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Abstract

Since pioneering work of Hinton et al., knowledge distillation based on Kullback-
Leibler Divergence (KL-Div) has been predominant, and recently its variants have
achieved compelling performance. However, KL-Div only compares probabilities
of the corresponding category between the teacher and student while lacking a
mechanism for cross-category comparison. Besides, KL-Div is problematic when
applied to intermediate layers, as it cannot handle non-overlapping distributions
and is unaware of geometry of the underlying manifold. To address these down-
sides, we propose a methodology of Wasserstein Distance (WD) based knowledge
distillation. Specifically, we propose a logit distillation method called WKD-L
based on discrete WD, which performs cross-category comparison of probabilities
and thus can explicitly leverage rich interrelations among categories. Moreover,
we introduce a feature distillation method called WKD-F, which uses a parametric
method for modeling feature distributions and adopts continuous WD for transfer-
ring knowledge from intermediate layers. Comprehensive evaluations on image
classification and object detection have shown (1) for logit distillation WKD-L
outperforms very strong KL-Div variants; (2) for feature distillation WKD-F is
superior to the KL-Div counterparts and state-of-the-art competitors. The source
code is available at http://peihuali.org/WKD.

1 Introduction

Knowledge distillation (KD) aims to transfer knowledge from a high-performance teacher model
with large capacity to a lightweight student model. In the past years, it has attracted ever increasing
interest and made great advance in deep learning, enjoying widespread applications in visual recog-
nition and object detection, among others [1]. In their pioneering work, Hinton et al. [2] introduce
Kullback-Leibler divergence (KL-Div) for knowledge distillation, where the prediction of category
probabilities of the student is constrained to be similar to that of the teacher. Since then, KL-Div has
been predominant in logit distillation and recently its variants [3; 4; 5] have achieved compelling
performance. In addition, such logit distillation methods are complementary to many state-of-the-art
methods that transfer knowledge from intermediate layers [6; 7; 8].

Despite the great success, KL-Div has two downsides that hinder fully transferring of the teacher’s
knowledge. First, KL-Div only compares the probabilities of the corresponding category between
the teacher and student, lacking a mechanism to perform cross-category comparison. However,
real-world categories exhibit varying degrees of visual resemblance, e.g., mammal species like dog
and wolf look more similar to each other while visually very distinct from artifact such as car and
bicycle. Deep neural networks (DNNs) can distinguish thousands of categories [9] and thus are
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(a) Real-world categories exhibit rich in-
terrelations (IRs) in feature space, e.g.,
dog is near other mammal while far from
artifact like car. We quantify pairwise
IRs as feature similarities among cate-
gories. Best viewed by zooming in.
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(b) For logit distillation, discrete WD performs cross-category com-
parison by exploiting pairwise IRs, in contrast to KL-Div that is a
category-to-category measure and lacks a mechanism to use such
IRs (cf. Figure 2). For feature distillation, we use Gaussians for
distribution modeling and continuous WD for knowledge transfer.

Figure 1: Our methodology of Wasserstein Distance (WD) based knowledge distillation. To effectively
exploit rich category interrelations (a), we propose discrete WD based logit distillation (WKD-L)
(b) that matches predicted distributions between the teacher and student. Besides, we introduce
a feature distillation method based on continuous WD (WKD-F) (b), where we let student mimic
parametric feature distributions of the teacher. In (a), features of 100 categories are displayed by the
corresponding images as per their 2D embeddings obtained by t-SNE; refer to Section A.1 for details
on this visualization.

well-informed of such complex relations among categories, as shown in Figure 1a. Unfortunately,
due to its category-to-category nature, the classical KD [2] and its variants [3; 4; 5] are unable to
explicitly utilize this rich cross-category knowledge.

Secondly, KL-Div is problematic for distilling knowledge from intermediate layers. Deep features of
an image are generally high-dimensional and of small size, so being populated very sparsely in the
feature space [10, Chap. 2]. This not only makes non-parametric density estimation (e.g., histogram)
that KL-Div requires infeasible due to curse of dimensionality, but also leads to non-overlapping
discrete distributions that KL-Div fails to deal with [11]. One may turn to parametric, continuous
methods (e.g., Gaussian) for modeling feature distributions. However, KL-Div and its variants have
limited ability for measuring dis-similarity between continuous distributions, as it is not a metric [12]
and is unaware of geometric structure of the underlying manifold [13].

The Wasserstein distance (WD) [14], also called Earth Mover’s Distance (EMD) or optimal transport,
has the potential to address the limitations of KL-Div. The WD between two probability distributions
is generally defined as the minimal cost to transform one distribution to the other. Several works have
made exploration by using WD for knowledge transfer from intermediate layers [15; 16]. Specifically,
they measure the dis-similarity of a mini-batch of images between the teacher and student based on
discrete WD, which concerns comparison across instances in a soft manner, failing to make use of
relations across categories. Moreover, they mainly quest for non-parametric method for modeling
distributions, behind in performance state-of-the-art KL-Div based methods.

To address these problems, we propose a methodology of Wasserstein distance based knowledge
distillation, which we call WKD. This methodology is applicable to logits (WKD-L) as well as to
intermediate layers (WKD-F) as shown in Figure 1b. In WKD-L, we minimize the discrepancy
between the predicted probabilities of the teacher and student using discrete WD for knowledge
transfer. In this way, we perform cross-category comparison that effectively leverages interrelations
(IRs) among categories, in stark contrast to category-to-category comparison in the classical KL-Div.
We propose to use Centered Kernel Alignment (CKA) [17; 18] to quantify category IRs, which
measures the similarity of features between any pair of categories.

For WKD-F, we introduce WD into intermediate layers to condense knowledge from features. Unlike
the logits, there is no class probability involved in the intermediate layers. Therefore, we let the
student directly match the feature distributions of the teacher. As the dimensions of DNN features are
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high, the non-parametric methods (e.g., histogram) are infeasible due to curse of dimensionality [10,
Chap. 2], we choose parametric methods for modeling distributions. Specifically, we utilize one of
the most widely used continuous distributions (i.e., Gaussian), which is of maximal entropy given 1st-
and 2nd-moments estimated from features [19, Chap. 1]. WD between Gaussians can be computed
in closed form and is a Riemannian metric on the underlying manifold [20].

We summarize our contributions in the following.
• We present a discrete WD based logit distillation method (WKD-L). It can leverage rich interrela-

tions among classes via cross-category comparisons between predicted probabilities of the teacher
and student, overcoming the downside of category-to-category KL divergence.

• We introduce continuous WD into intermediate layers for feature distillation (WKD-F). It can ef-
fectively leverage geometric structure of the Riemannian space of Gaussians, better than geometry-
unaware KL-divergence.

• On both image classification and object detection tasks, WKD-L perform better than very strong
KL-Div based logit distillation methods, while WKD-F is supervisor to the KL-Div counterparts
and competitors of feature distillation. Their combination further improves the performance.

2 WD for Knowledge Transfer

Given a pre-trained, high-performance teacher model T, our task is to train a lightweight student
model S that can distill knowledge from the teacher. As such, supervisions of the student are from
both the ground truth label with the cross entropy loss and from the teacher with distillation losses to
be described in the next two sections.

2.1 Discrete WD for Logit Distillation

Interrelations (IRs) among categories. As shown in Figures 1a and 4, real-world categories
exhibit complex topological relations in the feature space. For instance, mammal species are nearer
each other while being far away from artifact or food. Moreover, features of the same category
cluster and form a distribution while neighboring categories have overlapping features and cannot
be fully separated. As such, we propose to quantify category IRs based on CKA [18], which is a
normalized Hilbert-Schmidt Independence Criterion (HSIC) that models statistical relations of two
sets of features by mapping them into a Reproducing Kernel Hilbert Space (RKHS) [21].

Given a set of b training examples of category Ci, we compute a matrix Xi∈Ru×b where the k9th
column indicates the feature of example k that is output from the DNN’s penultimate layer. Then
we compute a kernel matrix Ki∈Rb×b with some positive definite kernel, e.g., a linear kernel for
which Ki=XT

i Xi where T indicates matrix transpose. Besides the linear kernel, we can choose
other kernels such as polynomial kernel and RBF kernel (cf. Section A.1 for details). The IR between
Ci and Cj is defined as:

IR(Ci, Cj) =
HSIC(Ci, Cj)√

HSIC(Ci, Ci)
√

HSIC(Cj , Cj)
, HSIC(Ci, Cj) =

1

(b− 1)2
tr(KiHKjH). (1)

Here H= I− 1
b11

T is the centering matrix where I indicates the identity matrix and 1 indicates
an all-one vector; tr indicates matrix trace. IR(Ci, Cj) ∈ [0, 1] is invariant to isotropic scaling and
orthogonal transformation. Note that the cost to compute the IRs can be neglected since we only
need to compute them once beforehand. As the teacher is more knowledgeable, we compute category
interrelations using the teacher model, which is indicated by IRT(Ci, Cj).
Besides CKA, cosine similarity between the prototypes of two categories can also be used to quantify
IRs. In practice, the prototype of one category can be computed as the average of the features of the
category’s examples. Alternatively, the weight vectors associated with the softmax classifier of a
DNN model can be regarded as prototypes of individual categories [22].

Loss function. Given an input image (instance), we let z=
[
zi
]
∈Rn be the corresponding logits

of a DNN model where i ∈ Sn
△
= {1, · · · , n} indicates the index of i9th category. The predicted

category probability p=
[
pi
]

is computed via the softmax function σ with a temperature τ , i.e.,

pi = σ
(
z
τ

)
i

△
= exp(zi/τ)/

∑
j∈Sn

exp(zj/τ). We denote by pT and pS the predicted category
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probabilities of the teacher and student models, respectively. The classical KD [2] is an instance-
wise method, which measures the discrepancy between pT and pS given the same input image:

Overview of our methodology
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Figure 2: KL-Div cannot perform
cross-category comparison. Com-
pare to WD in Figure 1b (left).

DKL(p
T∥pS) =

∑
i
pTi log

(
pTi /p

S
i

)
. (2)

KL-Div (2) only compares predicted probabilities correspond-
ing to the same category between the teacher and student, es-
sentially short of a mechanism to perform cross-category com-
parison, as shown in Figure 2. Though during gradient back-
propagation probability of one category affects probabilities
of other categories due to the softmax function, this implicit
effect is insignificant and, above all, cannot explicitly exploit
rich knowledge of pairwise interrelations as described in (1).

In contrast to KL-Div, WD performs cross-category compar-
ison and thus naturally makes use of category interrelations,
as shown in Figure 1b (left). We formulate discrete WD as an
entropy regularized linear programming [23]:

DWD(p
T,pS) = min

qij

∑
i,j
cijqij + ηqij log qij (3)

s.t. qij≥0,
∑

j
qij=p

T
i ,

∑
i
qij=p

S
j , i, j∈Sn,

where cij and qij respectively indicate transport cost per mass and the transport amount while moving
probability mass from pTi to pSj ; η is a regularization parameter. We define the cost cij by converting
the similarity measure IRs to a distance measure according to the commonly used Gaussian kernel [10,
Chap. 6], i.e., cij = 1 − exp(−κ(1 − IRT(Ci, Cj))), where κ is a parameter that can control the
degree of sharpening of IR. The smaller IRT(Ci, Cj) in the feature space, the less cost is needed for
transport between the two categories. As such, the loss function of WKD-L is

L̃WKD9L=DWD(p
T,pS). (4)

Recent work [3] discloses target probability (i.e., the probability of the target category) and the non-
target ones play different roles: the former concerns the difficulty of training examples while the latter
containing prominent “dark knowledge”. It has been shown that this separation is helpful to balance
their roles and improves greatly over the classical KD [3; 4]. Inspired by them, we also consider a
similar separation strategy. Let t be index of target category and zT\t=

[
zTi

]
∈Rn−1, i∈Sn\{t} be

the teacher’s logits of non-target categories. We normalize zT\t as previously, obtaining the teacher’s
non-target probabilities pT

\t=
[
pTi

]
. In this case, our loss functions consist of two terms:

LWKD9L=λDWD(p
T
\t,p

S
\t) + Lt, Lt=−σ(zT)t log σ(zS)t, (5)

where λ is the weight.

2.2 Continuous WD for Feature Distillation

As the features output from intermediate layers of DNN are of high dimension and small size, the
non-parametric methods, e.g., histogram and kernel density estimation, are infeasible. Therefore, we
use one of the widely used parametric methods (i.e., Gaussian) for distribution modeling.

Feature distribution modeling. Given an input image, let us consider feature maps output by some
intermediate layer of a DNN model, whose spatial height, width and channel number are h, w and
l, respectively. We reshape the feature maps to a matrix F ∈ Rl×m where m = h × w and the
i9th column fi ∈ Rl indicates a spatial feature. For these features, we estimate the 1st-moment
µ = 1

m

∑
i fi and the 2nd-moment Σ = 1

m

∑
i(fi − µ)(fi − µ)T . We model feature distribution of

the input image by a Gaussian with mean vector µ and covariance matrix Σ as its parameters:

N (µ,Σ)=
1

|2πΣ|1/2
exp

(
− 1

2
(f−µ)TΣ−1(f−µ)

)
, (6)

where | · | indicates matrix determinant.
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We estimate Gaussian distribution of the teacher directly from its backbone network. For the student,
as in previous arts [24; 25; 26], a projector is used to transform the features so that they are compatible
in size with the features of the teacher. Then the transformed features produced by the projector are
used to compute the student’s distribution. We select Gaussian for distribution modeling as it is of
maximal entropy for given the 1st- and 2nd-moments [19, Chap. 1] and has a closed form WD that is
a Riemannian metric [20].

Loss Function. Let Gaussian NT △
=N (µT,ΣT) be feature distribution of the teacher. Similarly, we

denote by N S the student’s distribution. The continuous WD between the two Gaussians is defined as

DWD(NT,N S)= inf
q

∫
Rl

∫
Rl

∥fT−fS∥2q(fT, fS)dfTdfS, (7)

where fT and fS are Gaussian variables and ∥ · ∥ indicates Euclidean distance; the joint distribution q
is constrained to have marginals NT and N S. Minimization of Eq. (7) leads to the following closed
form distance [14]:

DWD(NT,N S) = Dmean(µ
T,µS)+ Dcov(Σ

T,ΣS). (8)

Here Dmean(µ
T,µS) =

∥∥µT −µS
∥∥2 and Dcov(Σ

T,ΣS) = tr(ΣT+ΣS− 2((ΣT)
1
2ΣS(ΣT)

1
2 )

1
2 )

where superscript
1
2 indicates matrix square root. As the covariance matrices estimated from high-

dimensional features are often ill-conditioned [27], we add a small positive number (1e95) to the
diagonals. We also consider diagonal covariance matrices, for which we have Dcov(Σ

T,ΣS) =∥∥δT−δS
∥∥2, where δT is a vector of standard variances formed by the square roots of the diagonals of

ΣT . We later compare Gaussian (Full) and Gaussian (Diag) which have full and diagonal covariance
matrices, respectively. To balance role of the mean and covariance, we introduce a mean-cov ratio γ
and define the loss as

LWKD9F=γDmean(µ
T,µS)+Dcov(Σ

T,ΣS). (9)

We can use the strategy of spatial pyramid pooling [28; 29; 6] to enhance representation ability.
Specifically, we partition the feature maps into a k × k spatial grid, compute a Gaussian for each cell
of the grid and then match per cell the Gaussians of the teacher and student.

KL-Div [30] and symmetric KL-Div (i.e., Jeffreys divergence) [31], both having closed form expres-
sions for Gaussians [32], can be used for knowledge transfer. However, they are not metrics [12],
unaware of the geometry of the space of Gaussians [13] that is a Riemannian space. Conversely, DWD

is a Riemannian metric that measures the intrinsic distance [20]. Note that G2DeNet [33] proposes
a metric between Gaussians that leverages the geometry based on Lie group, which can be used to
define distillation loss. Besides Gaussian, one can also use Laplace and exponential distributions for
modeling feature distributions. Finally, though histogram or kernel density estimation are infeasible,
one can still model feature distribution with probability mass function (PMF) and accordingly use
discrete WD to define the distillation loss. Details on these methods can be found in Section A.2.

3 Related Works

We summarize KD methods related to ours and show their connections and differences in Table 1.

KL-Div based knowledge distillation. Zhao et al. [3] disclose the classical KD loss [2] is a coupled
formulation that limits its performance, and thereby propose a decoupled formulation (DKD) that
consists of a binary logit loss for the target category and a multi-class logit loss for all non-target
categories. Yang et al. [4] propose a normalized KD (NKD) method, which decomposes the classical
KD loss into a combination of the target loss (like the widely used cross-entropy loss) and the loss
of normalized non-target predictions. WTTM [5] introduces Rényi entropy regularizer without
temperature scaling for student. In spite of competitive performance, they cannot explicitly exploit
relations among categories. By contrast, our Wasserstein distance (WD) based method can perform
cross-category comparison and thus exploit rich category interrelations.

WD based knowledge distillation. The existing KD methods founded on WD [15; 16] mainly
concern cross-instance matching for feature distillation, as shown in Figure 3 (left). Chen et al. [15]
propose a Wasserstein Contrastive Representation Distillation (WCoRD) framework which involves
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Method

Logit Distillation Feature Distillation

Distribution Dis-similarity Category
Interrelation Distribution Dis-similarity Riemannian

Metric
KD [2]

DKD [3]
NKD [4]

WTTM [5]

Discrete KL divergence ✗ –

WCoRD [15] Discrete Mutual
Information ✗ Discrete Wasserstein

Distance –

EMD+IPOT
[16] – Discrete Wasserstein

Distance –

WKD (ours) Discrete Wasserstein
Distance ✓

Continuous
(Gaussian)

Wasserstein
Distance ✓

NST [35] – Spatial
2nd-moment Frobenius ✗

ICKD-C [6] – Channel
2nd-moment Frobenius ✗

VID [40] Discrete Mutual
Information ✗ Continuous Mutual

Information –

Table 1: Comparison with related works.

Figure 3
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Figure 3: Diagrams of WCoRD
/EMD+IPOT and NST/ICKD-C.

a global and a local contrastive loss. The former loss minimizes mutual information (via dual form
of WD) between the distributions of the teacher and student; the latter loss minimizes Wasserstein
distance for the penultimate layer only, where the set of features of the mini-batch images are matched
between the teacher and student. Lohit et al. [16] independently propose a similar cross-instance
matching method called EMD+IPOT, in which knowledge is transferred from all intermediate
layers and discrete WD is computed via an inexact proximal optimal transport algorithm [34]. The
differences of our work from them are twofold: (1) They fail to leverage category interrelations which
our WKD-L can make full use of; (2) They are concerned with cross-instance matching based on
discrete WD, while our WKD-F involves instance-wise matching with continuous WD.

Other arts based on statistical modeling. NST [35] is among the first to formalize feature distilla-
tion as a distribution matching problem, in which the student mimics the distributions of the teacher
based on Maximum Mean Discrepancy (MMD). They show that the 2nd-order polynomial kernel
performs best among the candidate kernels of MMD, and that the activation-based attention transfer
(AT) [36] is a special case of NST. Yang et al. [37] propose a novel loss function, which transfers
the statistics learned by the student back to the teacher based on adaptive instance normalization.
Liu et al. [6] propose inter-channel correlations (ICKD-C) to model feature diversity and homology
for better knowledge transfer. Both NST and ICKD-C can be regarded as Frobenius norm based
distribution modeling via 2nd-moment along spatial- and channel-dimension, respectively, as shown
in Figure 3 (right). However, they fail to utilize the geometric structure of the 2nd-moment matrices,
which are symmetric positive definite (SPD) and form a Riemannian space [38; 39]. Ahn et al. [40]
introduce variational information distillation (VID) based on mutual information. VID assumes that
feature distributions are Gaussians, and its loss boils down to mean square loss (i.e., FitNet [24]) if
Gaussians are further assumed to have unit variance.

4 Experiments

We evaluate WKD for image classification on ImageNet [41] and CIFAR-100 [42]. Also, we evaluate
the effectiveness of WKD on self-knowledge distillation (Self-KD). Further, we extend WKD to
object detection and conduct experiment on MS-COCO [43]. We train and test models with PyTorch
framework [44], using a PC with an Intel Core i9-13900K CPU and GeForce RTX 4090 GPUs.

4.1 Experiment Setting

Image classification. ImageNet [41] contains 1,000 categories with 1.28M images for training, 50K
images for validation and 100K for testing. In accordance with [25], we train the models for 100
epochs using SGD optimizer with a batch size of 256, a momentum of 0.9 and a weight decay of
1e94. The initial learning rate is 0.1, divided by 10 at the 30th, 60th and 90th epochs, respectively.
We use random resized crop and random horizontal clip for data augmentation. For WKD-L, we use
POT library [45] for solving discrete WD with η=0.05 and 9 iterations. For WKD-F, the projector
has a bottleneck structure, i.e., a 1×1 Convolution (Conv) and a 3×3 Conv both with 256 filters
followed by a 1×1 Conv with BN and ReLU to match the size of teacher’s feature maps.
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Dis-similarity Target←|→Non-target Top-1 △

KL-Div
w/o [2] 71.03 –

w/ [3] 71.70 +0.67

w/ [4] 71.96 +0.93

WD
w/o 72.04 +1.01

w/ 72.49 +1.46

(a) WD versus KL-Div.

Dis-similarity IR Method Top-1 △
KL-Div [2] – 71.03 –

WD
CKA

Linear kernel 72.49 +1.46
Polynomial kernel 72.10 +1.07
RBF kernel 72.30 +1.27

Cosine
Classifier weight 72.19 +1.16
Class centroid 72.02 +0.99

(b) Different interrelation (IR) modelings.

Table 2: Ablation analysis of WKD-L for image classification (Acc, %) on ImageNet.

CIFAR-100 [42] contains 60K images of 32 × 32 pixels from 100 categories with 50K for training
and 10K for testing. Following the setting of OFA [46], we conduct experiments across Convolutional
Neural Networks (CNNs) and vision transformers. Additional experiments within CNN architectures
are given in Table 11 of Section C.6. The images are upsampled to the resolution of 224x224. All
models are trained for 300 epochs with a batch size of 512 and a cosine annealing schedule. For
CNN-based students, we use SGD optimizer with an initial learning rate of 2.5e-2 and a weight decay
of 2e-3. For transformer-based students, we use AdamW optimizer with an initial learning rate of
2.5e-4 and a weight decay of 2e-3.

Object detection. MS-COCO [43] is a commonly used benchmark for object detection that contains
80 categories. Following the common practice, we use standard split of COCO 2017 with 118K
images for training and 5K images for validation. As in ReviewKD [29], we employ the framework
of Faster-RCNN [47] with Feature Pyramid Network (FPN) [48] on Detectron2 platform [49]. As in
previous arts [50; 29; 51], we use the detection models officially trained and released as the teachers,
while training the student models whose backbones are initialized with the weights pre-trained on
ImageNet. The student networks are trained in 180K iterations with a batch size of 8; the initial
learning rate is 0.01, decayed by a factor of 0.1 at 120K and 160K iterations.

4.2 Dissection of WD-based Knowledge Distillation

We analyze key components of WKD-L and WKD-F on ImageNet. We adopt ResNet34 as a teacher
and ResNet18 as a student (i.e., setting (a)), whose Top-1 Accuracies are 73.31% and 69.75%,
respectively. See Section C.1 for analysis on hyper-parameters, e.g., temperature and weight.

4.2.1 Ablation of WKD-L

How WD performs against KL-Div? We compare WD to KL-Div with (w/) and without (w/o)
separation of target probability in Table 2a. For the case of without separation, WD (w/o) improves
over KL-Div (w/o) by 1.0%; for the case of with separation, WD (w/) outperforms non-trivially
KL-Div (w/) based DKD and NKD. The comparison above clearly shows that (1) WD performs better
than KL-Div in both cases and (2) the separation also matters for WD. As such, WD with separation
of target probability is used across the paper.

How to model category interrelations (IRs)? Table 2b compares two methods for IR modeling,
i.e., CKA and cosine. For the former, we assess different kernels while for the latter we evaluate
prototypes with classifier weights or class centroids. We note all WD-based methods perform much
better than the baseline of KL-Div. Overall, IR with CKA performs better than IR with cosine,
indicating it has better capability to represent similarity among categories. For IR with CKA, RBF
kernel is better than polynomial kernel, while linear kernel is the best so is used throughout.

4.2.2 Ablation of WKD-F

Full covariance matrix or diagonal one? As shown in Table 3a (3rd and 4th rows), for Gaussian
(Full), WD performs better than G2DeNet [33], which suggests that the former metric is more
appropriate for feature distillation. When using WD, Gaussian (Diag) (5th row) produces higher
accuracy than Gaussian (Full). We conjecture the reason is that high dimensionality of features makes
estimation of full covariance matrices not robust [52]; in contrast, for Gaussians (Diag), we only need
to estimate 1D variances for univariate data of single dimension. Besides, Gaussian (Diag) is much
more efficient than Gaussian (Full). So we use Gaussians (Diag) throughout the paper.
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Distribution Dis-similarity Top-1 △

FitNet [24] – Frobenius 70.53 –

Parametric

Gaussian (Full)
WD 72.37 +1.84

G2DeNet [33] 72.23 +1.70

Gaussian (Diag)
WD 72.50 +1.97
KL-Div 71.75 +1.22

Sym KL-Div 71.93 +1.40

Laplace KL-Div 71.38 +0.85

Exponential KL-Div 70.14 -0.39

Spatial 1st9moment [35] Euclidean 70.56 +0.03
Spatial 2nd9moment [35] Frobenius 71.14 +0.61

Channel 1st9moment Euclidean 72.04 +1.51

Channel 2nd9moment [6] Frobenius 71.59 +1.06

Non-parametric PMF WD 71.57 +1.04

(a) Feature distribution modeling.

Method WD Matching
Strategy Top-1 △

FitNet [24] – Instance-wise 70.53 –
WCoRD [15]

Discrete Cross-instance
71.49 +0.96

EMD+IPOT [16] 70.46 -0.07
WKD-F Continuous Instance-wise 72.50 +1.97

(b) Different matching strategies.

Stage Grid
Top-1 △

Conv_4x Conv_5x 1×1 2×2

FitNet [24] ✓ ✓ 70.53 –

WD

✓ ✓ 71.52 +0.99
✓ ✓ 72.50 +1.97
✓ ✓ 72.40 +1.87

✓ ✓ ✓ 72.44 +1.91

(c) Distillation position and grid scheme.

Table 3: Ablation analysis of WKD-F for image classification (Acc, %) on ImageNet.

How to model distributions? In Table 3a, we compare different parametric methods for knowledge
distillation, including Gaussian, Laplace, exponential distribution, as well as separate 1st9moment
and 2nd9moment. Note that NST [35] adopts spatial 1st- and 2nd-moment while ICKD-C [6] uses
channel 2nd9moment. Besides, we compare to non-parametric method based on PMF.

For Gaussians (Diag), KL-Div and symmetric (Sym) KL-Div produce similar accuracies which are
both lower than WD. The reason may be that KL-related divergences are not intrinsic distances,
failing to exploit geometric structure of the manifold of Gaussians. For statistical moments, we see
that channel-wise moments perform better than spatial-wise ones. For channel-wise representations,
1st-moment outperforms 2nd-moment, suggesting that the mean plays a more important role. At last,
the non-parametric method of PMF underperforms the parametric method of Gaussians.

Besides Gaussian (Diag), We can also use univariate Laplace or exponential functions to model
distributions of each component of features. For them KL-Div can be computed in closed-form [53]
but WD is an unsolved problem. When using KL-Div, Gaussian (Diag) achieves better performance
than both Laplace and exponential distributions, highlighting Gaussian as a more suitable option
among these parametric alternatives. Further, the Gaussian (Diag) combined with WD yields superior
performance compared to KL-Div, suggesting advantage of the Riemannian metric.

Instance-wise or cross-instance matching? Our WKD-F is an instance-wise matching method
based on continuous WD, while WCoRD and EMD+IPOT concern cross-instance matching for a
mini-batch of images based on discrete WD. As seen in Table 3b, WCoRD produces an accuracy
much higher than EMD+IPOT, which may be attributed to its extra global contrast loss based on
mutual information; WKD-F outperforms the two counterparts by a large margin of 1.0%, which
suggests the advantage of our strategy. Note that our WKD-F runs remarkably faster than the two
counterparts that rely on optimization algorithm to solve discrete WD.

Distillation position and grid scheme. We evaluate in Table 3c the effect of position at which we
perform distribution matching and that of different grid schemes. From the 3rd and 4th rows, we see
that the last stage of Conv_5x performs much better than Conv_4x, indicating high-level features are
more suitable for knowledge transfer. Comparing the 4th and 5th rows, we see 2×2 grid does not
improve over 1×1 grid. Lastly, combination of features of Conv_4x and Conv_5x bring no further
gains. Therefore, we use features of Conv_5x and 1×1 grid for classification on ImageNet.

4.3 Image Classification on ImageNet

Table 4 compares to existing works in two settings. Setting (a) involves homogeneous architecture,
where the teacher and student networks are ResNet34 and ResNet18 [9], respectively; setting (b)
concerns heterogeneous architecture, in which we set the teacher as ResNet50 and the student as
MobileNetV1 [57]. Refer to Section C.2 for hyper-parameters in Settings (a) and (b).

For logit distillation, we compare our WKD-L with KD [2], DKD [3], NKD [4], CTKD [54] and
WTTM [5]. Our WKD-L performs better than the classical KD and all its variants in both settings.
Particularly, our WKD-L outperforms WTTM, a very strong variant of KD, which additionally
introduces a sample-adaptive weighting method. This suggests Wasserstein distance that performs
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Setting T S

Logit Feature Logit + Feature

KD
[2]

DKD
[3]

NKD
[4]

CTKD
[54]

WTTM
[5]

WKD-L
(ours)

FitNet
[24]

CRD
[25]

Review
-KD [29]

CAT
[55]

WKD-F
(ours)

CRD+
KD [25]

DPK
[7]

FCFD
[8]

KD-
Zero[56]

WKD-L+
WKD-F
(ours)

(a)
Top-1 73.31 69.75 71.03 71.70 71.96 71.51 72.19 72.49 70.53 71.17 71.61 71.26 72.50 71.38 72.51 72.25 72.17 72.76

Top-5 91.42 89.07 90.05 90.41 – 90.47 – 90.75 89.87 90.13 90.51 90.45 91.00 90.49 90.77 90.71 90.46 91.08

(b)
Top-1 76.16 68.87 70.50 72.05 72.58 – 73.09 73.17 70.26 71.37 72.56 72.24 73.12 – 73.26 73.26 73.02 73.69

Top-5 92.86 88.76 89.80 91.05 – – – 91.32 90.14 90.41 91.00 91.13 91.39 – 91.17 91.24 91.05 91.63

Table 4: Image classification results (Acc, %) on ImageNet. In setting (a), the teacher (T) and student
(S) are ResNet34 and ResNet18, respectively, while setting (b) consists of a teacher of ResNet50
and a student of MobileNetV1. We refer to Table 10 in Section C.4 for additional comparison to
competitors with different setups.

cross-category comparison is superior to category-to-category KL-Div. For feature distillation, we
compare to FitNet [24], CRD [25], ReviewKD [29] and CAT [55]. Our WKD-F improves ReviewKD,
previous top-performer, by ∼0.9% in the setting (a) and ∼0.6% in the setting (b) in terms of top-1
accuracy; this comparison indicates that, for knowledge transfer, matching of Gaussian distributions
is better than matching of features. Finally, combination of WKD-L and WKD-F further improves
and outperforms strong competitors, including CRD+KD [25], DPK [7], FCFD [8] and KD-Zero [56].
More results of combination about WKD-L or WKD-F can be found in Table 9.

Strategy Method Top-1
(%)

Params
(M)

Latency
(ms)

Logit
KD [2] 71.03 0 215
NKD [4] 71.96 0 214
WKD-L (Ours) 72.49 0 280

Feature
ReviewKD [29] 71.61 7.2 349
EMD+IPOT [16] 70.46 0.25 258
WKD-F (Ours) 72.50 0.81 207

Logit
+

Feature

FCFD [8] 72.25 5.98 303
ICKD-C [6] 72.19 0.33 222
WKD-L+
WKD-F (ours)

72.76 0.81 292

Table 5: Training latency on ImageNet.

Table 5 compares in Setting (a) latency of different meth-
ods with a batch size of 256 using a GeForce RTX 4090.
For logit distillation, the latency of WKD-L is ∼1.3 times
larger than KL-Div based methods, due to the optimization
procedure to solve discrete WD. WKD-F has a latency on
par with KL-Div based methods, while running ∼1.6 faster
than ReviewKD and ∼1.2 faster than EMD+IPOT; this is
because WKD-F only involves mean vectors and variance
vectors, leading to negligibly additional cost. Finally, com-
bination of WKD-L and WKD-F has larger latency but
better performance than ICKD-C, and meanwhile is more
efficient than state-of-the-art FCFD.

4.4 Image Classification on CIFAR-100

We evaluate WKD in the settings where the teacher is a CNN and the student is a Transformer
or vice versa. We use CNN models including ResNet (RN) [9], MobileNetV2 (MNV2) [58] and
ConvNeXt [59], as well as vision transformers that involve ViT [60], DeiT [61], and Swin Trans-
former [62]. The setting of hyper-parameters can be found in Section C.5.

For logit distillation, we compare WKD-L to KD [2], DKD [3], DIST [63] and OFA [46]. As shown
in Table 6, WKD-L consistently outperforms state-of-the-art OFA for transferring knowledge from
Transformers to CNNs or vice versa. For feature distillation, we compare to FitNet [24], CC [64],
RKD [65] and CRD [25]. WKD-F ranks first across the board; notably, it significantly outperforms
the previous best competitors by 2.1%–3.4% in four out of five settings. We attribute superiority
of WKD-F to our distribution modeling and matching strategies, i.e., Gaussians and Wasserstein
distance. We posit that, for knowledge transfer across CNNs and Transformers that yield very distinct
features [46], WKD-F is more suitable than raw feature comparisons as in FitNet and CRD.

Teacher (Acc) Student (Acc)
Logit Feature

KD
[2]

DKD
[3]

DIST
[63]

OFA
[46]

WKD-L
(ours)

FitNet
[24]

CC
[64]

RKD
[65]

CRD
[25]

WKD-F
(ours)

Transformer→CNN
Swin-T (89.26) RN18 (74.01) 78.74 80.26 77.75 80.54 81.42±0.22 78.87 74.19 74.11 77.63 81.57±0.12
ViT-S (92.04) RN18 (74.01) 77.26 78.10 76.49 80.15 80.81±0.21 77.71 74.26 73.72 76.60 81.12±0.24
ViT-S (92.04) MNV2 (73.68) 72.77 69.80 72.54 78.45 79.04±0.05 73.54 70.67 68.46 78.14 79.11±0.07

CNN→Transformer
ConvNeXt-T (88.41) DeiT-T (68.00) 72.99 74.60 73.55 75.76 76.11±0.18 60.78 68.01 69.79 65.94 73.27±0.22
ConvNeXt-T (88.41) Swin-P (72.63) 76.44 76.80 76.41 78.32 78.94±0.17 24.06 72.63 71.73 67.09 74.80±0.13

Table 6: Image classification results (Top-1 Acc, %) on CIFAR-100 across CNNs and Transformers.
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4.5 Self-Knowledge Distillation on ImageNet

We implement our WKD in the framework of Born-Again Network (BAN) [66] for self-knowledge
distillation (Self-KD). Specifically, we first train an initial model S0 using ground truth labels. Then
we distill, using WKD-L, the knowledge of S0 into a student model S1 with the same architecture
as S0. For the sake of simplicity, we do not perform multi-generation distillation, such as training a
student model S2 with S1 as the teacher, etc.

Method Self-KD Dis-similarity Top-1
Standard train × NA 69.75
Tf-KD [67] ✓ KL-Div 70.14
FRSKD [68] ✓ KL-Div 70.17
Zipf’s KD [69] ✓ KL-Div 70.30
USKD [4] ✓ KL-Div 70.75
BAN [66] ✓ KL-Div 70.50
WKD-L ✓ WD 71.35

Table 7: Self-KD results (Acc, %) on Ima-
geNet with ResNet18.

We conduct experiments with ResNet18 on Ima-
geNet, where the hyper-parameters are consistent
with those in Setting (a). As shown in Table 7, BAN
achieves competitive accuracy that is comparable to
state-of-the-art results. Our method achieves the best
result, outperforming BAN by ∼ 0.9% in Top-1 accu-
racy and the second-best (i.e., USKD) by 0.6%. This
comparison demonstrates that our WKD can well
generalize to self-knowledge distillation.

4.6 Object Detection on MS-COCO

We extend WKD to object detection in the framework of Faster-RCNN [47]. For WKD-L, we use the
classification branch in the detection head for logit distillation. For WKD-F, we transfer knowledge
from features straightly fed to the classification branch, i.e., features output by the RoIAlign layer,
and choose a 4×4 spatial grid for computing Gaussians. Implementation details, ablation of key
components, and extra experiments are given in Section E of Appendix.

Faster RCNN-FPN
RN101→RN18 RN50→MNV2

mAP AP50 AP75 mAP AP50 AP75

Strategy
Teacher 42.04 62.48 45.88 40.22 61.02 43.81
Student 33.26 53.61 35.26 29.47 48.87 30.90

Logit
KD [2] 33.97 54.66 36.62 30.13 50.28 31.35
DKD [3] 35.05 56.60 37.54 32.34 53.77 34.01
WKD-L (Ours) 35.24 56.73 37.91 32.48 53.85 34.21

Feature

FitNet [24] 34.13 54.16 36.71 30.20 49.80 31.69
FGFI [50] 35.44 55.51 38.17 31.16 50.68 32.92
ICD [51] 35.90 56.02 38.75 32.88 52.56 34.93
ReviewKD [29] 36.75 56.72 34.00 33.71 53.15 36.13
WKD-F (Ours) 37.21 57.32 40.15 34.47 54.67 36.85

Logit
+

Feature

DKD+
ReviewKD [3] 37.01 57.53 39.85 34.35 54.89 36.61

WKD-L+
WKD-F (ours)

37.49 57.76 40.39 34.80 55.27 37.28

FCFD† [8] 37.37 57.60 40.34 34.97 55.04 37.51
WKD-L+
WKD-F† (ours)

37.79 57.95 41.08 35.48 55.21 38.45

Table 8: Object detection results on MS-COCO.
†Additional bounding-box regression is used.

We compare with existing methods in two set-
tings, as shown in Table 8. In RN101→RN18
setting, the teacher is ResNet101 and the student
is ResNet18; in RN50→MNV2, the teacher and
student are ResNet50 and MobileNetV2 [58],
respectively. For logit distillation, our WKD-L
significantly outperforms the classical KD [2]
and is slightly better than DKD [3]. For feature
distillation, we compare with FitNet, FGFI [50],
ICD [51] and ReviewKD [29]; our WKD-F im-
proves ReviewKD, the previous top feature dis-
tillation performer, by a non-trivial margin in
both settings. Finally, by combining WKD-L
and WKD-F, we achieve performance better
than DKD+ReviewKD [3]. When additional
bounding-box regression is used for knowl-
edge transfer, our WKD-L+WKD-F improves
further, outperforming previous state-of-the-art
FCFD [8].

5 Conclusion

The Wasserstein distance (WD) has shown evident advantages over KL-Div in several fields such as
generative models [11]. However, in knowledge distillation, KL-Div is still dominant and it is unclear
whether WD will outperform. We argue that earlier attempts on knowledge distillation based on WD
fail to unleash the potential of this metric. Hence, we propose a novel methodology of WD-based
knowledge distillation, which can transfer knowledge from both logits and features. Extensive
experiments have demonstrated that discrete WD is a very promising alternative of predominant KL-
Div in logit distillation, and that continuous WD can achieve compelling performance for transferring
knowledge from intermediate layers. Nevertheless, our methods have limitations. Specifically,
WKD-L is more expensive than KL-Div based logit distillation methods, while WKD-F assumes
features follow Gaussian distribution. We refer to Section F in Appendix for detailed discussion on
limitations and future research. Finally, we hope our work can shed light on the promise of WD and
inspire further interest in this metric in knowledge distillation.
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A Implementation Details on WKD

A.1 Interrelations (IRs) among Category for WKD-L

Visualization of category interrelations. We select in random fifty images from each of one
hundred categories randomly chosen on the training set of ImageNet. Then we feed them to a
pre-trained ResNet50 model and extract from the penultimate layer features that are projected to
2D space using t-SNE. The 2D embedding points are shown in Figure 4a where different categories
are indicated by different colors. For intuitive understanding, inspired by karpathy1, we display
features by the corresponding images at their nearest 2D embedding locations in Figure 4b. It can be
seen that the categories exhibit complex topological relations (distances) in the feature space, e.g.,
mammal species are nearer each other while far from artifact or food. The relations encode abundant
information and are beneficial for knowledge distillation. In addition, the features of the same category
cluster and form a (unknown) distribution that often overlaps with those of neighboring categories.
The observation suggests that it is more desirable to model the interrelations with statistical method.

(a) Features are projected to 2D space using tSNE.
Different categories are indicated by different colors.

(b) Features are displayed by the corresponding im-
ages at their nearest 2D embedding locations.

Figure 4: Visualization of interrelations among 100 categories in feature space. The categories exhibit
complex topological relations, where features of the same category cluster and form a distribution
that often overlaps with those of neighboring categories.

Quantization of IRs with CKA. We propose to use CKA for modeling category IRs as it can
effectively characterize similarity of deep representations [17]. CKA is normalized HSIC [18] that
measures statistical dependence of random variables (features) by mapping them into a RKHS
with some positive definite kernels. Recall that, for category Ci, we have a matrix Xi ∈Ru×b of
u-dimensional features of b training images. As such, for the commonly used kernels, we have
linear kernel Klin

i = XT
i Xi, the polynomial kernel Kpoly

i = (XT
i Xi+1)k where k ∈ {2, 3, 4},

and RBF kernel Krbf
i = exp(− Di

2α2Med(Di)
) where the bandwidth α ∈ {0.2, 0.4, 0.6} and Di =

2
(
diag(XT

i Xi)1
T
)
sym

−2XT
i Xi. For a matrix A, Med(A) denotes the median of all of its entries,

diag(A) denotes a vector formed by its diagonals, and (A)sym= 1
2 (A+AT ).

Quantization of IRs with cosine similarity. Besides CKA, cosine similarity between the prototypes
of two categories is used to quantify category interrelations. The prototype of a category can
be naturally computed as feature centroid of this category’s training examples, i.e., xi =

1
bXi1.

Alternatively, the weight vectors associated with the softmax classifier can be used as prototypes [22].
Specifically, if the weight matrix of the last FC layer is W∈Ru×n where n is number of total classes,
then its i9th column wi can be regarded as the prototype of category Ci, i.e., xi=wi.

1https://cs.stanford.edu/people/karpathy/cnnembed
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A.2 Distributions Modeling for WKD-F

Recall that, for an input image, we have 3D feature maps output by some layer of a DNN, whose
spatial height, width and channel number are h, w and l, respectively. We reshape the feature maps
to a matrix F∈Rl×m where m= h × w; we denote the i9th column as a feature fi ∈ Rl , while
the j9th row (after transpose) as a feature f̂j ∈ Rm. In WKD-F, we estimate channel 1st-moment
µ ∈ Rl and 2nd-moment Σ ∈ Rl×l:

µ=
1

m

∑m

i=1
fi, Σ=

1

m

∑m

i=1
(fi−µ)(fi−µ)T , (10)

which are used to construct a parametric Gaussian N (µ,Σ). For measuring difference between
Gaussians, we use Wasserstein distance (WD) that is a Riemannian metric. We prefer Gaussians
(Diag) that have diagonal covariances to Gaussians (Full) that have full covariances, as they are much
more efficient and have better performance as shown in Table 3a.

G2DeNet. Different from WD, Wang et al. [33] propose a method called G2DeNet, which considers
Lie group of the space of Gaussians and embeds a Gaussian into the space of SPD matrices:

N (µ,Σ) 7→
[
Σ+ µµT µ

µT 1

] 1
2

. (11)

Thus the difference between two Gaussians is defined as the Euclidean distance of the Gaussian
embeddings of the teacher and student models.

ICKD-C and NST. ICKD-C [6] uses raw channel 2nd-moment for exploring inter-channel correla-
tions of features, i.e., M= 1

m

∑m
i=1 fif

T
i . Instead of channel-wise statistics, NST [35] estimates raw

spatial 1st-moment µ̂ ∈ Rm and raw spatial 2nd-moment M̂ ∈ Rm×m for describing distributions:

µ̂=
1

l

∑l

j=1
f̂j , M̂=

1

l

∑l

j=1
f̂j f̂

T
j . (12)

KL-Div between Gaussians (Diag). Let µ=
[
µ1, · · · , µl

]T
be mean and δ=

[
δ1, · · · , δl

]T
be

variance of Gaussians (Diag). In this case, both KL-Div and symmetric KL-Div have closed forms:

DKL(NT∥N S) =
1

2

∑
i

(µT
i −µS

i

δSi

)2
+
(δTi
δSi

)2−2 log
δTi
δSi

−1, (13)

DSym KL(NT∥N S) =
1

2

∑
i
(µT

i −µS
i )

2((
1

δTi
)2+(

1

δSi
)2)+(

δSi
δTi

)2+(
δTi
δSi

)2−2.

Here T and S denote the teacher and student, respectively.

KL-Div between Laplace distributions. We assume components of feature f =
[f1, · · · , fl]T ∈ Rl are statistically independent. Then the Laplace distribution of f is L(µ,ν) =∏

i
1

2νi
exp(− |fi−µi|

νi
), where µ is the mean and ν =

[
ν1, · · · , νl

]T
is the scale parameter. The

KL-Div takes the following form [53]:

DKL(L
T∥LS) =

∑
i
log

νSi
νTi

+
|µT

i − µS
i |

νSi
+
νTi
νSi

exp(−|µT
i − µS

i |
νTi

)−1. (14)

KL-Div between exponential distributions. Under independence assumption, the exponential
distribution of feature f isE(β) =

∏
i βi exp(−βifi), where β=

[
β1, · · · , βl

]T
is the rate parameter.

For exponential distributions, the KL-Div can be written as [53]:

DKL(E
T∥ES) =

∑
i
log

βT
i

βS
i

+
βS
i

βT
i

−1. (15)

Non-parametric PMD. Though non-parametric methods, e.g., histogram or kernel density esti-
mation, are infeasible due to curse of dimensionality, we can still use probability mass function
(PMF) for distribution modeling. Specifically, given a set of features fi, i=1, . . . ,m, the PMF of the
features is of the form:

pf =
∑m

i=1
pfiψ(fi), pfi =

1

m
, (16)
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where ψ(fi) denotes Kronecker function that is equal to one if f= fi and zero otherwise. Let pT
f /p

S
f

be the PMFs of the teacher/student. We can use discrete WD to measure their discrepancy, i.e.,
DWD(p

T
f ,p

S
f ); the transport cost cij between two features fTi and fSj is computed as 1−cos(fTi , f

S
j ).

Note that KL-Div is inapplicable to PMF as it cannot handle non-overlapping distributions [11].

It is worth noting that (1) the space of Gaussians is a Riemannian space, on which WD is an intrinsic
distance [20] while KL-Div or its symmetric version are not [12] and thus are unaware of the
geometry [13]; (2) the space of either channel or spatial 2nd-moments is a manifold of symmetric,
positive definite matrices rather than a Euclidean space [38; 39], so the Frobenius norm is not an
intrinsic distance [35; 6] and fails to exploit the geometric structure of the manifold.

B Computational Complexity of WKD

The logit-based WKD-L is formulated as an entropy regularized linear programming, which can
be solved fastly by Sinkhorn algorithm [23]. Let n be the dimension of the predicted logits, the
complexity of WKD-L can be written as O(Dn2 log n) [70]. Here D = ∥C∥3∞ϵ is a constant, where
∥C∥∞ indicates the infinity norm of the transportation cost matrix C = [cij ], and ϵ > 0 indicates
a prescribed error. In contrast, the computational complexity of KL-Div is O(n). Despite its high
complexity, WKD-L can be computed efficiently as Sinkhorn algorithm is highly suitable for parallel
computation on GPU [23]. For feature-based WKD-F, the dominant cost lies in computation of
means and variances. Given a set of m features fi of l-dimension, the means can be computed by
global average pooling that takes O(ml) time; the complexity of variances is also O(ml), as it can
be obtained by element-wise square operations followed by global average pooling.

C Extra Experiment on Image Classification

C.1 More Ablation Analysis of WKD

We adopt the setting (a) for ablation on ImageNet, in which the teacher is ResNet34 and the student
is ResNet18.

Hyper-parameters of WKD-L. The total loss function of WKD-L consists of the cross-entropy
loss LCE, the target loss Lt and WD-based logit loss LWKD9L. Following [3; 4], we set the weights
of the two former losses to 1 across the paper. As such, our hyper-parameters includes the temperature
τ , the weight λ of LWKD9L, the sharpening parameter κ that controls smoothness of IRs for transport
cost in WD, and the regularization parameter η (set to 0.05) in discrete WD. As simultaneous
optimization of them is computationally infeasible, we first analyze the effect of temperature by
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Figure 5: Analysis of hyper-parameters of WKD-L on ImageNet.
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fixing the sharpening parameter and weight to 1 and 30, respectively. As seen in Figure 5 (top left),
across all temperatures WKD-L performs better than the baseline of KD [2] by large margins while
achieving the highest accuracy when the temperature is 2. Next, we fix the temperature and weight,
analyzing the effect of sharpening parameter. From Figure 5 (top right) we see that performance
variation is not large against the sharpening parameter and the best performance is obtained when it is
equal to 1. Subsequently, by fixing the best temperature and sharpening parameters, we evaluate the
weight of WKD-L. As Figure 5 (bottom left) shows, its accuracy varies smoothly against the weight
and achieves the best accuracy when the weight is 30. Finally, Figure 5 (bottom right) illustrates that
the performance varies smoothly as a function of the regularization parameter η over a reasonably
wide range; for consistency, we set η to 0.05 in all experiments throughout this paper.

Hyper-parameters of WKD-F. The loss function of WKD-F method contains the cross-entropy
loss LCE and WD-based feature loss LWKD9F. As in previous work, we set the weight of the
cross-entropy loss to 1. Therefore, there are two hyper-parameters, i.e., the mean-cov ratio γ and
the weight of LWKD9F. We first analyze the effect of the former by fixing the latter to 2e-2. Table 6
(left) shows the performance as a function of the mean-cov ratio. We see that in the whole range
of the mean-cov ratio WKD-F is clearly better than the baseline of FitNet [24]; the best accuracy
is obtained when its value is 2, which suggests that the means play a more important role than the
covariances. Next, we fix the mean-cov ratio and evaluate the effect of the weight. As seen in Table 6
(right), WKD-F is much better than the baseline of FitNet across all weights and achieves the best
performance when the weight is 0.02.
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Figure 6: Analysis of hyper-parameters on WKD-F on ImageNet.

C.2 Summary of Hyper-parameters on ImageNet

The setting (a) involves homogeneous architecture, where the teacher and student networks are
ResNet34 and ResNet18, respectively. For WKD-L, the weights of LCE, Lt and LWKD9L are 1, 1
and 30, respectively; the temperature τ =2 and sharping parameter κ=1. For WKD-F, we set the
weights of LCE and LWKD9F to 1 and 2e92, respectively. We adopt features from Conv5_x and
Gaussian (Diag) with mean-cov ratio γ=2. The setting (b) concerns heterogeneous architecture, in
which the teacher is ResNet50 and the student is MobileNetV1. In this setting, the weight of LWKD9L
is set to 25 while that of LWKD9F is 1e93, and the remaining hyper-parameters are identical to those
in the setting (a).

C.3 More Experiments on Combination of WKD-L or WKD-F

How WKD complements other KD methods? We combine WKD-F with a state-of-the-art logit-
based knowledge distillation (i.e., NKD), and combine WKD-L with a state-of-the-art feature-based
method (i.e., ReviewKD). The results are shown in Table 9a and Table 9b, respectively. We can
see that NKD+WKD-F improves over individual NKD and WKD-F, which suggests our WKD-F is
complementary to NKD. Notably, NKD+WKD-F is slightly inferior to WKD-L+WKD-F. In addition,
WKD-L+ReviewKD improves over ReviewKD but underperforms WKD-L. We conjecture that, due
to the large gap (∼ 0.9%) between ReviewKD and WKD-L, the combination hurts WKD-L.

Will separation of target probability in WKD-L still help when combined with WKD-F? To
answer this question, we integrate WKD-L without separation into WKD-F, which is called WKD-L
(w/o)+WKD-F. From Table 9c, we can see that it is slightly inferior to WKD-L (w/)+WKD-F in
which the separation scheme is used in WKD-L. This suggests that the benefit due to the separation
scheme decreases but still persists in the logit+feature approach.
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Method Top-1 Top-5

NKD [4] 71.96 –

WKD-F 72.50 91.00

NKD+WKD-F 72.68 91.05

WKD-L 72.49 90.75

WKD-L+WKD-F 72.76 91.08

(a) Combination of NKD
and WKD-F

Method Top-1 Top-5

WKD-L 72.49 90.75

ReviewKD [29] 71.61 90.51

WKD-L+ReviewKD 72.32 90.63

WKD-L 72.49 90.75

WKD-L+WKD-F 72.76 91.08

(b) Combination of WKD-L
and ReviewKD

Method Target←|→Non-target Top-1 Top-5

WKD-L w/o 72.04 90.42

WKD-L w/ 72.49 90.75

WKD-F – 72.50 91.00

WKD-L+WKD-F w/o 72.70 91.07

WKD-L+WKD-F w/ 72.76 91.08

(c) Effect of separation scheme on WKD-
L+WKD-F.

Table 9: Analysis on different combinations of logit and feature distillation methods.

C.4 Comparison to Competitors with Different Setups

In Table 4 of the main paper, we conduct comparison in the ordinary setting, which is formalized in
CRD [25] and adopted by most methods. However, there exist some works which adopt Settings (a)
and (b) but with non-trivially different setups, e.g., DIST [63], NKD [4], MGD [71], and DiffKD [72].
Specifically, their students and/or teachers have performance higher than those in the ordinary
settings, which make them somewhat advantageous when comparing with the metric of Top-1
accuracy. For a fair comparison, we propose to use gains of the distilled student over the vanilla
student in Top-1 accuracy, which is denoted by ▲ . They can more faithfully indicate how much
knowledge the student has learned from the teacher. The comparison results are shown in Table 10.

For logit distillation, WKD-L outperforms NKD, a strong KL-Div based variant, by 0.68% and 0.93%
in setting (a) and setting (b), respectively. Instead of KL-Div, DIST matches predicted probabilities
based on Pearson correlation coefficients, which exploits both instance-wise and cross-instance
knowledge, in contrast to WKD-L that uses instance-wise knowledge only. Nevertheless, WKD-L
performs better than it by 0.43% in setting (a) and a large margin of 1.19% in setting (b). For feature
distillation, we compare to MGD that randomly masks the student’s features and then forces the
student to generate the teacher’s features. The accuracies of WKD-F are over 1.0% higher than those
of MGD in both settings. Regarding logit+feature distillation, we contrast with MGD+WSLD and
DiffKD. DiffKD denoises the student features through a diffusion model trained by teacher features
whose computation cost is high. WKD-L+WKD-F surpasses DiffKD by 0.55% and 1.33% in setting
(a) and setting (b), respectively.

Strategy Method
Setting (a): ResNet34 → ResNet18 Setting (b): ResNet50 → MobileNetV1

Teacher Vanilla
student

Distilled
student

▲ Teacher Vanilla
student

Distilled
student

▲

Logit

NKD [4] 73.62 69.90 71.96 +2.06 76.55 69.21 72.58 +3.37

DIST [63] 73.31 69.76 72.07 +2.31 76.16 70.13 73.24 +3.11

WKD-L (ours) 73.31 69.75 72.49 +2.74 76.16 68.87 73.17 +4.30

Feature
MGD [71] 73.62 69.90 71.58 +1.68 76.55 69.21 72.35 +3.14

WKD-F (our) 73.31 69.75 72.50 +2.75 76.16 68.87 73.12 +4.25

Logit
+

Feature

MGD+WSLD [71] 73.62 69.90 71.80 +1.90 76.55 69.21 72.59 +3.38

DiffKD [72] 73.31 69.76 72.22 +2.46 76.16 70.13 73.62 +3.49

WKD-L+WKD-F (ours) 73.31 69.75 72.76 +3.01 76.16 68.87 73.69 +4.82

Table 10: Image classification results (Top-1 Acc, %) on ImageNet between WKD and the competitors
with different setups. Red numbers indicate the teacher/student model has non-trivially higher
performance than the commonly used ones formalized in CRD [25]. ▲ represents the gains of the
distilled student over the vanilla student.

Additionally, MLKD [73] makes use of a stronger image augmentation, i.e., RandAugment [74] (cf.
their implementation), for improving performance. Vanilla KD [75] studies the great potential of
vanilla KD in a very different setting, in which optimizer with much longer epochs, diverse and very
strong augmentations along with more regularization methods are used. In contrast, we and many of
the state-of-the-art methods follow the ordinary setting formalized in CRD [25].
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C.5 Summary of Hyper-parameters for across CNNs and Transformers on CIFAR-100

For a fair comparison, we follow OFA [46] and separately tune the hyper-parameters for different
settings. For WKD-L, we set the temperature to 2 and the sharpening parameter to 1, while searching
the optimal weight of LWKD9L in [50, 200] with a step of 50. For WKD-F, the projector is simply
a linear layer. We set mean-cov ratio to 2, and perform grid search for the weight of LWKD9F in
{1, 2, 4, 8}×1e92. The spatial grid for computing Gaussians (Diag) is set to 1×1. We report average
accuracy and standard deviation after three runs in Table 6; the results of all competing methods are
duplicated from OFA.

C.6 Knowledge Distillation within CNN Architectures on CIFAR-100

Experimental Setup. We follow the setting of CRD [25], where the networks cover ResNet [9],
Wide-ResNet (WRN) [76], VGG [77], MobileNetV2 [58], and ShuffleNetV1 (SNV1) [78]. All
models are trained for 240 epochs via the SGD optimizer with a batch size of 64, a momentum of 0.9
and a weight decay of 0.0005. The initial learning rate is 0.01 for MobileNetV2 and ShuffleNetV1 and
0.05 for the remaining networks, divided by 10 at the 150th, 180th, and 210th epochs, respectively.
As in CRD [25], the projector is a 1×1 Conv or 4×4 transposed Conv both with BN and ReLU.

For a fair comparison, we follow the practice of DKD [3], CAT [55], ReviewKD [29], FCFD [8]
and WTTM [5], i.e., tuning hyper-parameters separately for different architectures. For WKD-L,
we perform grid search for the weight of LWKD9L in [50, 800] with a step of 50, the temperature τ
in {4, 8} and the sharpening parameter κ in {0.5, 1}. For WKD-F, we perform grid search for the
weight of LWKD9F in {1, 2, . . . , 50}×1e92 and mean-cov ratio γ in {2, 3, . . . , 8}. The spatial grid
for computing Gaussians (Diag) is searched in {1×1, 2×2, 4×4}. We report the average accuracy
and standard deviation of our method after three runs.

Results. The comparison results are shown in Table 11. For logit distillation, WKD-L outperforms
the classical KD by large margins in all settings, and surpasses the competitors in 5 out of 6 settings
across homogeneous and heterogeneous architectures. For feature distillation, WKD-F invariably
achieves better results than EMD-based counterparts (i.e., WCoRD and EMD+IPOT) and 2nd-
moment based counterpart (i.e., NST); meanwhile, WKD-F is also very competitive, compared to
other state-of-the-art methods. For logit+feature distillation, WKD-L+WKD-F ranks first in 4 out of
6 settings across the board. Overall, our methods have comparable or lower standard deviation, as
opposed to the competing methods, which suggests that our method is statistically robust.

Homogeneous Heterogeneous

Strategy

Teacher WRN40-2 RN32x4 VGG13 WRN40-2 VGG13 RN50
Student WRN40-1 RN8x4 VGG8 SNV1 MNV2 MNV2
Teacher 75.61 79.42 74.64 75.61 74.64 79.34
Student 71.98 72.50 70.36 70.50 64.60 64.60

Logit

KD [2] 73.54±0.20 73.33±0.25 72.98±0.19 74.83±0.17 67.37±0.32 67.35±0.32
DIST [63] 74.73±0.24 76.31±0.19 – – – 68.66±0.23
DKD [3] 74.81 76.32 74.68 76.70 69.71 70.35
NKD [4] – 76.35 74.86 – 70.22 70.67
WTTM [5] 74.58 76.06 74.44 75.42 69.16 69.59
WKD-L (Ours) 74.84±0.32 76.53±0.14 75.09±0.13 76.72±0.09 70.21±0.24 71.10±0.16

Feature

FitNet [24] 72.24±0.24 73.50±0.28 71.02±0.31 73.73±0.32 64.14±0.50 63.16±0.47
VID [40] 73.30±0.13 73.09±0.21 71.23±0.06 73.61±0.12 65.56±0.42 67.57±0.28
CRD [25] 74.14±0.22 75.51±0.18 73.94±0.22 76.05±0.14 69.73±0.42 69.11±0.28
ReviewKD [29] 75.09 75.63 74.84 77.14 70.37 69.89
CAT [55] 74.82 76.91 74.65 77.35 69.13 71.36
NST [35] 72.24±0.22 73.30±0.28 71.53±0.13 74.89±0.25 58.16±0.26 64.96±0.44
WCoRD [15] 74.73 75.95 74.55 76.32 69.47 70.45
EMD+IPOT[16] – 74.19 72.80 – – –
WKD-F (Ours) 75.02±0.06 76.77±0.26 75.02±0.18 77.36±0.19 70.34±0.15 71.87±0.35

Logit
+

Feature

DPK [7] 75.27 – 74.96 – – –
FCFD [8] 75.46 76.62 75.22 77.99 70.65 71.00
DiffKD [72] 74.09±0.09 76.72±0.15 – – – 69.21±0.27
ICKD-C [6] 74.63 75.48 73.88 – – –
WKD-L+
WKD-F (Ours) 75.35±0.13 77.28±0.24 75.25±0.15 77.50±0.32 70.68±0.10 71.71±0.28

Table 11: Image classification results (Top-1 Acc, %) on CIFAR-100 within CNN architectures.
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D Visualization

D.1 Visualization of Teacher-Student Discrepancies

Following [25; 3], we visualize the difference of correlation matrices of student and teacher log-
its. Figure 7a shows visualization results in two settings on CIFAR-100 [42]. In setting of
ResNet32x4→ResNet8x4, the teacher and student are ResNet32x4 and ResNet8x4, respectively; the
setting VGG13→VGG8 consists of a teacher of VGG13 and a student of VGG8. On the whole, in
both settings the colors of WKD-L are much lighter than those of KD [2], which indicates WKD-L
produces correlations matrices more similar to the teacher than KD. As the differences of correlation
matrices capture inter-class correlations [25], smaller differences of WKD-L suggest better-informed
cross-category relations than KL divergence can be learned.

In addition, we visualize whether WKD-F can learn distributions that are more similar to the teacher.
To that end, we use high-level features output from the last Conv layer of a network model for
computing distributions, as they encode the most discriminative information for classification. For
each validation image of the i9th category, we compute WD between feature distributions of the
teacher and student. Hence, for n categories each with k validation images, we obtain a n×k matrix
of distribution matching. Figure 7b shows visualization of two settings on CIFAR-100. We can see
that overall WKD-F demonstrates smaller discrepancies with the teacher than FitNet [24], suggesting
it can better mimic the teacher’s distributions.

ResNet32x4→ResNet8x4. VGG13→VGG8.

(a) Differences between correlation matrices of student and teacher logits.

ResNet32x4→ResNet8x4. VGG13→VGG8.

(b) Differences between distributions of teacher and student features.

Figure 7: Visualization of teacher-student discrepancies for WKD-L (a) and WKD-F (b). Darker
color indicates larger difference.

D.2 Visualization of Class Activation Maps (CAMs)

We use Grad-CAM [79] to compute class activation maps using features output from the last Conv
layer. Figure 8 shows, for three example images, CAMs of different models, including the teacher,
vanilla student, distilled models by KD, WKD-L, FitNet and WKD-F. It can be seen that WKD-L and
WKD-F have more similar CAMs with the teacher than KD and FitNet, and localize more accurately
the important regions of objects. The comparison suggests that WKD-L and WKD-F can learn
features with better representation capability.
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Figure 8: Visualization of different models via Grad-CAM.

E Extra Experiment on Object Detection

The framework of Faster-RCNN [47] with Feature Pyramid Network (FPN) [48] is much more
complicated than that of image classification. It contains the backbone network, Region Proposal
Network (RPN), Feature Pyramid Network (FPN), and detection head consisting of a classification
branch and a localization branch. For feature distillation, besides RoIAlign layer, FPN can also be
used for knowledge transfer [29].

E.1 Implementation details on COCO

For WKD-L, we use discrete WD to match the probabilities predicted by the classification branches
of the teacher and student. We set the temperature τ=1 and sharpening parameter κ=2, and set all
the weights of LCE, Lt and LWKD9L to 1 for RN101→RN18. All hyper-parameters of RN50→MV2
are the same as RN101→R18 but κ that is set to 1. For WKD-F, we transfer knowledge from features
straightly fed to the classification branch, i.e., features output by the RoIAlign layer. We let RoIAlign
generate a high resolution of 18×18 feature maps to exploit more features, and choose a 4×4 spatial
grid for computing Gaussians. For both settings, we set the weight of LCE to 1, and that of LWKD9F
to 5e93 with mean-cov ratio γ=2; as in FCFD [8], we use a projector of 3×3 Conv with BN.

E.2 Ablation Analysis of WKD-F for Object Detection

We analyze key component of WKD-F specific to object detection on MS-COCO [43] with ResNet101
as the teacher and ResNet18 as the student.

Where to distill features: RoIAlign or FPN? Among five stages (P2–P6) of FPN, we select a
single P3 with a spatial grid of 16×16 for extracting Gaussians; this option produces the best result
among the candidates, and combination of multiple stages brings us no benefit. We compare to the
baseline of FitNet [24] and the results are shown in Table 12a. When distilling features of FPN,
WKD-F significantly outperforms FitNet (over 2% mAP). By moving the distillation position to
RoIAlign layer, the performance of both methods improve, while WKD-F still performs better than
FitNet by a non-trivial margin.

How spatial size of RoIAlign features affect performance? In Faster-RCNN, the RoIAlign layer
outputs standard 7×7 feature maps. To exploit more spatial information, we let RoIAlign layer output
feature maps of higher resolution. Table 12b shows effect of size of feature maps on performance. It
can be seen that when the spatial size enlarges mAP increases accordingly, and the mAP tends to
saturate if the size is as large as 28×28. The result suggests that larger size of RoIAlign features
benefit feature distillation.
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Method Position
of features mAP AP50 AP75

FitNet
FPN

34.13 54.16 36.71

WKD-F (ours) 36.40 56.52 39.64

FitNet‡
RoIAlign

36.45 56.93 39.72

WKD-F (ours) 37.21 57.32 40.15

(a) Effect of position of feature distilla-
tion. ‡ Reproduced by us.

Size of
feature maps mAP AP50 AP75

7×7 36.94 57.03 40.01

18×18 37.21 57.32 40.15

28×28 37.15 57.23 40.11

(b) Effect of size of RoIAlign
feature maps.

Table 12: Ablation analysis of feature distillation (i.e., WKD-F)
for object detection on MS-COCO.

Faster RCNN-FPN
RN101→RN18

mAP AP50 AP75

FCFD 37.37 57.60 40.34

+WKD-L+WKD-F 37.66 58.01 40.66

ReviewKD 36.75 56.72 34.00

+WKD-L+WKD-F 37.50 57.79 40.38

Table 13: Our WKD bene-
fits state-of-the-art KD meth-
ods for object detection.

E.3 Integration with State-of-the-art KD Methods

We assess whether our methodology is complementary to two state-of-the-art methods, i.e., ReviewKD
and FCFD. To this end, for ReviewKD, we add the losses of WKD-L and WKD-F into the original
loss functions; the weights of our two losses and hyper-parameters are same as those in Section E.1.
For FCFD, we replace respectively the original KD loss and feature distillation loss (i.e., FitNet loss)
by the losses of WKD-L and WKD-F whose weights are identical to those specified in the main
paper. The results are shown in Table 13. We can see that, by integrating our methods, both FCFD
and ReviewKD improve by non-trivial margins, which indicates that our methodology is parallel to
them and thus can enhance their performance.

E.4 Implementation Details on BB Regression for KD

Besides common logit distillation and feature distillation, FCFD [8] additionally uses BB regression
for knowledge transfer and achieves state-of-the-art performance. Here we also introduce it into our
methodology. Specifically, for each proposal from RPN of the student [47], both student and teacher
perform BB regression, predicting separately a localization offset vector (LOV) o, from which we
obtain predicted bounding box B of the target class. Then the distillation loss is written as

LBB=L2

(
oT,oS

)
+ξLDIoU

(
BT, BS

)
, (17)

where L2 indicates the square of Euclidean distance between the student’s LOV vector oS and the
teacher’s one oT . We use the Distance-IoU loss LDIoU defined by Zheng et al. [80], which measures
the Intersection over Union (IoU) between two bounding-boxes BS and BT with a penalty term. The
constant ξ is to balance the two losses and is set to 20 throughout.

F Limitations and Future Research

The cost of our WKD-L is higher than KL-Div based methods due to the regularized linear program-
ming [23]. However, it is affordable as shown in Table 5 and will benefit from advance of faster
algorithms for solving WD [45]. Potentially, WKD-L can generalize to be a label smoothing regular-
ization method. Specifically, besides the CE loss, one introduces an additional loss that measures
WD rather than KL-Div between the logits and a uniform distribution [81], while computing IRs
using embeddings of textual category names as ‘prototypes’ via ready-made LLMs [82]. Besides
BAN based Self-KD in Section 4.5, it is promising to further generalize WKD-L for teacher-free
knowledge distillation, e.g., by using customized soft labels [4] and IRs based on weights of the
softmax classifier.

Our WKD-F models distribution of features with Gaussians. As deep features of DNNs are generally
of high-dimension and small-size, accurate estimation of covariance matrices is difficult [52].
Therefore, exploration of robust and efficient methods for estimating Gaussian may further improve
the performance of WKD-F. Besides, the Gaussians may be sub-optimal for modeling feature
distributions. To the best of our knowledge, what distributions deep features may exactly follow
is an open problem. It is interesting to study other parametric distributions and the corresponding
dis-similarities for knowledge distillation.
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G Broader Impact

We address limitations of Kullback-Leibler Divergence for knowledge distillation (KD), and can
obtain stronger, lightweight models suitable for resource-limited devices. Our methodology is very
promising, readily applicable to a variety of visual tasks, e.g., image classification and object detection.
We hope our work sheds light on importance of WD and inspires future exploration of it in the field
of knowledge distillation.

With breakthroughs of large-scale pre-training, multimodal large language models (LLMs) like GPT-
4 [83] have excelled in many visual tasks. Our methodology can be potentially applied to transfer
knowledge from LLMs to smaller ones for specific visual or language tasks, allowing for improved
performance while preserving fast inference cost. Consequently, researchers as well as practitioners
can more easily benefit from advanced technologies of LLMs, facilitating their widespread use and
broader accessibility.

Currently, the theoretical quest for KD is limited. Due to the black-box nature of the distillation
process, the student distilled using our methods may inevitably inherit harmful biases from the
teacher [84]. Moreover, the reduction in deployment cost may lead to more potential harms of model
abuse. This highlights the necessity for more widespread efforts to regulate the use of artificial
intelligence techniques including knowledge distillation.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We clearly reflect the contributions and scope of the paper in the abstract and
Section 1, and verify our main claims in Section 4.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: We have discussed limitations in Section F.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: Our paper contains no theoretical results.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have provided in-depth implementation details and experimental settings
to reproduce our experimental results in Sections 4.1, A, C.2, C.5, C.6 and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]
Justification: The source code is available at http://peihuali.org/WKD.html.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We present all the training and test details in Sections 4.1, C.2, C.5, C.6 and
E.1.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We provide the mean accuracy and standard deviation over three runs on
CIFAR-100 in Table 6 and Table 11.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We report the computational resources used for our experiments in Section 4
and the training latency of our method in Table 5.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: All our research strictly adheres to the NeurIPS Code of Ethics, and we have
discussed the potential societal impact in Section G.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have discussed this in Section G.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: All our experiments are conducted on open-source datasets. Therefore, our
paper does not poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We have cited the data, code and models used in the paper, and all the assets
we utilized are open-source.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: Our paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: Our paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This issue is not applicable to our paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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