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ABSTRACT

Recent years, methods based on neural networks have made great achievements
in solving large and complex graph problems. However, high efficiency of these
methods depends on large training and validation sets, while the acquisition of
ground-truth labels is expensive and time-consuming. In this paper, a graph
view-consistent learning network (GVCLN) is specially designed for the semi-
supervised learning when the number of the labeled samples is very small. We
fully exploit the neighborhood aggregation capability of GVCLN and use dual
views to obtain different representations. Although the two views have different
viewing angles, their observation objects are the same, so their observation repre-
sentations need to be consistent. For view-consistent representations between two
views, two loss functions are designed besides a supervised loss. The supervised
loss uses the known labeled set, while a view-consistent loss is applied to the two
views to obtain the consistent representation and a pseudo-label loss is designed
by using the common high-confidence predictions. GVCLN with these loss func-
tions can obtain the view-consistent representations of the original feature. We
also find that preprocessing the node features with specific filter before training
is good for subsequent classification tasks. Related experiments have been done
on the three citation network datasets of Cora, Citeseer, and PubMed. On several
node classification tasks, GVCLN achieves state-of-the-art performance.

1 INTRODUCTION

Convolutional neural networks (CNNs) (Krizhevsky et al., 2012) performed outstandingly in solving
problems such as image classification (Rawat & Wang, 2017), semantic segmentation (Kampffmeyer
et al., 2016) and machine translation (Cho et al., 2014) etc. This is because CNNs can effectively
reuse the convolution kernel and use the given input to train optimal parameters. The original data
mentioned in above problems all have a grid-like data structure, that is, Euclidean spatial data. In
reality, there are also lots of non-Euclidean spatial data, such as social networks, telecommunication
networks, biological networks, and brain connection structures, etc. These data are usually repre-
sented in the form of graphs, where every node in the graph represents a single individual. Graph
problems can be roughly divided into there direction: link prediction (Zhang & Chen, 2018), graph
classification (Zhang et al., 2018a) and node classification (Kipf & Welling, 2016). In this paper, we
focus on semi-supervised node classification when the label rate is very low.

Many new methods have been proposed to generalize the convolution operation to process graph
structure data on arbitrary graphs for node classification. These methods can be divided into spatial
convolution and spectral convolution methods (Zhang et al., 2018b). For spatial methods, they di-
rectly define graph convolution by designing certain operations on node’s neighbors. For example,
Duvenaud et al. (2015) propose a convolutional neural network that can directly operate on graph
data, which can provide an end-to-end feature learning method; Atwood & Towsley (2016) pro-
pose a fusion convolutional neural network (DCNNS), which introduces the graph fusion method
to incorporate the context information of the nodes in the graph node classification; The Graph At-
tention Network (GATs) (Veličković et al., 2017) introduces the attention mechanism into the graph
data processing to construct the attention layer for semi-supervised learning. The spectral method
generally defines the graph convolution operation on spectral representation of graph. For example,
Bruna et al. (2013) propose that graph convolution can be defined in the Fourier domain based on the
eigenvalue decomposition of the graph Laplacian matrix; Defferrard et al. (2016) propose to use the
Chebyshev expansion of the graph Laplacian to approximate the spectral domain filtering, which can
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avoid high computational complexity brought by eigenvalue decomposition; Kipf & Welling (2016)
propose a simpler Graph Convolutional Networks (GCNs) for semi-supervised learning, which can
achieve higher classification accuracy by using a simple two-layer networks. However, large train-
ing and validation sets are required in these methods to complish effect classification task, while
obtaining true labels is time-consuming, laborious and costly. And they send original graph node
features directly into networks for training, however, there are lots of redundant information in the
original features of the nodes.

In order to train an efficient model with only a few label nodes and even without validation, we put
forward our own method: graph view-consistent learning network (GVCLN), which constructs a
node classification network based on the consistency between two views. First, we independently
train two-view encoders (can be different) to obtain two representations of every node. The func-
tion of the viewers is converting high-dimensional node features into low-dimensional embeddings
(Zhu et al., 2020). The clustering hypothesis (Vandenberg & Matthias, 1977) show that examples
in the same cluster are more likely to have the same label. According to this hypothesis, the de-
cision boundary should try to pass through the place where the data is relatively sparse, so as to
avoid dividing the data points in dense clusters on both sides of the decision boundary. Although
the two views have different viewing angles, their observation objects are the same, so their ob-
servation results should be consistent. Therefore, the features encoded by the two viewers should
make the decision boundary pass through the place where the date is sparse, that is, there should be
consistency between the two views. Then, we design three loss functions, namely, supervised loss
function, consistency loss function, and pseudo-label loss function. The supervised loss uses the
known labeled set, while a view-consistent loss is applied to the two views to obtain the consistent
representation and a pseudo-label loss is designed by using the common high-confidence predictions
as pseudo label. GVCLN with these loss functions can obtain the view-consistent representation of
the original feature. Our contributions are summarized as follows:

• We propose a graph view-consistent learning framework for semi-supervised node classifi-
cation, which fully demonstrates the theoretical structure of graph view-consistency.

• We design GVCLN to successfully tackle label insufficiency in semi-supervised learning.

• We demonstrate the high efficacy and efficiency of the proposed methods on various semi-
supervised node classification tasks.

2 RELATED WORK

2.1 NOTATIONS

A graph contains two parts: node and edge. Each node represents an individual, which can be a
paper or a person, etc. The edge indicates a connection between two nodes. If the edge connecting
two nodes in the graph is directional, it is directed graph, otherwise it is undirected graph. A simple
and connected undirected graph can be written as G = (V, E), where V is the node set and E is the
set of edges. n = |V | represents the number of all nodes in G. Considering that the node itself has a
great influence on the graph structure, the graph used in the calculation of the network is generally a
self-loop graph, namely G̃ =

(
V, Ẽ

)
, which attaches a self-loop to each node in G. A denotes the

adjacency matrix andD is the diagonal degree matrix. Therefore, the adjacency matrix and diagonal
degree matrix of G̃ are defined as Ã = A + I and D̃, respectively. I indicates the identity matrix.
The node feature matrix is X ∈ Rn×d, in which, each node i is associated with a d-dimensional
feature vector xi. The normalized graph Laplacian matrix is defined as L = I − D−1/2AD−1/2,
which is a symmetric positive semidefinite matrix with eigendecomposition UΛU>, where Λ is a
diagonal matrix of the eigenvalues of L, and U ∈ Rn×n is a unitary matrix that consists of the
eigenvectors of L. The graph convolution operation between signal x and filter gγ (Λ) = diag (γ)
is defined as gγ (L) ∗ x = Ugγ (Λ)U>x, where the parameter γ ∈ Rn corresponds to a vector of
spectral filter coefficients.
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2.2 FEATURE AGGREGATION

Graph neural Networks (GNNs) follow a neighborhood feature aggregation scheme. Many GNNs
use different aggregation approaches. Here, we introduce two most classic feature aggregation ways.

Graph convolutional network (GCN) (Kipf & Welling, 2016) has outstanding effects in solving the
problem of semi-supervised node classification. Kipf & Welling (2016) define the graph convo-
lutional layer for feature aggregation in GCN. Symmetrically normalized operation is used on the
adjacency matrix of G̃, i.e., Â = D̃−1/2ÃD̃−1/2. The graph convolutional layer is defined by,

H l+1 = σ
(
ÂH lΘ

)
, (1)

where H l is the feature of the l-th layer, Θ is the trainable weight matrix of the layer, and σ(·) is a
nonlinear activation function, e.g., ReLU(·) = max(0, ·).

Veličković et al. (2017) present graph attention network (GAT), novel neural network architectures
that operate on graph-structured data, leveraging masked self-attentional layers to address the short-
comings of prior methods based on graph convolutions or their approximations. By giving different
attention weights αij to different neighbor nodes, each node-i are able to aggregate their neighbor-
hoods features to update their own features. The graph attention layer is defined by,

hl+1
i = σ

(∑
j∈Ni

αijWhlj

)
, (2)

where hi represents latent embedding feature at node i,W is a linear transformations weight matrix,
and αij are normalized attention coefficients.

3 MODEL ARCHITECTURE

In this section, we first introduce the overall abstract structure of GVCLN, and then use graph
convolutional layer and graph attention layer to build a specific GVCLN model to achieve view-
consistent learning for node classification.

3.1 MODEL ARCHITECTURE OVERVIEW

A general understanding of our GVCLN is shown in Fig. 1. In GVCLN, feature X and the graph
A are encoded by two different viewers at the same time, namely Viewer 1 and Viewer 2, the two
viewers aggregate features with three-head graph layers. Viewer 1 uses the graph convolution layer
and Viewer 2 is the graph attention layer. The three-head representations, H(v)

1 , H
(v)
2 , H

(v)
3 , v ∈

{1, 2}, are of concatenation and perform dropout. After dropout, the two-view latent features, Z(1)

and Z(2), pass through a same non-linear graph convolutional layer to obtain the prediction, P (1)

and P (2). A view-consistency loss function is made for the dual-view output consistently.

Figure 1: GVCLN architecture
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3.2 VIEW-CONSISTENCY LEARNING

We consider applying view-consistent learning to the view 1 and view 2 in Figure 1. Inspired
by contrastive learning, Chen et al. (2020) inputs the original sample and the sample after data
augmentation (flipping or cropping, etc.) into two same views respectively. Since data augmentation
does not change the label information of sample, the output representations of two views are similar.
By maximizing the consistency of the two views, better results can be achieved. In this paper, we do
not do data augmentation to the data, but used two different viewers. We believe that the same data
has the similar output through different viewers and classifiers. In Figure 1, there is a consistency
loss function between the view 1 and the view 2 to realize view-consistent learning of two views.
The soft cross entropy function is employed to construct the consistency loss function:

`view = − 1

n

n∑
i=1

k∑
j=1

p
(1)
ij ln p

(2)
ij . (3)

where k is the number of class, P (1) = [p
(1)
ij ] and P (2) = [p

(2)
ij ] are the predictions of the two

viewers for node-i, respectively.

The concept of co-training was proposed by (Blum & Mitchell, 1998), co-training assumes that each
data point has two views, and each view is sufficient for learning an effective model. Co-training
learns separately on two views with labeled data samples to obtain two different learners and then
uses the unlabeled data samples in the respective views of the two learners to make predictions. The
basic learning process of collaborative training is: Each learner selects the data sample with the top
high-confidence predictions in unlabeled data and adds it to the labeled data sample set of another
learner for training. This process is repeated until a specific stopping condition is met. Co-training
needs to meet the following two conditions:

• Views are sufficient and redundant, that is, for each view, if enough labeled data is given,
each view can learn a learner with good performance.

• Conditionally independent, that is, the label information of each view is conditionally in-
dependent of the label information of another view.

Our view-consistent learning method is similar to co-training, which requires pseudo-labels for train-
ing. The selected pseudo-label data cannot be completely clean (the predicted label is exactly the
same as the real label), but contains noise (the situation where the predicted label is inconsistent
with the real label). Due to the powerful representation capabilities of deep neural networks, even
noisy labels can be fitted by deep neural networks. Based on (Han et al., 2018), which can train
deep neural networks with extremely noisy labels, we propose our own training strategy. We use
labeled samples to train two independent learners, namely view 1 and view 2. When the two-view
networks are well trained, according to their predictions, the predicted labels of some nodes with
the same prediction representations and common high-confidence prediction are selected as pseudo
labels. Then, pseudo label set is added to the original labeled set for training. This is repeated until
the stop condition is reached.

We believe that pseudo labels have similar importance as real labels, but the number of pseudo-labels
taken each time can be controlled by the loss function value and the accuracy of the verification set,
and different numbers of pseudo-labels can be given to data sets with different label rates.

GVCLN selects nodes with high confidence and with same prediction results in the two views as
pseudo labels. The pseudo labels are voted with high-confidence predictions of the two viewers
taken from unlabeled nodes.

The pseudo-label loss has the same effect as consistency loss, that is: making the two views more
and more consistent. Meanwhile, supervised loss has the function of fine-tuning and controlling the
direction of network optimization.

We choose cross entropy as a loss function to calculate the loss for both the labeled samples and the
pseudo labels:

CEi = −
k∑
j=1

yij ln pij , (4)

4



Under review as a conference paper at ICLR 2021

where yij denotes the ground-truth label, i.e., the i-th node belongs to the j-th class, pij is the
network prediction probability of the i-th label.

Thus, the supervised loss function of labeled samples is:

`sup = −1

s

s∑
i=1

k∑
j=1

yij ln pij . (5)

where s denotes the number of labeled nodes,

For pseudo labels, we also use cross entropy to calculate the loss function:

`pseudo = −1

t

t∑
m=1

k∑
i=1

y′ij ln pij . (6)

where y′ij is the pseudo label and t denote the number of nodes of the pseudo labels.

3.3 ALGORITHM

Then, the total loss of GCVLN is given by:

`total = `(1)sup + `(2)sup + β`view + `pseudo, (7)

where β is a trade-off parameter, which is used to weigh the label loss function and the consistency
loss function.

We first pre-train the GVCLN with `view and `sup, and second use the total loss function, `total. The
specific process of GVCLN can be seen in Algorithm 1.

Algorithm 1 The GCVLN algorithm.
1: Input: X,A, epochmax, epochpre, β.
2: Output: P (1) and P (2).
3: Initialize: Model initialization.
4: X = ÂmX
5: for epoch ∈ [1, epochmax] do
6: if epoch < epochpre then
7: ` = `

(1)
sup + `

(2)
sup + β`view .

8: Do optimization.
9: else

10: `total = `
(1)
sup + `

(2)
sup + β`view + `pseudo .

11: Do optimization.
12: end if
13: end for

In this paper, we use a renormalization filter (Li et al., 2019) to preprocess features as X ← ÂmX .
The filter strength is tuned by the filter parameter m. When the label rate is low, m is increased, and
when the label rate is high, m is reduced. By this operation, label efficient can be achieved.

4 EXPERIMENT

In this section, we use GVCLN to carry out related experiments and analyze the results in detail. The
datasets include three citation network of Cora, Citeseer and PubMed. We conducted experiments
with different label rates and without verification set. The division of the experimental dataset is the
same as Luan et al. (2019). Classification accuracy of the test set is used as metric to evaluate the
quality of model.
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Table 1: Datasets statistics.
Dataset Vertices Edges Classes Features
Cora 2708 5429 7 1433
Citeseer 3327 4732 6 3703
PubMed 19717 44338 3 500

4.1 DATASETS

We use three citation datasets: Cora, Citeseer and PubMed, which are widely used in graph prob-
lems. The specific information of the three data sets can be found in Table 1.

Cora: The Cora dataset contains 2708 nodes, which represent 2708 scientific documents and they
can be divided into 7 categories. The citation network has 5,429 connection references, so the
resulting graph contains 5,429 edges. The node feature is represented by a word vector containing
1433 independent and unique words, that is, the node feature is represented by a 1433-dimensional
vector.

Citeseer: The Citeseer dataset contains 3327 nodes, which can be divided into 6 categories and
each node represents one document. The citation network contains 4732 citation relationships. The
feature of each document is represented by a word vector containing 3703 independent and unique
words, that is, the feature of a node is represented by a 3703-dimensional vector.

PubMed: The PubMed dataset contains 19717 scientific papers, which can be divided into three
categories. The citation network contains 44,338 citation relationships. The feature of each paper is
represented by a word vector containing 500 independent unique words, and the feature of a node is
represented by a 500-dimensional vector.

4.2 SETTING

GVCLN use graph convolutional layer and graph attention layer to build two viewers. The dimen-
sion of the hidden layer of Viewer 1 is set to 16, the drop rate is set to 0.2, the first large layer uses
three-head graph convolutional layer to concatenate together, the second large layer uses only one
graph convolutional layer; The dimension of the hidden layer of Viewer 2 is set to 8, the drop rate
is set to 0.6, the first large layer uses three-head graph attention layer to concatenate together, and
the second large layer uses only one graph convolutional layer. Other specific parameters are given
in Appendix. Since the quality of the training set sampled each time is different, when the sampled
training set node is located in the cluster center, the training and testing results are better. When the
sampled training set node is located at the classification boundary, it will cause the training to be
biased and the effect is poor, so the experimental results of this paper are the average results of ten
tests. In the experiment, when the label rate is low, the filtering strength is increased and the number
of pseudo labels is increased. As the label rate increases, the filtering strength and the number of
pseudo labels are gradually reduced. At the same time, when the number of real label increases, the
number of pseudo labels should be appropriately reduced.

4.3 RESULTS

In our paper, the framework of view-consistent learning is applied to the problem of semi-supervised
graph node classification and combined with graph feature filtering and pseudo-label learning, so
that the GVCLN performs outstandingly when dealing with low label rate problems and without
validation. The division of the experimental dataset is the same as Luan et al. (2019). Classification
accuracy of the test set is used as metric to evaluate the quality of model. The test results without
validation can be seen in Table 2. Then, we make a specific analysis of the test results of the three
datasets.

Our baseline is Stronger Multi-scale Deep Graph Convolutional Networks (Luan et al., 2019), which
generalize spectral graph convolution and deep GCN in block Krylov subspace forms and devise two
architectures, both with the potential to be scaled deeper but each making use of the multi-scale in-
formation differently. Luan et al. (2019) designed three sub-models: Linear Snowball, Snowball and
Truncated Krylov, all of which can efficiently classify graph nodes. We used the same experimental

6



Under review as a conference paper at ICLR 2021

setup as Luan et al. (2019), and conducted training and testing without a validation set and with
different label rates. Our method GVCLN can surpass Luan et al. (2019) under different label rates.
In the appendix, we give a list of parameter settings for GVCLN and Luan et al. (2019). We also
compare against other methods, including label propagation using ParWalks (LP) (Wu et al., 2012),
Chebyshev networks (Cheby) (Defferrard et al., 2016), Co-training (Li et al., 2018), Self-training
(Li et al., 2018), Multi-stage self-supervised (M3S) training (Sun et al., 2019b), graph convolutional
networks (GCN) (Kipf & Welling, 2016), GCN with sparse virtual adversarial training (GCN-SVAT)
(Sun et al., 2019a) and GCN with dense virtual adversarial training (GCN-DVAT) (Sun et al., 2019a).

The second, third and fourth column of Table 2 show the accuracy of our proposed method GVCLN
and other existing methods under different label rates. It can be seen that GVCLN can reach the
highest level on three citation datasets. For Citeseer, when the labeling rate is 0.5%, the GVCLN
test accuracy rate is nearly 6.4% higher than the highest level of Truncated Krylov.

Table 2: Accuracy Without Validation
Dataset Cora Citeseer PubMed
Label rate 0.5% 1% 2% 3% 4% 5% 0.5% 1% 2% 3% 4% 5% 0.03% 0.05%
LP 56.4 62.3 65.4 67.5 69.0 70.2 34.8 40.2 43.6 45.3 46.4 47.3 61.4 66.4
Cheby 38.0 52.0 62.4 70.8 74.1 77.6 31.7 42.8 59.9 66.2 68.3 69.3 40.4 47.3
Co-training 56.6 66.4 73.5 75.9 78.9 80.8 47.3 55.7 62.1 62.5 64.5 65.5 62.2 68.3
Self-training 53.7 66.1 73.8 77.2 79.4 80.0 43.3 58.1 68.2 69.8 70.4 71.0 51.9 58.7
M3S 61.5 67.2 75.6 77.8 78.0 - 56.1 62.1 66.4 70.3 70.5 - 59.2 64.4
GCN 42.6 56.9 67.8 74.9 77.6 79.3 33.4 46.5 62.6 66.9 68.7 69.6 46.4 49.7
GCN-SVAT 43.6 53.9 71.4 75.6 78.3 78.5 47.0 52.4 65.8 68.6 69.5 70.7 52.1 56.9
GCN-DVAT 49.0 61.8 71.9 75.9 78.4 78.6 51.5 58.5 67.4 69.2 70.8 71.3 53.3 58.6
Linear Snowball 69.5 74.1 79.4 80.4 81.3 82.2 56.8 65.4 68.8 71.0 72.2 72.2 64.1 69.5
Snowball 67.2 73.5 78.5 80.0 81.5 81.8 56.4 65.0 69.5 71.1 72.3 72.8 62.9 68.3
Truncated Krylov 73.0 75.5 80.3 81.5 82.5 83.4 59.6 66.0 70.2 71.8 72.4 72.2 69.1 71.8
GVCLN 73.5 76.4 80.9 82.7 83.2 84.4 65.9 69.4 71.0 72.3 72.4 72.9 70.5 72.3

Figure 2: accuracy and loss of Cora 0.5% Figure 3: all loss of Cora 0.5%

Figure 4: Cora with 5.6% Figure 5: Citeseer with 3.6% Figure 6: PubMed with 0.3%
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Fig. 2 and Fig. 3 show the accuracy curve and loss function curve of the Cora dataset when the label
rate is 0.5%. It can be seen that adding a pseudo-label when the epoch of training is 200 is helpful
for the accuracy and loss function decline.

Fig. 4 is a t-SNE visualization diagram of the output results when each category contains 20 labeled
samples, that is, the label rate is 5.6%. It can be seen from the visualization that the classification
effect is still relatively good. The seven categories of the Cora data set finally appear to be clustered.
Figure 5 and Figure 6 are the t-SNE visualization diagrams of the Citeseer data set and PubMed data
set, respectively.

The renormalization filter with filter strength m=20 is used in the GVCLN model to preprocess
the node features, which plays an important role in achieving label efficiency. In the experiment,
we performed t-SNE visualization analysis on the original node features and filtered node features
respectively, and the visualization results can be seen in Figure 7 and Figure 8. It can be clearly seen
that all nodes in the original node feature visualization result are clustered together, and the node
features after filtering are scattered and show certain signs of clustering.

Figure 7: t-SNE of Cora raw features Figure 8: t-SNE of Cora features with filtering

5 CONCLUSIONS

We propose a new model, GVCLN, to solve the node classification problem in the case of low
label rate. GVCLN adopts a dual-view structure to view-consistent learning. For the two viewers,
we use the graph convolutional layer and the graph attention layer, respectively, and finally pass
through a non-linear graph convolutional layer. Because the graph convolutional layer of viewer
1 is relatively simple, it can quickly learn to obtain node representations, and then increases the
representation ability of graph attention layer by supervised the consistency loss function in the
learning. In contrast, the graph attention layer of viewer 2 is more complicated, it can prevent the
addition of pseudo-labels from making the GVCLN unstable, and prevent the pseudo-label errors
amplify step by step. Thus, We propose a view-consistency learning method, and carry out relevant
practices on the task of graph node classification. Good results can be obtained on the three citation
datasets on all label rate and without validation.

We also found that when the label rate is very low, there may be only a few labeled nodes. If these
few labeled nodes are well represented (can support the entire dataset), the classification effect is
particularly significant. On the contrary, when they are not enough to support the entire dataset, the
classification effect will be worse. The direction of our future work will shift from a semi-supervised
low label rate to unsupervised direction.
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