R (S.R). The starting learning rate corresponding to each model is
displayed above the training bars.

e.g., to remove data with such issues. We also confirm the licenses provided with the data and code
associated with this work: an MIT license for all code; a CC BY-NC-SA 4.0 license for the dataset
(concretely, the list of URLs and the annotations).

In particular, and as clearly and explicitly stated on our repository (under “Legal Compliance and
Privacy”), we invite any rightful copyright holders or persons depicted in any of the images that do
not want their work/likeness to be used within the context of this dataset to contact us, so that we can
remove that specific material from the dataset.
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Figure 25: Valence regression results for extensions beyond the baseline by applying late fusion
with precomputed Emo8 predictions of the same architecture (Emo8), Facial Emotion Recognition
predictions (OIToFER) and EmoNet predictions (EmoNet). For all models, precomputed predictions
on the dataset (Val1) are concatenated and sent through a linear layer. Metrics are: Mean Average
Error (MAE) and Spearman R (S.R). The starting learning rate corresponding to each model is
displayed above the training bars.
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