
FlexVAR: Flexible Visual Autoregressive Modeling
without Residual Prediction

Siyu Jiao1 Gengwei Zhang2 Yinlong Qian3 Jiancheng Huang3 Yao Zhao1

Humphrey Shi4 Lin Ma3 Yunchao Wei1† Zequn Jie3†

1 Institute of Information Science, Beijing Jiaotong University
2 University of Technology Sydney

3 Meituan
4 Georgia Institute of Technology

Code: FlexVAR
512 384 256 384 384

512

128

256

Figure 1: Generated samples from FlexVAR-d24 (1.0B). FlexVAR generates images with various
resolutions and aspect ratios, even though it is trained with a resolution of ≤ 256×256.

Abstract

This work challenges the residual prediction paradigm in visual autoregressive
modeling and presents FlexVAR, a new Flexible Visual AutoRegressive image
generation paradigm. FlexVAR facilitates autoregressive learning with ground-
truth prediction, enabling each step to independently produce plausible images.
This simple, intuitive approach swiftly learns visual distributions and makes the
generation process more flexible and adaptable. Trained solely on low-resolution
images (≤ 256px), FlexVAR can: (1) Generate images of various resolutions and
aspect ratios, even exceeding the resolution of the training images. (2) Support
various image-to-image tasks, including image refinement, in/out-painting, and
image expansion. (3) Adapt to various autoregressive steps, allowing for faster
inference with fewer steps or enhancing image quality with more steps. Our 1.0B
model outperforms its VAR counterpart on the ImageNet 256×256 benchmark.
Moreover, when zero-shot transfer the image generation process with 13 steps,
the performance further improves to 2.08 FID, outperforming state-of-the-art
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autoregressive models AiM/VAR by 0.25/0.28 FID and popular diffusion models
LDM/DiT by 1.52/0.19 FID, respectively. When transferring our 1.0B model
to the ImageNet 512×512 benchmark in a zero-shot manner, FlexVAR achieves
competitive results compared to the VAR 2.3B model, which is a fully supervised
model trained at 512×512 resolution.

1 Introduction

��: the image latent feature at ��ℎ scale     ��: the residual latent feature at ��ℎ scale

Figure 2: Comparison between VAR [44] and our Flex-
VAR. VAR predicts the GT1 in step 1 and then predicts
the residuals relative to the GT in all subsequent steps.
Our FlexVAR predicts the GT at each step.

Autoregressive (AR) models aim to learn
the probability distribution of the next to-
ken, offering great flexibility by generating
tokens of any length. This design brings sig-
nificant advancements in the field of Natural
Language Processing (NLP), demonstrating
satisfactory generality and transferability
[4, 30, 31]. Concurrently, the computer vi-
sion field has been striving to develop large
autoregressive models [28, 27, 1, 43, 29, 38].
These models employ visual tokenizers to
discretize images into a series of 1D to-
kens [34, 22, 49, 52, 41] or 2D scales
[44, 51, 42, 37, 25] and then utilize AR to
model the next unit. However, these image
autoregressive models typically output im-
ages at a single resolution, the flexibility of
AR has not yet been realized.

Recently, in image generation, VAR [44] has pioneered scale-wise autoregressive modeling, com-
pleting image autoregression based on 2D sequences. This approach predicts the next scale rather
than the next token, thereby preserving the 2D structure of images and mitigating the issue of limited
receptive fields in 1D causal transformers. Specifically, VAR predicts the ground-truth (GT)1 of the
smallest scale in the first step. Subsequently, at each step, it predicts the residuals of the current scale
and the prior one. Finally, the outputs of each scale are upsampled to a uniform size and undergo
weighted summation to generate the final output, as illustrated in Fig. 2(a). Successors [51, 42, 37, 25]
have all adopted the residual design, assuming it to be effective. Although this technique achieves
commendable performance, it encounters a primary challenge: The residual prediction relies on a
rigid step design, restricting the flexibility to generate images with varying resolutions and aspect
ratios, thus limiting the adaptability and flexibility of image generation. Meanwhile, residuals at
different scales often lack semantic continuity, and this implicit prediction approach may limit the
model’s capacity to represent diverse image variations.

In this work, we examine the necessity of residual prediction in visual autoregressive modeling.
Our intuition is that, in scale-wise autoregressive modeling, the ground-truth value of the current
scale can be reliably estimated from the prior series of scales, rendering residual prediction (i.e.,
predicting the bias between the current scale and the preceding one) unnecessary. Notably, predicting
GT ensures semantic coherence between adjacent scales, making it more conducive for modeling the
probability distribution of the scale. Additionally, this structure can output reasonable results at any
step, breaking the rigid step design of the residual prediction and endowing autoregressive modeling
with great flexibility.

Motivated by this, we systematically design the paradigm of visual autoregressive modeling without
residual prediction, referred to as FlexVAR. Within FlexVAR, the ground-truth is predicted at each
step instead of the residuals. Specifically, we design a scalable VQVAE tokenizer with multi-
scale constraints, enhancing the VQVAE’s robustness to various latent scales and thereby enabling
image reconstruction at arbitrary resolutions. Then, the FlexVAR Transformer learns the probability
distribution of a series of multi-scale latent features, modeling the ground-truth of the next scale, as
shown in Fig. 2(b). Additionally, we propose scalable 2D positional embeddings, which incorporate

1To avoid confusion, we use ground-truth (GT) to represent image latent feature, and residual to represent
residual latent feature.
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2D learnable queries initialized with 2D sin-cosine weights. This approach enables the scale-wise
autoregressive modeling to be extended to various resolutions/steps, including those beyond the
resolutions/steps used during training, as shown in Fig. 1.

In a nutshell, this non-residual modeling approach ensures continuous semantic representation
between adjacent scales. Simultaneously, it avoids the rigid step design inherent in residual prediction,
significantly expanding the flexibility of image generation. FlexVAR can (1) generate images of
various resolutions and aspect ratios, even exceeding the training resolutions; (2) support image-to-
image tasks such as in/out-painting, image refinement, and image expansion without the need for
fine-tuning; (3) enjoy flexible inference steps, allowing for accelerated inference with fewer steps or
improved image quality with more steps.

2 Related Work

VQ-VAE [46] introduces a groundbreaking two-stage image generation paradigm: (1) encoding the
image into a latent space and quantizing it to the nearest code in a fixed-size codebook; (2) modeling
the discretized code using PixelCNN [45], which predicts the probability distribution of each code in
raster scan order. This two-stage paradigm has laid the foundation for many subsequent works.

Raster-scan Manner Building on the aforementioned foundation, [12, 33] perform autoregressive
learning in latent space with Transformer architecture. VQVAE-2 [35] and RQ-Transformer [22]
use extra scales or stacked codes for next-image-token prediction. These works further advance the
field and achieve impressive results. Recently, [41, 26] utilize a GPT-style next-token-prediction
strategy to achieve high-quality image generation. [17] further improves this paradigm by introducing
a mixture of autoregressive models, while [23] incorporates Mamba structure [13] to accelerate image
generation. [48, 53, 14] combine diffusion processes into autoregressive modeling to address the
information loss caused by quantization, which potentially degrades the quality of generated images.

Random-scan Manner Masked-prediction models learn to predict masked tokens in a BERT-style
manner [9, 16, 2]. They introduce a bidirectional transformer that predicts masked tokens by
attending to unmasked conditions, thus generating image tokens in a random-scan manner. This
approach enables parallel token generation at each step, significantly improving inference efficiency.
Specifically, [6, 5] apply masked-prediction models in class-to-image and text-to-image generation,
respectively. MagViT series [50, 29] adapts this approach to videos by introducing a VQVAE for
both images and videos. NOVA [8] first predicts temporal frames and then predicts spatial sets within
each frame to achieve high-quality image/video generation.

Scaling-scan Manner VAR [44] establishes a new generation paradigm that redefines autoregressive
learning on images from next-token-prediction to next-scale-prediction. VAR in parallel predicts
image tokens at one scale, significantly reducing the number of inference steps. Following VAR,
VAR-CLIP [51] achieves text-to-image generation by converting the class condition token into text
tokens obtained from the CLIP. In terms of operational efficiency, [7] introduces an efficient decoding
strategy, [37] incorporates linear attention mechanisms to accelerate image generation, and [25]
designs a lightweight image quantizer, significantly reducing training costs. Regarding generation
quality, [42, 36] optimize image details by using continuous tokenizers in combination with flow
matching or diffusion model. Infinity [15] redefines the visual autoregressive model under a bitwise
token prediction framework, remarkably enhancing generation capability and detail.

3 Methodology

3.1 Scale-wise Autoregression (Preliminary)

Scale-wise autoregressive models tokenize the input image into a sequence of multi-scale discrete
image token maps T = {t1, t2, ..., tn}, where ti is the token map with the resolution of hi × wi

downsampling from tn ∈ Rhn×wn . Each autoregressive step generates an entire token map, rather
than a single token. Compared to next-token-prediction, which contains one token at each step, ti
contains hi × wi tokens and is able to maintain the 2D structure.

Previous approaches [44, 51, 7, 37, 25, 42] typically follow a residual prediction paradigm. They
only regress the ground-truth at the first scale (g1), while at subsequent ith scale, the residual between
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the preceding scale (gi−1) and current scale (gi) is predicted. We formulate residuals ({ri}ni=2) as:

ri = gi −Upsamplei(gi−1), (1)

here Upsamplei represents upsample gi−1 to the ith scale. The autoregressive likelihood is:

p(g1, r2, . . . , rn) =

n∏
i=1

p(ri | g1, r2, . . . , ri−1) (2)

attention mechanisms (e.g., Transformer [47]) are utilized to instantiate this modeling. During the ith
autoregressive step, all preceding residuals are merged in the autoregressive model, which then pre-
dicts the probability distribution of ri. The hi ×wi tokens in ri are generated in parallel, conditioned
on all preceding units. Thus, image token maps can be redefined as: T = {g1, r2, r3..., rn}. Finally,
each image token map in T is upsampled to Rhn×wn and summarized for image generation.

3.2 Overview of FlexVAR

Our FlexVAR is a flexible visual autoregressive image generation paradigm that allows autoregressive
learning with ground-truth prediction rather than residual, enabling to generate reasonable images
at any step independently. Within our approach: (1) A scalable VQVAE tokenizer quantizes the
input images into tokens at various scales and reconstructs images, as detailed in Sec. 3.3. (2) A
FlexVAR transformer is trained via scale-wise autoregressive modeling, with the removal of residuals,
as detailed in Sec. 3.4.

3.3 Quantize & reconstruct images at various scales

Mainstream VQVAE tokenizers perform well at a single resolution. However, when scaling the latent
space, they often fail to reconstruct images (as shown in Fig. 3). This observation motivates us to
explore a scalable tokenizer that quantizes input images into tokens at various scales and reconstructs
images. Specifically, the proposed scalable tokenizer first encodes an image into multi-scale latent
space, and then uses a quantizer to convert latent space features into discrete tokens, finally a decoder
is used to reconstruct the original images from the discrete tokens at each scale.

Encoding. Given an input image I ∈ RH×W , an autoencoder E(·) [12] is used to convert I into
latent space f :

f = E(I), f ∈ RC×h×w (3)

here h = H
16 , w = W

16 . We then downsample f at K random scales to obtain multi-scale latent
features F = {f1, f2, ..., fK}. fk represents represents the latent feature of the kth downsample
from f . fK matches the original resolution of f .

Quantizing. The quantizer Q(·) includes a codebook Z ∈ RV×C containing V learnable vectors.
The quantization process q = Q(f) is implemented by finding the Euclidean nearest code q(k,i,j) of
each feature vector f (k,i,j) in multi-scale latent features F :

q(k,i,j) =
(
argminv∈[V ]∥Select(Z, v)− f (k,i,j)∥2

)
∈ [V ] (4)

where Select(Z, v) denotes selecting the vth vector in codebook Z. Based on F , we extract all
q(k,i,j) and minimize the distance between q and f to train the quantizer Q.

Decoding. The multi-scale images Î = {Î1, Î2, ..., ÎK} are reconstructed using the decoder D(·) [12]
given q(k,i,j). We follow Llamagen [41] to adopt the same loss functions (Lvae) to train {E ,Q,D} at
each scale without special design. Therefore, the final loss function can be formulated:

L =

K∑
k=1

Lvae

(
(Ik, Îk), (fk, qk)

)
(5)

3.4 Visual autoregressive modeling without residual

We reconceptualize the next-scale-prediction progress from residual prediction to GT prediction. As
illustrate in Fig. 2 (b). Here, each autoregressive step predicts the GT of current scale, rather than
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the residual. We start by sampling N multi-scale token maps {g1, g2, . . . , gN} from latent feature f ,
each at an increasingly higher resolution hn × wn, culminating in gN matches the original feature
map’s resolution RC×h×w. The autoregressive likelihood is reformulated as:

p(g1, g2, . . . , gn) =

n∏
i=1

p(gi | g1, g2, . . . , gn−1). (6)

During the ith autoregressive step, gi ∈ Rhi×wi contains hk × wk tokens are generated in parallel,
conditioned on all preceding scales {g1, g2, . . . , gi−1}.

Scalable Position Embedding. VAR utilizes fix-length Position Embedding (PE) by adding learnable
queries to each step and h-w coordinates. This requires both training and inference to follow a fixed
number of steps and resolutions, which limits the flexibility of the autoregressive process.

In our FlexVAR, we design a 2D scalable PE (P ∈ Rd×2h×2w) adding to the h-w coordinates. It
contains 2h× 2w learnable queries with d channels. At the ith step, P is upsampled/downsampled
to match the scale of gi. To ensure stability during linear interpolation across various scales, we set
P to 2× the size of the max latent space in traning. P is initialized using 2D sin-cosine PE [11] to
ensure the 2D positional correlation. Additionally, we experimentally find that in our ground-truth
prediction paradigm, incorporating PE for step embeddings is unnecessary (Tab. 6). Therefore, we
remove the step embeddings to ensure the flexibility of steps in autoregressive modeling.

Step sampling. During training, we randomly sample the scale size in each step to enhance FlexVAR’s
capability to perceive any scale. Specifically, we set the maximum number of steps to 10, fixing
the scale size of the first step to 1×1 and the last step to 16×16 (corresponding to 256×256 input
images), and randomly sampling the scale sizes for the intermediate steps. Each step is dropped
with a 5% probability, with a maximum of 4 steps being dropped. Thus, the number of steps during
training is from 6 to 10. During inference, we use a default of 10 steps: {1, 2, 3, 4, 5, 6, 8, 10, 13, 16}
(same as VAR). Our experimental results show more steps yield better performance (Fig. 6).

4 Experiments

4.1 Implementation details

FlexVAR tokenizer. Our scalable VQVAE tokenizer is configured with a downsampling factor of
16 and is initialized with the pre-trained weights from LlamaGen [41], the codebook size is set to
8912, and the latent space dimension is set to 32. The quantization of each scale shares the same
codebook. We follow the VQVAE training recipe of LlamaGen. The training is on OpenImages [21]
with a constant learning rate of 10−4, AdamW optimizer with β1 = 0.9, β2 = 0.95, weight decay =
0.05, a batch size of 128, and for 20 epochs. K is set to 5 by default, indicating that each latent space
is randomly sampled into 5 different resolutions.

Model name Layers Params. Heads Dims. Epoch
FlexVAR-d16 16 310M 16 1024 180
FlexVAR-d20 20 600M 20 1280 250
FlexVAR-d24 24 1.0B 24 1536 350

Table 1: Configuration of FlexVAR.

FlexVAR transformer. We provide
FlexVAR in three scales, with detailed
configurations for each scale provided
in Tab 1. FlexVAR is trained on the
ImageNet-1K 256×256 using 80GB
A100 GPUs. The training process
employs the AdamW optimizer with
β1 = 0.9, β2 = 0.95, and a weight decay rate of 0.05. The learning rate is set to 1e-4, with the
training epochs varying between 180 and 350 depending on the model scale.

4.2 Overall Comparison

We compare FlexVAR with existing generative methods on the ImageNet-1K benchmark, including
GAN, diffusion models, random-scan, raster-scan, and scaling-scan autoregressive models. As
shown in Tab. 2. To ensure a fair comparison, we only present models with a size smaller than
1B. Our FlexVAR achieves state-of-the-art performance in all generative methods, and performs
remarkably well compared to the VAR counterparts. Specifically, we achieve -0.45, -0.56, and -0.12
FID improvement compared with VAR at different model sizes.
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Table 2: Generative model comparison on class-conditional ImageNet 256×256. Metrics include
Fréchet inception distance (FID), inception score (IS), precision (Pre) and recall (rec). Step: the
number of model runs needed to generate an image. Time: the relative inference time of VAR-d30
[44]. We present models with a size ≤ 1B.

Model FID↓ IS↑ Pre↑ Rec↑ Param Step Time

Generative Adversarial Networks (GAN)
BigGAN [3] 6.95 224.5 0.89 0.38 112M 1 −
GigaGAN [20] 3.45 225.5 0.84 0.61 569M 1 −
StyleGan-XL [40] 2.30 265.1 0.78 0.53 166M 1 0.2

Diffusion Models
ADM [10] 10.94 101.0 0.69 0.63 554M 250 118
CDM [18] 4.88 158.7 − − − 8100 −
LDM-4-G [39] 3.60 247.7 − − 400M 250 −
DiT-L/2 [32] 5.02 167.2 0.75 0.57 458M 250 2
DiT-XL/2 [32] 2.27 278.2 0.83 0.57 675M 250 2

Random-scan Manner (Mask Prediction)
MaskGIT [6] 6.18 182.1 0.80 0.51 227M 8 0.4
RCG (cond.) [24] 3.49 215.5 − − 502M 20 1.4

Raster-scan Manner (Token-wise Autoregressive)
VQGAN-re [12] 18.65 80.4 0.78 0.26 227M 256 7
RQTran. [22] 13.11 119.3 − − 821M 68 -
LlamaGen-XL [41] 2.62 244.08 0.80 0.57 775M 256 27
AiM [23] 2.56 257.2 0.81 0.57 763M 256 12

Scaling-scan Manner (Scale-wise Autoregressive)
VAR-d16 [44] 3.55 280.4 0.84 0.51 310M 10 0.2
FlexVAR-d16 3.05 291.3 0.83 0.52 310M 10 0.2
VAR-d20 [44] 2.95 302.6 0.83 0.56 600M 10 0.3
FlexVAR-d20 2.41 299.3 0.85 0.58 600M 10 0.3
VAR-d24 [44] 2.33 312.9 0.82 0.59 1.0B 10 0.5
FlexVAR-d24 2.21 299.1 0.83 0.59 1.0B 10 0.5
FlexVAR-d24 2.08 315.7 0.83 0.59 1.0B 13 0.6

4.3 Zero-shot Comparison

Zero-shot inference with more steps. We use 13 steps for image generation without training, as
shown in the last row of Tab. 2. FlexVAR can flexibly adopt more steps to improve image quality.
By using 13 inference steps, FlexVAR further enhances the performance to 2.08 FID and 315 IS,
manifesting strong flexibility and generalization capabilities. The specific steps design is detailed in
the Supplementary Material.

Model Training Free FID IS Params.
BigGAN [3] × 8.43 177.9 112M
ADM [10] × 23.24 101.0 554M
DiT-XL/2 [32] × 3.04 240.8 675M
MaskGIT [6] × 7.32 156.0 227M
VQGAN [12] × 26.52 66.8 1.4B
VAR-d36 [12] × 2.63 303.2 2.3B
FlexVAR-d24 (ours) ✓ 4.43 314.4 1.0B

Table 3: Zero-shot inference on ImageNet 512×512 con-
ditional generation. Training Free indicates whether the
model is trained at the 512×512 resolution.

Zero-shot inference on ImageNet
512×512 benchmark. We use
FlexVAR-d24 to generate 512×512
images and evaluate on ImageNet-512
benchmark without training, as shown
in Tab. 3. Surprisingly, our FlexVAR-
d24 exhibits competitive performance
when compared to VAR, despite Flex-
VAR being trained only on resolutions
≤ 256×256 and having only 1.0B pa-
rameters.

4.4 Ablation study

We conduct ablation studies on various design choices in FlexVAR . Due to the limited computational
resources, we report the results trained with a short training scheme in Tab. 4, 5, 6, i.e., 40 epochs (∼
70K iterations).
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Component-wise ablations. To understand the effect of each component, we start with standard
VAR and progressively add each design, as shown in Tab. 4:

• Baseline: VAR uses a residual prediction paradigm, exhibits decent performance (1st result),
but its flexibility in image generation does not meet expectations (as described in Sec. 1).

• Prediction type: It is infeasible to directly convert the prediction type to GT, as seen in
the 2nd and 3rd results. We employ the VQVAE tokenizers from VAR and Llamagen, both
of which yield inferior performance. This is not surprising, as the current tokenizers lack
robustness to images with varying latent space, while we force these tokenizers to obtain
multi-scale latent features during training (we provide a detailed analysis in Fig. 3).

• Tokenizer: Our scalable tokenizer obtains reasonable multi-scale latent features during
training, resulting in an improvement of -13.87 FID (the 4th results). However, flexible
image generation is not accomplished yet.

• Position embedding: As shown in the last result in Tab. 4, the introduction of our scalable
Position Embedding (PE) provides high flexibility for image generation, and further enhances
the performance to 3.71 FID.

Pred. type VQVAE PE FID IS
Residual VAR fixed-length 4.00 226.04

GT VAR fix-length N/A N/A

GT Llamagen fix-length 17.75 234.12
GT ours fix-length 3.82 229.35
GT ours scalable 3.71 230.22

Table 4: Ablation of diverse designs. We use the
next-scale-prediction paradigm, explore the ef-
fects of different prediction types (residual/GT),
VQVAE tokenizers (Llamagen/VAR/ours), and
positional embedding (fix-length/scalable). N/A
denotes the model does not converge during train-
ing. We report the results with model scale -d20
trained 40 epochs on ImageNet-1K.

VAR

Llamagen

Ours

32 64 128 256 320 384 448 512 px

Input (512 px)

Underperformed result

reconstruct good 
result at one scale 

Figure 3: Compared with VQVAE [44, 41] for
multi-scale reconstructing images, we downsam-
ple the latent features in VQVAE to multiple
scales and use the VQVAE Decoder to recon-
struct images. We upsample images < 100 pix-
els using bilinear interpolation for a better view.

Reconstruct images with different VQVAEs. In Fig. 3, we reconstruct multi-scale images by
scaling the latent features in VQVAE tokenizers. Existing VQVAE tokenizers typically do not
support scaling the latent features across a range of small to large scales. VAR’s VQVAE [44] uses a
residual-based training recipe, directly applying it to non-residual image reconstruction does not yield
the anticipated results (the 1st row). The VQVAE tokenizer from Llamagen [41] shows excellent
reconstruction performance only at the original latent space, indicating that it is not feasible for
scale-wise autoregressive modeling (the 2nd row).

Depth Atten. type FID IS Params. Time

-d16 Transformer 4.32 209.87 310M 0.2
Mamba 4.22 200.04 370M 0.2

-d20 Transformer 3.71 230.22 600M 0.3
Mamba 3.80 216.45 700M 0.3

Table 5: Ablation of the Mamba architectural.
Models are trained 40 epochs (∼ 70K iterations).

Step h-w coordinates learnable FID IS
fix-length fixed-length True 3.82 229.35

× fixed-length True 3.87 224.25
× scaleable False 3.74 224.04
× scaleable True 3.71 230.22

Table 6: Ablation of Position Embedding. ×
denotes that the corresponding PE is removed.

Transfer FlexVAR to Mamba. Recent work, AiM [23], uses the Mamba architecture for token-
wise autoregressive modeling. Inspired by this, we modify FlexVAR with Mamba to evaluate the
performance (Tab. 5). With similar model parameters, Mamba demonstrates competitive results
compared to transformer models, indicating the GT prediction paradigm can effectively adapt to
linear attention mechanisms like Mamba. However, considering that this Mamba architecture does
not reflect the speed advantage, we do not integrate Mamba into our final version.

7



Mamba’s inherent unidirectional attention mechanism prevents image tokens from achieving global
attention within the same scale. To address this issue, we employ 8 scanning paths in different
Mamba layers to capture global information. The specific Mamba architecture is detailed in the
Supplementary Material.

Position Embedding. In Tab. 6, we experiment with several types of step PE and x-y coordinate PE.
To make the model robust to inference steps and enable it to generate images at any resolution, we
remove the fixed-length step embedding (results in the second row), and the performance showed
only slight changes. We adopt a non-parametric variant, similar to ViT [11], which shows a 0.03 FID
difference compared to the learnable variant.

256384512

96 128 160 256

128

80

Figure 4: Generated samples from 80px to 512px.
FlexVAR demonstrates strong consistency across var-
ious scales and can generate 512px images, despite
the model being trained only on images ≤ 256px.

Figure 5: Generated samples with various as-
pect ratios. FlexVAR-d24 is used. FlexVAR
demonstrates good visual quality across im-
ages with various aspect ratios.

Epoch Batch-Size rFID
VAR-VAE 20 768 1.92
FlexVAR-VAE (ours) 10 128 3.79

Table 7: VAE Performance.

VAE Performance Comparison. We com-
pared the reconstruction performance of VAR
and our proposed VAE in Tab. 7. The im-
age reconstruction quality is measured by r-FID,
reconstruction-FID on ImageNet validation set.
We train FlexVAR-VAE with fewer epochs and smaller batch sizes. We observe its reconstruction
quality inferior to VAR-VAE. Thus the improvement is not due to the quality of the discrete tokens,
using a more robust FlexVAR-VAE might further improve the quality of generated images

4.5 Analysis and Discussion

Generate images at various resolution. We show generated images at different resolutions using
FlexVAR-d24 in Fig 1, 4. By controlling the inference steps, our FlexVAR can generate images at
any resolution, despite being trained only on images with resolutions ≤ 256px. The generated images
demonstrate strong semantic consistency across multiple scales, and the higher resolutions exhibit
more detailed clarity. See the Supplementary Material for more zero-shot high-resolution generation
samples and step designs.

Generate images at various ratio. We use FlexVAR-d24 to generate samples with various aspect
ratios in Fig. 1 and Fig. 5. By controlling the aspect ratio at each step of the inference process,
our FlexVAR allows for generating images with various aspect ratios, demonstrating the flexibility
and controllability of our GT prediction paradigm. We control the height and width at each scale
through approximate rounding. e.g., to generate an image of size H ×W , the corresponding VAE
latent feature size is h × w, where h = H

16 and w = W
16 . We adopt VAR’s default set of 10 steps

(K = {1, 2, 3, 4, 5, 6, 8, 10, 13, 16}) to determine the size at each scale. As a result, the H × W
image corresponds to ten scales with sizes {int(h× i

16 ), int(w × i
16 )}i∈K .

Generate images at various step. In Fig. 6, we investigate the FID and IS for generating 256×256
images from 6 to 16 steps with 3 different sizes (depth 16, 20, 24). As the number of steps increases,
the quality of the generated images improves. The improvement is more significant in larger models
(e.g., FlexVAR-d24), as larger transformers are thought able to learn more complex and fine-grained
image distributions. During training, we use up to 10 steps to avoid OOM (out-of-memory) problem.
Surprisingly, in the inference stage, using 13 steps results in a performance gain of -0.13 FID. This
observation indicates that our FlexVAR is flexible with respect to inference steps, allowing for fewer
steps to speed up image generation or more steps to achieve higher-quality images. The details of
various step designs are provided in the Supplementary Material.
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FID (lower is better) IS (higher is better)

(default) (default)2.08

323.2

Figure 6: Zero-shot image generation at different steps (from 6 to 13 steps). FID and IS are used for
evaluation. We use ≤ 10 steps for training, and FlexVAR can zero-shot transfer to 13 steps during
inference and achieve better results.

256px

Input

Output Output

Input512px 512px

256px

Figure 7: Zero-shot image refinement at high resolution.
Zoom in for a better view.

Refine image at high resolution. In
Fig. 7, we input low-resolution im-
ages (e.g., 256px×256px) and en-
able FlexVAR-d24 to output high-
resolution refined images. Despite be-
ing trained only on ≤ 256px images,
FlexVAR effectively refines image de-
tails by increasing the input image res-
olution, such as the eyes of the dogs
in the example. This demonstrates the
high flexibility of FlexVAR in image-
to-image generation.

In
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Input Generated

Figure 8: Zero-shot evaluation in/out-painting.
The results show that FlexVAR can generalize to
novel downstream tasks without special design
and finetuning.

Input Input

Figure 9: Zero-shot evaluation image expansion.
The results show that FlexVAR can generalize to
novel downstream tasks without special design
and fine-tuning.

Image in-painting and out-painting. For in-painting and out-painting, we teacher-force ground-
truth tokens outside the mask and let the model only generate tokens within the mask. Class label
information is also injected. The results are visualized in Fig. 8. Without modifications to the
architecture design or training, FlexVAR achieves decent results on these image-to-image tasks.

Image extension. For image extension, we extend images with an aspect ratio of 1:2 for the target
class, with the ground-truth tokens forced to be in the center. The results are visualized in Fig. 9.
FlexVAR shows decent results in image extension, indicating the strong generalization ability and
flexibility of our architecture.

Failure case. FlexVAR fails to generate images with a resolution 3× or more than the training
resolution, as illustrated in Fig. 10. These cases typically feature noticeable wavy textures and blurry
areas in the details. This failure is likely due to the overly homogeneous structure of the current
training dataset. i.e., ImageNet-1K generally lacks multi-scale objects ranging from coarse to fine,
leading to errors in generating details of high-resolution objects.

We hypothesize that training the model with a more complex dataset that includes images with
fine-grained details, the model might become robust for higher resolutions.
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Figure 10: Failure cases at high resolutions (768 & 1024). FlexVAR shows wavy textures when
generating high-resolution images. Zoom in for a better view.

5 Conclusion

In this paper, we introduce FlexVAR, a flexible visual autoregressive image generation paradigm that
allows autoregressive learning without residual prediction. We design a scalable VQVAE tokenizer
and FlexVAR-Transformer for this purpose. This ground-truth prediction paradigm endows the
autoregressive model with great flexibility and controllability, enabling image generation at various
resolution, aspect ratio, and inference step, beyond those used during training. Moreover, it can
zero-shot transfer to various image-to-image generation tasks. We hope FlexVAR will serve as a
solid baseline and help ease future research of visual autoregressive modeling and related areas.

Limitations. We observe that when generating images with a resolution ≥ 3× larger than the training
image, noticeable wavy textures appear (Fig. 10). This issue may be attributed to the homogeneous
structure of the ImageNet-1K training set. We will investigate this further in future work to explore
how to ensure stability in zero-shot image generation at higher resolutions.

Broader Impact. This research strictly follows established practices for class-to-image (c2i) model
training and evaluation. Similar to most generative models, our approach may inherit biases present
in the training datasets. We advocate for the responsible use of this technology and caution when
deploying it in real-world scenarios.
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NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The abstract and introduction outline our contributions and scope.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed in the Conclusion section.
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Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]

Justification: This paper does not include theoretical assumptions and claims.

Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: The detailed information about model designs and experimental settings in the
paper makes it possible for researchers to reproduce the model with the same public dataset.

Guidelines:

• The answer NA means that the paper does not include experiments.

15



• If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The code will be released. The datasets are all public.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: The experimental setting is presented in the Experiments section.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: It is uncommon for top conference papers in this area to report error bars
or similar statistical measures. Our paper aligns with this standard of other SOTA papers,
which are the key criteria for evaluation in this domain.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: This paper provides sufficient information on the computer resources (type of
GPU, inference time)
Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The research conducted in the paper conforms to the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: This paper provides a discussion of potential societal impacts in the Conclusion
section.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [No]
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Justification: The datasets used are public datasets from existing papers.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: his paper cites the original papers for their code or datasets.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: The paper does not release new assets
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLM is used only for writing, editing, or formatting purposes and does not
impact the core methodology in this work.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Inference steps

In Tab. 8, we list the scales corresponding to different inference steps. The scales in each step are
not fixed and can be flexibly adjusted during inference. Note that during training, we only limit the
maximum number of steps to 10 and randomly sample the scale for each step, so the scales during
the training process do not follow Tab. 8

Reso Step Scale

256px

6 {1, 2, 4, 6, 10, 16}
7 {1, 2, 3, 5, 8, 11, 16}
8 {1, 2, 3, 4, 6, 10, 13, 16}
9 {1, 2, 3, 4, 5, 7, 10, 13, 16}

10 {1, 2, 3, 4, 5, 6, 8, 10, 13, 16}
11 {1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16}
12 {1, 2, 3, 4, 5, 6, 7, 8, 10, 12, 14, 16}
13 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16}

384px 11 {1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 24}

512px 12 {1, 2, 3, 4, 5, 6, 8, 10, 13, 16, 23, 32}
15 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 14, 16, 23, 32}

Table 8: Scale configurations of various inference steps.

B Extent visual autoregressive modeling with Mamba

Unlike attention mechanisms that utilize explicit query-key-value (QKV) interactions to integrate
context, Mamba faces challenges in handling bi-directional interaction. Therefore, prior Mamba-
based visual autoregressive work [37] only used Mamba to model the unidirectional relationship
between scales, relying on additional Transformer layers to process tokens within one scale.

In this work, we adopt a composition-recomposition strategy to obtain global information in Mamba
network. Specifically, we utilize a Zigzag scanning strategy [19] over the spatial dimension. We
alternate between eight distinct scanning paths across different Mamba layers (as shown in Fig. 11),
which include:

• (a) top-left to the bottom-right.
• (b) top-left to the bottom-right.
• (c) bottom-left to the top-right.
• (d) bottom-left to the top-right.
• (e) bottom-right to the top-left.
• (f) bottom-right to the top-left.
• (g) top-right to the bottom-left.
• (h) top-right to the bottom-left.

C Qualitative results with different steps.

In Fig. 12, we show some generated samples with {6, 8, 10, 12} steps. Our FlexVAR uses up to
10 steps for autoregressive modeling during training to avoid OOM (out-of-memory), while it can
naturally transfer to any number of steps during inference. The samples generated with different steps
are highly similar, differing only in some details. Generally, more steps result in better image details.
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Figure 11: Sptial scan paths for Mamba.

D Qualitative results with various resolutions.

Fig. 13 shows some generated samples with {256, 384, 512} resolutions. FlexVAR uses up to
256×256 resolution images for training, it can generate images with higher resolutions such as 384
and 512. The generated images demonstrate strong semantic consistency across multiple scales, and
the higher resolutions display more detailed clarity.

E Qualitative results with different VQVAE tokenizers.

Image reconstruction. We compare more image reconstruction results in Fig. 14. First, we encode
the image into the latent space and performe multi-scale downsampling, then reconstruct the original
image through the VQVAE decoder. It is evident that only our scalable VQVAE can perform image
reconstruction at various scales.

Generate images with GT prediction. We visualize the generated samples with VQVAE tokenizers
from VAR, Llamagen, and ours, corresponding to the 2nd, 3rd and 5th results in Tab. 6 in the main
paper. As shown in Fig. 15, the VAR tokenizer, trained with a residual paradigm, fails to generate
images under GT prediction; the generation samples of Llamagen’s tokenizer are not up to the mark,
due to its discrete tokens at intermediate steps being suboptimal.

F Additional Visual Results.

We show more generated samples in Fig. 16.
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6 8 10 (default) 12

Figure 12: Some generated samples with {6, 8, 10,
12} steps. Note the model is trained with steps ≤ 10.
More steps typically result in better image details.
Zoom in for a better view.

256px 384px 512px

Figure 13: Some generated samples with {256,
384, 512} resolutions. Note the model is trained
with a resolution of ≤ 256×256. Zoom in for a
better view.

VAR

Llamagen

Ours

32 64 128 256 320 384 448 512 (Input scale)

VAR

Llamagen

Ours

Input (512)

Input (512)

Figure 14: Compared with different VQVAE tok-
enizers [44, 41] for multi-scale reconstructing im-
ages, we downsample the latent features in VQVAE
to multiple scales and then use the VQVAE Decoder
to reconstruct images. We upsample images < 100
pixels using bilinear interpolation for a better view.

VAR Llamagen ours
Figure 15: Some generated samples with differ-
ent VQVAE tokenizers (Llamagen & VAR), cor-
responding to the 2nd and 3rd results in Tab. 6 in
the main paper. We report the results with model
scale -d20 trained 40 epochs (∼ 70K iterations) on
ImageNet-1K. Zoom in for a better view.
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Figure 16: Some generated 256×256 samples.
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