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ABSTRACT

Recent advances in scene reconstruction have pushed toward highly realistic mod-
eling of autonomous driving (AD) environments using 3D Gaussian splatting.
However, the resulting reconstructions remain closely tied to the original obser-
vations and struggle to support photorealistic synthesis of significantly altered or
novel driving scenarios. This work introduces MADRIVE, a memory-augmented
reconstruction framework designed to extend the capabilities of existing scene
reconstruction methods by replacing observed vehicles with visually similar 3D
assets retrieved from a large-scale external memory bank. Specifically, we release
MAD-CARS, a curated dataset of ~70K 360° car videos captured in the wild and
present a retrieval module that finds the most similar car instances in the memory
bank, reconstructs the corresponding 3D assets from video, and integrates them
into the target scene through orientation alignment and relighting. The result-
ing replacements provide complete multi-view representations of vehicles in the
scene, enabling photorealistic synthesis of substantially altered configurations, as
demonstrated in our experiments.
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Figure 1: MADRIVE reconstructs a 3D driving scene from training frames (Left) and replaces
partially observed vehicles in the scene with realistically reconstructed counterparts retrieved from
MAD-CARS, our novel multi-view auto dataset. MADRIVE enables high-fidelity modeling of
future scene views ( ) and supports simulation of alternative scenarios,
advancing novel-view synthesis in dynamic environments (Right).

1 INTRODUCTION

Autonomous driving (AD) is one of the key areas in computer vision, requiring extensive and costly
data collection (Xiao et al., 2021} |Sun et al.l [2020; |Geiger et al., [2012; [Cabon et al.l [2020; |Caesar
et al.} 2020) to train accurate and robust perception and planning models (Bansal et al.,2018; Huang
et al., 2024b; Gao et al.; 2020). Driving simulators (Wang et al., 2023bj Zhou et al., 2024a; |Yang
et al.| [2023a) aim at offering a powerful alternative by enabling the generation of highly realistic
novel views and rare scenarios, especially safety-critical ones that are too dangerous or impractical
to capture in the wild. Accurate modeling of such scenarios is essential to mitigate domain shift
during training, which could otherwise lead to failures in deployments. When failures occur on real
roads, it is important to “debug” the driving policy and “replay” the scenario to address the root
cause.

Recent advances in multi-view reconstruction and novel view synthesis (Kerbl et al.l [2023a} |Yu
et al., 2024; [Kheradmand et al.| 2024) provide a foundation for developing highly realistic driving
simulators (Zhou et al.| [2024a), designed to faithfully replicate real-world scenes. Such solutions
can be used for real-time, controllable simulations that preserve the visual domain of real-world
data, unlike game engine-based simulations, which often introduce significant domain shifts.
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Modern driving scene reconstruction methods (Zhou et al., [2024bj [Yan et al.l 2024} [Khan et al.,
2024)) have achieved impressive photo-realism in rendering the observed views, while also enabling
the simulation of slight vehicle trajectory deviations, e.g., lane changes (Khan et al.| [2024; Zhou
et al.| 2024b). However, since novel view synthesis is limited to the geometry observed in the data,
existing reconstruction methods cannot reliably model vehicles beyond the observed views, which
limits their usefulness for simulating alternative outcomes or reenacting failures in driving scenarios.

Motivation. In real-world driving, AD system failures often require human intervention. To diag-
nose such such failures, it is essential to reproduce the situation - modeling how events would have
unfolded without intervention. Controllable reenactments not only help identify root causes, but also
generate diverse training examples for robust AD. Therefore, we focus on controllable simulation of
raw camera inputs to replicate frame sequences with similar surroundings and vehicles.

Contributions. To overcome the limitations of existing methods, we introduce MADRIVE, a
memory-augmented reconstruction framework that integrates external 3D car models into captured
driving scenes. To faithfully adapt these models to the surrounding scene, we further propose
physically-based relighting and insertion techniques, resulting in visually consistent novel driving
scene views.

Our method is motivated by the assumption that the variety of car models, types, and colors is
relatively limited (Wikipedia contributors| [2024)), making it feasible to build a dataset that covers
the majority of cars typically seen on the road. To this end, we present a dataset containing 360°
view sequences of ~70, 000 cars, curated from online sale advertisements.

Furthermore, leveraging integrated high-fidelity car models enables a more challenging evaluation
setting. Previous solutions for driving scene reconstruction mainly focus on replicating or editing
unseen intermediate frames (Yan et al.l 2024; Khan et al.| 2024} [Zhou et al., [2024bfa). Our work
instead considers driving scene extrapolation — predicting the future appearance of vehicles based
on a sequence of past views. We show that MADRIVE can faithfully render a diverse range of
plausible vehicle trajectories, offering a foundation for simulation applications that model alternative
outcomes of real driving scenarios. In summary, the contributions are as follows.

* We present MAD-CARS, Multi-view Auto Dataset — a curated, large-scale collection of 360°
car videos. It comprises ~70, 000 car instances with diverse brands, models, colors, and lighting
conditions, significantly expanding the scope of existing public multi-view car datasets.

* We propose MADRIVE- a Memory-Augmented Driving scene reconstruction framework aimed
at realistic synthesis of diverse and complex driving scenarios. Given sparse car views in the
scene, MADRIVE retrieves similar vehicles from a car video database, reconstructs them into
high-quality 3D assets, and naturally integrates them into the scene, replacing the original cars.

* We describe a novel evaluation setting for assessing driving scene reconstruction methods in
significantly altered views, and show that MADRIVE produces more realistic renderings, as evi-
denced by reduced performance degradation in downstream perception tasks.

2 RELATED WORK

Dynamic Urban Scene Reconstruction. NeRFs (Mildenhall et al., 2020) can be used to model
dynamic urban scenes. SUDS (Turki et al., [2023) uses a single network for dynamic actors, which
limits the possibility of altering the behavior of the actors. EmerNeRF (Yang et al., [2024b)) fol-
lows a similar idea to SUDS by decomposing the scene purely into static and dynamic components.
NeuRAD (Tonderski et al.l 2024])) takes advantage of monocular or LiDAR-based 3D bounding box
predictions and proposes a joint optimization of object poses during the reconstruction process. Al-
though these methods produce reasonable results, they are still 1) limited to the high training cost
and low rendering speed; or 2) do not address extrapolation of future vehicle appearance far be-
yond the original camera views. Recent dynamic 3D scene reconstruction methods increasingly
adopt 3D Gaussian Splatting (Kerbl et al., |2023b) as an efficient and expressive scene representa-
tion (Yang et al.,|2023b; Wu et al., [2024; [Yang et al., [2024c}; |Chen et al., 2023). Several approaches
[StreetGS (Yan et al.;2024), AutoSplat (Khan et al.,[2024), HUGS (Zhou et al.,2024b))] adopt these
methods to driving scene modeling and decompose the scenes into a static background and fore-
ground vehicles, placed in the scene using 3D bounding boxes derived from tracking data. These
methods also propose various modifications to improve driving scene reconstruction and novel view
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synthesis. Both HUGS and AutoSplat represent the ground as a plane of 2D splats. HUGS fur-
ther leverages additional information (optical flow and semantic segmentation) to guide splat opti-
mization and introduces a method for realistic shadow placement. AutoSplat (Khan et al., [2024)
improves car reconstruction from limited viewpoints by exploiting the bilateral symmetry of vehi-
cles to augment side views and by employing more accurate splat initialization via an image-to-3D
model (Pavllo et al., 2023). DrivingGaussian (Zhou et al., [2024c)) uses composite dynamic Gaus-
sian graph to handle multiple moving objects, individually reconstructing each object and restoring
their accurate positions and occlusion relationships within the scene. OmniRe (Chen et al.| [2025))
leverages dynamic neural scene graphs based on Gaussian representations to unify the reconstruc-
tion of static backgrounds, driving vehicles, and non-rigidly moving dynamic actors, which enables
human-centered simulations. Despite these advances, accurately reconstructing the full appearance
of a vehicle in the scene, particularly from sparse or occluded views, remains a substantial challenge.

3D Car Datasets. Several public datasets provide 3D car assets. Early collections such as SRN-
Car (Chang et al., 2015) and Objaverse-Car (Deitke et al., [2023)) contain CAD models that deviate
significantly from real-world cars in terms of texture realism and geometric details.

More recent efforts (Zhang et al.| 2021} [Du et al. 2024) have focused on real captured 3D car
datasets. MVMC (Zhang et al., [2021)) includes 576 cars, each with an average of 10 views. 3DReal-
Car (Du et al.| [2024) provides 2, 500 car instances, each with ~200 dense high-resolution RGB-D
views.

In contrast, MAD-CARS includes ~70, 000 360° car videos at a comparable resolution and average
number of views as 3DRealCar, thereby offering substantially greater generalization and diversity.

Novel View Synthesis with External 3D Car Assets. HUGSim (Zhou et all |2024a) builds a
closed-loop AD simulator by inserting 3D car models from 3DRealCars (Du et al., [2024). In con-
trast, we replace observed vehicles in real scenarios with retrieved counterparts, enabling extrapola-
tion and rollout of actual driving situations.

Several approaches leverage CAD models for scene representation (Engelmann et al., [2017; [Wang
et al., [2023b; [Uy et al), |2020; |Avetisyan et al.l 2019; |Guimeli et al. 2022), but these assets often
differ notably from real vehicles. To improve realism, some methods apply geometry tuning (Uy
et al. 2020; Wang et al.|, [2023b} [Engelmann et al., [2017), whereas UrbanCAD (Lu et al., [2024)
retrieves similar CAD models and refines their textures and lighting to better match the scene while
preserving CAD-level controllability. However, the obtained models still have a noticeable gap in
realism and correspondence to actual cars.

Meanwhile, MADRIVE retrieves real cars instances from a large-scale database spanning diverse
brands, models, materials, colors, and lighting conditions — aiming at closing the realism gap while
preserving accurate scene alignment.

Relighting. Given a set of input views, scene reconstruction approaches based on radiance fields
recover the outgoing radiance along with scene geometry. The radiance field depends on the scene’s
lighting and varies when an object is placed in a different context. In general, the outgoing radiance
is governed by the rendering equation (Kajiyal |1986). An exact solution to scene relighting would
involve modeling light propagation via ray tracing. Although some recent works introduce solutions
for efficient ray tracing (Xie et al., 2024} |(Govindarajan et al., [2025}; Moenne-Loccoz et al., 2024;
Byrski et al., |2025)), relighting remains beyond the scope of their work.

As an alternative, several recent works model light propagation using approximations to the render-
ing equation from real-time graphics. LumiGauss (Kaleta et al.,|2024) introduces a splat-based re-
lighting method using spherical harmonics (Ramamoorthi & Hanrahan, 2001), but it requires multi-
illumination data and is restricted to diffuse surfaces. GaussianShader (Jiang et al., 2024)) employs
the split-sum approximation (Karis & Games| [2013)) to enhance specular reflections during recon-
struction. In contrast, our approach leverages a similar PBR-based shading model while enabling
relighting for scenes captured under fixed illumination.

Our relighting procedure requires an environmental map. In (Liang et al., [2024)), DilPIR employs a
generative model to infer it using a gradient-based procedure. In turn, we estimate the environmental
map using training frames with (Phongthawee et al, 2024)) without additional costly optimization
procedure.
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Figure 2: MADRIVE Overview. Given an input frame sequence, our retrieval scheme finds similar
vehicles in an external database (Left). The 3D reconstruction pipeline then produces detailed ve-
hicle models from the retrieved videos. The vehicles are represented with relightable 2D Gaussian
splats. Opacity masks are used to remove background splats. The model geometry is regularized
with external normals maps. ( ). The reconstructed vehicles are adapted to the scene’s lighting
conditions and composed with the background to produce the overall scene representation (Right).

3 METHOD

In this section, we describe MADRIVE that replaces the vehicles in the scene with visually similar,
fully-observed 3D car assets, thereby enabling the prediction of future vehicle appearances following
sharp turns or other complex maneuvers. The overview of our method is presented in Figure 2] In
the following, we describe the proposed method in detail.

3.1 DRIVING SCENE RECONSTRUCTION

Following (Yan et al.| 2024), we decompose the scene into static and dynamic components. The
static component can be reconstructed based on the video from the moving vehicle. The movement
parallax and the availability of depth sensor data allow to recover the scene structure.

We adapt the approach from Street Gaussians (Khan et al.,|2024) to represent the static component of
the scene consisting of three parts: ground, surroundings, and sky. We parameterize the surroundings
with 3D Gaussian Splats (Kerbl et al.| 2023a). We represent the ground part of the scene with
horizontal 2D Gaussian splats. We avoid distance estimation ambiguities by putting the sky at an
infinite distance and blending it into the scene at the last step.

The dynamic component includes all moving vehicles in the scene. For simplicity, we treat cars
labeled as stationary in the dataset metadata as part of the static component. In general, there are two
challenges in estimating and modeling the dynamic part of the scene. First, it requires accounting for
compound motion. Second, observations often capture only a limited portion of a dynamic object.
For example, predicting a vehicle’s side turn is difficult if its appearance from certain angles was
never observed.

In line with Gaussian splatting-based urban driving scene modeling works (Yan et al., [2024; [Khan
et al., 2024), we represent observed vehicles as static Gaussian splats within the corresponding
moving bounding box to model the compound motion in the scene. To obtain the static part of
the scene, we initialize both static and dynamic parts with LIDAR data and train the splats with
photometric loss.

During inference, we reuse the static part of the scene. At the same time, we replace moving vehicles
with 3D car models extracted from a bank of cars using the retrieval-based approach, described in the
next section. This substitution allows obtaining high-quality renders for configurations significantly
diverging from the ones observed during training.

3.2 RETRIEVAL AND CAR RECONSTRUCTION

We propose reconstructing the dynamic part of the scene with a retrieval-based approach. Specifi-
cally, we first extract crops of the moving cars observed in the scene and find the similar car instances
in the database of multi-view car captures. Then, given the retrieved images, we construct photore-
alistic 3D car models and replace the original cars in the scene with the obtained 3D assets. Despite
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Figure 3: MAD-CARS Analysis. Memory-bank statistics on colors (Left), car types ( ) and
lighting conditions (Right).

the limited car visibility in the scene, retrieval-augmented reconstruction enables faithful 3D car
reconstruction even from a single frame.

Retrieval Details. To produce a retrieval query, we compute a mask by projecting the 3D bound-
ing box of a car onto an image plane. After filtering out small masks and overlapping masks, we
use the remaining ones to extract image crops containing individual cars. For each crop, we com-
pute an image embedding using SigL.IP2 (Tschannen et al., |2025)) and extract the car color using
Qwen2.5-VL (Yang et al.,[2024a)). This color cue complements the image features, which tend to
focus more on brand and car type, as observed in our experiments. To retrieve the car instance in the
database, we first collect database entries with similar color and then select the one with the closest
image embedding. We used YOLOv11 (Jocher & Qiul [2024) to obtain instance segmentation masks
for filtering out nearby cars in the scene. Once matches are found, we reconstruct the correspond-
ing 3D car models using the associated multi-view image sets. The following section details our
reconstruction procedure.

Relightable Car Models. We begin by specifying the representation used to model vehicles. By
default, Gaussian splatting approximates the radiance field observed in the training frames as a
whole. In our setup, however, we need to explicitly separate lighting and material effects to enable
model insertion into environments with different illumination. To this end, we adopt a relighting
strategy based on physically based shading (Burley & Studios}, [2012).

We use a two-dimensional modification of Gaussian splats (Huang et al.| [2024a), which approxi-
mates the 3D model with a collection of flat Gaussian splats. Each splat is parameterized by its
location ;1 € R3, orientation matrix R € SO(3), transparency « € R, and two scale parameters
0z,04 € R. Unlike 3D splats, 2D splats have well-defined surface normals n = n(R), which are
essential for surface relighting effects.

To disentangle scene lighting from surface materials, we adopt the lighting model from (Munkberg
et al.l 2022) for each splat. The model assumes distant illumination with incident radiance L;(w;)
and defines the outgoing radiance in direction w, according to the rendering equation (Kajiyal |1986):

L(w,) = /QLi(wi)f(wi,wo)(wi -n)dw;, (D

where f(w;,w,) is the surface BSDF and the integration is taken over the hemisphere €2 around
the surface point. The environment lighting L, is parameterized as a high-resolution cubemap.
Following (Munkberg et al.l [2022), we parameterize each splat’s BSDF using the Cook—Torrance
shading model (Cook & Torrance, [1982), with appearance defined by albedo ¢ € R3, roughness
r € R, and metallicity m € R.

Finally, to avoid the cost of directly evaluating Eq. |1} we employ the differentiable split-sum approx-
imation from (Munkberg et al [2022), which allows us to jointly infer incident radiance and splat
BSDF parameters during optimization.

Car Reconstruction Details. Next, we specify the details of the reconstruction algorithm used for
the representation above.

For a rendered frame I; and the ground truth frame I;, our objective consists of image-based loss
Ligy = L1(1;,1;) + Lssiv (i, I;) along with several rggularizers. T? exclude unnecessary back-
ground objects from the model, we generate masks M;(x,y) = [[;(x,y) is part of a car] with
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Figure 4: Qualitative comparison of MADRIVE with non-retrieval-based driving scene recon-
struction methods. Reconstruction of the training views (Top). Reconstruction of the hold-out (fu-
ture) views ( ).

Mask2Former (Cheng et al., [2022) to indicate pixels that belong to the model. Our opacity loss

promotes high transparency outside of car pixels Lopacity = 32, (1 — M;) - T;, where T; is the
transparency map of the rendered frame. In our model, proper relighting requires accurate surface
normals, so we additionally estimate normal maps N; = n(fz) with a NormalCrafter model (Bin
et al.,2025)) and use the estimates to regularize Gaussian orientations. For the rendered normal maps
N;, the regularizer is L,prma = Zw ” M; - (1-NF ]\Aft) The resulting objective is

£g1(1i7 jz) = Lrgb(lia fz) + )\opaciryﬁopacity(lh jz) + Anormalﬁnormal(lia fz) (2)

Furthermore, to promote realistic appearance under novel lighting conditions, we incorporate addi-
tional synthetic data. Disentangling illumination and scene materials is particularly challenging for
in-the-wild captures, where lighting remains fixed throughout training. To address this limitation,
we approximate a multi-illumination setup using synthetic data. Specifically, we render random
model views under varying pre-defined environmental lighting and enhance these renders using the
Difix image-to-image model (Wu et al.,|2025a). The enhanced images I; are then used as training
samples. To compute the objective in Eq. [2] we render frames ; with the same environmental light-
ing as in I;, use the a-channel of I; as the mask, and omit the normal regularization. We add the
synthetic frames in the same proportion as the real frames. Synthetic frames are introduced after the
initial 10k gradient steps and regenerated every 2.5k steps throughout the following 20k steps.

3.3 CAR INSERTION AND RELIGHTING

The final stage of our pipeline integrates reconstructed cars into the learned scene. First, we pre-
pare each car for the insertion. We remove occasional splats that are either positioned behind the
training cameras or project onto pixels outside the car mask in the training images. The car is then
oriented based on the principal components of its point cloud, further refined using an orientation
model (Scarvelis et al.,[2024) to ensure proper alignment within the driving scene.

Next, the aligned point cloud is placed inside the bounding box of the original car to be replaced.
To achieve precise alignment in both scale and position, we use the Iterative Closest Point (ICP)
algorithm (Besl & McKay, [1992) and apply the resulting transformation to the inserted car. To
enhance visual realism, we add a shadow beneath the car, modeled as a black plane composed of 2D
splats placed under the wheels. While more sophisticated shadow placement based on sun position,
as explored in (Zhou et al.| 2024a)), could be considered, we find it non-essential for our method.

Since the retrieved car asset is captured under different lighting conditions, we estimate the target
scene’s environment map and adjust the car’s appearance via Eq. [T|to ensure visual consistency. As
the Waymo dataset (Sun et al.,2020) lacks full 360° camera coverage, we approximate lighting con-
ditions using DiffusionLight (Phongthawee et al., 2024), which reconstructs missing environment
map regions via diffusion-based inpainting. Given a training frame, we estimate the environment
map and align it with the corresponding camera orientation. In addition, we adjust the scale of the
environmental map to minimize the tone discrepancy between the last training frame and our render.

3.4 DATABASE COLLECTION AND STATISTICS

This work introduces MAD-CARS, a large-scale database of multi-view car videos in the wild,
sourced from online car sale advertisements. The database contains ~70,000 diverse video in-
stances, each averaging ~85 frames, with most car instances available at a resolution of 1920 x 1080.
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It includes cars from ~150 brands, covering a broad range of colors, car types, and three lighting
conditions. Distributions of color, car type, and lighting are illustrated in Figure[3] The metadata for
each car instance is presented in the dataset.

The data is carefully curated by filtering out frames and entire car instances that could negatively
impact 3D reconstruction. In more detail, we remove low quality and overly dark frames with CLIP-
IQA (Wang et al. 2023a)) and use Qwen2.5-VL (Yang et al.| 2024a) to detect finger blocked shots,
car interior views, the frames where the car view is occluded, e.g., by fences, trees, other vehicles,
etc. More data collection details are provided in Appendix

4 EXPERIMENTS

In the following, we report the MADRIVE performance. ~Section [.1] describes our evaluation
setup. Then, we proceed to the main results in Section #.2] Finally, we explore the retrieval, car
reconstruction and relighting procedures in Section Section [4.3]

4.1 EVALUATION SETUP

Scene Reconstruction Dataset. We reconstruct the driving scenes from the Waymo Open Motion
dataset (Ettinger et al., [2021). We picked 12 particularly challenging scenes containing multiple
cars, driving maneuvers and diverse lighting conditions. Then, we manually select scene sequences
and divide them into training and evaluation clips. In our experiments, we simultaneously use videos
from frontal and two side cameras to capture a wide field of view and track cars moving across the
scene. More evaluation setup details are provided in Appendix B}

Scene Extrapolation with Novel View Synthesis. For our evaluation, we selected driving scenes
involving U-turns, intersection crossings, and parking departures — common accident scenarios
that also reveal vehicles from diverse viewpoints, posing challenges for reconstruction. Each frame
sequence was manually split into training and testing subsets at the midpoint of the maneuver. We
use the whole sequence to reconstruct the background and then remove the cars using the annotated
bounding boxes in the Waymo dataset. Car reconstruction is performed using only the first part of
the sequence, while the second part is reserved for evaluating scene reconstruction quality. We aim
to generate realistic views of the scene by extrapolating the observed data. In particular, we insert the
reconstructed car models into the background according to location and orientation specified by the
bounding boxes on the holdout sequence. By design, our setup evaluates scenes under configurations
that differ significantly from the frames seen during training. At the same time, the data split ensures
that test frames do not leak into the car reconstruction process.

Baselines. We compare MADRIVE with the scene reconstruction Gaussian splatting-based meth-
ods that were previously considered for novel view synthesis: Street-Gaussians (SG) (Yan et al.,
2024), AutoSplat (Khan et al.,|2024) (our implementation), and HUGS (Zhou et al.,|2024b). Details
on training and evaluation of baselines are given in Appendix [D]

4.2 MAIN EXPERIMENTS

Qualitative Evaluation. First, we provide visual scene reconstruction results for qualitative anal-
ysis. In Figure 4] we compare rendering results on the training and hold-out frames. Although SG,
AutoSplat, and HUGS produce accurate approximations of training frames, on the test frames cars
tend to fell apart for novel view angles. Compared to baselines, our method cannot reproduce the
training frames with the same precision, but is significantly more robust to deviations from training
configurations. More visual examples are presented in Figures[9] [I0] We also provide the visualiza-
tions with modified trajectories in Figure[TT]

Table 1: Comparison in terms of tracking and segmentation metrics.

Model ‘ MOTA+ MOTP| IDF11 Segmentation IoU 1
Street-GS (Yan et al., 2024) 0.654 0.105 0.776 0.556
HUGS (Zhou et al.;[2024b) 0.556 0.221 0.699 0.333
AutoSplat” (Khan et al.,[2024) 0.589 0.154 0.716 0.489
MADRIVE (Ours) | 0.841 0.138 0.913 0.818

- } .
Denotes our reimplementation.

Quantitative Evaluation. In our main experiments, we assess tracking and segmentation perfor-
mance on synthesized test frames. Specifically, we apply state-of-the-art tracking and segmentation
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Figure 5: Qualitative comparison of reconstructed vehicles on KITTI-360 from the reference
and rotated viewpoints. MADRIVE on top of the MAD-CARS dataset produces more similar and
realistic 3D assets.
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models to both synthesized and ground truth frames and compare their outputs using established
metrics for each task. For tracking, we use BotSort (Aharon et al., 2022)) with a YOLOv8n back-
bone, reporting multiple object tracking accuracy (MOTA®), precision (MOTPJ), and identity F1
score (IDF1) (Milan et all 2016). For segmentation, we compute the average intersection-over-
union (IoU) using instance segmentation masks obtained with Mask2Former (Cheng et al [2022).
Table[T]presents the comparison of MADRIVE against the baselines. MADRIVE shows substantially
superior performance compared to the baselines in 2 tracking metrics (MOTA and IDF) and segmen-
tation metric IoU. This observation is also supported by the visual examples provided in Figure 4]
We explain the MOTP gap between our method and Street-GS by the better car alignment of Street-
GS in the first test frames, while later frames, where the tracker fails to detect Street-GS cars, are
not counted in the MOTP calculation. We provide per scene results for all 12 scenes in Appendix [C}
We also discuss the choice for the reference masks in the evaluation protocol in Appendix [E]

4.3 FURTHER EVALUATION

Retrieval. Here, we evaluate the performance of the proposed retrieval module isolated from other
components to address how accurately the retrieved cars correspond to the original cars in the scene.

We compare the retrieval performance on Table 2: Retrieval performance w/o color filter-
the proposed dataset against 3DRealCars (Du| ing in terms of accuracy on the car brand, model,
et al, [2024), highly accurate publicly avail- color and type and the distance to the closest in-
able dataset of 2,500 car assets. To evaluate stance for the MAD-CARS and 3DRealCar (Du
the retrieval quality, we first calculate the av- |et al., [2024)) datasets. MAD-CARS enables more
erage L2 distance between the car images from accurate retrieval of cars across all attributes.

the driving scene and the nearest cars from the
memory bank. We use SlgLIP2 So (Tschan- Dataset Brand © Model T Color 1t Car Type 1 \ Distance |
nen et al, 2025) as an image feature extractor. ~ JDReACos 0036 0503 0508 0858 oo
Then, we provide the accuracy obtained with

the Qwen2.5-VL-32B-Instruct model, asked to compare the cars in terms of their brand, model,
color and car type. For a fair comparison, we do not use the color filtering in this experiment.

Table 2] shows the retrieval accuracy across different attributes, and the average L2 distance to the
closest instance. We observe that candidates retrieved using MAD-CARS more accurately match
the cars in the driving scenes, which we attribute to the significantly larger scale of MAD-CARS.

Importantly, Table 2] highlights that retrieval based solely on feature extractors often disregards car
color, despite its importance for realistic car replacement. The similar problem has been observed
for non-visual-language encoders such as DINOv2 (Oquab et al., |2023). Our additional results
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Figure 6: Ablation of reconstruction regularizers, each setting adds one component to the previous
and shows albedo. (a) Without regularization, shape and texture artifacts cause uneven edges. (b)
Adding opacity regularization improves edge quality. (c) Adding normal regularization enhances
surface smoothness. (d) Training with synthetic frames under varying lighting disentangles illumi-
nation from object color, yielding cleaner albedo and reconstructions.

in Appendix [F show that applying a color-based pre-filtering improves color consistency between
the retrieved and target vehicles.

Car reconstruction. We provide a qualitative comparison with other car reconstruction ap-
proaches in Figure 5] where we visualized reconstruction alternatives. Given a query frame from the
KITTI dataset, we compared the proposed approach with three alternatives: car reconstruction on
a different car dataset (Du et al., 2024)), matching with a car model from a CAD dataset (Lu et al.,
2024), and running a cutting edge image-to-3D models (Lin et al., 2025 Wu et al., 2025b). Even
though the latter closely matches the query frame, the second view indicates a subpar geometry
recovery. Compared to other methods, we see that the diversity of our dataset allows MADRIVE
to obtain models that closely match the query frame in terms of appearance (e.g., color, shape) and
realism.

We further ablate the components of the proposed reconstruction algorithm. Figure [6] shows the
recovered geometry and albedo for several cars. Reconstruction without regularization (a) produces
noticeable artifacts in both shape and texture, leading to uneven edges after background removal.
Introducing opacity regularization to suppress the background during reconstruction (b) improves
edge quality. Adding normal regularization (c¢) further enhances surface smoothness and consistency.
Finally, incorporating synthetic frames under varying lighting conditions (d) helps disentangle scene
illumination from object color, yielding more accurate albedo and overall cleaner reconstructions.

Relighting. We conclude with a qualitative compari-

son of the proposed relighting scheme. For a number of

scenes, we reconstructed scene frames with and without

the relighting module. Figure [/| shows that the relight-

ing module adapts the model colors to the environment,

helping to reduce the inconsistencies that break immer-

sion and make the inserted models appear naturally lit

within the scene.

5 CONCLUSION . .
W/o relighting W/ relighting

This work presents MADRIVE, a novel driving scene re-

construction approach specifically designed to model sig-

nificantly altered vehicle positions. Powered by MAD-

CARS, our large-scale multi-view car dataset, MADRIVE

replaces dynamic vehicles in a scene with similar car in-

stances from the database. We believe that MADRIVE

could make a step towards modeling multiple potential

outcomes for analyzing an autonomous driving system’s behavior in safety-critical situations.

Figure 7: Relighting ablation. Ren-
dered hold-out frames without (Left)
and with (Right) relighting.

However, despite the promising visual fidelity of future scenario frames, they still differ from the
ground truth, as we discuss in Appendix [} Future work could focus on expanding the database with
a wider range of car brands, models, and types, as well as enhancing corrupted car videos using
recent multi-view diffusion (Zhou et al., [2025)).
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A  DATA COLLECTION DETAILS

The initial database contained ~95,000 car videos of ~100 views on average. The first filtering
stage includes the filtering of low quality and overly dark images with the CLIP-IQA model (Wang
et al.,[2023a)), discarding frames with a score < 0.2. Then, we use Qwen-2.5-VL-Instruct (7B) (Yang
et al.,[20244a)) to respond several questions for each frame:

* “Does the image depict a car?”

* “Is the car directly occluded?”

* “Does the image depict the car interior?”

* “Does a hand or finger block the view?”

* “Is the car door open?”

* “Does the image mainly depict the car window?”

Based on the responses, we filter out the corresponding frames or, in some cases, entire car instances.
Also, if fewer than 45 valid frames remain for a given instance, the entire instance is discarded.

B EVALUATION SETUP DETAILS

For scene reconstruction evaluation, we selected 12 scenes from the Waymo Open Dataset (Sun
et al., 2020), with labels listed in Table E} This table also provides the correspondence between
the original scene labels from the Waymo Cloud Storage and the short names used in our work.
We split each scene into training and testing subsets based on time (Table ) and camera selection
(Table . Specifically, frames with indices ™", where "™ € [rain jtrain] “wvere used for training.

start » “end

For evaluation, we used frames ' € [i%sy, i), with all split indices provided in Table[4]

Table 3: Waymo scenes used for evaluation of scene reconstruction.

Label | Scene name
1231623110026745648_480_000_500_000 123
1432918953215186312_5101_320_5121_320 143
1906113358876584689_1359_560_1379_560 190
10500357041547037089_1474_800_1494_800 105
10940952441434390507_1888_710_1908_710 109
16504318334867223853_480_000_500_000 165
17407069523496279950_4354_900_4374_900 174
18025338595059503802_571_216_591_216 180
14183710428479823719_3140_000_3160_000 141
15834329472172048691_2956_760_2976_760 158
17647858901077503501_1500_000_1520_000 176
7799671367768576481_260_000_280_000 779

C PER-SCENE QUANTITATIVE EVALUATION.

In addition to the aggregated results in Table[I] we report per-scene metric values in Table[6] Table[7}
Table and Table@], corresponding to MOTA, MOTP, IDF1, and IoU, respectively. We observe that
MADRIVE consistently outperforms the baselines across most scenes.

D BASELINE DETAILS

Baselines training and evaluation. We trained all baselines (Street-Gaussians, HUGS, and Au-
toSplat) for 10K iterations using the training frames with indices i € [{%n ;] a5 gpecified in
Table @] Additionally, we trained the background models for both the baselines and MADRIVE
for 30K iterations using all available frames. These pretrained background models were then used
during the rendering of the test frames (i € [ify, 9<5]), on which we compute the metrics reported
in Table[6] Table [7] Table[8] and Table [0}
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Table 4: Train and test frame splits for Waymo scenes over time. All values, except those in the

leftmost column, indicate frame indices starting from 0.

Scene name |

-train -train

-test

-test

Ustart end start end
123 106 116 117 175
143 43 53 54 62
190 115 125 126 137
105 164 174 175 196
109 1 16 17 55
165 7 40 41 111
174 34 51 52 72
180 49 55 56 68
141 60 80 81 117
158 44 62 63 100
176 31 42 43 67
779 50 65 66 84

Table 5: Train and test frame splits for Waymo scenes based on camera selection.

Scene name \ Train cameras Test cameras
123 frontal, frontal left frontal, frontal left
143 frontal, frontal left frontal, frontal left
190 frontal, frontal left frontal, frontal left
105 frontal, frontal left frontal
109 frontal, frontal right frontal right
165 frontal, frontal left frontal, frontal left
174 frontal frontal
180 frontal, frontal right frontal, frontal right
141 frontal frontal
158 frontal frontal
176 frontal frontal
779 frontal, frontal left, frontal right  frontal, frontal right

Street-Gaussians. We used the official implementation available at https://github.com/
zju3dv/street_gaussiansl

HUGS. We wused the official
hyzhou404/HUGSIM.

implementation provided at |https://github.com/

AutoSplat. As no official implementation is publicly available, we re-implemented the core con-
tributions of AutoSplat on top of the Street-Gaussians codebase.

E CHOICE OF REFERENCE MASKS IN THE EVALUATION

In our validation setup, we used predictions from tracking and segmentation models on ground-truth
images as targets, since the Waymo dataset lacks segmentation masks and 2D bounding boxes.

To evaluate whether cars in the synthesized frames are as identifiable as those in the original frames,
we applied the same detection algorithm to both. Our method outperforms the baseline, primarily
because our system inserts visually coherent cars on test frames by leveraging reconstructed models,
whereas baseline approaches result in degraded or incomplete vehicle representations.

However, the inserted cars might be easier to detect. To test this, we conducted an additional exper-
iment. Specifically, we generated a new set of detector targets by projecting the 3D bounding boxes
provided in the Waymo dataset onto the image plane. We then evaluated the performance of the
detector on both the ground-truth and synthesized (MADrive) frames using the new "ground-truth"
annotation.
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Table 6: Mean MOTA 1 results on test frames for all Waymo scenes.
Scenename | SG ~ HUGS AutoSplat | MADRIVE

123 0.687  0.685 0.327 0.887
143 0.650 0.513 0.600 0.825
190 0.787  0.795 0.904 0.858
105 0.906  0.656 0.742 0.906
109 0.242  0.448 0.605 0.925
165 0.684  0.461 0.788 0.883
174 0.809  0.886 0.830 0.936
180 0.611  0.528 0.695 0.778
141 0.667  0.607 0.163 0.767
158 0423  0.233 0.681 0.639
176 0.727  0.562 0.176 0.912
779 0.661  0.296 0.545 0.779

Table 7: Mean MOTP | results on test frames for all Waymo scenes.
Scenename | SG ~ HUGS AutoSplat | MADRIVE

123 0.073  0.093 0.099 0.079
143 0.114  0.461 0.095 0.203
190 0.088  0.112 0.115 0.144
105 0.073  0.262 0.222 0.118
109 0.093  0.132 0.094 0.122
165 0.125  0.202 0.119 0.149
174 0.075 0.886 0.078 0.093
180 0.150  0.231 0.194 0.195
141 0.119  0.261 0.237 0.179
158 0.087  0.128 0.123 0.119
176 0.093  0.246 0.167 0.072
779 0.176  0.443 0.305 0.180

The results in Table [10[ show that the predictions on ground-truth images align slightly better with
the projected 3D bounding boxes than those on the synthesized MADrive frames. This indicates that
our inserted cars do not artificially simplify detection, supporting the validity of our evaluation.

F ADDITIONAL RETRIEVAL EVALUATION RESULTS

In this section, we provide an additional illustration of our retrieval algorithm. As shown in our Fig-
ure(8] introducing a color-based pre-filter enhances the alignment of vehicle colors between retrieved
candidates and the target.

G EVALUATION OF INSERTED MODEL QUALITY

As mentioned earlier, an alternative to our approach would be to generate car models using a pre-
trained image-to-3D generative model. However, such methods typically produce low-resolution
cars with limited detail and a cartoon-like appearance. To further assess the viability of this alterna-
tive, we compared renderings from both approaches against a hold-out set of real car images from
MAD-CARS. Specifically, given car crops from driving scenes, we reconstructed models using our
retrieval-based approach and a state-of-the-art image-to-3D method, Amodal3R (Wu et al., [2025b)).
To reduce domain shift, backgrounds were excluded from MAD-CARS. The results in Table E]
support our claim that the retrieval-augmented approach yields cars with higher resemblance to real
ones.
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Table 8: Mean IDF1 1 results on test frames for all Waymo scenes.
Scenename | SG ~ HUGS AutoSplat | MADRIVE

123 0.804  0.806 0.475 0.940
143 0.787  0.709 0.750 0.904
190 0.880  0.887 0.950 0.924
105 0.952  0.780 0.877 0.951
109 0.390  0.619 0.754 0.961
165 0.806  0.612 0.894 0.936
174 0.894  0.940 0.907 0.967
180 0.753  0.709 0.820 0.871
141 0.805  0.698 0.278 0.866
158 0.605 0.377 0.829 0.797
176 0.847  0.720 0.316 0.955
779 0.793  0.532 0.739 0.881

Table 9: Mean IoU 1 results on test frames for all Waymo scenes.
Scenename | SG ~ HUGS AutoSplat | MADRIVE

123 0.753  0.608 0.500 0.866
143 0485 0.243 0.510 0.779
190 0.707 0519 0.740 0.846
105 0.671  0.425 0.439 0.731
109 0.499  0.246 0.419 0.832
165 0.633  0.459 0.647 0.730
174 0.695 0.581 0.655 0.829
180 0475 0.238 0.582 0.814
141 0.607  0.196 0.226 0.765
158 0404  0.135 0.498 0.862
176 0.499  0.187 0.263 0.886
779 0.247  0.153 0.273 0.874

H ADDITIONAL QUALITATIVE COMPARISONS AND NEW TRAJECTORIES

We provide additional visual results in Figures[0]and[I0} We also demonstrate our method’s capabil-
ity to render novel views with substantial scene variations. Figure[TT|showcases results across four
test scenes, where all modifications preserve high image quality.

I LIMITATIONS

Trade-off on seen and unseen data. Figures [9],[10]show that baseline methods achieve high
photometric consistency by optimizing on training frames, while MADRIVE have visual differences.

However, baseline methods significantly degrade on unseen test frames, which is critical for our
initial goal. This gap highlights a trade-off of our design: although the visual fidelity is lower at
training, our method enables fast and scalable simulation of diverse unseen scenarios.

Importantly, our system is fully automated and requires no human intervention: the retrieval, place-
ment, and orientation of car models are all handled automatically. Our validation experiments
demonstrate that the generated scenes allow vehicle perception modules to reasonably assess the
depicted traffic situations.

Reconstruction limitations. To run reconstruction, we estimate camera parameters from the input
images. In particular, we run bundle adjustment starting from the initialization obtainev with VGGT.
At present, errors in camera estimation remain a primary source of reconstruction failures. We ex-
pect that continued advances in foundational vision models will substantially reduce this limitation.

State-of-the-art multiview reconstruction methods continue to struggle with reflective and glossy
surfaces like cars even up to this day. Accurate modeling of reflections on metallic surfaces on real
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Table 10: Comparison between detector performance on both the ground-truth and synthesized
(MADrive) frames using projected 3D bounding boxes.

Model | MOTA1 MOTP| IDFI {
GT frames | 0.879 0.270 0.928
MADRIVE frames ‘ 0.861 0.340 0.908

Query Top-4 candidates, w/o color filtering Top-4 candidates, w/ color filtering

Figure 8: Retrieval illustration. Top-4 candidates retrieved using SigLIP 2 without (Left) and with
(Right) color filtering.

datasets demands more precise representations of illumination - beyond what conventional environ-
ment maps can provide.

J  STATEMENT ON LLM USAGE

The authors used the large language model (LLM) only to improve the writing and grammar of the
text. All the results from the LLM were checked by the authors.

Table 11: Quantitative assessment of car model quality, comparing image-to-3D generative models
with a retrieval-augmented approach.

FID | KIDx10%|
Amodal3R 81.65 51.91
MADirive frames | 62.64 39.40
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Ground Truth Street Gaussians AutoSplat HUGS MADrive
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Ground Truth Street Gaussians AutoSplat HUGS MADrive

Seen

Future

Ground Truth Street Gaussians AutoSplat HUGS MADrive
Figure 9: Additional qualitative comparison of M ADRIVE with non-retrieval-based driving scene

reconstruction methods. Reconstruction of the training views (Top). Reconstruction of the hold-out
(future) views ( ).
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Seen

Ground Truth Street Gaussians AutoSplat HUGS MADrive
Figure 10: Additional qualitative comparison of MADRIVE with non-retrieval-based driving

scene reconstruction methods. Reconstruction of the training views (Top). Reconstruction of the
hold-out (future) views (Bottom).
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Modified Original

1

igina

Modified Original Modified Ori

Original

Modified

Figure 11: Visualization of original and modified trajectories with MADRIVE. The cars retain high-
fidelity appearance even at close distances to the ego camera.
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