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ABSTRACT

Coresets have become an invaluable tool for solving k-means and kernel k-means clustering
problems on large datasets with small numbers of clusters. On the other hand, spectral clustering
works well on sparse graphs and has recently been extended to scale efficiently to large numbers
of clusters. We exploit the connection between kernel k-means and the normalised cut problem
to combine the benefits of both. Our main result is a coreset spectral clustering algorithm
for graphs that clusters a coreset graph to infer a good labelling of the original graph. We
prove that an α-approximation for the normalised cut problem on the coreset graph is an O(α)-
approximation on the original. We also improve the running time of the state-of-the-art coreset
algorithm for kernel k-means on sparse kernels, from Õ(nk) to Õ(n ·min{k, davg}), where
davg is the average number of non-zero entries in each row of the n × n kernel matrix. Our
experiments confirm our coreset algorithm is asymptotically faster on large real-world graphs
with many clusters, and show that our clustering algorithm overcomes the main challenge faced
by coreset kernel k-means on sparse kernels which is getting stuck in local optima.

1 INTRODUCTION

Kernel k-means and spectral clustering are two popular algorithms which are capable of learning
non-linear decision boundaries between clusters. For this reason, they have been applied to many
practical problems in machine learning, including in the fields of medical research and network
science (Gönen & Margolin, 2014; Kuo et al., 2014; White & Smyth, 2005).

Given a data set X , both kernel k-means and spectral clustering make use of a kernel similarity
function K : X ×X → R≥0, which is often represented as a matrix of size n× n, where n = |X|.
The spectral clustering algorithm considers the kernel matrix to be the adjacency matrix of a similarity
graph and clusters the nodes of the graph in order to minimise the normalised cut objective function,
which we define in Section 3 (Von Luxburg, 2007). Kernel k-means exploits the fact that the kernel
function implicitly defines an embedding of the data points into a Hilbert space, represented by
ϕ : X → H, such that for all x, y ∈ X ,

⟨ϕ(x), ϕ(y)⟩ = K(x, y). (1)

The kernel k-means problem is to minimise the k-means objective in this Hilbert space and is
usually solved using a generalisation of Lloyds algorithm (Dhillon et al., 2004), using the kernel
K to compute inner products. Remarkably, the normalised cut and kernel k-means objectives are
equivalent up to a constant factor (Dhillon et al., 2004).

Despite this equivalence, spectral clustering and kernel k-means have been largely studied separately,
and new techniques have been developed with one or the other in mind. For spectral clustering, one of
the most promising techniques is to construct a sparse similarity graph in order to achieve a speedup.
This can be achieved through constructing an approximate k-nearest neighbour graph using fast
approximate nearest neighbour algorithms (Alshammari et al., 2021; Harwood & Drummond, 2016;
Malkov & Yashunin, 2018), or by constructing a clustering-preserving sparsifier of the complete kernel
similarity graph (Macgregor & Sun, 2023; Sun & Zanetti, 2019). By operating on a sparse similarity
graph, the time and memory cost of spectral clustering is reduced from Ω

(
n2

)
to O(n log(n)).
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To speed up kernel k-means, Jiang et al. (2024) applied a recent coreset result for Euclidean spaces
(Braverman et al., 2021) to kernel spaces. Given a dataset X and kernel function K, they showed that
an ε-coreset (Definition 4) of size Õ(k2ε−4) can be constructed in time Õ(nk)1. The cost of running
an iteration of Lloyd’s algorithm on the coreset is then independent of n, for small k.

In this paper, we show that the benefits of the techniques developed for both spectral clustering and
kernel k-means can be combined in order to create a faster and more accurate clustering algorithm.
In particular, we show that, by exploiting the sparsity of the kernels usually considered for spectral
clustering, it is possible to design a faster algorithm for constructing a coreset. Then, we apply
spectral clustering directly to the coreset graph with only a small number of nodes and use the result
to cluster the original graph. Empirically, we find that on sparse graphs our coreset spectral clustering
algorithm has a significantly faster running time than the classical spectral clustering algorithm, and
achieves a higher accuracy than coreset kernel k-means.

1.1 OUR RESULTS

Faster k-means++ and coreset construction. In Section 4, we exploit the fact that inputs to
kernel k-means are often sparse to devise a faster algorithm for k-means++ initialisation in kernel
space. Specifically, when the input kernel matrix is sparse, we improve the running time from Õ(nk)

to Õ(n · min{k, davg}) where davg is the average number of non-zero entries in each row of the
kernel matrix. Speeding up k-means++ has received a lot of attention for Euclidean spaces (Bachem
et al., 2016; Cohen-Addad et al., 2020). This is the first result to provide speed up in sparse kernel
spaces. Combining this with Jiang et al. (2024), we present the first coreset construction for kernel
spaces that makes use of kernel sparsity, and reduce the coreset construction time from Õ(nk) to
Õ(n ·min{k, davg}) while maintaining the same theoretical guarantees. For large graphs with many
clusters, it is critical to break the linear dependence on the number of clusters for practical use.

Coreset spectral clustering. In Section 5, we introduce the coreset spectral clustering algorithm
that explicitly combines spectral clustering with coresets by exploiting the equivalence between the
normalised cut and weighted kernel k-means problems. Previous work has used this equivalence to
convert spectral clustering problems to kernel k-means problems and then solve them using coreset
kernel k-means (Jiang et al., 2024). We propose a new method which solves the coreset problem
directly with spectral clustering and then transfers the solution back to the original graph. This
sidesteps some of the less desirable properties that running kernel k-means would entail, such as
its susceptibility to local minima when using indefinite kernels (Dhillon et al., 2007). In Theorem
1, we prove that an α-approximation of the normalised cut problem on the coreset graph gives an
O(α)-approximation of the normalised cut problem on the original graph.

Experiments. In Section 6, we preform three experiments to test our coreset construction and
coreset spectral clustering algorithms. The first confirms the asymptotic improvement in running
time of our coreset construction algorithm for kernel k-means over the previous method of Jiang et al.
(2024) on large real-world graphs with up to 65 million nodes and thousands of clusters. The second
experiment compares our coreset spectral clustering algorithm against coreset kernel k-means (Jiang
et al., 2024) and the sklearn (Pedregosa et al., 2011) implementation of spectral clustering on several
real-world graph datasets. This shows that for a small number of clusters, the coreset methods are
much faster than spectral clustering and our coreset spectral clustering algorithm finds significantly
better solutions than coreset kernel k-means. The third experiment compares our coreset spectral
clustering algorithm against coreset kernel k-means on a synthetic graph dataset where we vary the
number of clusters to be linear in the number of nodes. Using the spectral clustering method proposed
by Macgregor (2023) to cluster the coreset graphs, this experiment shows that our method can scale
to hundreds of clusters while coreset kernel k-means is rendered ineffective by local optima after
only tens of clusters.

2 RELATED WORK

The techniques for speeding up kernel k-means and spectral clustering can be broadly categorised
into the methods that sparsify the relations between input data and the methods based on coresets.

1We use Õ(·) to suppress polylogarithmic factors.
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For kernel k-means (Dhillon et al., 2004), low rank approximations of the kernel matrix have been
proposed (Musco & Musco, 2017; Wang et al., 2019) as well as low dimensional approximations
of ϕ (Chitta et al., 2012). On the other hand, coresets for Euclidean spaces (Braverman et al., 2021;
Har-Peled & Mazumdar, 2004; Huang & Vishnoi, 2020) have recently been extended to kernel
k-means (Jiang et al., 2024). Coreset methods sample a weighted subset of the input so that the
objective of every feasible solution is preserved.

For spectral clustering (Von Luxburg, 2007), spectral sparsifiers (Spielman & Teng, 2011) and more
recently cluster preserving sparsifiers (Sun & Zanetti, 2019) can sparsify dense graphs while retaining
cluster structure. While effective in theory, spectral sparsifiers require complicated Laplacian solvers
to run efficiently, making them difficult to implement in practice. Cluster preserving sparsifiers are
practical to implement but their performance is sensitive to the choice of hyperparameters. Peng et al.
(2017) proposed a nearly-linear time algorithm for clustering an arbitrary number of clusters which is
similar in spirit to a coreset approach. They sample Θ(k log(k)) nodes leveraging the property that in
the spectral embedding nodes in the same cluster are nearby and have approximately the same norm.
From this, they efficiently extract a set of k points from which the rest of the data can be labelled.
However, this approach is impractical as they make use of Laplacian solvers to approximate heat
kernel distances.

As well as sparsification and coresets, speedup can also be achieved via improvements to the
optimisation algorithms themselves. The triangle inequality can be used to reduce the number of inner
products calculated by the kernel k-means algorithm (Dhillon et al., 2004) and recently a mini-batch
algorithm has been proposed (Jourdan & Schwartzman, 2024). Macgregor (2023) developed a simple
spectral clustering algorithm that forgoes the expensive computation of k eigenvectors in place of
O(log(k)) independent calls to the power method. We refer to this method as fast spectral clustering
and will use it in our experiments to cluster coreset graphs.

3 PRELIMINARIES

Let X be a set of n objects, and K : X ×X → R≥0 be a function measuring the pairwise similarity
of data points in X . Let ϕ : X → H be the function implicitly defined by K that maps data points
in X to the unique Hilbert space such that ⟨ϕ(x), ϕ(y)⟩ = K(x, y) for all x, y ∈ X . The function
K is usually represented as a matrix: if Φ = [ϕ(x1), . . . , ϕ(xn)], then K = ΦTΦ ∈ Rn×n with
Kij = ⟨ϕ(xi), ϕ(xj)⟩. Let ∆(ϕ(x), ϕ(y)) ≜ ∥ϕ(x)− ϕ(y)∥2 denote the squared distance in feature
space for all x, y ∈ X , and ∆(ϕ(x), C) = minc∈C ∆(ϕ(x), ϕ(c)) denote the smallest squared
distance from x ∈ X to a set C ⊆ X . We refer to the diagonal elements of K as self similarities and
say x is a neighbour of (or incident to) y, written x ∼ y, iff ⟨ϕ(x), ϕ(y)⟩ ̸= 0. If x ∈ X and S ⊂ X ,
we say x is incident to S iff x is incident to at least one element of S.

Given a graph G = (V,E), the conductance of a set S of vertices is defined as ΦG(S) ≜
|E(S, V \ S)| /vol(S) where |E(S, V \ S)| is the number of edges crossing the cut between S
and V \ S and vol(S) is the total weight of edges incident to S. We define a k-partition of X to be a
collection of sets Π = {πj}kj=1 such that each element of X appears in exactly one member of Π.

We make extensive use of the following concepts in our analysis.
Definition 1 (centroids). Given a k-partition Π = {πj}kj=1 of a set X , a map ϕ : X → H
for some Hilbert space H, and a weight function X → R+, define the set of centroids of Π as
cϕw(Π) ≜ {cϕw(πj)}kj=1 where cϕw(πj) =

(∑
x∈πj

w(x)ϕ(x)
)
/
(∑

x∈πj
w(x)

)
.

Definition 2 (kernel k-means objective). Given a weighted dataset X with weights w : X → R+

and feature map ϕ : X → H satisfying equation 1 for some kernel function K, the weighted kernel
k-means objective with respect to an arbitrary set of points C ⊆ H is

COSTϕ
w(X,C) =

∑
x∈X

w(x)∆(ϕ(x), C). (2)

The kernel k-means objective with respect to an arbitrary k-partiton Π = {πj}kj=1 of X is

COSTϕ
w(X, cϕw(Π)) =

k∑
j=1

∑
x∈πj

w(x)∆(ϕ(x), cϕw(πj)),

3



Published as a conference paper at ICLR 2025

Definition 3 (Normalised cut objective). Given a graph G = (V,E), the normalised cut problem is
to minimise the average conductance over all k-partitions of the vertices: min

Π={π1,...,πk}
NC(G,Π),

where NC(G,Π) = 1
k

∑k
j=1 ΦG(πj).

Definition 4 (ε-coresets). For 0 < ε < 1, an ε-corset for kernel k-means on a weighted dataset X
with weights w : X → R+ is a reweighted subset S ⊆ X such that for the Hilbert spaceH and map
ϕ : X → H satisfying equation 1, we have

COSTϕ
w′(S,C) ∈ (1± ε) · COSTϕ

w(X,C), ∀C ⊂ H with |C| = k,

where w′ : S → R+ gives the weight for each element in the coreset.

4 FAST CORESET CONSTRUCTION

Given a sparse kernel matrix K with O(m) nonzero entries and weight function w, we give an
algorithm to construct an ε-coreset in Õ(m) time. This improves on the algorithm given by Jiang
et al. (2024) which has running time Õ(nk). The running time of Jiang et al. (2024) is dominated by
the running time of D2-sampling, Algorithm 1, which is just the k-means++ initialisation algorithm
(Arthur & Vassilvitskii, 2007) in kernel space. For completeness, we provide the full description of
the ε-coreset algorithm of Jiang et al. (2024) in Algorithm 4 in Appendix C.1.

In Algorithm 2, we use the fact the kernel matrix is sparse to design an efficient data structure,
built around a sampling tree (Wong & Easton, 1980), to perform D2-sampling in nearly-linear
time in n and independent of k. To avoid unnecessary updates to the sampling tree, our algorithm
has to sample one additional data point prior to performing D2-sampling. Specifically, before
uniformly sampling the first point, we will select the point in C with the smallest self affinity. Let
x∗ ≜ argminx∈X⟨ϕ(x), ϕ(x)⟩ and c∗ ≜ ⟨ϕ(x∗), ϕ(x∗)⟩. We show that adding this extra point does
not affect the approximation guarantee, and consequently we get a faster ε-coreset algorithm for
sparse kernels using the same analysis as Jiang et al. (2024).

Algorithm 1 D2-Sampling(X) (Jiang et al., 2024)
1: Input: X
2: Draw x ∈ X uniformly at random, and initialise C ← {φ(x)}
3: for i = 1, . . . , k − 1 do
4: Draw one sample x ∈ X , using probabilities wX(x) · ∆(φ(x),C)

COST
ϕ
wX

(X,C)

5: Let C ← C ∪ {φ(x)}
6: end for
7: return C

4.1 OUR DATA STRUCTURE

The key observation is that as points are added to C, the distances from the data points to C can’t
change for too many points due to the sparsity of the kernel and our choice of x∗. We formalise this
intuition in what follows. Let C ⊂ X be a set of points such that x∗ is in C, and consider the squared
distance from an arbitrary point x to C in feature space. We see that

∆(x,C) = min
c∈C

(
⟨ϕ(x), ϕ(x)⟩+ ⟨ϕ(c), ϕ(c)⟩ − 2⟨ϕ(x), ϕ(c)⟩

)
= min

c∈C

{
⟨ϕ(x), ϕ(x)⟩+ ⟨ϕ(c), ϕ(c)⟩ x ̸∼ c

⟨ϕ(x), ϕ(x)⟩+ ⟨ϕ(c), ϕ(c)⟩ − 2⟨ϕ(x), ϕ(c)⟩ x ∼ c

=

{
∆(x, x∗) x ̸∼ c for all c ∈ C

min
c∈C

∆(x, c) otherwise, (3)

where the last transition makes use of the fact that x∗ ∈ C and

∆(x, x∗) = ⟨ϕ(x), ϕ(x)⟩+ ⟨ϕ(x∗), ϕ(x∗)⟩ ≤ ⟨ϕ(x), ϕ(x)⟩+ ⟨ϕ(c), ϕ(c)⟩ = ∆(x, c)
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for all x ∈ X and c ∈ C such that x ̸∼ c. From this we can see how adding a point to C changes the
distance between some x ∈ X and C:

∆(x,C ∪ {y}) =
{
∆(x,C) x ̸∼ y

min(∆(x,C),∆(x, y)) x ∼ y.

Assuming we know the values of ∆(x,C) for all x ∈ X , each time we add a point y to C, for
each neighbour x of y, it suffices to check whether ∆(x, y) is less than ∆(x,C). Let A ⊂ X
be the set returned by Algorithm 2. Then the total number of checks is

∑
x∈A deg(x) where

deg(x) = |{y : x ∼ y}| is the number of nonzero entries in the row of K corresponding to x. In the
worst case, we have to check the entries in the rows of the k + 1 data points with the highest degree.
Letting davg = 2|E|

n be the average degree, it holds that

davg =
2 |E|
n

=
1

n

∑
x∈X

deg(x) ≥ 1

n

∑
x∈A

deg(x),

and therefore
∑

x∈A deg(x) ≤ n · degavg and the maximum number of checks we need to perform
is O(min(davg, k) · n).
Sampling data points according to contribution. We define the contribution of a data point x with
respect to C as f(x,C) ≜ wX(x) ·∆(ϕ(x), C), and the contribution of a set of data points S ⊆ X

with respect to C as f(S,C) ≜
∑

x∈S f(x,C). Normalised by COSTϕ
wX

(X,C), the contribution of
each data point follows the D2-sampling distribution and f(S,C)

f(X,C) is the probability of sampling a
point from a set S ⊆ X .

Suppose we have nested sets S1 ⊂ S2 ⊂ S3 ⊂ · · · ⊂ Sm ⊆ X . For any x ∈ S1, we have that

Pr [x is sampled] =
f(x,C)

f(X,C)
=

f(Sm, C)

f(X,C)

f(Sm−1, C)

f(Sm, C)
. . .

f(x,C)

f(S1, C)
. (4)

Due to this decomposition, we can use a sampling tree T to efficiently sample proportional to
contributions and update contributions as points are added to C.

The root node of T corresponds to the entire set X and stores the total contribution f(X,C). Sibling
nodes represent a partition of the set their parent corresponds to and store their respective contributions.
Leaf nodes store the data points they represent, their contributions, and weights.

To sample a data point proportional to contribution, we start at the root node of T and recursively
sample a child node with probability equal to the child’s contribution divided by the parent’s con-
tribution until we reach a leaf, corresponding to the sampled data point. From equation 4, this is
equivalent to sampling points porportional to contribution, and therefore the distribution required by
D2-sampling.

Updating contributions efficiently. We can update the contributions stored in T efficiently each
time a point y is added to C. Suppose we find a neighbouring data point x of y such that ∆(x, y) is
less than the stored value of ∆(x,C). Then we set the stored value of ∆(x,C) to be ∆(x, y) and
subtract the difference in contribution from every internal node along the path from the leaf node to
the root. If T is balanced, then the cost to repair T after each check is O(log(n)). The full algorithm
is given in Algorithm 2. Since x∗ can be found in time O(n), T is constructed in time O(n), and the
cost of sampling k points and repairing T is O(min(davg, k) · n log(n)), the overall running time of
Algorithm 2 is Õ(min(davg, k) · n).
Correctness. We start with the following useful definition:
Definition 5 ((α, β)-approximation for weighted kernel k-means). Let OPTk(X,ϕ) denote the
optimal objective of equation 2. We call a subset S ⊂ H an (α, β)-approximate solution for kernel
k-means if |S| = αk and COSTϕ

w(X,S) ≤ βOPTk(X,ϕ).

D2-sampling returns an (O(1), O(log(k)))-approximate solution for k-means with high probability
(Jiang et al., 2024); adding the extra point x∗ has a negligible effect. The proof follows that of
Lemma 3.1 in Arthur & Vassilvitskii (2007) with the only difference being the equality of Lemma 3.1
becomes an inequality. We summarise the result in the following lemma:
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Lemma 4.1. Given a kernel matrix K corresponding to dataset X , Algorithm 2 returns an
(O(1), O(log k))-approximation for kernel k-means with high probability and running time
Õ(min(davg, k) · n).

By the analysis of Jiang et al. (2024), this immediately implies the following kernel coreset result:

Lemma 4.2. Given a kernel matrix K corresponding to dataset X , Algorithm 4, using Algorithm 2
for D2-sampling, returns an ε-coreset with high probability with size Õ(k2ε−4) and running time
Õ(min(davg, k) · n).

Algorithm 2 FASTD2-SAMPLING

1: Input: Dataset X with |X| = n, positive definite matrix K ∈ Rn×n
≥0 , W ∈ Rn

+, k ∈ N
2: T ←CONSTRUCTT (X,K,W ) ▷ Algorithm 6
3: x∗ ← argminx∈X⟨ϕ(x), ϕ(x)⟩
4: draw x ∈ X uniformly at random
5: C ← {ϕ(x), ϕ(x∗)}
6: REPAIR(x∗,T ) ▷ Algorithm 7
7: for i = 1 to k do
8: x←SAMPLEPOINT(T ) ▷ Algorithm 8
9: C ← C ∪ {ϕ(x)}

10: REPAIR(x,T )
11: end for
12: return C

5 CORESET SPECTRAL CLUSTERING

In this section we present our Coreset Spectral Clustering (CSC) algorithm. An intuitive illustration is
given in Figure 1. Given an input graph, we first extract the corresponding weighted kernel k-means
problem via the equivalence to the normalised cut problem, and then construct an ε-coreset. Following
this, again via the equivalence, we solve the corresponding normalised cut problem on the coreset
graph to get the coreset partition. Finally, we label the rest of the data by considering kernel distances
to the implied centers induced by the coreset graph partition. Our main contribution is summarised in
Theorem 1, which states that coreset graphs preserve normalised cuts from the original graph.

Input graph Coreset graph Coreset partition Π

Equivalent
kernel k-means problem

Reweighted
coreset V ′

Implied centers

+ +
+

Construct
coreset

Spectral
clustering

Kernel space

Graph space

Figure 1: Sketch of the Coreset Spectral Clustering Algorithm.
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Equivalence between normalised cut and kernel k-means. First recall that the normalised cut
problem and the kernel k-means problem can both be written as the following trace optimisation
problems up to a constant (Dhillon et al., 2004):

Normalised Cut

min Tr(D−1A)− Tr(ZTD− 1
2AD− 1

2Z)

s.t. X ∈ {0, 1}n×k,

X1k = 1n,

Z = D
1
2X (X TDX )− 1

2

Weighted Kernel k-means

min Tr(WK)− Tr(Y TW
1
2KW

1
2Y )

s.t. X ∈ {0, 1}n×k,

X1k = 1n,

Y = W
1
2X (X TWX )− 1

2

(5)

In the above optimisation problems (5), A and D are the adjacency and degree matrices corresponding
to some graph G, K is a kernel matrix such that Kij = ⟨ϕ(xi), ϕ(xj)⟩, and W is a diagonal matrix
with Wii = w(xi). Crucially, these problems are equivalent. Indeed substituting K = D−1AD−1

and W = D shows that any normalised cut problem can be written as a kernel k-means problem;
substituting D = W and A = WKW shows the reverse. The only wrinkle with translating one to
the other is that K must be positive semi-definite. If A is not positive semi-definite, then we can add
a multiple of D−1 to D−1AD−1 to make it so while preserving the optimal partitioning (Dhillon
et al., 2007).

Coreset graphs. The first and third transitions in Figure 1 are due to equivalence (5). The second
transition is simply via constructing a coreset, and the fourth is by executing spectral clustering. The
crux of our proof is the fifth transition. Specifically, it is not clear how to translate the partition of
the coreset (in graph space) to a solution for the entire input graph. The main difficulty with using
coresets for the normalised cut problem is that there is no notion of “cluster centers” on graphs. To
overcome this, we go back to kernel space (the fifth transition) and label the entire input there. For
the rest of the section we prove that this approach preserves the approximation of spectral clustering
on the coreset for the entire graph.

To help with this, we will use the following lemma, whose proof is deferred to Appendix B.
Lemma 5.1 (Adapted from (Kanungo et al., 2002)). Let S be a finite set of points in a Hilbert space
H, and w : H → R+ be the weight of each point. Let c(S) =

(∑
x∈S w(x)x

)
/
(∑

x∈S w(x)
)

be
the centroid of S. Then, it holds for any z ∈ H that∑

x∈S

w(x) ∥x− z∥2 =
∑
x∈S

[
w(x) ∥x− c(S)∥2

]
+ |S| ∥c(S)− z∥2

∑
x∈S

w(x).

Intuitively, the above lemma allows us to draw a connection between the centroids of the coreset
partition (in kernel space) and the centroids of the full partition, where every node is assigned to
its closest coreset center. We will also make use of the following definitions which allow us to use
k-partitions instead of set membership matrices in (5).

1. Let G = (V,E) be a graph on n vertices with adjacency matrix A and degree matrix D, and let
Π be a k-partition of V . Then define NCA,D(Π) ≜ Tr(D−1A) − Tr(ZTD−1/2AD−1/2Z) to
be the objective of the trace minimisation version of the normalised cut problem in (5), where
Z = D1/2X (X TDX )−1/2 and X ∈ {0, 1}n×k is the unique set membership matrix on V
corresponding to Π.

2. For any k-partition of X , Π, further define COSTK,W (Π) = Tr(WK)− Tr(Y TW 1/2KW 1/2Y )
to be the objective of the trace minimisation version of the weighted kernel k-means problem in
(5), where Y = W 1/2X (X TWX )−1/2 and X ∈ {0, 1}n×k is the unique set membership matrix
on X corresponding to Π.

Translating the objective of a k-partition with respect to the normalised cut problem to the objective
of a set of centres with respect to the kernel k-means objective is straightforward. Dhillon et al.
(2004) show that for any k-partition Π = {πj}kj=1, we have COSTKG,WG

(Π) = COSTϕ
w(V, c

ϕ
w(Π)),

where KG = D−1AD−1, WG = DG, wG = diag(WG) and ϕ : V → H is a map such that
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⟨ϕ(x), ϕ(y)⟩ = KG(x, y) for all x, y ∈ V . For completeness we include a simpler derivation in
Lemma B.1. This implies that NCA,D(Π) = COSTKG,WG

(Π) = COSTϕ
w(V, c

ϕ
wG

(Π)).

The other direction is more difficult; given an arbitrary set of k centers S = {sj}kj=1 ⊂ H, we would
like to construct a k-partition Π′ = {π′

j}kj=1 of V such that

NCA,D(Π′) = COSTKG,WG
(Π′) = COSTϕ

w(V, c
ϕ
wG

(Π′)) = COSTϕ
w(V, S).

In general it may not be possible to choose Π′ such that COSTϕ
w(V, c

ϕ
wG

(Π′)) = COSTϕ
w(V, S).

However, the inequality COSTϕ
w(V, c

ϕ
wG

(Π′)) ≤ COSTϕ
w(V, S) does hold by choosing Π′ such that

x ∈ π′
j iff ∆(ϕ(x), S) = ∆(ϕ(x), sj), breaking ties arbitrarily. This is a consequence of Lemma 5.1

which tells us that moving the center of each π′ to their centroids can only reduce the weighted kernel
k-means objective. This will be sufficient to prove our main result.

Given a graph G with adjacency matrix A and degree matrix D, let OPTNCA,D(k) denote the optimal
value of the normalised cut problem (5) on G. We can now state our main result:
Theorem 1. Given a graph G = (V,E) and an α-approximation algorithm for the normalised cut
problem with k clusters (5), SPECTRALCLUSTERING, Algorithm 3 returns a k-partition Π′ of V
such that

NCAG,DG
(Π′) ≤ α · 1 + ε

1− ε
· OPTNCAG,DG

(k).

The running time of Algorithm 3 is the sum of the running time of the ε-coreset algorithm,
SPECTRALCLUSTERING, and labelling V 2.

Algorithm 3 CORESET SPECTRAL CLUSTERING

1: Input: Graph G = (V,E), k with adjacency matrix AG and degree matrix DG

2: KG,WG ← D−1
G AGD

−1
G , DG

3: V ′,WH ← An ε-coreset for kernel k-means on (V,KG,WG)
4: AH ←WHK(V ′)WH ▷ K(V ′) is the principle submatrix of K with respect to V ′

5: Π← SPECTRALCLUSTERING(AH , k) ▷ k-partition {πj}kj=1

6: Π′ ← partition assigning each x ∈ V ′ to the closest coreset centroid in cϕwH
(Π).

7: return Π′

To prove Theorem 1, we show that the objective of any partition of V ′ is preserved on V (Lemma
B.2) and the objective of any optimal partition of V is preserved on V ′ (Lemma B.3). We defer their
statements and proofs to Appendix B.

Proof of Theorem 1. Let Σ = {σj}kj=1 be an optimal k-partition of V such that NCAG,DG
(Σ) =

OPTNCAG,DG
(k) and let Σ′ = {σ′

j}kj=1 be the k-partition of V ′ such that x ∈ σ′
j iff

∆(ϕ(x), cϕwG
(Σ)) = ∆(ϕ(x), cϕwG

(σj)), breaking ties arbitrarily . Then we have

NCAG,DG
(Π′) ≤ 1

1− ε
NCAH ,DH

(Π) ≤ α

1− ε
NCAH ,DH

(Σ′) ≤ α
1 + ε

1− ε
NCAG,DG

(Σ),

where the first inequality follows from Lemma B.2, the second holds because NCAH ,DH
(Π) ≤

αOPTNCAH ,DH
(k) ≤ αNCAH ,DH

(Σ′), and the third follows from Lemma B.3.

6 EXPERIMENTS

We perform three experiments to compare our coreset algorithm against the naive method, and
secondly, to compare our Coreset Spectral Clustering algorithm to coreset kernel k-means and the
sklearn implementation of spectral clustering. Experiments were performed on a dual Intel Xeon E5-
2690 system with 384GB of RAM. Our implementation was written in Rust using Faer (El Kazdadi)3.

2This can be done efficiently, exploiting sparsity, by first computing the norms of each cϕwH
(πj).

3A user friendly python wrapper is available here: github.com/BenJourdan/coreset-sc.
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6.1 CORESET RUNNING TIME COMPARISON

We compare the running time of our improved coreset construction with that of Jiang et al. (2024).
In particular, we compare the running time of Algorithm 4 using Algorithm 2 (our method) for
D2-sampling against Algorithm 4 using Algorithm 1 (Jiang et al., 2024) for D2-sampling. We test
these algorithms on the following three large graph datasets from the SuiteSparse Matrix Collection
(Davis & Hu, 2011).

• Friendster: A snapshot of the social media network with 65M nodes, 1.8B edges, and 5000
labeled overlapping communities.

• LiveJournal: A snapshot of the blogging network with 4M nodes, 34M edges, and 5000 labeled
overlapping communities.

• wiki-topcats: A snapshot of the Wikipedia hyperlink graph with 2M nodes, 28M edges, and 17K
overlapping page categories.

We preprocess each graph to be undirected and construct K = D−1AD−1 and W = D from the
corresponding adjacency and degree matrices. We measure the time it takes each method to construct
a 100K point coreset for the weighted kernel k-means problem on K and W while varying the
number of clusters passed to the D2-sampling routines. Following Jiang et al. (2024), we only do
one iteration of importance sampling in Algorithm 4. Figure 2 confirms our method is significantly
faster than the previous method. This matches our expectations based on the theoretical results since
each graph is very sparse.

Figure 2: Running time comparison of coreset construction using either Algorithm 1 (Jiang et al.,
2024) or Algorithm 2 for D2-sampling. Shaded regions denote 1 standard deviation over 10 runs.

6.2 CLUSTERING REAL-WORLD DATASETS

We evaluate the clustering performance of our Coreset Spectral Clustering (CSC) algorithm using
our faster coreset construction, as the size of the coreset varies. We test the effect of using both
the sklearn spectral clustering algorithm and the faster method of Macgregor (2023) to cluster the
coreset graphs. We compare against the sklearn implementation of Spectral Clustering (SC) and
coreset kernel k-means using the naive coreset construction (Jiang et al., 2024). We measure each
algorithm’s running time and Adjusted Rand Index (ARI) (Rand, 1971) on nearest neighbour graphs
of the following datasets:

• MNIST: A labelled collection of 70,000 28x28 pixel images of handwritten digits (Lecun et al.,
1998).

• PenDigits: 10,992 labeled instances of 2D pen movements covering the digits 0-9, each represented
with 16 numerical features. (Anguita et al., 2013).

• HAR: A collection of 10,299 labeled smartphone sensor readings capturing six human movements,
each represented as 561 numerical features (Anguita et al., 2013).
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• Letter: A labelled collection of 20,000 instances of handwritten alphabetic english characters,
represented as 16 numerical features (Frey & Slate, 1991).

Figure 3 shows the results for the HAR dataset, and demonstrates that the coreset methods run much
faster than SC and both variants of CSC perform as well as SC using a coreset less than 5% the size
of the original dataset, in a fraction of a second. While increasing coreset size does help coreset
kernel k-means, it struggles to escape local optima, reducing performance. The results for the other
datasets are in Appendix A.

Figure 3: Running time, ARI, and Normalised cut of each algorithm on a 200-nearest neighbour
graph of the HAR dataset. Shaded regions denote 1 standard deviation over 20 runs.

6.3 CLUSTERING SYNTHETIC GRAPHS WITH MANY CLUSTERS

Finally, we push CSC to the limit by tasking it to cluster the stochastic block model (Abbe, 2018)
when the number of clusters is proportional to the number of nodes. We sample graphs where the
number of nodes in each cluster is 1000, the probability of an edge between two nodes in the same
cluster is 0.5 and the probability of an edge between two nodes from different clusters is 0.001/k.
We report the ARI of the coreset graph nodes instead of the full graph because the running time
is otherwise dominated by labelling. We only consider the variant of CSC using the method of
Macgregor (2023) as computing hundreds of eigenvectors becomes prohibitively expensive. The
coreset size is set to be 1% the size of the input graph, implying that each cluster has an average
of 10 nodes in the coreset graph. Figure 4 shows a gradual decline in performance of fast CSC as
k increases, probably due to fluctuations in the number of nodes the coreset samples per cluster.
Nevertheless, it still achieves an ARI of 0.5 in less than 3 seconds on a graph with 250K nodes and
250 clusters. On the other hand, local optima render coreset kernel k-means useless after 50 clusters.

Figure 4: Running time and ARI of each algorithm on the stochastic block model with k clusters
of size 1000, p = 1/2, q = 0.001/k with a coreset size of 1%. Shaded regions denote 1 standard
deviation over 20 runs.
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A FURTHER EXPERIMENTS ON REAL-WORLD DATASETS

In this section, we report the experimental results omitted from Section 6.2.

Figure 5: Running time, ARI, and Normalised cut of each algorithm on a 250-nearest neighbour
graph of the PenDigits dataset as coreset size varies.

Figure 6: Running time, ARI, and Normalised cut of each algorithm on a 300-nearest neighbour
graph of the Letter dataset as coreset size varies.

Figure 7: Running time, ARI, and Normalised cut of each algorithm on a 500-nearest neighbour
graph of the MNIST dataset as coreset size varies. Sklearn spectral clustering was not included
because it took too long.
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B SUPPLEMENTARY LEMMAS AND PROOFS

In this section we provide the proofs omitted from Section 5.

Proof of Lemma 5.1.∑
u∈S

w(u)∥u− z∥2

=
∑
u∈S

w(u)⟨u− z, u− z⟩

=
∑
u∈S

w(u)
〈(

(u− c(S)
)
+

(
c(S)− z

)
,
(
(u− c(S)

)
+

(
c(S)− z

)〉
=

∑
u∈S

w(u)
(
∥u− c(S)∥2 + 2⟨u− c(S), c(S)− z⟩+ ∥c(S)− z∥2

)
=

∑
u∈S

w(u) ∥u− c(S)∥2 + 2

〈
c(S)− z,

∑
u∈S

w(u)
(
u− c(S)

)〉
+ |S| ∥c(S)− z∥2

∑
x∈S

w(x)

=
∑
x∈S

w(x) ∥x− c(S)∥2 + |S| ∥c(S)− z∥2
∑
x∈S

w(x)

where last step follows from the fact that c(S) is the weighted centroid of S, so
∑

u∈S w(u)(u−c(S)) = 0.

Lemma B.1 (Kernel k-means objective equivalence). Given a set of n objects X , w : X → R+, K : X×X →
R≥0 and ϕ : X → H satisfying equation 1, for any k-partition Π = {πj}kj=1 of X , it holds that

COSTK,W (Π) = COSTϕ
w(X, {mj}kj=1), (6)

where mj =

∑
a∈πj

w(a)ϕ(a)∑
b∈πj

w(b)
and W = Diag(w).

Proof. Let X ∈ {0, 1}n×k be the unique set membership matrix corresponding to Π; that is, X1k = 1n and
X(i, j) = 1 iff xi ∈ πj . Therefore XTWX = Diag(s1, . . . , sk) where si =

∑
a∈πi

w(v). Expanding the
right hand side of equation 6, we have

COSTϕ
w(X, {mj}kj=1) ≜

k∑
j=1

∑
a∈πj

w(a) ∥ϕ(a)−mj∥2

=

k∑
j=1

∑
a∈πj

w(a)
(
⟨ϕ(a), ϕ(a)⟩ − 2⟨ϕ(a),mj⟩+ ⟨mj ,mj⟩

)
(7)

Notice that
∑k

j=1

∑
a∈πj

w(a)⟨ϕ(a), ϕ(a)⟩ =
∑k

j=1

∑
a∈πj

w(a)Ka,a = Tr(WK) since Π is a partition of
X . Expanding the other terms of equation 7 for the jth cluster, we find they are multiples of the same quantity:∑

a∈πj

w(a)⟨ϕ(a),mj⟩ =
∑
a∈πj

∑
b∈πj

w(a)w(b)⟨ϕ(a), ϕ(b)⟩∑
c∈πj

w(c)
,

and∑
a∈πj

w(a)⟨mj ,mj⟩ =
∑
a∈πj

w(a)

∑
b∈πj

∑
c∈πj

w(b)w(c)⟨ϕ(b), ϕ(c)⟩(∑
d∈πj

w(d)
)2 =

∑
a∈πj

∑
b∈πj

w(a)w(b)⟨ϕ(a), ϕ(b)⟩∑
c∈πj

w(c)
,

Finally, we show that these quantities for each cluster are the diagonal entries of the matrix
XTWKWX(XTWX)−1:

[XTWKWX(XTWX)−1]jj = [XTWKWX]jj [(X
TWX)−1]jj

=
(∑

a

∑
b

XajXaj [WKW ]ab
)( 1∑

b∈πj
w(b)

)
=

( ∑
a∈πj

∑
b∈πj

[WKW ]ab
)( 1∑

a∈πj
w(a)

)
=

∑
a∈πj

∑
b∈πj

w(a)w(b)⟨ϕ(a), ϕ(b)⟩∑
c∈πj

w(c)
.
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Thus COSTϕ
w(X, {mj}) = Tr(WK)− Tr(XTWKWX(XTWX)−1) = COSTK,W (Π).

Lemma B.2. For any k-partition Π = {πj}kj=1 of V ′, we have that

NCAG,DG(Π′) ≤ 1

1− ε
NCAH ,DH (Π),

where Π′ = {π′
j}kj=1 is the k-partition of V such that x ∈ π′

j iff ∆(ϕ(x), cϕwH
(Π)) = ∆(ϕ(x), cϕwH

(πj)),
breaking ties arbitrarily.

Proof of Lemma B.2. We have NCAH ,DH (Π) = COSTKH ,WH (Π) = COSTϕ
wH

(V ′, cϕwH
(Π)). Since V ′ and

wH constitute an ε-coreset, we have that COSTϕ
wG

(V, cϕwH
(Π)) ≤ 1

1−ε
COSTϕ

wH
(V ′, cϕwH

(Π)). Then by the
definition of Π′ and Lemma 5.1, COSTϕ

wG
(V, cϕwG

(Π′)) ≤ COSTϕ
wG

(V, cϕwH
(Π)). Since NCAG,DG(Π′) =

COSTKG,DG(Π′) = COSTϕ
wG

(V, cϕwG
(Π′)), the claim follows.

Lemma B.3. Let Σ = {σj}kj=1 be an optimal k-partition of V such that NCAG,DG(Σ) = OPTNCAG,DG(k).
Then

NCAH ,DH (Σ′) ≤ (1 + ε)NCAG,DG(Σ)

where Σ′ = {σ′
j}kj=1 is the k-partition of V ′ such that x ∈ σ′

j iff ∆(ϕ(x), cϕwG
(Σ)) = ∆(ϕ(x), cϕwG

(σj)),
breaking ties arbitrarily.

Proof of Lemma B.3. We have that NCAG,DG(Σ) = COSTϕ
wG

(V, cϕwG
(Σ)). Since V ′ and wH constitute an

ε-coreset, we have that COSTϕ
wH

(V ′, cϕwG
(Σ)) ≤ (1 + ε)COSTϕ

wG
(V, cϕwG

(Σ)). From the definition of Σ′

and Lemma 5.1, we have NCAH ,AG(Σ′) = COSTϕ
wH

(V ′, cϕwH
(Σ′)) ≤ COSTϕ

wH
(V ′, cϕwG

(Σ)). The claim
follows.

C ALGORITHMS

In this section we provide the coreset kernel k-means algorithm given by Jiang et al. (2024) along with our
subroutines for Algorithm 2.

C.1 CORESET KERNEL k-MEANS ALGORITHMS (JIANG ET AL., 2024)

Algorithm 4 Constructing an ε-coreset for kernel k-means on dataset X with kernel K (Jiang et al.,
2024)

1: Input: X0 ← X , i← 0
2: repeat
3: i← i+ 1 and εi ← ε/(log(i) ∥X0∥)1/4 ▷ log(i)(·) is the ith iterated logarithm.
4: Xi ← IMPORTANCE-SAMPLING(Xi−1, εi) ▷ Algorithm 5
5: until ∥Xi∥0 does not decrease compared to ∥Xi−1∥0
6: return Xi

Algorithm 5 Importance-Sampling(X, ε) (Jiang et al., 2024)
1: Input: X , ε
2: Let C∗ ← D2-Sampling(X) ▷ Algorithm 1 or Algorithm 2 (our faster algorithm)
3: for x ∈ X do
4: σx ← wX(x)·∆(x,C∗)

wX(C)

5: end for
6: for x ∈ X do
7: px ← σx∑

y∈X σy

8: end for
9: Draw N ← O

(
k2 log2 k∥X∥0

ε2

)
i.i.d. samples from X , using probabilities (px)x∈X

10: Let D be the sampled set; for each x ∈ D let wD(x)← wX(x)
pxN

11: return weighted set D
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C.2 FAST D2-SAMPLING SUBROUTINES

Algorithm 6 CONSTRUCTT

1: Input: X s.t. |X| = n,K ∈ Sn
++,W ∈ Rn

+
2: current_level← [ ]
3: for x ∈ X do
4: leaf← a leaf node corresponding to x with attribute ∆ ≜ ⟨ϕ(x), ϕ(x)⟩+ c∗

5: current_level.push(leaf)
6: end for
7: while current_level.len()> 1 do
8: NextLevel← [ ]

9: for i = 1 to 2⌊current_level.len()2 ⌋ − 1 do
10: left_child← current_level[i]
11: right_child← current_level[i+ 1]
12: internal ← an internal node with left_child and right_child as their re-

spective children and attribute contribution equal to the sum of the contribution of its
children.

13: next_level.push(internal)
14: end for
15: if current_level.len() is odd then
16: next_level.push(current_level[current_level.len()])
17: end if
18: current_level← next_level
19: end while
20: return current_level[1]

Algorithm 7 REPAIR(x,T )
1: Let L be the leaf node corresponding to x
2: delta_difference← L.∆
3: L.∆← 0
4: for Internal node I in the path from L to the root of T do
5: I .contribution← I .contribution − delta_difference × w(x)
6: end for
7: for y in N(x) do
8: Let L′ be the leaf node corresponding to y
9: if ∆(x, y) < L′.∆ then

10: delta_difference← L′.∆−∆(x, y)
11: L.∆← ∆(x, y)
12: for Internal node I in the path from L′ to the root of T do
13: I .contribution← I .contribution − delta_difference × w(y)
14: end for
15: end if
16: end for

Algorithm 8 SAMPLEPOINT

1: Input: T
2: Let I be the root of T .
3: while I is an internal node do
4: Let C1 and C2 be the children of I .
5: child ← Select C1 or C2 with probabilities proportional to C1.contribution and

C2.contribution ▷ If I only has one child, sample it with probability 1.
6: I ← child
7: end while
8: return the data point associated with I .
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