
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MORE EXPERTS THAN GALAXIES: CONDITIONALLY-
OVERLAPPING EXPERTS WITH BIOLOGICALLY-
INSPIRED FIXED ROUTING

Anonymous authors
Paper under double-blind review

ABSTRACT

The evolution of biological neural systems has led to both modularity and sparse
coding, which enables energy efficiency and robustness across the diversity of
tasks in the lifespan. In contrast, standard neural networks rely on dense, non-
specialized architectures, where all model parameters are simultaneously updated
to learn multiple tasks, leading to interference. Current sparse neural network
approaches aim to alleviate this issue but are hindered by limitations such as 1)
trainable gating functions that cause representation collapse, 2) disjoint experts
that result in redundant computation and slow learning, and 3) reliance on explicit
input or task IDs that limit flexibility and scalability. In this paper we propose
Conditionally Overlapping Mixture of ExperTs (COMET), a general deep learn-
ing method that addresses these challenges by inducing a modular, sparse archi-
tecture with an exponential number of overlapping experts. COMET replaces the
trainable gating function used in Sparse Mixture of Experts with a fixed, biologi-
cally inspired random projection applied to individual input representations. This
design causes the degree of expert overlap to depend on input similarity, so that
similar inputs tend to share more parameters. This results in faster learning per up-
date step and improved out-of-sample generalization. We demonstrate the effec-
tiveness of COMET on a range of tasks, including image classification, language
modeling, and regression, using several popular deep learning architectures.

1 INTRODUCTION

In recent years, there has been a trend towards developing increasingly larger models (OpenAI,
2023a;b; Fedus et al., 2022; Shuster et al., 2022; Chowdhery et al., 2022), driven by the understand-
ing that a neural network’s learning capacity depends on its number of parameters (Shazeer et al.,
2017). This approach has yielded impressive results in various fields, including computer vision
(Dosovitskiy et al., 2021; Kirillov et al., 2023) and language modeling (OpenAI, 2023b; Chowdhery
et al., 2022). However, with such large size come difficulties, including increased training costs and
growing requirements for large amounts of memory and storage.

One approach to mitigating some of these challenges is sparsity, where a subset of the model’s
parameters is selectively utilized in the computational graph. This concept of sparsity has been
widely explored in machine learning (Jacobs et al., 1991; Jordan & Jacobs, 1993; LeCun et al.,
1989; Zhou et al., 2019; Hoefler et al., 2021; Shazeer et al., 2017; Bair et al., 2024). Researchers
have observed significant benefits of sparsity, including reduced inference costs (Han et al., 2016;
Shazeer et al., 2017), improved generalization capabilities (LeCun et al., 1989; Jacobs & Burkholz,
2024; Frankle & Carbin, 2019; Paul et al., 2023), enhanced learning efficiency (LeCun et al., 1989),
accelerated learning speed (LeCun et al., 1989; Mittal et al., 2022), less interference and forgetting
(Raia, 2020), forward knowledge transfer (Andle et al., 2023; Raia, 2020; Yildirim et al., 2023), and
compositionality (Pfeiffer et al., 2024).

Early work on sparsity in neural networks focused on simple methods such as Dropout (Srivastava
et al., 2014) and L1 regularization (Tibshirani, 1996; Ng, 2004). These and subsequent works ex-
plore sparsity at a fine level of granularity, including single parameters (Mallya et al., 2018; Mallya
& Lazebnik, 2018), individual neurons (Xu et al., 2024), or CNN filters (Chen et al., 2019). Other

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

research has explored sparsity at the level of whole networks or sub-networks within the mixture of
experts (MoE) framework (Shazeer et al., 2017; Bengio, 2013). These methods generally utilize a
routing or gating function (Rosenbaum et al., 2017; 2019; Shazeer et al., 2017; Pfeiffer et al., 2024),
which decides which parameters or sub-networks of the model to activate based on the input.

However, existing sparse methods have limitations, which we would summarize as five key con-
cerns: Firstly, most approaches rely on trainable gating functions (Shazeer et al., 2017; Mostafa &
Wang, 2019; Rasmussen & Ghahramani, 2001; Li et al., 2023; Rahaman et al., 2021; Chen et al.,
2019; Shazeer et al., 2018; Zhou et al., 2022; Gururangan et al., 2022; Lin et al., 2021; Ba & Frey,
2013; Bengio et al., 2016; Fedus et al., 2022; Mallya et al., 2018; Mallya & Lazebnik, 2018; Fer-
nando et al., 2017; Keshari et al., 2018). This design choice is problematic for several reasons,
including forgetfulness in continual learning (Pfeiffer et al., 2024; Raia, 2020), representation col-
lapse (i.e., degenerate experts; Chen et al., 2023; Pfeiffer et al., 2024), complex training procedures
(Rosenbaum et al., 2019), and other issues (Rosenbaum et al., 2017; Pfeiffer et al., 2024; Rosenbaum
et al., 2019). Moreover, using non-trainable routing functions can be more effective (Mittal et al.,
2022; Muqeeth et al., 2022). Secondly, many state-of-the-art systems employ architectures based
on disjoint experts that do not share parameters (Shazeer et al., 2017; Pfeiffer et al., 2024). This
design choice can lead to redundancies and may limit generalization; overlap can also be beneficial
(French, 1993; Maini et al., 2023). Thirdly, even when experts overlap, it is unclear whether models
can effectively learn to map similar inputs to the same experts, potentially resulting in redundancies
(Chen et al., 2023) or interference (Pfeiffer et al., 2024). Fourthly, many existing methods require
input or task IDs to determine which mask to apply (Mallya et al., 2018; Yang et al., 2020; Masse
et al., 2018; Maini et al., 2023; Pes et al., 2024; Mittal et al., 2022; Muqeeth et al., 2022; Kang
et al., 2024; Wortsman et al., 2020), which can be restrictive, as meta-information about inputs is
rarely available in real-world applications (Aljundi et al., 2019; Ye & Bors, 2022; Wang et al., 2022).
Lastly, the number of experts in current systems is limited, often ranging from a few to a couple of
thousand (Shazeer et al., 2017; Jiang et al., 2024), which may not be sufficient for complex tasks
(Rasmussen & Ghahramani, 2001).

In this paper we introduce Conditionally Overlapping Mixture of ExperTs (COMET), a general deep
learning method that induces a modular, sparse architecture in neural networks, with a number of
important properties. First, COMET uses a non-trainable gating function, eliminating the need for
iterative pruning or continuous sparsification. Instead, we employ a fixed random projection fol-
lowed by a k-winner-take-all cap operation, inspired by the brain’s efficient use of a limited number
of active cells via lateral inhibition. As in the brain, these mechanisms combine to produce sparse
representations with overlap that depends on input similarity (Bruhin & Davies, 2022). Second,
COMET does not require fixed specialization of sub-networks or advance knowledge of the active
neurons required for each task, enabling more flexibility and adaptability. Third, the number of
possible experts in COMET is exponential in the model size, exceeding the limit of a few thousand
in recent work, to effectively tackle more complex tasks. Fourth, these experts overlap based on
unsupervised information from input similarities. This yields faster learning and improved general-
ization. It does this without increasing the number of trainable parameters, or requiring input or task
IDs to determine which mask to apply.

COMET integrates concepts from diverse research areas into a concise framework: fixed random
projection and k-winner-take-all from neuroscience, routing functions from modular neural net-
works, expert-based approaches from the MoE literature, the notion of implicit experts from dy-
namic neural networks, the integration of sparsity and modularity from conditional computation,
input-dependent masking from various deep learning areas, and the importance of active parameter
overlap from continual learning. The present paper focuses on learning and out-of-sample gen-
eralization in single tasks, but we conjecture COMET’s input-dependent sparsity will also yield
advantages for settings involving multiple tasks, including transfer learning, continual learning, and
robustness to catastrophic forgetting. These will be tested in future work, although we report a
preliminary test of transfer learning in appendix A.9.

We validate our approach through experiments on seven diverse tasks, including image classifica-
tion, language modeling, and regression, demonstrating that our method is applicable to many pop-
ular model architectures such as vision transformers, MLP-mixers, GPTs, and standard MLPs, and
consistently provides improved performance. Our code will be linked here upon paper acceptance.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

2 RELATED WORK

Sparsity Sparsity in deep learning refers to systems where not all parameters are active or partic-
ipating in the computational graph. Fixed sparsity, such as L1 regularization, intends to minimize
the number of active parameters through optimizing a continuous loss function. Variable sparsity
includes various methods, such as randomness as in Dropout (Srivastava et al., 2014), and input-
dependent, such as in sparse MoE (Shazeer et al., 2017). Notably, continuously optimizing deep
networks to be sparse is an NP-hard problem (Jacobs & Burkholz, 2024), and pre-defined sparse
architectures can be restrictive. To circumvent that, we propose sparsification using a biologically
motivated approach of random projection followed by a cap operation, which activates the strongest
cells in the network, similar to the sensory system of fruit flies (Bruhin & Davies, 2022).

Modularity Modularity is related to sparsity, where information is conditionally routed to a subset
of the network’s parameters (Pfeiffer et al., 2024; Rosenbaum et al., 2017). Modular methods can
be split into two types. Firstly, those with trainable routing functions, including the sparse MoE
(Shazeer et al., 2017), adaptively determine the active parameters during training. Although widely
used, this approach can lead to representation collapse, forgetfulness, and redundant computation
(Pfeiffer et al., 2024). Secondly, fixed routing function methods have been shown to be more ef-
fective (Mittal et al., 2022; Muqeeth et al., 2022). However, these methods typically require prior
knowledge of module specialization (Pfeiffer et al., 2024; Muqeeth et al., 2022; Mittal et al., 2022),
which is often not available in practice. In contrast, our work demonstrates that module specializa-
tion can be achieved in a fully unsupervised manner using fixed random projections. Unlike previous
studies that employed fixed random projections as routing functions, either with non-overlapping ex-
perts (Roller et al., 2021; Chen et al., 2023) or with reduced performance (Bruhin & Davies, 2022),
our approach focuses on the more challenging setting of overlapping experts and achieves large
performance gains across diverse tasks. Additionally, our expert overlap correlates with input simi-
larity, making it more likely that parameters are shared between similar inputs. This, in turn, enables
positive knowledge transfer between items, resulting in faster learning and improved generalization.
Moreover, as the experts overlap, our approach benefits from input-dependent sparsity without an
explicitly modular architecture (like in MoE).

Conditional Computation Conditional computation integrates sparsity and modularity, in that pa-
rameters are dropped in a learned and optimized manner, rather than randomly and independently
(Bengio, 2013). A notable example is the sparse MoE framework (Shazeer et al., 2017). Our ap-
proach diverges from previous work by uniquely integrating several desirable properties, including
fixed routing, overlapping expert assignments based on input similarities, mask determination with-
out requiring meta-information, and scalability to an exponentially large number of experts.

Dynamic Neural Networks Dynamic neural networks (Han et al., 2021) share similarities with
conditional computation. Unlike traditional MoE approaches, dynamic neural networks do not have
explicitly defined experts. Instead, they dynamically select units, layers, or components from the
main model for each input (Han et al., 2021). Our approach has parallels with some dynamic neural
network methods, such as Piggyback (Mallya et al., 2018) and PackNet (Mallya & Lazebnik, 2018),
which also do not define explicit experts. However, our method differs in two key ways. Firstly, it
does not require meta-information to determine the expert mask. Secondly, it ensures that any given
input always maps to the same expert throughout both training and inference. This contrasts with
architectures that use trainable gating functions, where the same input can activate different experts
or representations at different stages of learning, which can be seen as a “moving target”.

The example-tied dropout scheme of Maini et al. (2023) is another dynamic neural network in which
neurons are partitioned into a “generalization” pool that is active for all inputs and a “memorization”
pool for which a small subset is active for each input. The assignment of memorization neurons to
each input example is random and fixed throughout training. Our approach differs from example-tied
dropout in that similar inputs share more active neurons, which facilitates generalization.

The model superposition of Cheung et al. (2019) applies a task-dependent orthogonal transformation
to the activation vector at each layer. Assuming the input distribution has effective dimensionality
less than that of the activation space (i.e., the layer width), these transformations map different
tasks into different subspaces allowing them to be learned semi-independently. Our input-dependent
masking also restricts the representation of each example to a subspace, but it does not require task
IDs and it leads similar inputs to have more overlapping representations.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Fully Connected
Layer

Fully Connected
Layer

Cap
Operation

Fixed
Random

Projection

COMET
Layer

COMET
Layer

COMET Layer

Fully Connected
Layer

COMET
Layer

Fully Connected
Layer

COMET
Layer

Input

●

xℓ

bℓ

mℓ

Ck

zℓ

f(aℓ)
●

Figure 1: Illustration of a 2-layer MLP with embedded COMET layers. Note that COMET layers
do not contain predefined experts, but instead dynamically selects a subset of the backbone MLP’s
parameters to activate, effectively creating implicit experts. The sparsity level determines the pro-
portion of parameters to activate. Real value in teal, zeros in white, ones in grey.

3 MIXTURE OF EXPERTS AND INPUT-DEPENDENT MASKING

A standard MoE architecture involves a disjoint set of experts and a gate that combines their pre-
dictions (Jacobs et al., 1991). For example in the sparse MoE framework proposed by Shazeer et al.
(2017), each MoE module consists of n expert networks, E1, ..., En, and a gating network, G, that
outputs a sparse n-dimensional vector of mixture weights. The gating and expert networks are all
trainable, each with its own set of parameters. The prediction for an input x is

∑n
i=1 G(x)iEi(x).

Separately, several recent works have proposed versions of input-dependent masking (Maini et al.,
2023; Mallya et al., 2018; Mallya & Lazebnik, 2018; Yang et al., 2020; Hung et al., 2019). The gen-
eral framework involves a network with n neurons and a masking function m : X → {0, 1}n (where
X is the input space). In processing an example x, the network’s activations are multiplied elemen-
twise with m(x). Thus the prediction for x is Fm(x)(x) where Fm(x) is the function computed by
the sub-network corresponding to the mask m(x).

Combining these two lines of work, we propose to view the sub-networks defined by input-
dependent masking as overlapping experts. Any two experts will typically share many active neu-
rons, and hence weights. This is in contrast to standard MoE where the experts learn disjoint sets
of parameters. In the overlapping MoE framework, every subset of the full network is a (potential)
expert. The sub-network Fm(x) is an expert for x, and it is also a partial expert for any other x′ to
the degree that m(x) and m(x′) overlap, as determined by the inner product m(x)⊤m(x′). In the
overlapping MoE framework, the gating network G is replaced by the masking function m.

We further propose that similar inputs should map to similar (i.e., more overlapping) experts. This
will facilitate generalization because what is learned about one input will selectively generalize to
similar inputs. The next section explains how COMET achieves this property using biologically
inspired fixed random projections (Vℓ in eq. (4)) and k-winner-take-all capping (Ckℓ

in eq. (5)).

4 CONDITIONALLY OVERLAPPING MIXTURE OF EXPERTS (COMET)

Our proposed COMET method applies to any backbone NN, augmenting it with a second NN called
a routing network that computes input-dependent masks for all layers of the backbone network.

We first describe the COMET architecture for the case where the backbone network is an MLP.
Let the backbone MLP have L layers, with layer ℓ having Nℓ neurons and learnable parameters
comprising a weight matrix Wℓ ∈ RNℓ×Nℓ−1 and bias bℓ ∈ RNℓ . Then the forward pass of the
unmodified MLP is defined by

aℓ = Wℓxℓ−1 + bℓ (1)
xℓ = f(aℓ) (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

for 1 ≤ ℓ ≤ L, where aℓ is the pre-activation at layer ℓ, f is the elementwise activation function, x0

is the input to the network, and aL is its output.

COMET’s routing network is a second MLP with the same shape, defined by random weight matri-
ces Vℓ (for simplicity we omit bias parameters). We sample Vℓ from the same distribution used for
initializing Wℓ (U(−N

−1/2
ℓ−1 , N

−1/2
ℓ−1) in our experiments). We denote this network’s pre-activations

and activations as cℓ and zℓ (analogous to aℓ and xℓ in the backbone network), with input z0 = x0.
The computation of the routing network is similar to that of the backbone MLP, except that at each
layer it computes a binary vector mℓ that is then used to mask the activations in both networks. The
mask is computed using a k-winner-take-all capping function Ck:

[Ck(v)]i =

{
1 |{j : vj ≥ vi}| ≤ k
0 otherwise (3)

We allow a fixed proportion pk of neurons at each layer to survive the mask, so that kℓ = pkNℓ.
Then the forward pass of the routing network is defined by

cℓ = Vℓzℓ−1 (4)
mℓ = Ckℓ

(cℓ) (5)
zℓ = mℓ ◦ g(cℓ) (6)

where ◦ indicates elementwise multiplication and g is the routing network’s activation function (we
use the identity g(c) = c in the present experiments). The layerwise masks mℓ computed by the
routing network are then applied to the backbone network, so that eqs. (1) and (2) are replaced by

aℓ = Wℓxℓ−1 (7)
xℓ = mℓ ◦ f(aℓ) (8)

Note that the network’s output aL is computed before mL would be applied, avoiding undesirable
masking of the model’s prediction.

This input-dependent masking results in a maximum number of experts that is exponential in the
model size at each layer, specifically

(
Nℓ

k

)
. Therefore in practical settings every input will have

its own expert. One consideration for this calculation might be interference among experts. Previ-
ous work has studied how multiple models can be superposed within one network (Cheung et al.,
2019), and Elhage et al. (2022) show a layer with Nℓ neurons can hold O(eN) representations that
are pairwise orthogonal within a certain finite tolerance, thus minimizing interference. However,
more important for the present work is that overlap between models is a desired property because it
promotes generalization between similar inputs.

COMET layers differ from sparse MoE (Shazeer et al., 2017) layers in two major ways:

1. Architecturally: Whereas a layer in a standard layered MoE architecture consists of n
experts and a gating network, a COMET layer contains a random, non-trainable matrix and
a k-winner-take-all cap operation. Instead of pre-defined experts, COMET layer modifies
the computation of the MLP to activate only a subset of its parameters contingent on the
input; this subset can be seen as an implicit expert.

2. In the way the information is passed: Sparse MoE is applied in layers with a new gating
network at each layer, which takes as input the backbone activation at the previous layer.
Thus the gating and backbone networks at each layer take the same input. In a COMET
architecture the routing network operates independently of the backbone network, so the
inputs to the two are distinct (except for the first layer of the network). This ensures that a
given example maps to the same implicit expert throughout both training and inference.

Several other important differences between existing approaches and COMET are: 1) COMET’s
gating network does not require training; 2) COMET does not require fixed specialization of each
network module, or advanced knowledge of the combination of modules required for each task;
3) the experts in COMET overlap based on unsupervised information from input similarities; 4)
COMET does not require input or task IDs to determine which mask to apply; 5) the number of
possible experts in COMET is exponential in the model size.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5 EXPERIMENTS

5.1 SYNTHETIC DATA EXPERIMENTS

In this section, we describe experiments to verify key properties of a COMET network. First, we
verify that the combination of the fixed routing function and cap operator maps similar inputs to
similar masks and show how this sharpens the model’s generalization. Second, we verify that the
network makes an effective use of the available neurons.

5.1.1 FIXED INPUT-DEPENDENT ROUTING NETWORK

0.0 0.2 0.4 0.6 0.8 1.0
Inputs Cosine Similarity

0.2

0.4

0.6

0.8

1.0

M
as

ks
 A

ve
ra

ge
 C

os
in

e
Si

m
ila

rit
y

p_k: 0.1
p_k: 0.2
p_k: 0.3
p_k: 0.4
p_k: 0.5
p_k: 0.6
p_k: 0.7
p_k: 0.8
p_k: 0.9

(a)

0.0 0.2 0.4 0.6 0.8 1.0
Inputs Cosine Similarity

0.0

0.2

0.4

0.6

0.8

1.0

Ac
tiv

at
io

ns
 A

ve
ra

ge
 C

os
in

e
Si

m
ila

rit
y p_k: 0.1

p_k: 0.2
p_k: 0.3
p_k: 0.4
p_k: 0.5
p_k: 0.6
p_k: 0.7
p_k: 0.8
p_k: 0.9
p_k: 1.0

(b)

Figure 2: Routing properties of our gating function, which combines fixed random projections with
a cap operator. (a) We compare the similarity of input pairs to the similarity of their corresponding
binary masks (gates) for different sparsity levels. This plot shows that similar inputs tend to have
similar masks. (b) We compare the similarity of input pairs to the similarity of their corresponding
masked activation vectors in the backbone network. This plot reveals that similar inputs are mapped
to similar activations, and that this relationship is sharper for sparser networks (note pk = 1 is a
vanilla MLP). These properties facilitate forward knowledge transfer, even without supervision.

Our goal is to develop a fixed routing function that maps similar inputs to similar (i.e., overlapping)
experts, thereby facilitating knowledge transfer between items and leading to faster learning and
improved generalization. One way to approximate generalization between individual training and
test items is with the neural tangent kernel (NTK; Jacot et al., 2018). Let θ = (W1, b1, . . . ,WL, bL)
denote the flattened concatenation of all model parameters, let xtrain and xtest be arbitrary training
and testing items, and let atrain

L and atest
L be the corresponding model predictions for some fixed

setting of θ. Generalization from xtrain to xtest can be defined as the change in prediction atest
L

from including xtrain in the training set. Formally, under a vanilla GD optimizer on loss L, and in
the limit of a small learning rate α, the contribution of xtrain to change in atest

L is
1

α
∆atest

L −→
α→0

K(xtrain,xtest)∇atrain
L

Ltrain (9)

where K(xtrain,xtest) is the NL ×NL matrix-valued NTK

K(xtrain,xtest) =
∂atest

L

∂θ

(
∂atrain

L

∂θ

)⊤

(10)

The RHS of eq. (10) sums over elements of θ, and the contribution from Wℓ is∑
ij

∂atest
L

∂Wℓ,ij

(
∂atrain

L

∂Wℓ,ij

)⊤

=
∑
j

atestℓ−1,ja
train
ℓ−1,j

∑
i

∂atest
L

∂atestℓ,i

(
∂atrain

L

∂atrainℓ,i

)⊤

(11)

Thus the contribution of Wℓ to generalization from xtrain to xtest is proportional to the inner product
⟨atrain

ℓ−1 ,atest
ℓ−1⟩. This inner product will be positively related to input similarity ⟨xtrain,xtest⟩ even

in an unmodified MLP, but our question is how the relationship changes under COMET.

To answer this question, we conducted an experiment using 500 random pairs of input vectors.
Each input had length 100 with components sampled iid from N (µ, 25), with µ a random integer

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

between 0 and 100. We calculated the cosine similarity (i.e., normalized inner product) between each
pair of inputs. We then randomly initialized 10 COMET networks for every pair, each comprising
a backbone network and a routing network which were both MLPs containing 10 hidden layers
(L = 11) with 512 neurons per hidden layer. We passed both inputs through each of the 10 COMET
networks, using eqs. (4) to (8) with varying degrees of sparsity pk.

To analyze the behavior of our fixed gating function, we performed two complementary analyses.
First, we computed the cosine similarity between the masks obtained for the two inputs in each pair,
concatenated across layers as (m1, . . . ,mL−1). Note that cosine similarity between binary vectors
equals their degree of overlap, i.e. the proportion of active neurons for one input that are also active
for the other. Second, we measured the cosine similarity between the two inputs’ representations
in the backbone network after applying the gating function as in eq. (8), again concatenating across
layers as (x1, . . . ,xL−1). To obtain a more robust estimate, we averaged the cosine similarities
across the 10 COMET networks for each input pair, yielding the results in fig. 2.

This experiment reveals that when input distributions are more similar the overlap between their
binary masks increases (fig. 2a). This in turn strengthens the relationship between input similarity
and activation similarity in the backbone network relative to the baseline MLP with pk = 1 (fig. 2b).
Drawing on the NTK analysis above, we conclude that COMET’s routing function leads the model
to generalize using a narrower effective kernel. A narrower kernel should not be expected to yield
universal improvement, but it should be beneficial when the base model has excess capacity for the
task. The experiments in the next subsections support this prediction, in that we see an advantage
for COMET particularly with larger models.

5.1.2 EXPERT UTILIZATION

p_
k

=
0.

7
p_

k
=

0.
1

Figure 3: Illustration of neuron activity across COMET layers in a 4-layer MLP. We visualize the
utilization of neurons in two randomly initialized networks with varying sparsity levels, using the
CIFAR10 dataset. The plots show that our network effectively utilizes all its parameters, with no
“dead neurons” and no signs of representation collapse, even at very high sparsity levels.

One of the challenges in training sparse architectures is representation collapse, where a small sub-
set of experts or neurons becomes dominant, leading to under-utilization of others. This issue is
particularly concerning when training gating networks, as it can result in “dead” experts or neurons
that are never activated. Given that our gating network is fixed, it is essential to investigate whether
this behavior occurs, as it would be permanent.

To address this, we conducted an experiment where we generated 1000 randomly initialized 4-layer
COMET MLPs with varying neuron counts per layer Nℓ ∼ U(100, 1000), and varying sparsity
level 1 − pk ∼ U(0.05, 1), and passed the CIFAR10 dataset through each one. We then analyzed
the utilization of each neuron, measured by how often it is activated with the given masks, and
found that only 7.6e−4% of neurons across the ensemble had 0% utilization, and fewer than 2%
of the models had any such neurons, mostly models with a high sparsity level. Figure 3 presents
utilization plots for two representative networks, illustrating that our fixed gating network avoids
representation collapse and “dead neurons.” Moreover, when we passed a different dataset (such as
CIFAR100) through these models, we discovered that many previously inactive neurons were now

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

being utilized. Thus, neurons that are infrequently utilized appear to be reserved for unseen data,
highlighting the network’s adaptability and capacity for generalization.

The finding is consistent with our previous analysis in section 5.1.1, which showed that the input-
dependent gating design inherently activates similar parameters for similar inputs, facilitating for-
ward knowledge transfer. Our results suggest that our approach effectively mitigates the risk of
representation collapse and promotes healthy utilization of neurons in the network, all without rely-
ing on supplementary mechanisms, such as specialized loss terms (Shazeer et al., 2017).

5.2 IMAGE CLASSIFICATION

We extend our investigation by integrating the COMET method into a diverse range of popular
architectures, including Vision Transformers (ViTs), MLP-Mixers, and standard MLPs.

5.2.1 STANDARD MLP – CIFAR10

We apply the COMET method to a standard MLP with 4 layers, varying the number of neurons in
each layer and the sparsity levels. To evaluate its performance, we compare it to 10 related methods:

Standard Model: A standard MLP model with the same number of neurons and no sparsity.

Smaller Model: A smaller model with a reduced number of neurons, specifically pkNℓ where Nℓ

is the width of the standard model.

Dropout Model: A standard model with a dropout rate equal to 1− pk.

Topk Model: An MLP with a trainable routing function. The cap operation is applied directly to
the backbone network by replacing eq. (5) with mℓ = Ckℓ

(aℓ), so that the routing function selects
the highest k values and masks the remaining ones.

MoE Trainable: A MoE model with ⌊1/pk⌋ experts, each having pkNℓ neurons in each layer. The
routing network is a trainable MLP with one hidden layer and a sparse ⌊1/pk⌋-dimensional output.

MoE Non-trainable: Same as MoE Trainable, with a fixed routing function.

Layer-wise Routing: An MLP where each backbone hidden layer representation is projected using
a fixed random matrix, which is then used to develop the binary mask for the next layer. This is done
by replacing eq. (4) with cℓ = Vℓxℓ−1.

Bernoulli Masking: An MLP where each training example is associated with a fixed binary mask
drawn from a Bernoulli distribution, with probability equal to pk. Thus the relationship between
inputs and their masks is arbitrary, rather than being mediated by the routing network in COMET.

Example-tied Dropout: Example-tied dropout (Maini et al., 2023), where each example in the
training data is associated with a fixed binary mask drawn from a Bernoulli distribution, with prob-
ability equal to pk, and a fixed number of “generalization neurons” are active for all examples.

Standard model L1: A standard MLP model, but using L1 regularization to induce sparsity.

We evaluate these models on the CIFAR10 dataset Krizhevsky (2009), with results shown in fig. 4.
Overall, the optimal model architecture depends on the capacity of the network. When the number
of neurons is limited and the network has a low capacity to learn the task (i.e., low pk), the standard
model that utilizes all neurons outperforms most models. However, as network capacity increases
with more neurons, the COMET model emerges as the top performer. This suggests that the ben-
efits of selective neuron activation become more pronounced as capacity increases. Notice in the
high-capacity regime the Smaller Model matches the Standard Model, indicating that simply adding
more neurons does not improve performance while adding neurons subject to COMET’s structured
sparsity does.

5.2.2 CONTEMPORARY ARCHITECTURES

We further extend the COMET method to contemporary architectures in the Vision domain, includ-
ing ViT Dosovitskiy et al. (2021) and MLP-Mixer Tolstikhin et al. (2021). To do this, we apply the
COMET random projection followed by the cap operation in the MLP layers of each with pk = 0.5.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

p_
k

=
0.

1

Neurons=100

0 20 40 60 80 100
0.08
0.10
0.12
0.14
0.16
0.18
0.20
0.22
0.24

Neurons=500

0 20 40 60 80 100
0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250
Neurons=1000

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

Neurons=3000

0 20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

p_
k

=
0.

5

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 20 40 60 80 100
0.08

0.10

0.12

0.14

0.16

0.18

0.20

0.22

0.24

p_
k

=
0.

9

0 20 40 60 80 100
0.075

0.100

0.125

0.150

0.175

0.200

0.225

0.250

0.275

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

Va
lid

at
io

n
Ac

cu
ra

cy

Epochs
standard_model
smaller_model
dropout_model

COMET_model
standard_model_l1

top_k_model
moe_trainable

moe_non_trainable
layer_wise_routing

bernoulli_masking
example_tied_dropout

Figure 4: Illustration of 4-layer MLP networks trained on CIFAR10, showcasing the impact of
varying network capacity and sparsity levels. As we increase the number of neurons and decrease
sparsity (moving from top left to bottom right), we observe a shift in the best-performing model.
Initially, the standard model outperforms the COMET model when network capacity is low. How-
ever, as network capacity grows, the COMET model emerges as the top performer.

We evaluate the performance of these models on four widely-used image classification datasets:
SVHN Netzer et al. (2011), CIFAR10 Krizhevsky (2009), CIFAR100 Krizhevsky (2009), and Tiny
ImageNet Le & Yang (2015). Our results can be seen in figs. 5 to 8.

A similar trend emerges in these architectures: as network capacity increases, the optimal model
architecture shifts. In smaller networks, where the number of neurons in the MLP layer is limited,
the standard model performs roughly similarly to the COMET model. However, even in these net-
works, incorporating COMET layers yields notable performance improvements. As we scale up the
network by adding more neurons, COMET displays superior performance across all five model ar-
chitectures and four datasets. It achieves faster convergence and significantly higher accuracy, with
gains of up to 9% in ViT Large on CIFAR100. Moreover, we observe that the performance gap be-
tween the COMET-based models and their standard counterparts widens as the model size increases,
with larger models exhibiting both better performance and faster learning rates. This reinforces our
finding that selective neuron activation becomes increasingly beneficial as network capacity grows.

0 100 200
20

40

60

80

COMET_ViT
[95.2] (9.52M)
Standard_ViT
[94.8] (9.52M)

0 100 200
20

40

60

80

COMET_ViT_Med
[96.2] (25.27M)
Standard_ViT_Med
[95.4] (25.27M)

0 100 200
20

40

60

80

100

COMET_ViT_Large
[96.3] (44.16M)
Standard_ViT_Large
[95.3] (44.16M)

0 200 400
20

40

60

80

COMET_MLP-Mixer
[96.0] (1.82M)
Standard_MLP-Mixer
[95.6] (1.82M)

0 200 400
20

40

60

80

COMET_MLP-Mixer_Med
[95.5] (57.11M)
Standard_MLP-Mixer_Med
[94.8] (57.11M)

SVHN

Va
lid

at
io

n
Ac

cu
ra

cy

Epoch

Figure 5: ViTs and MLP-Mixers on SVHN.
[Highest accuracy] (# trainable param.)

0 100 200
30

40

50

60

70

COMET_ViT
[75.4] (9.52M)
Standard_ViT
[75.0] (9.52M)

0 100 200
20

40

60

80

COMET_ViT_Med
[80.7] (25.27M)
Standard_ViT_Med
[76.6] (25.27M)

0 100 200
20

40

60

80

COMET_ViT_Large
[82.7] (44.16M)
Standard_ViT_Large
[76.6] (44.16M)

0 200 400

40

60

80

COMET_MLP-Mixer
[84.9] (1.82M)
Standard_MLP-Mixer
[85.2] (1.82M)

0 200 400

20

40

60

80

COMET_MLP-Mixer_Med
[84.1] (57.11M)
Standard_MLP-Mixer_Med
[81.0] (57.11M)

CIFAR10

Va
lid

at
io

n
Ac

cu
ra

cy

Epoch

Figure 6: ViTs and MLP-Mixers on CIFAR10.
[Highest accuracy] (# trainable param.)

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

0 100 200

10

20

30

40

50

COMET_ViT
[48.8] (9.57M)
Standard_ViT
[48.1] (9.57M)

0 100 200

10

20

30

40

50

COMET_ViT_Med
[55.7] (25.31M)
Standard_ViT_Med
[50.4] (25.31M)

0 100 2000

20

40

60

COMET_ViT_Large
[58.5] (44.21M)
Standard_ViT_Large
[49.5] (44.21M)

0 200 400
10

20

30

40

50

60

COMET_MLP-Mixer
[57.0] (1.87M)
Standard_MLP-Mixer
[58.0] (1.87M)

0 200 400
0

10

20

30

40

50

COMET_MLP-Mixer_Med
[55.3] (57.39M)
Standard_MLP-Mixer_Med
[55.2] (57.39M)

CIFAR100

Va
lid

at
io

n
Ac

cu
ra

cy

Epoch

Figure 7: ViTs and MLP-Mixers on CIFAR100.
[Highest accuracy] (# trainable param.)

0 100 200

10

20

30

40

COMET_ViT
[39.4] (9.69M)
Standard_ViT
[38.5] (9.69M)

0 100 200

10

20

30

40

COMET_ViT_Med
[41.5] (25.44M)
Standard_ViT_Med
[41.1] (25.44M)

0 100 200
0

10

20

30

40

COMET_ViT_Large
[42.6] (44.33M)
Standard_ViT_Large
[40.0] (44.33M)

0 200 400

10

20

30

40

COMET_MLP-Mixer
[41.7] (1.99M)
Standard_MLP-Mixer
[40.9] (1.99M)

0 200 400
0

10

20

30

COMET_MLP-Mixer_Med
[36.1] (58.14M)
Standard_MLP-Mixer_Med
[34.5] (58.14M)

Tiny ImageNet

Va
lid

at
io

n
Ac

cu
ra

cy

Epoch

Figure 8: ViTs and MLP-Mixers on Tiny Ima-
geNet. [Highest accuracy] (# trainable param.)

100 200

25

30

35

COMET_GPT-2
 [22.0] (117M)
Standard_GPT-2
 [22.1] (117M)

100 200
20

25

30

35
COMET_GPT-2-Med
 [19.3] (345M)
Standard_GPT-2-Med
 [20.3] (345M)

100 200

20

25

30

35

COMET_GPT-2-large
 [18.2] (774M)
Standard_GPT-2-large
 [20.3] (774M)

wikitext

Va
lid

at
io

n
Pe

rp
le

xi
ty

Step

Figure 9: GPTs trained on WikiText. [Lowest
perplexity] (# trainable param.)

0 10004

6

8

10

12

14
COMET_GPT-2
 [4.7] (117M)
Standard_GPT-2
 [4.5] (117M)

250 500
4

6

8

10

12

14 COMET_GPT-2-Med
 [4.4] (345M)
Standard_GPT-2-Med
 [4.6] (345M)

100 200 300

6

8

10

12

14
COMET_GPT-2-large
 [4.8] (774M)
Standard_GPT-2-large
 [5.7] (774M)

codeparrot

Va
lid

at
io

n
Pe

rp
le

xi
ty

Step

Figure 10: GPTs trained on CodeParrot. [Lowest
perplexity] (# trainable param.)

5.3 LANGUAGE MODELING AND REGRESSION

We apply COMET to language modeling on Wikitext (Merity et al., 2016) and CodeParrot (Tunstall
et al., 2022) with varying GPT model sizes, with results in figs. 9 and 10. We again observe that as
network capacity increases, the COMET model outperforms the standard model, with larger models
exhibiting not only a greater performance difference but also faster learning rates, highlighting the
benefits of selective neuron activation in language modeling tasks. To further validate our results,
we also evaluated COMET on the SARCOS regression dataset. Our findings in appendix A.5 show
that our conclusions generalize to this setting as well.

6 CONCLUSIONS

In this work, we propose a sparse neural network method, COMET, that induces a modular, sparse
architecture with an exponential number of overlapping experts and alleviates key limitations of
existing modular approaches, including trainable gating functions that often lead to representation
collapse, non-overlapping experts that hinder knowledge transfer, and the need for explicit input
IDs. By leveraging a biologically-inspired fixed random projection and k-winner-take-all capping
operation, COMET determines expert overlap based on input similarity in a fully unsupervised
manner, enabling faster learning and improved generalization through enhanced forward transfer.
It should be noted that key features of COMET may occur naturally in standard networks. First,
similar inputs already tend to have similar hidden representations (see the pk = 1 curve in fig. 2b).
Second, there may be cases where networks self-organize to process different inputs in different
subspaces of activation space (see Elhage et al., 2022, for a related demonstration). Nevertheless
COMET magnifies these effects and our experiments show it improves performance over standard
networks. Through extensive experiments on various tasks, including image classification, language
modeling, and regression, we demonstrate that COMET achieves improved performance, especially
for larger models, demonstrating that our method is applicable to many popular model architectures.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Rahaf Aljundi, Klaas Kelchtermans, and Tinne Tuytelaars. Task-free continual learning, 2019. URL
https://arxiv.org/abs/1812.03596.

Josh Andle, Ali Payani, and Salimeh Yasaei-Sekeh. Investigating the impact of weight sharing
decisions on knowledge transfer in continual learning, 2023. URL https://arxiv.org/
abs/2311.09506.

Jimmy Ba and Brendan Frey. Adaptive dropout for training deep neural networks. In
C.J. Burges, L. Bottou, M. Welling, Z. Ghahramani, and K.Q. Weinberger (eds.), Ad-
vances in Neural Information Processing Systems, volume 26. Curran Associates, Inc.,
2013. URL https://proceedings.neurips.cc/paper_files/paper/2013/
file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf.

Anna Bair, Hongxu Yin, Maying Shen, Pavlo Molchanov, and Jose Alvarez. Adaptive sharpness-
aware pruning for robust sparse networks, 2024. URL https://arxiv.org/abs/2306.
14306.

Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional computation in
neural networks for faster models, 2016. URL https://arxiv.org/abs/1511.06297.

Yoshua Bengio. Deep learning of representations: Looking forward, 2013. URL https:
//arxiv.org/abs/1305.0445.

Nina Dekoninck Bruhin and Bryn Davies. Bioinspired random projections for robust, sparse classi-
fication, 2022. URL https://arxiv.org/abs/2206.09222.

Tianlong Chen, Zhenyu Zhang, Ajay Jaiswal, Shiwei Liu, and Zhangyang Wang. Sparse moe as the
new dropout: Scaling dense and self-slimmable transformers, 2023. URL https://arxiv.
org/abs/2303.01610.

Zhourong Chen, Yang Li, Samy Bengio, and Si Si. You look twice: Gaternet for dynamic filter
selection in cnns, 2019. URL https://arxiv.org/abs/1811.11205.

Brian Cheung, Alexander Terekhov, Yubei Chen, Pulkit Agrawal, and Bruno Olshausen. Superpo-
sition of many models into one. Advances in neural information processing systems, 32, 2019.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra, Adam
Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann, Parker Schuh,
Kensen Shi, Sasha Tsvyashchenko, Joshua Maynez, Abhishek Rao, Parker Barnes, Yi Tay, Noam
Shazeer, Vinodkumar Prabhakaran, Emily Reif, Nan Du, Ben Hutchinson, Reiner Pope, James
Bradbury, Jacob Austin, Michael Isard, Guy Gur-Ari, Pengcheng Yin, Toju Duke, Anselm Lev-
skaya, Sanjay Ghemawat, Sunipa Dev, Henryk Michalewski, Xavier Garcia, Vedant Misra, Kevin
Robinson, Liam Fedus, Denny Zhou, Daphne Ippolito, David Luan, Hyeontaek Lim, Barret
Zoph, Alexander Spiridonov, Ryan Sepassi, David Dohan, Shivani Agrawal, Mark Omernick,
Andrew M. Dai, Thanumalayan Sankaranarayana Pillai, Marie Pellat, Aitor Lewkowycz, Erica
Moreira, Rewon Child, Oleksandr Polozov, Katherine Lee, Zongwei Zhou, Xuezhi Wang, Bren-
nan Saeta, Mark Diaz, Orhan Firat, Michele Catasta, Jason Wei, Kathy Meier-Hellstern, Douglas
Eck, Jeff Dean, Slav Petrov, and Noah Fiedel. Palm: Scaling language modeling with pathways,
2022. URL https://arxiv.org/abs/2204.02311.

Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszko-
reit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
scale, 2021. URL https://arxiv.org/abs/2010.11929.

Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna Kravec,
Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, et al. Toy models of superposi-
tion. arXiv preprint arXiv:2209.10652, 2022.

William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion parameter
models with simple and efficient sparsity, 2022. URL https://arxiv.org/abs/2101.
03961.

11

https://arxiv.org/abs/1812.03596
https://arxiv.org/abs/2311.09506
https://arxiv.org/abs/2311.09506
https://proceedings.neurips.cc/paper_files/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2013/file/7b5b23f4aadf9513306bcd59afb6e4c9-Paper.pdf
https://arxiv.org/abs/2306.14306
https://arxiv.org/abs/2306.14306
https://arxiv.org/abs/1511.06297
https://arxiv.org/abs/1305.0445
https://arxiv.org/abs/1305.0445
https://arxiv.org/abs/2206.09222
https://arxiv.org/abs/2303.01610
https://arxiv.org/abs/2303.01610
https://arxiv.org/abs/1811.11205
https://arxiv.org/abs/2204.02311
https://arxiv.org/abs/2010.11929
https://arxiv.org/abs/2101.03961
https://arxiv.org/abs/2101.03961

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Chrisantha Fernando, Dylan Banarse, Charles Blundell, Yori Zwols, David Ha, Andrei A. Rusu,
Alexander Pritzel, and Daan Wierstra. Pathnet: Evolution channels gradient descent in super
neural networks, 2017. URL https://arxiv.org/abs/1701.08734.

Jonathan Frankle and Michael Carbin. The lottery ticket hypothesis: Finding sparse, trainable neural
networks, 2019. URL https://arxiv.org/abs/1803.03635.

Robert M. French. Using semi-distributed representations to overcome catastrophic forgetting
in connectionist networks, 1993. URL https://cdn.aaai.org/Symposia/Spring/
1993/SS-93-06/SS93-06-007.pdf.

Suchin Gururangan, Mike Lewis, Ari Holtzman, Noah A. Smith, and Luke Zettlemoyer. DEMix lay-
ers: Disentangling domains for modular language modeling. In Marine Carpuat, Marie-Catherine
de Marneffe, and Ivan Vladimir Meza Ruiz (eds.), Proceedings of the 2022 Conference of the
North American Chapter of the Association for Computational Linguistics: Human Language
Technologies, pp. 5557–5576, Seattle, United States, July 2022. Association for Computational
Linguistics. doi: 10.18653/v1/2022.naacl-main.407. URL https://aclanthology.org/
2022.naacl-main.407.

Song Han, Huizi Mao, and William J. Dally. Deep compression: Compressing deep neural networks
with pruning, trained quantization and huffman coding, 2016. URL https://arxiv.org/
abs/1510.00149.

Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic neural
networks: A survey, 2021. URL https://arxiv.org/abs/2102.04906.

Torsten Hoefler, Dan Alistarh, Tal Ben-Nun, Nikoli Dryden, and Alexandra Peste. Sparsity in deep
learning: Pruning and growth for efficient inference and training in neural networks, 2021. URL
https://arxiv.org/abs/2102.00554.

HuggingFace. Training a causal language model from scratch. https://huggingface.co/
learn/nlp-course/en/chapter7/6, 2022. Accessed: [2024].

Steven C. Y. Hung, Cheng-Hao Tu, Cheng-En Wu, Chien-Hung Chen, Yi-Ming Chan, and Chu-
Song Chen. Compacting, picking and growing for unforgetting continual learning, 2019. URL
https://arxiv.org/abs/1910.06562.

Robert A. Jacobs, Michael I. Jordan, Steven J. Nowlan, and Geoffrey E. Hinton. Adaptive mixtures
of local experts. Neural Computation, 3(1):79–87, 1991. doi: 10.1162/neco.1991.3.1.79.

Tom Jacobs and Rebekka Burkholz. Mask in the mirror: Implicit sparsification, 2024. URL https:
//arxiv.org/abs/2408.09966.

Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and gen-
eralization in neural networks. Advances in neural information processing systems, 31, 2018.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak, Teven Le
Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and William El Sayed.
Mixtral of experts, 2024. URL https://arxiv.org/abs/2401.04088.

Matt Jones, Peter Chang, and Kevin Murphy. Bayesian online natural gradient (bong), 2024. URL
https://arxiv.org/abs/2405.19681.

M.I. Jordan and R.A. Jacobs. Hierarchical mixtures of experts and the em algorithm. In Proceedings
of 1993 International Conference on Neural Networks (IJCNN-93-Nagoya, Japan), volume 2, pp.
1339–1344 vol.2, 1993. doi: 10.1109/IJCNN.1993.716791.

Haeyong Kang, Jaehong Yoon, Sung Ju Hwang, and Chang D. Yoo. Continual learning: Forget-
free winning subnetworks for video representations, 2024. URL https://arxiv.org/abs/
2312.11973.

12

https://arxiv.org/abs/1701.08734
https://arxiv.org/abs/1803.03635
https://cdn.aaai.org/Symposia/Spring/1993/SS-93-06/SS93-06-007.pdf
https://cdn.aaai.org/Symposia/Spring/1993/SS-93-06/SS93-06-007.pdf
https://aclanthology.org/2022.naacl-main.407
https://aclanthology.org/2022.naacl-main.407
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/1510.00149
https://arxiv.org/abs/2102.04906
https://arxiv.org/abs/2102.00554
https://huggingface.co/learn/nlp-course/en/chapter7/6
https://huggingface.co/learn/nlp-course/en/chapter7/6
https://arxiv.org/abs/1910.06562
https://arxiv.org/abs/2408.09966
https://arxiv.org/abs/2408.09966
https://arxiv.org/abs/2401.04088
https://arxiv.org/abs/2405.19681
https://arxiv.org/abs/2312.11973
https://arxiv.org/abs/2312.11973

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Rohit Keshari, Richa Singh, and Mayank Vatsa. Guided dropout, 2018. URL https://arxiv.
org/abs/1812.03965.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C. Berg, Wan-Yen Lo, Piotr Dollár, and Ross Girshick.
Segment anything, 2023. URL https://arxiv.org/abs/2304.02643.

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical Re-
port, University of Toronto, 2009. URL https://www.cs.toronto.edu/˜kriz/
learning-features-2009-TR.pdf.

Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. In CS 231N, volume 7, pp.
3, 2015.

Yann LeCun, John Denker, and Sara Solla. Optimal brain damage. In D. Touretzky
(ed.), Advances in Neural Information Processing Systems, volume 2. Morgan-Kaufmann,
1989. URL https://proceedings.neurips.cc/paper_files/paper/1989/
file/6c9882bbac1c7093bd25041881277658-Paper.pdf.

Bo Li, Yifei Shen, Jingkang Yang, Yezhen Wang, Jiawei Ren, Tong Che, Jun Zhang, and Ziwei Liu.
Sparse mixture-of-experts are domain generalizable learners, 2023. URL https://arxiv.
org/abs/2206.04046.

Zehui Lin, Liwei Wu, Mingxuan Wang, and Lei Li. Learning language specific sub-network for
multilingual machine translation. In Chengqing Zong, Fei Xia, Wenjie Li, and Roberto Navigli
(eds.), Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pp. 293–305, Online, August 2021. Association for Computational Linguistics. doi: 10.
18653/v1/2021.acl-long.25. URL https://aclanthology.org/2021.acl-long.25.

Pratyush Maini, Michael C. Mozer, Hanie Sedghi, Zachary C. Lipton, J. Zico Kolter, and Chiyuan
Zhang. Can neural network memorization be localized?, 2023. URL https://arxiv.org/
abs/2307.09542.

Arun Mallya and Svetlana Lazebnik. Packnet: Adding multiple tasks to a single network by iterative
pruning, 2018. URL https://arxiv.org/abs/1711.05769.

Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggyback: Adapting a single network to mul-
tiple tasks by learning to mask weights, 2018. URL https://arxiv.org/abs/1801.
06519.

Nicolas Y. Masse, Gregory D. Grant, and David J. Freedman. Alleviating catastrophic forgetting
using context-dependent gating and synaptic stabilization. Proceedings of the National Academy
of Sciences, 115(44), October 2018. ISSN 1091-6490. doi: 10.1073/pnas.1803839115. URL
http://dx.doi.org/10.1073/pnas.1803839115.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models, 2016. URL https://arxiv.org/abs/1609.07843.

Sarthak Mittal, Yoshua Bengio, and Guillaume Lajoie. Is a modular architecture enough?, 2022.
URL https://arxiv.org/abs/2206.02713.

Hesham Mostafa and Xin Wang. Parameter efficient training of deep convolutional neural networks
by dynamic sparse reparameterization, 2019. URL https://arxiv.org/abs/1902.
05967.

Mohammed Muqeeth, Haokun Liu, and Colin Raffel. Models with conditional computation
learn suboptimal solutions, 2022. URL https://colinraffel.com/publications/
icbinb2022models.pdf.

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Read-
ing digits in natural images with unsupervised feature learning. In NIPS Workshop on Deep
Learning and Unsupervised Feature Learning, 2011. URL http://ufldl.stanford.
edu/housenumbers/nips2011_housenumbers.pdf.

13

https://arxiv.org/abs/1812.03965
https://arxiv.org/abs/1812.03965
https://arxiv.org/abs/2304.02643
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://www.cs.toronto.edu/~kriz/learning-features-2009-TR.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/1989/file/6c9882bbac1c7093bd25041881277658-Paper.pdf
https://arxiv.org/abs/2206.04046
https://arxiv.org/abs/2206.04046
https://aclanthology.org/2021.acl-long.25
https://arxiv.org/abs/2307.09542
https://arxiv.org/abs/2307.09542
https://arxiv.org/abs/1711.05769
https://arxiv.org/abs/1801.06519
https://arxiv.org/abs/1801.06519
http://dx.doi.org/10.1073/pnas.1803839115
https://arxiv.org/abs/1609.07843
https://arxiv.org/abs/2206.02713
https://arxiv.org/abs/1902.05967
https://arxiv.org/abs/1902.05967
https://colinraffel.com/publications/icbinb2022models.pdf
https://colinraffel.com/publications/icbinb2022models.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf
http://ufldl.stanford.edu/housenumbers/nips2011_housenumbers.pdf

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Andrew Y Ng. Feature selection, l 1 vs. l 2 regularization, and rotational invariance. In Proceedings
of the twenty-first international conference on Machine learning, pp. 78, 2004.

OpenAI. Chatgpt: Optimizing language models for dialogue, Jan 2023a. URL https://
openai.com/blog/chatgpt/.

OpenAI. Gpt-4 technical report, 2023b.

Mansheej Paul, Feng Chen, Brett W. Larsen, Jonathan Frankle, Surya Ganguli, and Gintare Karolina
Dziugaite. Unmasking the lottery ticket hypothesis: What’s encoded in a winning ticket’s
mask? In The Eleventh International Conference on Learning Representations, ICLR 2023,
Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.net/
forum?id=xSsW2Am-ukZ.

Lorenzo Pes, Rick Luiken, Federico Corradi, and Charlotte Frenkel. Active dendrites enable efficient
continual learning in time-to-first-spike neural networks, 2024. URL https://arxiv.org/
abs/2404.19419.

Jonas Pfeiffer, Sebastian Ruder, Ivan Vulić, and Edoardo Maria Ponti. Modular deep learning, 2024.
URL https://arxiv.org/abs/2302.11529.

Nasim Rahaman, Muhammad Waleed Gondal, Shruti Joshi, Peter Gehler, Yoshua Bengio, Francesco
Locatello, and Bernhard Schölkopf. Dynamic inference with neural interpreters, 2021. URL
https://arxiv.org/abs/2110.06399.

Hadsell R;Rao D;Rusu AA;Pascanu Raia. Embracing change: Continual learning in deep neural
networks, 2020. URL https://pubmed.ncbi.nlm.nih.gov/33158755/.

Carl Rasmussen and Zoubin Ghahramani. Infinite mixtures of gaussian process experts. In T. Di-
etterich, S. Becker, and Z. Ghahramani (eds.), Advances in Neural Information Processing Sys-
tems, volume 14. MIT Press, 2001. URL https://proceedings.neurips.cc/paper_
files/paper/2001/file/9afefc52942cb83c7c1f14b2139b09ba-Paper.pdf.

Carl Edward Rasmussen and Christopher K. I. Williams. Gaussian Processes for Machine Learning.
MIT Press, 2006. URL http://gaussianprocess.org/gpml/chapters/RW.pdf.

Stephen Roller, Sainbayar Sukhbaatar, Arthur Szlam, and Jason Weston. Hash layers for large sparse
models, 2021. URL https://arxiv.org/abs/2106.04426.

Clemens Rosenbaum, Tim Klinger, and Matthew Riemer. Routing networks: Adaptive selection of
non-linear functions for multi-task learning, 2017. URL https://arxiv.org/abs/1711.
01239.

Clemens Rosenbaum, Ignacio Cases, Matthew Riemer, and Tim Klinger. Routing networks and the
challenges of modular and compositional computation, 2019. URL https://arxiv.org/
abs/1904.12774.

Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hin-
ton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In International Conference on Learning Representations, 2017. URL https:
//openreview.net/forum?id=B1ckMDqlg.

Noam Shazeer, Kayvon Fatahalian, William R. Mark, and Ravi Teja Mullapudi. Hydranets: Special-
ized dynamic architectures for efficient inference. In 2018 IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 8080–8089, 2018. doi: 10.1109/CVPR.2018.00843.

Kurt Shuster, Jing Xu, Mojtaba Komeili, Da Ju, Eric Michael Smith, Stephen Roller, Megan Ung,
Moya Chen, Kushal Arora, Joshua Lane, Morteza Behrooz, William Ngan, Spencer Poff, Naman
Goyal, Arthur Szlam, Y-Lan Boureau, Melanie Kambadur, and Jason Weston. Blenderbot 3: a
deployed conversational agent that continually learns to responsibly engage, 2022. URL https:
//arxiv.org/abs/2208.03188.

14

https://openai.com/blog/chatgpt/
https://openai.com/blog/chatgpt/
https://openreview.net/forum?id=xSsW2Am-ukZ
https://openreview.net/forum?id=xSsW2Am-ukZ
https://arxiv.org/abs/2404.19419
https://arxiv.org/abs/2404.19419
https://arxiv.org/abs/2302.11529
https://arxiv.org/abs/2110.06399
https://pubmed.ncbi.nlm.nih.gov/33158755/
https://proceedings.neurips.cc/paper_files/paper/2001/file/9afefc52942cb83c7c1f14b2139b09ba-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2001/file/9afefc52942cb83c7c1f14b2139b09ba-Paper.pdf
http://gaussianprocess.org/gpml/chapters/RW.pdf
https://arxiv.org/abs/2106.04426
https://arxiv.org/abs/1711.01239
https://arxiv.org/abs/1711.01239
https://arxiv.org/abs/1904.12774
https://arxiv.org/abs/1904.12774
https://openreview.net/forum?id=B1ckMDqlg
https://openreview.net/forum?id=B1ckMDqlg
https://arxiv.org/abs/2208.03188
https://arxiv.org/abs/2208.03188

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan Salakhutdinov.
Dropout: A simple way to prevent neural networks from overfitting. Journal of Machine
Learning Research, 15(56):1929–1958, 2014. URL http://jmlr.org/papers/v15/
srivastava14a.html.

Robert Tibshirani. Regression shrinkage and selection via the lasso. Journal of the Royal Statistical
Society Series B: Statistical Methodology, 58(1):267–288, 1996.

Ilya Tolstikhin, Neil Houlsby, Alexander Kolesnikov, Lucas Beyer, Xiaohua Zhai, Thomas Un-
terthiner, Jessica Yung, Andreas Steiner, Daniel Keysers, Jakob Uszkoreit, Mario Lucic, and
Alexey Dosovitskiy. Mlp-mixer: An all-mlp architecture for vision, 2021. URL https:
//arxiv.org/abs/2105.01601.

L. Tunstall, L. von Werra, and T. Wolf. Natural Language Processing with Transformers: Building
Language Applications with Hugging Face. O’Reilly Media, 2022. ISBN 9781098103248. URL
https://books.google.com/books?id=_0uezgEACAAJ.

Zhenyi Wang, Li Shen, Le Fang, Qiuling Suo, Tiehang Duan, and Mingchen Gao. Improving
task-free continual learning by distributionally robust memory evolution, 2022. URL https:
//arxiv.org/abs/2207.07256.

Mitchell Wortsman, Vivek Ramanujan, Rosanne Liu, Aniruddha Kembhavi, Mohammad Rastegari,
Jason Yosinski, and Ali Farhadi. Supermasks in superposition, 2020. URL https://arxiv.
org/abs/2006.14769.

Haoyun Xu, Runzhe Zhan, Derek F. Wong, and Lidia S. Chao. Let’s focus on neuron: Neuron-level
supervised fine-tuning for large language model, 2024. URL https://arxiv.org/abs/
2403.11621.

Li Yang, Zhezhi He, Junshan Zhang, and Deliang Fan. Ksm: Fast multiple task adaption via kernel-
wise soft mask learning, 2020. URL https://arxiv.org/abs/2009.05668.

Fei Ye and Adrian G. Bors. Task-free continual learning via online discrepancy distance learning,
2022. URL https://arxiv.org/abs/2210.06579.

Murat Onur Yildirim, Elif Ceren Gok Yildirim, Ghada Sokar, Decebal Constantin Mocanu, and
Joaquin Vanschoren. Continual learning with dynamic sparse training: Exploring algorithms for
effective model updates, 2023. URL https://arxiv.org/abs/2308.14831.

Kentaro Yoshioka. vision-transformers-cifar10: Training vision transformers (vit)
and related models on cifar-10. https://github.com/kentaroy47/
vision-transformers-cifar10, 2024.

Hattie Zhou, Janice Lan, Rosanne Liu, and Jason Yosinski. Deconstructing lottery tickets: Zeros,
signs, and the supermask. In H. Wallach, H. Larochelle, A. Beygelzimer, F. d'Alché-Buc, E. Fox,
and R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 32. Cur-
ran Associates, Inc., 2019. URL https://proceedings.neurips.cc/paper_files/
paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf.

Yanqi Zhou, Tao Lei, Hanxiao Liu, Nan Du, Yanping Huang, Vincent Zhao, Andrew Dai, Zhifeng
Chen, Quoc Le, and James Laudon. Mixture-of-experts with expert choice routing, 2022. URL
https://arxiv.org/abs/2202.09368.

A EXPERIMENT DETAILS

In this section, we provide a detailed description of the experiments conducted to evaluate the perfor-
mance of COMET. The following subsections outline the experimental setup, including the datasets
used, model architectures, and hyperparameters. We also present additional experimental results
and analyses.

15

http://jmlr.org/papers/v15/srivastava14a.html
http://jmlr.org/papers/v15/srivastava14a.html
https://arxiv.org/abs/2105.01601
https://arxiv.org/abs/2105.01601
https://books.google.com/books?id=_0uezgEACAAJ
https://arxiv.org/abs/2207.07256
https://arxiv.org/abs/2207.07256
https://arxiv.org/abs/2006.14769
https://arxiv.org/abs/2006.14769
https://arxiv.org/abs/2403.11621
https://arxiv.org/abs/2403.11621
https://arxiv.org/abs/2009.05668
https://arxiv.org/abs/2210.06579
https://arxiv.org/abs/2308.14831
https://github.com/kentaroy47/vision-transformers-cifar10
https://github.com/kentaroy47/vision-transformers-cifar10
https://proceedings.neurips.cc/paper_files/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/1113d7a76ffceca1bb350bfe145467c6-Paper.pdf
https://arxiv.org/abs/2202.09368

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

A.1 MAIN RESULTS: STANDARD MLP – CIFAR10

In this subsection, we present the main results of our experiments on the CIFAR10 dataset using
a standard 4-layer MLP architecture. We first describe the model configuration and training setup,
followed by a description of the hyperparameter settings used to vary model capacity and sparsity
levels.

Model Configuration and Training We employ a standard 4-layer MLP architecture, utilizing
the SGD optimizer with a learning rate of 1e-4. To ensure robustness, we train each model over 3
random seeds for 100 epochs. We systematically explore the effects of varying model capacity and
sparsity levels by modifying the number of neurons in each layer and the sparsity ratio.

Model Capacity Variations We consider four different model capacities by setting the number of
neurons in each layer to 100, 500, 1000, 3000.

Sparsity Level Variations For each model capacity, we investigate the impact of three different
sparsity levels: 0.1, 0.5, and 0.9.

A.2 ADDITIONAL RESULTS: STANDARD MLP – CIFAR10

This subsection presents additional experimental results on the CIFAR10 dataset using a standard 4-
layer MLP architecture, but with a higher learning rate of 1e-3. We describe the model configuration
and hyperparameter settings used, and report the results of varying model capacity and sparsity
levels.

Model Configuration and Training To further assess the robustness of the COMET method, we
also conduct experiments using a higher learning rate of 1e-3. In these experiments, we again employ
a standard 4-layer MLP, SGD optimizer, and systematically vary model capacity and sparsity levels
by adjusting the number of neurons in each layer and the sparsity ratio, respectively.

Model Capacity Variations We consider an additional model capacity to a total of five different
model capacities by setting the number of neurons in each layer to 100, 500, 1000, 3000, or 9000.

Sparsity Level Variations For each model capacity, we investigate the impact of three different
sparsity levels: 0.1, 0.5, and 0.9.

As illustrated in fig. 11, a consistent trend emerges as we systematically vary the number of neu-
rons and sparsity levels. Moving from top left to bottom right, we observe a shift in the optimal
model configuration. Initially, when network capacity is limited, the standard model outperforms the
COMET model. However, as network capacity increases, the COMET becomes the top performer,
surpassing every other model. This trend reinforces our key finding: selective neuron activation be-
comes increasingly beneficial as network capacity increases, enabling faster learning and improved
generalization through enhanced forward transfer.

A.3 CONTEMPORARY ARCHITECTURES

This subsection presents our experimental results on contemporary architectures, including ViT and
MLP-Mixer models. We describe the hyperparameter settings used for each architecture, and detail
the modifications made to analyze the effect of our sparsity method, COMET.

Hyperparameter Settings We built upon the tuned hyperparameters from Yoshioka (2024) and
made the following modifications to analyze the effect of our sparsity method, COMET. Specifi-
cally, we systematically increased model capacity by adding more neurons to the MLP layers of
each model. Additionally, we used the tanh activation function on the backbone MLP layers. See
appendix A.6 for further analysis on activation functions.

Vision Transformer Hyperparameters The standard ViT uses a set of hyperparameters, which
we modified as follows. The number of classes is set to 10 for CIFAR10 and SVHN, 100 for

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p_
k

=
0.

1

Neurons=100

0 20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0.40

Neurons=500

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Neurons=1000

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40
Neurons=3000

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

Neurons=9000

0 20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0.40

p_
k

=
0.

5

0 20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

p_
k

=
0.

9

0 20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0 20 40 60 80 100

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0 20 40 60 80 100
0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

Va
lid

at
io

n
Ac

cu
ra

cy

Epochs
standard_model
smaller_model
dropout_model

COMET_model
standard_model_l1

top_k_model
moe_trainable

moe_non_trainable
layer_wise_routing

bernoulli_masking
example_tied_dropout

Figure 11: Illustration of 4-layer MLP networks trained on CIFAR10 with a higher learning rate (1e-
3), showcasing the impact of varying network capacity and sparsity levels. As we systematically
increase the number of neurons and decrease sparsity (moving from top left to bottom right), we
observe a shift in the best-performing model. Initially, the standard model (without sparsity, in blue)
outperforms the COMET when network capacity is low. However, as network capacity grows, the
COMET model emerges as the top performer.

CIFAR100, and 200 for Tiny Imagenet. The model depth is 6, with 8 attention heads. We increased
the MLP dimension from 512 to 3072 for the ViT medium model and to 6144 for the ViT large
model. The dropout rate is 0.1, and the patch size is 4. The embedding dropout rate is also 0.1. We
trained the models for 200 epochs with a learning rate of 1e-4.

MLP-Mixer Hyperparameters The MLP-Mixer model uses a different set of hyperparameters.
The patch size is 4. We increased the dimension from 512 to 3072 for the MLP-Mixer medium
model. The model depth is 6, and the number of classes is set to 10 for CIFAR10 and SVHN, 100
for CIFAR100, and 200 for Tiny Imagenet. We trained the models for 500 epochs with a learning
rate of 1e-3.

Training Setup All models were trained using the Adam optimizer with a cosine learning rate
schedule on a single A100 GPU. To ensure robustness, we train each model over 3 random seeds.

A.4 LANGUAGE MODELING

We extend our evaluation of COMET to the task of language modeling, examining its performance
on various GPT model variants.

A.4.1 MAIN RESULTS

This subsection presents our main results on the language modeling task, detailing the performance
of COMET on three different GPT model variants. We describe the hyperparameter settings and
training setup used for each model, and report the results of our experiments.

GPT Model Variants We train three variants of the GPT model, each with a different set of
parameters. The standard GPT-2 model has 12 layers, 768 hidden units, 12 attention heads, and
117M parameters. The GPT-2-Medium model has 24 layers, 1024 hidden units, 16 attention heads,
and 345M parameters. The GPT-2-Large model has 36 layers, 1280 hidden units, 20 attention heads,
and 774M parameters.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Hyperparameter Settings We built upon the tuned hyperparameters from HuggingFace (2022).
Our optimizer of choice was AdamW, with a learning rate of 5e-4, weight decay of 0.1, and 1,000
warmup steps. We also used gradient accumulation with 8 steps, which resulted in an effective batch
size of 256, calculated by multiplying the per-device train batch size (32) by the gradient accumula-
tion steps (8). We used tanh activation function on the backbone MLP layers and a cosine learning
rate schedule with warmup. We also enabled mixed precision training to accelerate computations.

Training Settings Each model was trained from scratch on a single A100 GPU. Due to computa-
tional constraints and time limitations, we restricted training to either 3 epochs or a maximum of 24
hours. To ensure robustness, we train each model over 3 random seeds.

A.4.2 ADDITIONAL RESULTS

We conducted additional experiments to investigate how the choice of hyperparameters influences
the performance of our method, COMET, when applied to the MLP layers of GPT models. This
analysis aims to provide a deeper understanding of the robustness and adaptability of COMET under
various hyperparameter settings.

The following Figures mark COMET models with spec true, due to the fact that COMET’s input-
dependent gating mechanism leads to the formation of experts that are selectively specialized for
specific inputs. The standard models are marked with spec false.

Tokenizer Effect We note that, in general, the GPT models we evaluated tend to learn faster when
using the tokenizer provided by HuggingFace (2022). However, due to its widespread adoption, we
opt to use the standard GPT-2 tokenizer for the remainder of our experiments:

t o k e n i z e r = Au toToken i ze r . f r o m p r e t r a i n e d (” gp t2 ”)

To validate our main findings, we first assess the performance of the different GPT-2 model sizes on
WikiText and CodeParrot using the standard GPT-2 tokenizer and 50% sparsity level. Our results
are presented in figs. 12 to 17.

Consistent with our main results, we find that the COMET-based model learns faster, even with
a smaller model size, when using the standard GPT-2 tokenizer. This suggests that the observed
pattern is robust and not specific to the tokenizer used.

Figure 12: Validation perplexity of GPT-2 on Wikitext dataset using the standard GPT-2 tokenizer.

Learning Rate Effect To investigate the impact of learning rate on the COMET method, we scale
the learning rate by a factor of 10, from 1e-4 to 1e-3. The results of this experiment are presented in
figs. 18 to 23.

Our findings show that, across all experiments, the COMET models consistently learn faster than
their standard counterparts. However, at the 50% sparsity level, we observe that the smaller models

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Figure 13: Validation perplexity of GPT-2 Medium on Wikitext dataset using the standard GPT-2
tokenizer.

Figure 14: Validation perplexity of GPT-2 Large on Wikitext dataset using the standard GPT-2
tokenizer.

often perform slightly worse than the standard models. This result is consistent with our previous
findings, which suggest that adding sparsity to models with limited capacity can negatively impact
performance.

Furthermore, we identify an interesting trend as the model size increases, as seen in figs. 19, 20, 22
and 23. Specifically, when using a larger learning rate and larger model sizes, the standard models
tend to overfit or experience exploding gradients, resulting in a significant increase in validation
perplexity. In contrast, adding sparsity using COMET not only enables faster learning but also
mitigates overfitting and gradient explosion, allowing for stable training with a larger learning rate.

Batch Size Effect To further investigate the robustness of the COMET method, we examine the
effect of reducing the batch size by a factor of 4, achieved by decreasing the gradient accumulation
step from 8 to 2. Our results are presented in figs. 24 to 29.

Our findings demonstrate that COMET remains effective even with a reduced batch size, making
it a viable option for users with limited computational resources. We observe that on the Wikitext
dataset, the smaller GPT model with COMET learns faster and achieves comparable performance to
the standard model at the end of training. In contrast, on the CodeParrot dataset, the smaller model
with COMET outperforms the standard model. Moreover, we note that COMET’s benefits extend
to smaller batch sizes, where standard models may struggle with overfitting or exploding gradients.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Figure 15: Validation perplexity of GPT-2 on CodeParrot dataset using the standard GPT-2 tokenizer.

Figure 16: Validation perplexity of GPT-2 Medium on CodeParrot dataset using the standard GPT-2
tokenizer.

By incorporating sparsity, COMET enables more stable training and better performance, even in
resource-constrained environments.

Mixed Precision Effect We further investigate the robustness of the COMET method by evaluat-
ing its performance under mixed precision training. Specifically, we assess the impact of switching
from FP16 to FP32 precision on the COMET-based models. Our results are presented in figs. 30
to 32.

In summary, our experiments demonstrate that the COMET method consistently enables faster learn-
ing across various model sizes, datasets, and training settings. By incorporating COMET, we ob-
serve improved performance and robustness, even when switching from FP16 to FP32 precision.
This is particularly valuable, as FP32 precision is often preferred in certain applications where nu-
merical stability is crucial. Moreover, having models that can effectively learn in both FP16 and
FP32 precision regimes provides greater flexibility and adaptability, allowing for more efficient de-
ployment on a wide range of hardware platforms.

A.5 REGRESSION

This subsection presents our evaluation of COMET on a regression task using the SARCOS dataset.
We describe the experimental setup, including the dataset, model architecture, and hyperparameter
settings, and report the results of our experiments.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Figure 17: Validation perplexity of GPT-2 Large on CodeParrot dataset using the standard GPT-2
tokenizer.

Figure 18: Validation perplexity of GPT-2 on Wikitext dataset using the standard GPT-2 tokenizer
and a learning rate of 1e-3.

Dataset To conclude our evaluation, we apply the COMET method to a regression task using
the SARCOS dataset. This dataset is derived from an inverse dynamics problem involving a 7-
joint anthropomorphic robot arm, where the goal is to predict the 7 joint torques based on a 21-
dimensional input space consisting of joint positions, velocities, and accelerations. We focus on
a single output dimension, following the approach of Rasmussen & Williams (2006). The dataset
is publicly available at https://gaussianprocess.org/gpml/data/. Building on the
work of Jones et al. (2024), we employ a 4-layer MLP network, but experiment with varying the
number of neurons in each layer and the level of sparsity.

We use SGD optimizer with a learning rate of 1e-2. To ensure robustness, we train each model over
3 random seeds for 50 epochs. We systematically explore the effects of varying model capacity and
sparsity levels by modifying the number of neurons in each layer and the sparsity ratio.

Model Capacity Variations We consider five different model capacities by setting the number of
neurons in each layer to 100, 500, 1000.

Sparsity Level Variations For each model capacity, we investigate the impact of three different
sparsity levels: 0.1, 0.5, and 0.9.

21

https://gaussianprocess.org/gpml/data/

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Figure 19: Validation perplexity of GPT-2 Medium on Wikitext dataset using the standard GPT-2
tokenizer and a learning rate of 1e-3.

Figure 20: Validation perplexity of GPT-2 Large on Wikitext dataset using the standard GPT-2
tokenizer and a learning rate of 1e-3.

Results The results, presented in fig. 33, demonstrate the effectiveness of our approach in this
domain. Consistent with our previous findings, we again observe that the COMET model outper-
forms the standard model as network capacity increases, confirming the benefits of selective neuron
activation in regression tasks.

A.6 ACTIVATIONS ANALYSIS

In this section, we analyze the impact of different activation functions on the performance of
COMET-based models. We present an experimental evaluation of various activation functions on a
4-layer MLP network trained on the CIFAR10 dataset, and discuss the results.

Evaluating the Impact of Activation Functions on COMET We now investigate the impact of
utilizing various activation functions within the backbone network on the performance of a COMET-
based model during training.

Experimental Setup We evaluate the effect of different activation functions on a 4-layer MLP
network trained on the CIFAR10 dataset with the following settings: SGD + Momentum optimizer,
a learning rate of 1e-3, a sparsity level of 0.5, and 3000 neurons in each layer.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Figure 21: Validation perplexity of GPT-2 on CodeParrot dataset using the standard GPT-2 tokenizer
and a learning rate of 1e-3.

Figure 22: Validation perplexity of GPT-2 Medium on CodeParrot dataset using the standard GPT-2
tokenizer and a learning rate of 1e-3.

Results Our results are presented in fig. 34. We find that the COMET model outperforms the
standard model when most activation functions are applied on the backbone network. However, we
observe that COMET does not perform as well as the standard model for certain non-monotonic
activation functions, specifically GELU, Mish, and SiLU, under the settings we chose (sparsity level
= 0.5 and 3000 neurons in each layer). Due to time constraints, we do not delve deeper into the
reasons behind this phenomenon but suggest that future work could investigate why non-monotonic
functions may hinder the effectiveness of COMET.

A.7 COMET: ROUTING NETWORK ARCHITECTURE

We have implemented COMET using a routing network having the same architecture as the back-
bone MLP network, but this is not necessary. COMET only requires the routing network to generate
a mask at each layer having the same shape as (or a shape that can be broadcast to) the shape of the
corresponding backbone layer. Future work will investigate alternative routing network architectures
to determine if they can improve the performance and efficiency of COMET-based models.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

Figure 23: Validation perplexity of GPT-2 Large on CodeParrot dataset using the standard GPT-2
tokenizer and a learning rate of 1e-3.

Figure 24: Validation perplexity of GPT-2 on Wikitext dataset using the standard GPT-2 tokenizer
and a reduced batch size of 64 (14 of original).

A.8 RUNNING TIME AND MEMORY REQUIREMENTS

While COMET does not introduce additional trainable parameters, it does require some extra com-
putation to calculate the masks. We evaluate the training times and GPU memory usage of COMET
compared to standard vision models.

Tables 1 and 2 show that while COMET introduces some additional computation, the overhead is
moderate. For example, the added GPU usage ranges from 0.3 GB (4%) to 7 GB (54%), where the
larger percentage differences occur in cases where the ViT network is excessively overparameterized
(e.g., when the number of neurons in the original network is multiplied by 12, from 512 to 6144).

It is worth noting that for simplification, our implementation has not been optimized:

1. We did not use sparse matrix multiplication methods, which could avoid unnecessary com-
putations through the zero masks. This would reduce both the training time (by preventing
gradient calculation of the zero gates) and overall GPU usage and inference time (due to
less computation). This optimization could lead to significant improvements, potentially
even compared to the base models.

2. As mentioned in appendix A.7, we focus on a specific case where the fixed matrix Ci has
the same dimensions as the weight matrix Wi at each layer. This means that each random
projection matrix has the same shape as the corresponding FC layer’s matrix. Notably,

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Figure 25: Validation perplexity of GPT-2 Medium on Wikitext dataset using the standard GPT-2
tokenizer and a reduced batch size of 64 (14 of original).

Figure 26: Validation perplexity of GPT-2 Large on Wikitext dataset using the standard GPT-2
tokenizer and a reduced batch size of 64 (14 of original).

however, the only requirement is that they share the same input and output dimensions,
leaving room for future exploration of alternative configurations.

Overall, these results suggest that COMET’s additional computational overhead is manageable, even
with our simple implementation, and that its benefits can be achieved without significantly sacrific-
ing efficiency.

Dataset / Model SVHN CIFAR10 CIFAR100 Tiny ImageNet
COMET ViT 6.6 6.6 6.6 6.6
Standard ViT 6.1 6.1 6.1 6.1
COMET ViT-Med 12.3 12.3 12.3 12.3
Standard ViT-Med 9.2 9.2 9.2 9.2
COMET ViT-Large 19.8 19.8 19.8 19.8
Standard ViT-Large 12.8 12.8 12.8 12.8
COMET MLP-Mixer 6.7 6.7 6.7 6.7
Standard MLP-Mixer 6.4 6.4 6.4 6.4
COMET MLP-Mixer-Med 25.5 25.5 25.5 25.5
Standard MLP-Mixer-Med 23.2 23.2 23.2 23.2

Table 1: GPU Utilization in GBs. All models were trained on a single A100 GPU.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

Figure 27: Validation perplexity of GPT-2 on CodeParrot dataset using the standard GPT-2 tokenizer
and a reduced batch size of 64 (14 of original).

Figure 28: Validation perplexity of GPT-2 Medium on CodeParrot dataset using the standard GPT-2
tokenizer and a reduced batch size of 64 (14 of original).

A.9 TRANSFER LEARNING

To further demonstrate COMET’s ability to transfer learned knowledge, we conducted an additional
experiment. We trained MLP COMET and standard MLP models on CIFAR-10 and then fine-tuned
them on SVHN. The results, presented in fig. 35, show that COMET exhibits superior transfer learn-
ing capabilities. Specifically, “COMET with transfer” outperforms “standard model with transfer”

Dataset / Model SVHN CIFAR10 CIFAR100 Tiny ImageNet
COMET ViT 1.1 0.8 0.8 1.2
Standard ViT 0.9 0.7 0.7 1.2
COMET ViT-Med 2.0 1.5 1.5 2.4
Standard ViT-Med 1.3 1.1 1.1 1.3
COMET ViT-Large 3.3 2.2 2.0 3.3
Standard ViT-Large 1.8 1.4 1.3 1.7
COMET MLP-Mixer 1.8 1.5 1.4 2.3
Standard MLP-Mixer 1.6 1.4 1.3 2.3
COMET MLP-Mixer-Med 10.2 5.4 6 9.3
Standard MLP-Mixer-Med 7.6 4.5 4.8 8.1

Table 2: Training times in hours. All models were trained on a single A100 GPU.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

Figure 29: Validation perplexity of GPT-2 Large on CodeParrot dataset using the standard GPT-2
tokenizer and a reduced batch size of 64 (14 of original).

Figure 30: Validation perplexity of GPT-2 on Wikitext dataset using the standard GPT-2 tokenizer
and FP32 precision.

in both initial accuracy and learning speed. Moreover, “COMET with transfer” also surpasses the
overall performance of both “COMET without transfer” and “standard model without transfer” on
SVHN. This suggests that COMET’s advantage is not limited to out-of-sample generalization in the
same distribution but also extends to transfer across tasks.

Interestingly, we observe a larger gap in performance between “standard model with transfer” and
“standard model without transfer” compared to the gap between “COMET model with transfer”
and “COMET model without transfer”. This might suggest that the standard model benefits more
from transfer learning on non-iid data. However, since overall performance is generally taken as
the primary metric for evaluating transfer learning, COMET’s superior performance on SVHN is
the most relevant outcome. This finding is promising for future work that will more thoroughly
investigate COMET in multi-task settings including transfer learning and continual learning.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

Figure 31: Validation perplexity of GPT-2 Medium on Wikitext dataset using the standard GPT-2
tokenizer and FP32 precision.

Figure 32: Validation perplexity of GPT-2 on CodeParrot dataset using the standard GPT-2 tokenizer
and FP32 precision.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
50

100

150

200

250

300

350

p_
k

=
0.

1

Neurons=100
Standard
 (0.02M)
COMET
 (0.02M)

0 10 20 30 40 50

50

100

150

200

250

300
Neurons=500

Standard
 (0.51M)
COMET
 (0.51M)

0 10 20 30 40 50

50

100

150

200

250

300 Neurons=1000
Standard
 (2.03M)
COMET
 (2.03M)

0 10 20 30 40 50

40

60

80

100

120

p_
k

=
0.

5

Standard
 (0.02M)
COMET
 (0.02M)

0 10 20 30 40 50
20

40

60

80

100
Standard
 (0.51M)
COMET
 (0.51M)

0 10 20 30 40 50
20

40

60

80

100

120

140 Standard
 (2.03M)
COMET
 (2.03M)

0 10 20 30 40 50

40

60

80

100

p_
k

=
0.

9

Standard
 (0.02M)
COMET
 (0.02M)

0 10 20 30 40 50

40

60

80

100

120 Standard
 (0.51M)
COMET
 (0.51M)

0 10 20 30 40 50
20

40

60

80

100

120

140
Standard
 (2.03M)
COMET
 (2.03M)

SARCOS

Va
lid

at
io

n
Lo

ss

Epochs

Figure 33: Illustration of 4-layers MLP trained on SARCOS.

Figure 34: Comparison of the performance of COMET-trained MLP networks on the CIFAR10
dataset using different activation functions.

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

0 5 10 15 20 25 30
Epoch

0.2

0.3

0.4

0.5

0.6

0.7

SV
HN

 V
al

id
at

io
n

Ac
cu

ra
cy

COMET With Transfer
COMET Without Transfer
Standard Model With Transfer
Standard Model Without Transfer

Figure 35: Non-IID Transfer: Evaluating COMET and the standard model on non-iid transfer learn-
ing. In particular, we train both COMET and the standard model on CIFAR10 followed by finetuning
on SVHN (with transfer), or just train both models on SVHN (without transfer).

30

	Introduction
	Related Work
	Mixture of Experts and Input-dependent Masking
	Conditionally Overlapping Mixture of Experts (COMET)
	Experiments
	Synthetic Data Experiments
	Fixed Input-dependent Routing Network
	Expert Utilization

	Image Classification
	Standard MLP – CIFAR10
	Contemporary Architectures

	Language Modeling and Regression

	Conclusions
	Experiment Details
	Main Results: Standard MLP – CIFAR10
	Additional Results: Standard MLP – CIFAR10
	Contemporary Architectures
	Language Modeling
	Main Results
	Additional Results

	Regression
	Activations Analysis
	COMET: Routing Network Architecture
	Running Time and Memory Requirements
	Transfer Learning

