
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

NETMOE: ACCELERATING MOE TRAINING THROUGH
DYNAMIC SAMPLE PLACEMENT

Anonymous authors
Paper under double-blind review

ABSTRACT

Mixture of Experts (MoE) is a widely used technique to expand model sizes for
better model quality while maintaining the computation cost constant. In a nut-
shell, an MoE model consists of multiple experts in each model layer and routes
the training tokens to only a fixed number of experts rather than all. In distributed
training, as experts are distributed among different GPUs, All-to-All communica-
tion is necessary to exchange the training tokens among the GPUs after each time
of expert routing. Due to the frequent and voluminous data exchanges, All-to-All
communication has become a notable challenge to training efficiency.
In this paper, we manage to accelerate All-to-All communication in MoE models
from the training sample perspective, which is unexplored so far. In particular, we
put forward the observation that tokens in the same training sample have certain
levels of locality in expert routing. Motivated by this, we develop NetMoE, which
takes such locality into account and dynamically rearranges the placement of train-
ing samples to minimize All-to-All communication costs. Specifically, we model
the All-to-All communication given the sample placement and formulate an inte-
ger programming problem to deduce the optimal placement in polynomial time.
Experiments with 32 GPUs show that NetMoE achieves a maximum efficiency
improvement of 1.67× compared with state-of-the-art MoE training frameworks.

1 INTRODUCTION

MHA

Expert0

gating

Expert1

output

input0

Device0 …

MHA

Expert2

gating

Expert3

output

input1

Device1

MHA

ExpertE-2

gating

ExpertE-1

output

inputJ-1

DeviceJ-1

All-to-All Scatter

All-to-All Gather

Data
Parallelism

Model
Parallelism

Figure 1: An example of expert parallelism ap-
plied to an MoE model with J devices and E =
2J experts (each device has two different experts).

In recent years, large language models (LLMs)
have shown impressive performance in lan-
guage understanding and generation (OpenAI,
2023; Touvron et al., 2023) due to the increas-
ing model size. However, larger models often
come with greater computational costs, making
further scaling difficult. To address this, Mix-
ture of Experts (MoE) models have been intro-
duced to expand the model size greatly with-
out increasing the computational cost. Com-
bining MoE with Transformer-based models
can yield outstanding performance across var-
ious tasks, including natural language process-
ing (Lepikhin et al., 2021; Fedus et al., 2022),
computer vision (Riquelme et al., 2021; Liang
et al., 2022), recommendation systems (Tang
et al., 2020; Zou et al., 2022), and speech recog-
nition (You et al., 2022; Kwon & Chung, 2023).

MoE models often replace the feed-forward
network (FFN) layer with the MoE layer, which
consists of a gating network and several small FFNs, representing different experts. In the MoE
layer, each token is routed by the gating network to only a few selected experts, and the final output
is obtained by a weighted sum of the computations from the selected experts. By such means, we
can increase the number of experts to expand the model size for better performance, while keeping
the computation complexity constant.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

3-0 3-2 3-33-1

1-0 1-2 1-31-1

2-0 2-2 2-32-1

0-0 0-2 0-30-1

1-1 3-0 3-22-3
0-3 3-1 3-31-0
0-0 1-3 2-10-2
0-1 2-0 2-21-2

0-0 0-2 0-30-1
1-0 1-2 1-31-1
2-0 2-2 2-32-1
3-0 3-2 3-33-1

0-0 0-2 0-30-1
1-0 1-2 1-31-1
2-0 2-2 2-32-1
3-0 3-2 3-33-1

0-0 0-2 0-30-1
1-0 1-2 1-31-1
2-0 2-2 2-32-1
3-0 3-2 3-33-1

Router
[[2,3,2,1],
[1,0,3,2],
[3,2,3,0],
[0,1,0,1]]

A
ll-to-A

ll
Scatter

A
ll-to-A

ll
G
ather

Device0
Expert0
1-1 3-0 3-22-3

Sample0

N
V
Link

Expert1 Sample1
Device1

Node0

Device2
Expert2 Sample2

N
V
Link

Expert3 Sample3
Device3

Node1

InfiniB
and

A
ll-to-A

llG
ather

intra node

inter node

intra node

1 token
1 token

0 token
2 tokens

5 tokens

5 tokens

0-3 3-1 3-31-0

0-0 1-3 2-10-2

0-1 2-0 2-21-2

0-0 0-2 0-30-1

1-0 1-2 1-31-1

2-0 2-2 2-32-1

3-0 3-2 3-33-1

swap
sample

(a) An overview of a MoE layer example.

(b) A gather operation in the MoE layer without adjusting the
sample placement.

(c) A gather operation in the MoE layer after sample placement
adjustment is enabled.

Device0
Expert0
1-1 3-0 3-22-3

Sample3

N
V
Link

Expert1 Sample1
Device1

Node0

Device2
Expert2 Sample2

N
V
Link

Expert3 Sample0
Device3

Node1

InfiniB
and

A
ll-to-A

llG
ather

intra node

inter node

intra node

1 token
2 tokens

2 tokens
2 tokens

2 tokens

2 tokens

0-3 3-1 3-31-0

0-0 1-3 2-10-2

0-1 2-0 2-21-2

Figure 2: An example of sample exchange. The figure illustrates the All-to-All gather operation in a MoE layer
with two nodes, each containing two devices, and each device having one expert. Different colors represent
tokens sent to different experts, and i-j denotes the j-th token in the i-th sample. Fig. 2(a) illustrates the
complete process of a MoE layer during forward propagation. Fig. 2(b) shows the All-to-All gather operation
in the MoE layer without adjusting the sample placement, where the inter-node communication volume of
each node is 5 tokens. Fig. 2(c) displays the All-to-All gather operation after sample placement adjustment
is enabled — the positions of samples on the devices change (samples 0 and 3 are exchanged), reducing the
inter-node communication volume to 2 tokens per node.

Despite the above benefit, given the potentially large number of experts, the memory capacity of a
single device is often insufficient. As a result, expert parallelism (Lepikhin et al., 2021; Fedus et al.,
2022) is a common technique to facilitate the distributed training of MoE models. As shown in
Fig. 1, each device holds only a subset of the experts to reduce memory consumption. Meanwhile,
other model parameters are replicated and stored on all devices, and the training data assigned to
each device are different. In each MoE layer, based on the routing result of the gating network,
each token is sent to the device where the selected expert is located. The output from the expert is
then sent back to the original device of the corresponding token. This involves two communication
operations, namely the All-to-All scatter and All-to-All gather (He et al., 2021), respectively.

Due to the dynamic nature of routing, training MoE models efficiently faces several challenges, with
the All-to-All communication, being the most significant one. Particularly, the All-to-All commu-
nication time can account for up to 80% of the total training time (Hwang et al., 2023; Liu et al.,
2023; He et al., 2022; Li et al., 2023; Yu et al., 2024). One reason is because all tokens need to
participate in the All-to-All operation, leading to a high communication volume. Another reason is
the communication frequency. Considering both the forward and backward propagation, each MoE
layer requires four All-to-All communications per training iteration. Such frequent and extensive
communication incurs significant time costs. Therefore, accelerating All-to-All communication is
essential to improve training efficiency.

Motivation: Recent studies have demonstrated that expert routing exhibits a certain degree of data
locality. To be specific, input tokens may have distinct preferences for experts, and the correspond-
ing distribution is often skewed (He et al., 2022; Nie et al., 2023; Xue et al., 2024; Jiang et al.,
2024). In other words, the All-to-All operation in MoE models can be highly unbalanced across
different devices, thus bounded by the device pair with the highest communication volume. Mean-
while, it is well known that network locality is an inherent characteristic of modern clusters for deep
learning training. In particular, there are various communication channels in modern clusters, e.g.
intra-node devices usually communicate via PCIe or NVLINK, while inter-node devices use Ether-
net or InfiniBand, with intra-node communication usually faster than inter-node ones. To achieve

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

load balancing, existing methods propose techniques from the model perspective (Nie et al., 2023;
Lewis et al., 2021). Typically, they either dynamically adjust the model placement but introduce a
lot of additional communication, or modify the model definition but sacrifice the model performance
(see §2.2 for more discussion). Yet optimization from the data perspective is under explored. In-
spired by this, we propose NetMoE, which accelerates the All-to-All communication by combining
the data locality in expert routing with the network locality among training devices. The essential
idea of NetMoE is to dynamically adjust the placement of data samples during training based on
expert routing results so that more tokens will be transmitted through high-speed channels rather
than low-speed ones. As illustrated in Fig. 2, sample0 shows a preference for expert2 that re-
sides on node1, while sample3 favors expert0 that resides on node0. Using the vanilla All-to-All
communication method would result in significant inter-node communication overhead, as shown in
Fig. 2(b). However, by swapping the positions of sample0 and sample3 as depicted in Fig. 2(c),
part of the inter-node communication can be converted into intra-node communication or even intra-
device memory copying, significantly reducing the time cost (detailed in §3.1). In this way, we can
accelerate the All-to-All communication without affecting the computing results.

However, it is non-trivial to achieve dynamic sample placement. For one thing, how to adjust the
placement to maximize efficiency is a complex and unexplored question. For another, since the ad-
justment should be done for every layer in every iteration, it is vital to devise an efficient algorithm
to deduce the placement on the fly. To address these problems, we first revisit the cost modeling for
All-to-All communication and formulate the dynamic sample placement problem into a combinato-
rial optimization problem. Subsequently, we split it into two stages to ease the solving and design a
corresponding polynomial-time algorithm to ensure a timely solution.

In short, the technical contributions of this work are summarized as follows:

• We propose NetMoE, the first effort that leverages both the data locality and network locality to
accelerate the All-to-All communication through dynamic sample placement.

• We formulate the dynamic sample placement problem as a combinatorial optimization problem,
which aims to find the best sample placement that maximizes efficiency given the expert routing.

• We dissect the problem into two stages and develop a polynomial-time solution to efficiently
derive the sample placement during training.

• We conduct experiments with various models on 32 NVIDIA A800 GPUs. Experimental results
show that NetMoE outperforms state-of-the-art MoE training systems by up to 1.67× in terms of
training efficiency.

2 PRELIMINARY

2.1 PARALLELISM IN DISTRIBUTED TRAINING

Data and Model Parallelism: In data parallelism (Li et al., 2020; Sergeev & Balso, 2018), each
device maintains a complete copy of the model parameters, while different training samples are
assigned to each device. After the backward computation is completed, the model gradients from
all devices are aggregated before updating the model parameters. In model parallelism (Narayanan
et al., 2021b; Huang et al., 2019; Narayanan et al., 2021a), model parameters are distributed across
multiple devices, with each device responsible for only a portion of the model. Communication
operations are necessary to transmit the intermediate results (a.k.a. forward activations and their
backward gradients) to accomplish the forward and backward propagation.

Expert Parallelism: As shown in Fig. 1, expert parallelism (Lepikhin et al., 2021; Fedus et al.,
2022) can be regarded as combining model parallelism and data parallelism. It distributes expert
parameters across different devices like model parallelism, while replicating other parameters on all
devices like data parallelism. In each MoE layer, each token will be routed by the gating network
to top K different experts for processing, where K is a hyperparameter, typically a small value,
such as 1 or 2, which helps to reduce the computational complexity. After the MoE layer obtains the
gating routes, tokens are sent to the devices where the corresponding experts are located based on the
routing. The results from the expert computations are then sent back to the original devices where
the tokens are located. Since the experts are distributed across different devices, communication
during this process involves all devices sending and receiving messages with one another, leading to
what is known as All-to-All communication.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.2 DISTRIBUTED TRAINING ACCELERATION TECHNIQUES FOR MOE MODELS

Dynamic Expert Placement: The efficiency of MoE models is constrained by the extensive and
frequent All-to-All communication required during training. In response to this issue, some studies
have observed that data tends to show a preference for certain experts during training. Then, based
on this observation, they further propose to dynamically adjust the placement of experts to reduce
communication volume (He et al., 2022; Nie et al., 2023; Zhai et al., 2023). For instance, popular
experts can be placed on more devices in the data parallel manner, so that the communication volume
related to them would decrease. However, due to the growing size of experts, these approaches incur
substantial overhead of transmitting expert parameters among the devices, so they cannot adjust the
expert placement for every iteration, leading to sub-optimality. In contrast, our work tries to reduce
the communication volume from a different perspective: we dynamically adjust the placement of
samples in every iteration to accelerate the All-to-All communication. To be specific, we formulate
an optimization problem to deduce the best sample placement that minimizes the time cost of All-
to-All communication. As we will evaluate in §4, our work outperforms existing works based on
dynamic expert placement when training MoE models.

Modification in Model Definition: To achieve better workload balance in MoE training, there are
many existing works developed to modify the model definition (e.g., routing mechanisms, model
architectures). Some approaches modify the routing mechanism to balance the load across experts,
which helps reduce synchronization time between devices (Lewis et al., 2021). Recognizing the
network locality in distributed training, several works introduce a routing topology loss to prior-
itize routing tokens within the same node, thereby reducing inter-node communication (Li et al.,
2024; Chen et al., 2022). Other approaches (Zeng & Xiong, 2023) map tokens to smaller hidden
layer dimension before inter-node communication, further decreasing the communication load. SC-
MoE (Cai et al., 2024) proposes feeding the output of the current attention layer directly into the
next MoE layer, enabling parallel forward propagation with the current MLP layer in order to fully
overlap All-to-All communication with computation. Although these methods improve training ef-
ficiency, they inevitably impact model convergence. When applying these methods, we usually need
to run numerous trials to tune the hyper-parameters, such as adjusting the weight of the topology-
aware routing loss (Chen et al., 2022) or tuning the hyper-parameters for different communication
channels (Zeng & Xiong, 2023). Given that each trial of LLM training can take days or even months,
their utility is inevitably hampered. In contrast, our work focuses on how to accelerate All-to-All
communication without affecting model convergence.

Two-Stage DissectionProblem Formulation

ILP Problem (Eq. 5) §3.2

Polynomial-time SolverImplementation

Residual
Inlining

Offloading
Solver

FFN FFN

Add Add

Scatter

Scatter FFN

Solver

§3.1

§3.2§3.3

1st Stage 2nd Stage

ILP (Eq.6)
↓

(0,1)-ILP
(Eq.10)

↓
Bipartite

Graph

ILP (Eq.7)
↓

(0,1)-ILP
(Eq.11)

↓
Bipartite

Graph

N nodes

…

1st Stage

2nd Stage

…
2nd Stage

Figure 3: The overview of the method of NetMoE.

3 NETMOE

In this section, we introduce NetMoE, a novel
framework designed to optimize distributed
training for MoE models by considering both
data and network locality. Given a target MoE
model and the hardware environment, NetMoE
aims to minimize the All-to-All communica-
tion cost. Its core innovation lies in optimiz-
ing the placement of samples within each MoE
layer to maximize the utilization of faster intra-
node bandwidth, thereby reducing the commu-
nication volume over slower inter-node connec-
tions. Specifically, NetMoE swaps the samples
across devices during each MoE layer, enabling
more tokens to communicate within the node
during All-to-All communication.

Fig. 3 illustrates the overview of this section. We begin by introducing the modeling of All-to-All
communication in MoE training and formulate our optimization problem in §3.1. We then illustrate
how to solve the problem in §3.2, with the detailed algorithm shown in Alg. 1. We also present our
implementation details in §3.3. For clarity, the frequently used notations are listed in Table 1.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Table 1: Notations used throughout this work. We assume I is divisible by
J , and J is divisible by N , which are common in distributed training.

L The number of tokens per sample.
H The hidden size for each token.
E The number of experts in the MoE layer.
K The number of experts to be routed per token.
I The number of samples per iteration (a.k.a. global batch size).
J The number of devices (i.e., GPUs).
N The number of nodes (machines).
I[·] The indicator function.
JnK The set of natural numbers less than n, i.e., {0, 1, · · · , n− 1}.

Table 2: Bandwidth of each
channel of the NVIDIA A800
GPU cluster used in our ex-
periments.

Channel Bandwidth

Intra-device ∼2TB/s
Intra-node 400GB/s
Inter-node 100GB/s

3.1 PROBLEM FORMULATION

Communication Modeling: We first discuss the mathematical modeling of All-to-All communica-
tion, which is the optimization target of NetMoE. We use the α-β model (Sarvotham et al., 2001) to
analyze All-to-All communication, where α represents the latency cost and β represents the band-
width cost. Specifically, we classify communication into three categories: intra-device, intra-node,
and inter-node communication, each using different channels. Table 2 lists the bandwidth of each
channel used in our experiments. Since intra-device communication is typically achieved via mem-
ory copying, it is significantly faster than the other two categories and thus not considered in our
modeling. Therefore, the communication time is determined by the maximum time required for
data transfer across the intra-node and inter-node channels. The bandwidths of these channels are
represented by vintra, and vinter, respectively. Thus, for each All-to-All communication, its time
cost can be expressed by the following formula, where s· represents the communication volume for
the corresponding channel.

t = max(tintra, tinter), where tintra = αintra + βintrasintra, βintra = 1/vintra,

tinter = αinter + βintersinter, βinter = 1/vinter
(1)

The bandwidth (v·) and latency (α·) can be obtained by profiling the hardware environment before
training, while the communication volume (s·) needs to be dynamically determined based on the
routing results within the MoE layer. We then analyze how to calculate the communication volume.

Let route ∈ NI×L×K be the token routing results of the gating network, which represents the K
experts that each token will be sent to. Then, the number of tokens that the i-th sample needs to send
to the e-th expert can be counted as

numi,e =
∑
l,k

I[routei,l,k = e] for i ∈ JIK, e ∈ JEK (2)

Next, num ∈ NI×E can be used to model the communication volume across different channels.
Let ExpDev(e) be the device index of the e-th expert, SmpDev(i) the device index where the i-th
sample should be routed to, and Node(j) the node index of the j-th device. By considering the
communication volume as the number of tokens that need to be transmitted, we have

sintra =
∑

(i,e)∈Sintra

numi,e, sinter =
∑

(i,e)∈Sinter

numi,e (3)

where Sintra and Sinter can be calculated via the device indices of experts and samples:

Sintra = {(i, e)|Node(SmpDev(i)) = Node(ExpDev(e)) ∧ SmpDev(i) ̸= ExpDev(e)}
Sinter = {(i, e)|Node(SmpDev(i)) ̸= Node(ExpDev(e))}

(4)

Rationality of Dynamic Sample Placement: Given the aforementioned modeling, there is no doubt
that the time cost of All-to-All communication is highly related to the placement of experts and
samples. In practice, dynamically adjusting the placement does not affect the training results as the
All-to-All communication is still correctly performed. Combining with the common fact of network
locality that vintra > vinter, we can adjust the placement of samples and/or experts to reduce the
inter-node communication volume, even if the intra-node communication volume becomes slightly

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

higher. In fact, with a similar goal, several existing works have proposed to dynamically adjust
the placement of experts based on their popularities (He et al., 2022; Nie et al., 2023; Zhai et al.,
2023), as introduced in §2. However, all these works overlook the data locality — tokens of the
same sample are usually routed to the same expert (Xue et al., 2024; Jiang et al., 2024), thereby
missing the optimization opportunity of dynamic sample placement. More importantly, the size of
the parameters of experts is usually much larger than the size of the samples. This prevents previous
works from adjusting the expert placement in every iteration. In contrast, the adjustment of sample
placement can be fused with the All-to-All communication by nature (detailed below), requiring
zero extra communication. Consequently, this work focuses on the unexplored aspect, aiming to
accelerate MoE training by dynamically adjusting the sample placement.1

To help readers better understand the strength of dynamic sample placement, we take Fig. 2 as an
example, where I = 4, L = 4, E = 4,K = 1, and both the experts and samples are placed sequen-
tially, i.e., ExpDev = [0, 1, 2, 3],SmpDev = [0, 1, 2, 3]. Fig. 2(b) shows the communication with-
out changing the placement of samples. According to Eq. 3 and Eq. 4, if we only consider the send-
ing volume of node 0, then Sinter = {(0, 2), (0, 3), (1, 2), (1, 3)}, indicating that sinter = 5. How-
ever, after optimizing the placement of samples as in Fig. 2(c), i.e., SmpDev = [3, 1, 2, 0], the cor-
responding inter-node communication volume changes into Sinter = {(3, 2), (3, 3), (1, 2), (1, 3)},
which gives sinter = 2. Furthermore, it is worth noting that the sample placement adjustment
can be combined with the All-to-All gather operation. To be specific, instead of restoring tokens
to their original positions, they are directly placed in their new positions according to the altered
sample placement. This method directly optimizes the current communication operation without
introducing any extra communication.

Problem Formulation: After the sample placement adjustment is determined, it can be seen that
altering SmpDev affects two All-to-All operations: the gather operation of the current MoE layer
and the scatter operation of the next MoE layer. Thus, our optimization targets these two operations.
For the l-th layer, the optimization problem can be written as follows.

argmin
SmpDev(i)∈JJK for i∈JIK

t(l,gather) + t(l+1,scatter)

= max
(
t
(l,gather)
intra , t

(l,gather)
inter

)
+max

(
t
(l+1,scatter)
intra , t

(l+1,scatter)
inter

)
s.t.

∑
i∈JIK

I[SmpDev(i) = j] = I/J for j ∈ JJK

(5)

Since a single change in sample placement affects two All-to-All operations, both communication
times are included in the optimization objective. Additionally, to ensure computational and memory
balance across devices, each device should retain the same number of samples before and after the
sample placement adjustment. This forms the basis for the constraints in our optimization.

3.2 PROBLEM SOLVING

Eq. 5 is a complex combinatorial optimization problem, which cannot be solved optimally in polyno-
mial time. As the cluster size increases, even finding an approximate solution may take a significant
amount of time. Since this problem needs to be solved before each gather operation, solving it
directly would result in unbearable additional time costs. To address this, we design an efficient
method to obtain approximate solutions. In particular, we first dissect the optimization problem into
two stages and develop a polynomial-time algorithm to achieve the solution, as introduced below.

Two-Stage Dissection: Although Eq. 1 takes the maximum value of the two kinds of communica-
tion cost, in practice, due to the significant bandwidth difference between the inter- and intra-node
connections, the most time-consuming term is usually the inter-node one. Therefore, we propose
a two-stage solving strategy: the first stage optimizes tinter at the global scale, while the second
stage minimizes tintra within each node, without affecting tinter. Formally, suppose there are N
nodes and each node consists of J/N devices, then the optimization formula of the first stage can

1Our work is fully compatible with the dynamic expert placement technique. Specifically, in the problem
formulation and solving of NetMoE, we do not make any assumption on the expert placement. Instead, it is
treated as an input. Thus, we can dynamically adjust the expert placement like previous works, and NetMoE
can still deduce the optimal sample placement. We would like to leave the combination as our future work.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

2-0 2-2 2-32-1

0-0 0-2 0-30-1

Device2
Expert2 Sample2

N
V
Link

Expert3 Sample0
Device3

Node1

intra node
2 tokens
2 tokens

0-0 1-3 2-10-2

0-1 2-0 2-21-2

A
ll-to-A

llG
ather

(a) Sample placement after the first stage.

2-0 2-2 2-32-1

0-0 0-2 0-30-1Device2
Expert2 Sample2

N
V
Link

Expert3 Sample0
Device3

Node1

intra node
1 token
1 token

0-0 1-3 2-10-2

0-1 2-0 2-21-2

swap
sample

A
ll-to-A

llG
ather

(b) Sample placement after the second stage.

Figure 4: An example of the second stage optimization. Fig. 4(a) shows the MoE layer in Node1 after the
first stage optimization in Fig. 2(c). By applying the second stage optimization within the node, the intra-node
communication can be reduced by 1 token (by swapping sample0 and sample2), as shown in Fig. 4(b).

be written as the following integer linear programming (ILP) problem:

argmin
Node(SmpDev(i))∈JNK for i∈JIK

t
(l,gather)
inter + t

(l+1,scatter)
inter

s.t.
∑
i∈JIK

I[Node(SmpDev(i)) = n] = I/N for n ∈ JNK
(6)

The constraint of balance across devices in Eq. 5 is turned into the balance across nodes since we
focus on inter-node communication in the first stage. After obtaining the optimal solution of the
first stage, the second stage considers rearranging the samples within each node individually. For
the n-th node, denote JIK∗n ⊆ JIK as the set of samples appointed to it after solving Eq. 6. And let
JJKn = {j|j ∈ JJK ∧ Node(j) = n} be the set of experts reside on it (JJKn is determined by the
device placement rather than obtained by Eq. 6). Then, to optimize for the n-th node, we should
solve the following ILP problem:

argmin
SmpDev(i)∈JJKn for i∈JIK∗n

t
(l,gather)
intra + t

(l+1,scatter)
intra s.t.

∑
i∈JIK∗n

I[SmpDev(i) = j] = I/J for j ∈ JJKn (7)

Specifically, Fig. 2 can be regarded as the optimization of the first stage, while Fig. 4 demonstrates
the second stage of optimization built upon it. Although the second stage consists of N ILP prob-
lems, each for one node, they are independent and can be solved concurrently.

Polynomial-time Solver: By dissecting the original combinatorial optimization problem, we obtain
N + 1 ILP problems, which can be solved via existing libraries like PuLP (Mitchell et al., 2011).
However, recall that we need to solve these problems for each layer in each training iteration, the
efficiency of problem-solving is vital. Unfortunately, since ILP problems are NP-hard, when we
try to solve them via PuLP, the time cost of solving exceeds the time cost of scatter communica-
tion and experts’ computation (as evaluated in §4.4), making it impractical. Given the fact that
each sample must be assigned to one device, we reconsider the ILP problems as assignment prob-
lems by transforming them into weighted bipartite matching problems, and subsequently develop a
polynomial-time solver based on the widely used Kuhn-Munkres (KM) algorithm.

We first introduce how to transform the ILP problems into weighted bipartite matching problems.
Let ci,n and c′i,j represent the inter- and intra-node communication volume generated by placing
the i-th sample on the j-th device that resides in the n-th node, They can be calculated using the
following formulas:

ci,n =
∑
e∈S

numi,e, c′i,j =
∑
e∈S′

numi,e, where

S = {e|Node(ExpDev(e)) ̸= n}, S′ = {e|Node(ExpDev(e)) = Node(j) ∧ ExpDev(e) ̸= j}.
(8)

To make the expression clearer, let pi,n, p′i,j ∈ {0, 1} indicate whether the i-th sample is placed on
the n-th node and the j-th device, respectively. Then, the optimization objective can be expressed as

tinter = αinter + βinter

∑
i∈JIK,n∈JNK

ci,npi,n, tintra = αintra + βintra

∑
i∈JIK,j∈JJK

c′i,jp
′
i,j , where

pi,n = I[Node(SmpDev(i)) = n], p′i,j = I[SmpDev(i) = j] for i ∈ JIK, n ∈ JNK, j ∈ JJK
(9)

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Algorithm 1 NetMoE Optimization

1: function Solve(num)
2: Get c, c′ via Eq. 8 and build bipartite graphs
3: Get the optimal solution p∗ via the Kuhn-Munkres (KM) algorithm
4: return the optimal sample placement according to p∗

5: The Main Training Process:
6: for submodule in model do
7: if submodule is a MoE layer then
8: Get route from the gating network and calculate num via Eq. 2
9: Invoke Solve(num) in a background thread ▷ Offloading solving process

10: Get input from All-to-All scatter
11: Get output from expert computation
12: output = input+ output ▷ Expert residual inlining
13: Get the optimal sample placement from the background thread
14: Perform All-to-All gather with the optimal sample placement
15: else
16: submodule.forward()

After modifying the corresponding constraints, we transform the ILP problems into (0,1)-ILP prob-
lems. For instance, below presents the transformed problem for the first stage2 (i.e., Eq. 6):

argmin
pi,n for i∈JIK,n∈JNK

αinter + βinter

∑
i∈JIK,n∈JNK

(
c
(l,gather)
i,n + c

(l+1,scatter)
i,n

)
pi,n

s.t.
∑

i∈JIK,n∈JNK

pi,n = I/N for n ∈ JNK,
∑

n∈JNK

pi,n = 1 for i ∈ JIK
(10)

Samples Nodes

0

1

2

3

0

0

1

1

1 token

2 tokens

1 token

0 t
ok
en

duplicate

duplicate

Figure 5: An example of a bi-
partite.

This (0,1)-ILP problem can be modeled as a weighted bipartite
matching problem. In particular, consider a bipartite graph with
two sets of graph nodes, P and Q. The set P represents all train-
ing samples, and |P | = I . The set Q represents all training nodes
(machines), where each training node can handle B := I/N train-
ing samples. To model this, each graph node in Q is duplicated B
times, resulting in |Q| = I . A weighted edge exists between every
pair of graph nodes from P and Q. Let Pi represent the i-th training
sample and Qn the ⌊n/B⌋-th training node. The weight of the edge
between Pi and Qn is denoted as Wi,n = c

(l,gather)
i,⌊n/B⌋ +c

(l+1,scatter)
i,⌊n/B⌋ .

This transformation reduces the problem of finding a minimum
weight perfect matching in this bipartite graph, which can be ef-
ficiently solved to optimality in polynomial time using the Kuhn-
Munkres (KM) algorithm. Fig. 5 illustrates an example of con-
structing a bipartite graph during the first stage in Fig. 2. The
graph nodes on the left represent set P , and the graph nodes on
the right represent set Q . Each pair of graph nodes is connected by
a weighted edge, depicted by a dotted line. The red edges indicate
the final matching scheme, where the total weight of all matched edges is minimized.
3.3 IMPLEMENTATION

NetMoE is implemented on top of PyTorch (Paszke et al., 2019), with custom operations (e.g., the
calculation of num, c, c′, and the KM algorithm) implemented in C++ and CUDA. The complete
workflow of NetMoE is presented in Alg. 1. In addition to the problem-solving introduced in §3.2,
NetMoE has been optimized in the following ways.

Expert Residual Inlining: In classic MoE models, residual connections are independent of the
MoE layers. However, in NetMoE, the position of the training data changes after the All-to-All

2The problems of the second stage (Eq. 7) can also be transformed into (0,1)-ILP problems and solved in
polynomial time similarly. We omit them in the main text due to the space constraint and only discuss the first
stage.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 3: Configurations of the evaluated models.

Model Name Base I
J

S H E
J

K

MoE-GPT-S GPT-2 4 1024 768 2 2
MoE-GPT-M GPT-2 4 1024 1024 2 2
MoE-GPT-L GPT-2 4 1024 1280 2 2

MoE-GPT-XL GPT-2 4 1024 1600 2 2
MoE-GPT-XXL GPT-3 4 1024 4096 2 2

Table 4: Time cost of different solvers vs.
the summed time cost of All-to-All scat-
ter and expert computation in milliseconds
(MoE-GPT-S, J = 16).

I
J

KM PuLP Scatter + Computation

2 0.08 42.8 3.69 (2.63 + 1.06)
4 0.48 50.1 7.13 (5.34 + 1.79)
8 1.48 72.9 13.50 (10.31 + 3.19)

16 10.82 143.7 27.31 (21.49 + 5.82)
24 31.09 266.5 41.65 (33.82 + 7.83)

gather operation, while the samples in the residual connections remain in their original positions. To
ensure the correctness of the model, we inline the residual connections into the expert computation,
as shown in line 12 of Alg. 1. This optimization ensures consistency in model accuracy before and
after applying the algorithm. More details about inlining is elaborated in Appendix A.

Offloading Solving Process: The KM algorithm is hard to parallelize, making it unsuitable for
highly parallelized accelerators like GPUs, so we perform the solving process on the CPU. As shown
in line 9 of Alg. 1, after obtaining the routing results for the current layer, each device calculates and
transfers num to the CPU memory. The routing results for the next layer, required by the optimiza-
tion algorithm, can be predicted through routing frequency statistics (Nie et al., 2023; Zhai et al.,
2023; Huang et al., 2023; Eliseev & Mazur, 2023). The solving process only needs to provide the
new sample positions before the All-to-All gather operation. In this way, the solving process can be
overlapped with the All-to-All scatter and expert computation. As we will show in §4.4, the solving
time is fully hidden and thus introduces zero overhead. Although the time complexity of the KM
algorithm is O(I3), the current training process commonly employs gradient accumulation (Ten-
sorflow, 2019; Pytorch, 2019) due to the limited GPU memory. Thus, the value of I is typically
confined to an acceptable size, ensuring that the solving time can be effectively overlapped.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUPS

We compare NetMoE with state-of-the-art methods based on dynamic expert placement, including
FasterMoE (He et al., 2022) and SmartMoE (Zhai et al., 2023). We also included FastMoE (He
et al., 2021) to represent a baseline without adjusting the placement of experts or samples. All
experiments are conducted on a cluster consisting of 4 nodes, each equipped with 8 NVIDIA A800-
SXM4-40GB GPUs. As listed in Table 2, the GPUs within each node are connected via NVLink
with a 400 GB/s bandwidth, while the nodes are interconnected via InfiniBand with a 100 GB/s
bandwidth. The configurations of the evaluated models are listed in Table 3. We select the GPT
model architecture (Radford et al., 2019; Brown et al., 2020) as the backbone and replace all FFN
layers in each model with MoE layers. In particular, since SmartMoE requires at least 2 experts
on each device, we set the number of experts as E = 2 × J , where J is the number of GPUs in
the corresponding experiment, and we fix the number of selected experts for each token as K = 2.
By default, we utilize 8 GPUs per node to carry out the experiments, and we present the results for
scenarios with fewer GPUs per node in Appendix B. All results are averaged over 50 iterations.

4.2 END TO END PERFORMANCE

As shown in Fig. 6, NetMoE demonstrates up to a 1.67× speedup over FastMoE, a 1.37× speedup
over FasterMoE, and a 1.33× speedup over SmartMoE. FasterMoE achieves significant optimiza-
tion by overlapping expert computation and supporting dynamic expert placement. However, as
the model’s hidden dimension increases, the cost of communicating with experts rises, making it
difficult for it to maintain the same level of acceleration. This leads to a performance gap between
FasterMoE and NetMoE. On the other hand, SmartMoE outperforms FasterMoE, which is expected
since SmartMoE adjusts expert placement to ensure load balancing on top of FasterMoE’s opti-
mizations. However, SmartMoE primarily focuses on balancing the computational load, without
emphasizing communication efficiency. When communication becomes the primary bottleneck, the

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Figure 6: End-to-end speedup (mean and standard deviation) of different methods.

Figure 7: The actual and theoretic speedup in terms of All-to-All communication cost.

benefits of load balancing are less pronounced. Consequently, by dynamically adjusting the sam-
ple placement, NetMoE consistently outperforms the state-of-the-art systems. Last but not least,
it is noteworthy that our method is compatible with dynamic expert placement. By adjusting the
ExpDev(·) that is fed to our solver, NetMoE can be combined with dynamic expert placement to
achieve even higher efficiency. We plan to explore this integration in our future work.

4.3 ALL-TO-ALL PERFORMANCE

As shown in Fig. 7, we conducted experiments on three kinds of model to observe the differences in
All-to-All communication before and after applying NetMoE and compared these results with the
theoretical optimization values provided by the solver. It can be seen that the actual speedup in All-
to-All communication is slightly less than the theoretical values. This discrepancy is reasonable,
as our modeling of All-to-All communication assumes ideal conditions and does not account for
potential routing conflicts or hardware-induced errors. In Appendix C, we have provided more
experimental results to analyze the acceleration of All-to-All communication.

4.4 SOLVER PERFORMANCE

To verify the efficiency of the solver, we compared the solving time under different scales with the
summed time cost of All-to-All scatter and expert computation, as shown in Table 4. KM represents
the algorithm used in NetMoE, while PuLP (Mitchell et al., 2011) refers to the commonly used
toolkit for solving linear programming problems. It can be observed that although the solving time
exhibits super-linear growth with the increase in I , the solving process is consistently hidden by the
All-to-All scatter and expert computation for various scenarios. In contrast, PuLP’s solving time
is difficult to get overlapped. This highlights the necessity of designing specialized optimization
methods in scenarios with high real-time performance demands.

5 CONCLUSION

We proposed NetMoE to optimize All-to-All communication, which is the primary bottleneck in
training MoE models. By leveraging data and network locality, our method dynamically adjusts
the placement of training samples during training, transforming inter-node communication into
intra-node communication to enhance All-to-All communication efficiency. We modeled the All-
to-All communication time and the sample placement as an optimization problem and designed
a polynomial-time approach to solve it. Empirical results demonstrate that NetMoE outperforms
existing MoE training systems by up to 1.67× in terms of training efficiency.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Bo Adler, Niket Agarwal, and et al. Nemotron-4 340b technical report. CoRR, abs/2406.11704,
2024. doi: 10.48550/ARXIV.2406.11704. URL https://doi.org/10.48550/arXiv.
2406.11704.

Tom B. Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhari-
wal, Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, Sandhini Agar-
wal, Ariel Herbert-Voss, Gretchen Krueger, Tom Henighan, Rewon Child, Aditya Ramesh,
Daniel M. Ziegler, Jeffrey Wu, Clemens Winter, Christopher Hesse, Mark Chen, Eric Sigler,
Mateusz Litwin, Scott Gray, Benjamin Chess, Jack Clark, Christopher Berner, Sam McCan-
dlish, Alec Radford, Ilya Sutskever, and Dario Amodei. Language models are few-shot
learners. In Hugo Larochelle, Marc’Aurelio Ranzato, Raia Hadsell, Maria-Florina Balcan,
and Hsuan-Tien Lin (eds.), Advances in Neural Information Processing Systems 33: Annual
Conference on Neural Information Processing Systems 2020, NeurIPS 2020, December 6-12,
2020, virtual, 2020. URL https://proceedings.neurips.cc/paper/2020/hash/
1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html.

Weilin Cai, Juyong Jiang, Le Qin, Junwei Cui, Sunghun Kim, and Jiayi Huang. Shortcut-connected
expert parallelism for accelerating mixture-of-experts. CoRR, abs/2404.05019, 2024. doi: 10.
48550/ARXIV.2404.05019. URL https://doi.org/10.48550/arXiv.2404.05019.

Chang Chen, Min Li, Zhihua Wu, Dianhai Yu, and Chao Yang. Ta-moe: Topology-
aware large scale mixture-of-expert training. In Sanmi Koyejo, S. Mohamed, A. Agar-
wal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural Informa-
tion Processing Systems 35: Annual Conference on Neural Information Processing Sys-
tems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
8b465dd58ac50e1b0b22894fd581f62f-Abstract-Conference.html.

Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi Li,
Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo, Chong
Ruan, Zhifang Sui, and Wenfeng Liang. Deepseekmoe: Towards ultimate expert specialization
in mixture-of-experts language models. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar
(eds.), Proceedings of the 62nd Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), ACL 2024, Bangkok, Thailand, August 11-16, 2024, pp. 1280–1297.
Association for Computational Linguistics, 2024. doi: 10.18653/V1/2024.ACL-LONG.70. URL
https://doi.org/10.18653/v1/2024.acl-long.70.

Abhimanyu Dubey, Abhinav Jauhri, and et al. The llama 3 herd of models. CoRR, abs/2407.21783,
2024. doi: 10.48550/ARXIV.2407.21783. URL https://doi.org/10.48550/arXiv.
2407.21783.

Artyom Eliseev and Denis Mazur. Fast inference of mixture-of-experts language models with of-
floading. CoRR, abs/2312.17238, 2023. doi: 10.48550/ARXIV.2312.17238. URL https:
//doi.org/10.48550/arXiv.2312.17238.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity. J. Mach. Learn. Res., 23:120:1–120:39, 2022. URL
http://jmlr.org/papers/v23/21-0998.html.

Jiaao He, Jiezhong Qiu, Aohan Zeng, Zhilin Yang, Jidong Zhai, and Jie Tang. Fastmoe: A fast
mixture-of-expert training system. CoRR, abs/2103.13262, 2021. URL https://arxiv.
org/abs/2103.13262.

Jiaao He, Jidong Zhai, Tiago Antunes, Haojie Wang, Fuwen Luo, Shangfeng Shi, and Qin Li.
Fastermoe: modeling and optimizing training of large-scale dynamic pre-trained models. In
Jaejin Lee, Kunal Agrawal, and Michael F. Spear (eds.), PPoPP ’22: 27th ACM SIGPLAN
Symposium on Principles and Practice of Parallel Programming, Seoul, Republic of Korea,
April 2 - 6, 2022, pp. 120–134. ACM, 2022. doi: 10.1145/3503221.3508418. URL https:
//doi.org/10.1145/3503221.3508418.

11

https://doi.org/10.48550/arXiv.2406.11704
https://doi.org/10.48550/arXiv.2406.11704
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://proceedings.neurips.cc/paper/2020/hash/1457c0d6bfcb4967418bfb8ac142f64a-Abstract.html
https://doi.org/10.48550/arXiv.2404.05019
http://papers.nips.cc/paper_files/paper/2022/hash/8b465dd58ac50e1b0b22894fd581f62f-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/8b465dd58ac50e1b0b22894fd581f62f-Abstract-Conference.html
https://doi.org/10.18653/v1/2024.acl-long.70
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2407.21783
https://doi.org/10.48550/arXiv.2312.17238
https://doi.org/10.48550/arXiv.2312.17238
http://jmlr.org/papers/v23/21-0998.html
https://arxiv.org/abs/2103.13262
https://arxiv.org/abs/2103.13262
https://doi.org/10.1145/3503221.3508418
https://doi.org/10.1145/3503221.3508418

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Haiyang Huang, Newsha Ardalani, Anna Y. Sun, Liu Ke, Hsien-Hsin S. Lee, Anjali Sridhar, Shruti
Bhosale, Carole-Jean Wu, and Benjamin Lee. Towards moe deployment: Mitigating inefficiencies
in mixture-of-expert (moe) inference. CoRR, abs/2303.06182, 2023. doi: 10.48550/ARXIV.2303.
06182. URL https://doi.org/10.48550/arXiv.2303.06182.

Yanping Huang, Youlong Cheng, Ankur Bapna, Orhan Firat, Dehao Chen, Mia Xu Chen, Hy-
oukJoong Lee, Jiquan Ngiam, Quoc V. Le, Yonghui Wu, and Zhifeng Chen. Gpipe: Effi-
cient training of giant neural networks using pipeline parallelism. In Hanna M. Wallach, Hugo
Larochelle, Alina Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.),
Advances in Neural Information Processing Systems 32: Annual Conference on Neural Informa-
tion Processing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada,
pp. 103–112, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
093f65e080a295f8076b1c5722a46aa2-Abstract.html.

Changho Hwang, Wei Cui, Yifan Xiong, Ziyue Yang, Ze Liu, Han Hu, Zilong Wang,
Rafael Salas, Jithin Jose, Prabhat Ram, HoYuen Chau, Peng Cheng, Fan Yang, Mao Yang,
and Yongqiang Xiong. Tutel: Adaptive mixture-of-experts at scale. In Dawn Song,
Michael Carbin, and Tianqi Chen (eds.), Proceedings of the Sixth Conference on Ma-
chine Learning and Systems, MLSys 2023, Miami, FL, USA, June 4-8, 2023. mlsys.org,
2023. URL https://proceedings.mlsys.org/paper_files/paper/2023/
hash/5616d34cf8ff73942cfd5aa922842556-Abstract-mlsys2023.html.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de Las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts. CoRR, abs/2401.04088, 2024. doi: 10.48550/ARXIV.2401.04088. URL
https://doi.org/10.48550/arXiv.2401.04088.

Yoohwan Kwon and Soo-Whan Chung. Mole : Mixture of language experts for multi-lingual
automatic speech recognition. In IEEE International Conference on Acoustics, Speech and
Signal Processing ICASSP 2023, Rhodes Island, Greece, June 4-10, 2023, pp. 1–5. IEEE,
2023. doi: 10.1109/ICASSP49357.2023.10096227. URL https://doi.org/10.1109/
ICASSP49357.2023.10096227.

Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. Gshard: Scaling giant models with condi-
tional computation and automatic sharding. In 9th International Conference on Learning Rep-
resentations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021. OpenReview.net, 2021. URL
https://openreview.net/forum?id=qrwe7XHTmYb.

Mike Lewis, Shruti Bhosale, Tim Dettmers, Naman Goyal, and Luke Zettlemoyer. Base layers:
Simplifying training of large, sparse models. In International Conference on Machine Learning,
pp. 6265–6274. PMLR, 2021.

Jiamin Li, Yimin Jiang, Yibo Zhu, Cong Wang, and Hong Xu. Accelerating distributed moe training
and inference with lina. In Julia Lawall and Dan Williams (eds.), Proceedings of the 2023 USENIX
Annual Technical Conference, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023, pp.
945–959. USENIX Association, 2023. URL https://www.usenix.org/conference/
atc23/presentation/li-jiamin.

Jing Li, Zhijie Sun, Xuan He, Li Zeng, Yi Lin, Entong Li, Binfan Zheng, Rongqian Zhao, and Xin
Chen. Locmoe: A low-overhead moe for large language model training. CoRR, abs/2401.13920,
2024. doi: 10.48550/ARXIV.2401.13920. URL https://doi.org/10.48550/arXiv.
2401.13920.

Shen Li, Yanli Zhao, Rohan Varma, Omkar Salpekar, Pieter Noordhuis, Teng Li, Adam Paszke,
Jeff Smith, Brian Vaughan, Pritam Damania, and Soumith Chintala. Pytorch distributed: Experi-
ences on accelerating data parallel training. Proc. VLDB Endow., 13(12):3005–3018, 2020. doi:
10.14778/3415478.3415530. URL http://www.vldb.org/pvldb/vol13/p3005-li.
pdf.

12

https://doi.org/10.48550/arXiv.2303.06182
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/093f65e080a295f8076b1c5722a46aa2-Abstract.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/5616d34cf8ff73942cfd5aa922842556-Abstract-mlsys2023.html
https://proceedings.mlsys.org/paper_files/paper/2023/hash/5616d34cf8ff73942cfd5aa922842556-Abstract-mlsys2023.html
https://doi.org/10.48550/arXiv.2401.04088
https://doi.org/10.1109/ICASSP49357.2023.10096227
https://doi.org/10.1109/ICASSP49357.2023.10096227
https://openreview.net/forum?id=qrwe7XHTmYb
https://www.usenix.org/conference/atc23/presentation/li-jiamin
https://www.usenix.org/conference/atc23/presentation/li-jiamin
https://doi.org/10.48550/arXiv.2401.13920
https://doi.org/10.48550/arXiv.2401.13920
http://www.vldb.org/pvldb/vol13/p3005-li.pdf
http://www.vldb.org/pvldb/vol13/p3005-li.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Hanxue Liang, Zhiwen Fan, Rishov Sarkar, Ziyu Jiang, Tianlong Chen, Kai Zou, Yu Cheng,
Cong Hao, and Zhangyang Wang. M3vit: Mixture-of-experts vision transformer for ef-
ficient multi-task learning with model-accelerator co-design. In Sanmi Koyejo, S. Mo-
hamed, A. Agarwal, Danielle Belgrave, K. Cho, and A. Oh (eds.), Advances in Neural
Information Processing Systems 35: Annual Conference on Neural Information Process-
ing Systems 2022, NeurIPS 2022, New Orleans, LA, USA, November 28 - December 9,
2022, 2022. URL http://papers.nips.cc/paper_files/paper/2022/hash/
b653f34d576d1790481e3797cb740214-Abstract-Conference.html.

Juncai Liu, Jessie Hui Wang, and Yimin Jiang. Janus: A unified distributed training framework
for sparse mixture-of-experts models. In Henning Schulzrinne, Vishal Misra, Eddie Kohler, and
David A. Maltz (eds.), Proceedings of the ACM SIGCOMM 2023 Conference, ACM SIGCOMM
2023, New York, NY, USA, 10-14 September 2023, pp. 486–498. ACM, 2023. doi: 10.1145/
3603269.3604869. URL https://doi.org/10.1145/3603269.3604869.

Stuart Mitchell, Michael OSullivan, and Iain Dunning. Pulp: a linear programming toolkit for
python. The University of Auckland, Auckland, New Zealand, 65:25, 2011.

Deepak Narayanan, Amar Phanishayee, Kaiyu Shi, Xie Chen, and Matei Zaharia. Memory-efficient
pipeline-parallel DNN training. In Marina Meila and Tong Zhang (eds.), Proceedings of the 38th
International Conference on Machine Learning, ICML 2021, 18-24 July 2021, Virtual Event,
volume 139 of Proceedings of Machine Learning Research, pp. 7937–7947. PMLR, 2021a. URL
http://proceedings.mlr.press/v139/narayanan21a.html.

Deepak Narayanan, Mohammad Shoeybi, Jared Casper, Patrick LeGresley, Mostofa Patwary, Vi-
jay Korthikanti, Dmitri Vainbrand, Prethvi Kashinkunti, Julie Bernauer, Bryan Catanzaro, Amar
Phanishayee, and Matei Zaharia. Efficient large-scale language model training on GPU clus-
ters using megatron-lm. In Bronis R. de Supinski, Mary W. Hall, and Todd Gamblin (eds.),
International Conference for High Performance Computing, Networking, Storage and Analy-
sis, SC 2021, St. Louis, Missouri, USA, November 14-19, 2021, pp. 58. ACM, 2021b. doi:
10.1145/3458817.3476209. URL https://doi.org/10.1145/3458817.3476209.

Xiaonan Nie, Xupeng Miao, Zilong Wang, Zichao Yang, Jilong Xue, Lingxiao Ma, Gang Cao, and
Bin Cui. Flexmoe: Scaling large-scale sparse pre-trained model training via dynamic device
placement. Proc. ACM Manag. Data, 1(1):110:1–110:19, 2023. doi: 10.1145/3588964. URL
https://doi.org/10.1145/3588964.

OpenAI. GPT-4 technical report. CoRR, abs/2303.08774, 2023. doi: 10.48550/ARXIV.2303.08774.
URL https://doi.org/10.48550/arXiv.2303.08774.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Köpf, Edward Z. Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An imperative style,
high-performance deep learning library. In Hanna M. Wallach, Hugo Larochelle, Alina
Beygelzimer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett (eds.), Advances in
Neural Information Processing Systems 32: Annual Conference on Neural Information Pro-
cessing Systems 2019, NeurIPS 2019, December 8-14, 2019, Vancouver, BC, Canada, pp.
8024–8035, 2019. URL https://proceedings.neurips.cc/paper/2019/hash/
bdbca288fee7f92f2bfa9f7012727740-Abstract.html.

Pytorch. Gradient accumulation pytorch. https://gist.github.com/thomwolf/
ac7a7da6b1888c2eeac8ac8b9b05d3d3, 2019.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André Su-
sano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts. In
Marc’Aurelio Ranzato, Alina Beygelzimer, Yann N. Dauphin, Percy Liang, and Jennifer Wortman
Vaughan (eds.), Advances in Neural Information Processing Systems 34: Annual Conference on
Neural Information Processing Systems 2021, NeurIPS 2021, December 6-14, 2021, virtual, pp.

13

http://papers.nips.cc/paper_files/paper/2022/hash/b653f34d576d1790481e3797cb740214-Abstract-Conference.html
http://papers.nips.cc/paper_files/paper/2022/hash/b653f34d576d1790481e3797cb740214-Abstract-Conference.html
https://doi.org/10.1145/3603269.3604869
http://proceedings.mlr.press/v139/narayanan21a.html
https://doi.org/10.1145/3458817.3476209
https://doi.org/10.1145/3588964
https://doi.org/10.48550/arXiv.2303.08774
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/bdbca288fee7f92f2bfa9f7012727740-Abstract.html
https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3
https://gist.github.com/thomwolf/ac7a7da6b1888c2eeac8ac8b9b05d3d3

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

8583–8595, 2021. URL https://proceedings.neurips.cc/paper/2021/hash/
48237d9f2dea8c74c2a72126cf63d933-Abstract.html.

Shriram Sarvotham, Rudolf H. Riedi, and Richard G. Baraniuk. Connection-level analysis and mod-
eling of network traffic. In Vern Paxson (ed.), Proceedings of the 1st ACM SIGCOMM Internet
Measurement Workshop, IMW 2001, San Francisco, California, USA, November 1-2, 2001, pp.
99–103. ACM, 2001. doi: 10.1145/505202.505215. URL https://doi.org/10.1145/
505202.505215.

Teven Le Scao, Angela Fan, and et al. BLOOM: A 176b-parameter open-access multilingual
language model. CoRR, abs/2211.05100, 2022. doi: 10.48550/ARXIV.2211.05100. URL
https://doi.org/10.48550/arXiv.2211.05100.

Alexander Sergeev and Mike Del Balso. Horovod: fast and easy distributed deep learning in tensor-
flow. CoRR, abs/1802.05799, 2018. URL http://arxiv.org/abs/1802.05799.

Hongyan Tang, Junning Liu, Ming Zhao, and Xudong Gong. Progressive layered extraction (PLE):
A novel multi-task learning (MTL) model for personalized recommendations. In Rodrygo L. T.
Santos, Leandro Balby Marinho, Elizabeth M. Daly, Li Chen, Kim Falk, Noam Koenigstein,
and Edleno Silva de Moura (eds.), RecSys 2020: Fourteenth ACM Conference on Recommender
Systems, Virtual Event, Brazil, September 22-26, 2020, pp. 269–278. ACM, 2020. doi: 10.1145/
3383313.3412236. URL https://doi.org/10.1145/3383313.3412236.

Tensorflow. Gradient accumulation tensorflow. https://github.com/tensorflow/
tensorflow/pull/32576, 2019.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Niko-
lay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher,
Cristian Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy
Fu, Wenyin Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn,
Saghar Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel
Kloumann, Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya
Lee, Diana Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar
Mishra, Igor Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan
Saladi, Alan Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen
Tan, Binh Tang, Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan
Zarov, Yuchen Zhang, Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez,
Robert Stojnic, Sergey Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-
tuned chat models. CoRR, abs/2307.09288, 2023. doi: 10.48550/ARXIV.2307.09288. URL
https://doi.org/10.48550/arXiv.2307.09288.

Fuzhao Xue, Zian Zheng, Yao Fu, Jinjie Ni, Zangwei Zheng, Wangchunshu Zhou, and Yang You.
Openmoe: An early effort on open mixture-of-experts language models. CoRR, abs/2402.01739,
2024. doi: 10.48550/ARXIV.2402.01739. URL https://doi.org/10.48550/arXiv.
2402.01739.

Zhao You, Shulin Feng, Dan Su, and Dong Yu. Speechmoe2: Mixture-of-experts model with im-
proved routing. In IEEE International Conference on Acoustics, Speech and Signal Processing,
ICASSP 2022, Virtual and Singapore, 23-27 May 2022, pp. 7217–7221. IEEE, 2022. doi: 10.
1109/ICASSP43922.2022.9747065. URL https://doi.org/10.1109/ICASSP43922.
2022.9747065.

Dianhai Yu, Liang Shen, Hongxiang Hao, Weibao Gong, Huachao Wu, Jiang Bian, Lirong Dai,
and Haoyi Xiong. Moesys: A distributed and efficient mixture-of-experts training and inference
system for internet services. IEEE Transactions on Services Computing, pp. 1–15, 2024. doi:
10.1109/TSC.2024.3399654.

Zhiyuan Zeng and Deyi Xiong. Scomoe: Efficient mixtures of experts with structured commu-
nication. In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=s-c96mSU0u5.

14

https://proceedings.neurips.cc/paper/2021/hash/48237d9f2dea8c74c2a72126cf63d933-Abstract.html
https://proceedings.neurips.cc/paper/2021/hash/48237d9f2dea8c74c2a72126cf63d933-Abstract.html
https://doi.org/10.1145/505202.505215
https://doi.org/10.1145/505202.505215
https://doi.org/10.48550/arXiv.2211.05100
http://arxiv.org/abs/1802.05799
https://doi.org/10.1145/3383313.3412236
https://github.com/tensorflow/tensorflow/pull/32576
https://github.com/tensorflow/tensorflow/pull/32576
https://doi.org/10.48550/arXiv.2307.09288
https://doi.org/10.48550/arXiv.2402.01739
https://doi.org/10.48550/arXiv.2402.01739
https://doi.org/10.1109/ICASSP43922.2022.9747065
https://doi.org/10.1109/ICASSP43922.2022.9747065
https://openreview.net/forum?id=s-c96mSU0u5
https://openreview.net/forum?id=s-c96mSU0u5

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Mingshu Zhai, Jiaao He, Zixuan Ma, Zan Zong, Runqing Zhang, and Jidong Zhai. Smartmoe: Effi-
ciently training sparsely-activated models through combining offline and online parallelization. In
Julia Lawall and Dan Williams (eds.), Proceedings of the 2023 USENIX Annual Technical Confer-
ence, USENIX ATC 2023, Boston, MA, USA, July 10-12, 2023, pp. 961–975. USENIX Associa-
tion, 2023. URL https://www.usenix.org/conference/atc23/presentation/
zhai.

Xinyu Zou, Zhi Hu, Yiming Zhao, Xuchu Ding, Zhongyi Liu, Chenliang Li, and Aixin Sun. Au-
tomatic expert selection for multi-scenario and multi-task search. In Enrique Amigó, Pablo
Castells, Julio Gonzalo, Ben Carterette, J. Shane Culpepper, and Gabriella Kazai (eds.), SI-
GIR ’22: The 45th International ACM SIGIR Conference on Research and Development in
Information Retrieval, Madrid, Spain, July 11 - 15, 2022, pp. 1535–1544. ACM, 2022. doi:
10.1145/3477495.3531942. URL https://doi.org/10.1145/3477495.3531942.

15

https://www.usenix.org/conference/atc23/presentation/zhai
https://www.usenix.org/conference/atc23/presentation/zhai
https://doi.org/10.1145/3477495.3531942

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A DETAIL OF EXPERT RESIDUAL INLINING

As shown in Fig. 8, the original residual addition method adds the attention output to the result
obtained from the gather operation. In NetMoE, however, it is added after the scatter operation but
before the gather operation. Such an inlining facilitates the adjustment of sample placement, and
meanwhile ensures the correctness of computation.

Gate

FFN0 FFNE-1

Add & Norm

MHA

…

Add & Norm

Scatter

Gather

Gate

FFN0 FFNE-1

Add & Norm

MHA

…

Norm

Scatter

Gather

Add Add

input
input

1. attn = MHA(input)

2. moe_input =
Norm(input + attn)

3. route =
Gate(moe_input)

4. mlp_input =
Scatter(route, moe_input)

5. mlp_output =
MLP(mlp_input)

6. moe_output =
Gather(mlp_output)

7. output =
Norm(moe_input +
moe_output)

1. attn =MHA(input)

2. moe_input =
Norm(input + attn)

3. route =
Gate(moe_input)

4. mlp_input =
Scatter(route, moe_input)

5. mlp_output =
MLP(mlp_input)

7. moe_output =
Gather(mlp_output_ inlined)

8. output =
Norm(moe_output)

6. mlp_output_inlined =
mlp_input + mlp_input

Residual
Inlining

Figure 8: Illustration of the Transformer layer with and without the expert residual inlining.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

B END TO END PERFORMANCE WITH FEWER GPUS PER NODE

Fig. 9 illustrates the end-to-end speedup for configurations with 2 GPUs or 4 GPUs per node. The re-
sults demonstrate that NetMoE achieves the best performance across various experimental settings,
which are consistent with the results obtained when there are 8 GPUs per node (as demonstrated in
Fig. 6).

It is worth noting that standard server configurations typically accommodate up to 8 NVIDIA GPUs
per node. Thus, 8 GPUs per node represent a standard setup for distributed training of large language
models Dubey et al. (2024); Adler et al. (2024); Dai et al. (2024); Scao et al. (2022). Although
superpods like the NVIDIA GB200 NVL72 support high-speed connections (e.g., NVLink) among
more than 8 GPUs, they rely on custom hardware and are prohibitively expensive. Training scenarios
on superpods are rare and significantly differ from the typical scenarios in GPU clusters or clouds.
Therefore, this paper opts for experiments with configurations of up to 8 GPUs per node.

Figure 9: End-to-end speedup (mean and standard deviation) of different numbers of total devices
(denoted as J) and numbers of nodes (denoted as N).

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

C DETAILED ANALYSIS OF ALL-TO-ALL COMMUNICATION OPTIMIZATION

To gain deeper insight into the source of NetMoE’s optimization, we assess two kinds of statistics:

• The proportions of training samples that are exchanged across nodes or across devices by NetMoE,
respectively. A higher proportion indicates more samples are adjusted across nodes/devices.

• The intra-node and inter-node communication volumes before and after applying NetMoE.

Firstly, Table 5 summarizes the mean and standard deviation across all iterations. After apply-
ing NetMoE, a great proportion of training samples are exchanged across nodes, leading to the
reduction in the inter-node communication volume. It is noteworthy that although the intra-node
communication volume accounts for a large proportion (i.e., sintra or sintra

sintra+sinter
increases) after

applying NetMoE, it will not become the performance bottleneck since the inter-node communica-
tion bandwidth is much lower. As a result, the All-to-All communication can be accelerated due to
the reduction in inter-node communication volume brought by sample placement adjustment.

Secondly, since the routing result dynamically changes during the training of MoE models, to dis-
cover the impact of routing distribution, in Fig. 10 we plot (1) the reduction in inter-node com-
munication, and (2) the proportion of samples exchanged across nodes, across different iterations.
Meanwhile, we follow prior works He et al. (2022); Nie et al. (2023) to record the distribution of
expert selection across different iterations in order to describe the routing distribution. It can be
observed that the routing distribution changes during the model training process. However, NetMoE
consistently reduces the inter-node communication by adjusting the sample placement given the dy-
namic distributions. Consequently, the effectiveness of NetMoE is robust to the routing distribution.

Table 5: Summary of communication volume and proportion of sequence adjustment. For commu-
nication volume, we provide the intra-node and inter-node communication volumes before and after
applying NetMoE, with the increase or reduction given in parentheses. For the proportion of se-
quence adjustment, “Across Nodes” indicates the proportion of sequences that are exchanged across
nodes, and “All” indicates the proportion of all sequences that are adjusted.

(a) 2 nodes, 16 GPUs

Communication Volume (MB) Proportion of Sequence Adjustment (%)

w/o NetMoE w/ NetMoE Across Nodes All
sintra sinter sintra sinter

MoE-GPT-S 168.45 ± 5.43 191.07 ± 5.43 162.24 ± 11.69 (↓ 3.69%) 116.37 ± 11.69 (↓ 39.10%) 43.663 ± 3.560 91.394 ± 1.319
MoE-GPT-M 222.89 ± 5.72 258.20 ± 5.72 214.31 ± 7.42 (↓ 3.85%) 147.33 ± 7.42 (↓ 42.94%) 44.455 ± 2.122 91.929 ± 1.163
MoE-GPT-L 281.81 ± 5.18 318.56 ± 5.18 236.53 ± 8.81 (↓ 16.07%) 208.69 ± 8.81 (↓ 34.49%) 42.801 ± 2.232 91.799 ± 1.080

MoE-GPT-XL 347.44 ± 5.68 402.06 ± 5.68 313.00 ± 8.30 (↓ 9.91%) 256.94 ± 8.30 (↓ 36.10%) 43.619 ± 2.267 91.681 ± 1.369
MoE-GPT-XXL 922.40 ± 4.16 989.60 ± 4.16 872.00 ± 8.29 (↓ 5.46%) 570.40 ± 8.29 (↓ 42.36%) 45.688 ± 3.006 92.469 ± 1.294

(b) 4 nodes, 32 GPUs

Communication Volume (MB) Proportion of Sequence Adjustment (%)

w/o NetMoE w/ NetMoE Across Nodes All
sintra sinter sintra sinter

MoE-GPT-S 167.07 ± 7.52 575.88 ± 7.52 219.21 ± 10.30 (↑ 31.21%) 351.15 ± 10.30 (↓ 39.02%) 72.427 ± 1.361 96.427 ± 0.544
MoE-GPT-M 224.24 ± 6.82 766.87 ± 6.82 288.58 ± 13.00 (↑ 28.70%) 492.44 ± 13.00 (↓ 35.79%) 72.340 ± 1.094 96.122 ± 0.461
MoE-GPT-L 280.56 ± 6.74 958.44 ± 6.74 376.66 ± 10.47 (↑ 34.25%) 591.72 ± 10.47 (↓ 38.26%) 72.693 ± 1.249 96.292 ± 0.590

MoE-GPT-XL 350.62 ± 7.10 1199.12 ± 7.10 423.37 ± 11.69 (↑ 20.75%) 791.19 ± 11.69 (↓ 34.02%) 72.217 ± 1.499 96.159 ± 0.569
MoE-GPT-XXL 884.80 ± 6.13 3080.00 ± 6.13 1201.60 ± 8.85 (↑ 35.81%) 1884.00 ± 8.85 (↓ 38.83%) 72.305 ± 1.886 96.391 ± 0.661

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-S (16GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-M (16GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-L (16GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-XL (16GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-XXL (16GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-S (32GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-M (32GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-L (32GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-XL (32GPUs)

Across Nodes
All

0 10 20 30 40 50
0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

0 10 20 30 40 50
Iterations

0.00
0.25
0.50
0.75
1.00

s i
nt

er
(%

)

0 10 20 30 40 50
Iterations

0.00
0.25
0.50
0.75
1.00

Ex
ch

an
ge

 S
am

pl
es

(%
) MoE-GPT-XXL (32GPUs)

Across Nodes
All

0 10 20 30 40 50
Iterations

0.0

0.5

1.0

Se
le

ct
io

n
Fr

eq
ue

nc
y

Figure 10: Left: The reduction in inter-node communication volume. Middle: The proportion of
samples exchanged across nodes. Right: The distribution of expert selection (layer 0).

19

	Introduction
	Preliminary
	Parallelism in Distributed Training
	Distributed Training Acceleration Techniques for MoE Models

	NetMoE
	Problem Formulation
	Problem Solving
	Implementation

	Experiments
	Experimental Setups
	End to End Performance
	All-to-All Performance
	Solver Performance

	Conclusion
	Detail of Expert Residual Inlining
	End To End Performance with Fewer GPUs Per Node
	Detailed Analysis of All-to-All Communication Optimization

