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Abstract

Large language models (LLMs) such as Chat-001
GPT are fine-tuned on large and diverse002
instruction-following corpora, and can gener-003
alize to new tasks. However, those instruction-004
tuned LLMs often perform poorly in special-005
ized medical natural language understanding006
(NLU) tasks that require domain knowledge,007
granular text comprehension, and structured008
data extraction. To bridge the gap, we: (1) pro-009
pose a unified prompting format for 7 impor-010
tant NLU tasks (2) curate an instruction-tuning011
dataset, MNLU-Instruct, utilizing diverse exist-012
ing open-source medical NLU corpora, and (3)013
develop BioMistral-NLU, a generalizable medi-014
cal NLU model, through fine-tuning BioMistral015
on MNLU-Instruct. We evaluate BioMistral-016
NLU in a zero-shot setting, across 6 important017
NLU tasks, from two widely adopted medical018
NLU benchmarks: BLUE and BLURB. Our ex-019
periments show that our BioMistral-NLU out-020
performs the original BioMistral, as well as021
the proprietary LLMs - ChatGPT and GPT-4.022
Our dataset-agnostic prompting strategy and023
instruction tuning step over diverse NLU tasks024
enhance LLMs’ generalizability across diverse025
medical NLU tasks. Our ablation experiments026
show that instruction-tuning on a wider vari-027
ety of tasks, even when the total number of028
training instances remains constant, enhances029
downstream zero-shot generalization. 1030

1 Introduction031

Fine-tuning large language models (LLMs) on a032

diverse collection of instruction-following datasets033

enables LLMs to generalize across a wide range034

of new tasks in a zero- or few-shot setting (Chung035

et al., 2022; Chowdhery et al., 2023; Touvron et al.,036

2023). Following this instruction fine-tuning phase,037

medical foundation LLMs (Zhang et al., 2024; Saab038

et al., 2024) have demonstrated great performance039

1We plan to release our code and the instruction-tuned
system upon acceptance of this work.

Figure 1: Instruction-tuning dataset (MNLU-Instruct),
system development, and downstream evaluation for
BioMistral-NLU.

in various medical tasks, which require in-depth 040

medical domain knowledge and logical reasoning 041

ability (Nori et al., 2023), such as medical ex- 042

ams (Nori et al., 2023), common sense reasoning 043

(Labrak et al., 2024; Han et al., 2023) and diagnos- 044

tic reasoning (Saab et al., 2024). This generaliz- 045

ability is particularly crucial for tasks with limited 046

annotated data, where fine-tuning is infeasible. 047

Despite their superior generalizability in some 048

areas, instruction-tuned LLMs can underperform 049

smaller-scale, fine-tuned language models, in some 050

specialized medical natural language understand- 051

ing (NLU) tasks. These tasks require the model to 052

understand, interpret, and respond to human lan- 053

guage meaningfully (Wang et al., 2018). Examples 054

of medical NLU tasks include information extrac- 055

tion (Xie et al., 2024; Hu et al., 2023) and sentence 056

classification (Chen et al., 2024). The performance 057

gap may be because the current foundation LLMs’ 058

instruction-tuning phase focuses primarily on nat- 059

ural language generation (NLG) tasks that allow 060

for free-text, unconstrained outputs (Chung et al., 061

2022). Although many NLG tasks require com- 062

plex logical reasoning, these skills do not directly 063

translate to nuanced NLU tasks. 064
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To bridge this gap, we propose a unified prompt-065

ing format for 7 important NLU tasks, employ-066

ing span extraction and multi-choice question-067

answering (QA). Utilizing this unified format,068

we create an instruction-tuning dataset, MNLU-069

Instruct, from diverse existing open-source medi-070

cal NLU corpora. We fine-tune a high-performing071

biomedical LLM, BioMistral (Labrak et al., 2024)072

on MNLU-Instruct, resulting in a new, generaliz-073

able medical NLU model we call BioMistral-NLU.074

We evaluate the generalizability of BioMistral-075

NLU, using zero-shot, dataset-agnostic prompts,076

on two widely adopted benchmark datasets: the077

Biomedical Language Understanding Evaluation078

(BLUE) (Peng et al., 2019) and the Biomedical079

Language Understanding and Reasoning Bench-080

mark (BLURB) (Gu et al., 2021). Collectively,081

the benchmarks include 15 biomedical datasets082

with 6 important NLU task categories, across both083

clinical and biomedical domains.In our evaluation,084

BioMistral-NLU outperforms the original BioMis-085

tral, as well as ChatGPT, and GPT-4 on the macro086

average across all tasks. Our result demonstrated087

that instruction-tuning on diverse medical NLU088

datasets using our unified format is an effective089

approach to improving the generalizability on med-090

ical NLU.091

2 Related work092

2.1 Medical NLU093

Within this broad category of medical NLU, there094

is extensive research on specific NLU tasks in095

clinical and biomedical domains, such as Informa-096

tion Extraction (IE) and Document Classification097

(DC) (Wu et al., 2020). To develop a comprehen-098

sive understanding of medical NLU, previous re-099

search curates two NLU benchmark datasets: the100

Biomedical Language Understanding Evaluation101

(BLUE) (Peng et al., 2019) and the Biomedical Lan-102

guage Understanding and Reasoning Benchmark103

(BLURB) (Gu et al., 2021). These two benchmarks104

encompass multiple important medical NLU tasks105

and are widely adopted to evaluate various LLMs106

for their medical NLU capabilities (Feng et al.,107

2024; Wang et al., 2023b; Chen et al., 2023).108

Previous studies explore the ability of task-109

agnostic LLMs to perform medical NLU tasks. For110

example, Agrawal et al. (2022) demonstrate LLMs’111

potential for clinical NLU tasks through few-shot112

in-context learning (ICL). Hu et al. (2023) evaluate113

ChatGPT on two clinical NER datasets, represent-114

ing a subset of NLU tasks. Wang et al. (2023b) 115

propose a novel prompting strategy for multiple 116

clinical NLU tasks using proprietary LLMs such 117

as ChatGPT (Cha, 2022) and GPT-4 (Achiam et al., 118

2023). However, they only evaluate the LLMs on 119

a few samples from each task within the BLUE 120

benchmark. Similarly, Chen et al. (2023) and 121

Feng et al. (2024) systematically evaluate multi- 122

ple LLMs using the BLURB benchmark (Gu et al., 123

2021). Although ChatGPT and GPT-4 outperform 124

other LLMs, they considerably underperform the 125

in-domain fine-tuned systems. This performance 126

gap highlights the need for the development of 127

more generalized systems for medical NLU. 128

2.2 Instruction tuning for Medical NLU 129

Instruction tuning involves fine-tuning a pre-trained 130

LM on a diverse collection of instruction-following 131

tasks and thus enables the LM to understand and 132

follow natural language instructions, and gener- 133

alize to previously unseen tasks in zero-shot and 134

few-shot settings (Chung et al., 2022; Ouyang et al., 135

2022). Instruction-tuning datasets typically encom- 136

pass a wide range of natural language processing 137

(NLP) tasks presented in an instructional format, 138

including reasoning, question-answering, dialogue, 139

and summarization (Zhang et al., 2023b). Utilizing 140

instruction tuning, previous research has developed 141

systems focused on generalizing to a limited subset 142

of NLU tasks in the general domain, such as IE 143

tasks (Wang et al., 2023a; Jiao et al., 2023; Sainz 144

et al., 2023; Wang et al., 2022; Lu et al., 2022) and 145

more specific Named Entity Recognition (NER) 146

(Zhou et al., 2023; Zhao et al., 2024). 147

Several previous studies aim to adapt instruction- 148

tuning to the medical domain, with a major fo- 149

cus on dialogue-based chatbots, such as ChatDoc- 150

tor (Yunxiang et al., 2023) and MedAlpaca (Han 151

et al., 2023). Other medical foundation LLMs, like 152

MedGemini (Saab et al., 2024) and Taiyi (Luo et al., 153

2024), show potential for diverse NLU tasks but 154

lack comprehensive evaluation. Previous system 155

development has often focused on a limited sub- 156

set of medical NLU tasks. For example, Luo et al. 157

(2022b) explore Table QA; Zhao et al. (2024) fo- 158

cused on NER; Rohanian et al. (2023) focused on 159

QA, IE, and text generation; However, the appli- 160

cation of these models to other NLU tasks, such 161

as sentence similarity and natural language infer- 162

ence, has not yet been explored. To the best of our 163

knowledge, there is no comprehensive system de- 164

velopment and evaluation across all medical NLU 165
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tasks for their generalizability. Therefore, in this166

work, we aim to bridge this gap by evaluating our167

proposed system in a zero-shot setting using two168

widely adopted benchmarks, encompassing 7 im-169

portant medical NLU tasks.170

3 Methods171

In this section, we will introduce the task formula-172

tion, and outline the three-step approach to creating173

our generalized LLM across medical NLU tasks.174

3.1 Task formulation175

We reformulate the NLU problem as text gener-176

ation tasks. Our learning objective M for the177

medical NLU system is defined by the function178

M : (I,X, T ) → O. Specifically, given a user179

instruction I , associated medical text X , and NLU180

task labels T , the model M is instructed to output181

the system output O, where I,X, T,O correspond182

to sequences of tokens.183

We reference the NLU task definitions by Gu184

et al. (2021) in the BLURB benchmark and group185

the most common NLU tasks into three categories:186

(1) token classification, (2) sequence classification,187

and (3) sequence regression.188

3.2 Unified Medical NLU format189

Building on prior research outlined in Section 2.1,190

we develop our unified NLU format that focuses191

on seven critical NLU tasks. This unified format192

simplifies evaluation across diverse NLU task out-193

puts, and potentially facilitates knowledge transfer194

when the system is fine-tuned for a wider range of195

NLU tasks. Six of these NLU tasks are directly196

adapted from the BLUE and BLURB benchmarks,197

including named entity recognition (NER), docu-198

ment classification (DC), relation extraction (RE),199

multi-choice question-answering (QA), natural lan-200

guage inference (NLI), and semantic text similar-201

ity (STS). We also incorporate event extraction202

(EE), which is extensively researched in the medi-203

cal domain (Frisoni et al., 2021). In EE, each event204

consists of a trigger and multiple arguments that205

characterize the event. The event trigger extrac-206

tion (ETE) and event argument extraction (EAE)207

can be considered as NER. The event argument208

classification (EAC) classifies the event argument209

into a subtype, and can be considered as sequence210

classification. Table 1 demonstrates the example211

input-output format for each medical NLU task.212

NER, ETE, and EAE are token classification213

tasks, which assign a class label to each token in214

the input sequence 2. In token classification, the in- 215

put includes the user instruction I with pre-defined 216

token labels, and the target text T . In the output O, 217

each line includes all the token annotations associ- 218

ated with a specific label. Each line starts with a 219

class label, followed by the corresponding positive 220

tokens in the order they appear in X . Continuous 221

positive tokens are grouped into text spans (enti- 222

ties), separated by “...”. If no tokens are classified 223

as entities, the O is “None”. More specifically, 224

NER classifies each token as a possible named en- 225

tity. 226

EAC, DC, RE, QA, and NLI are sequence clas- 227

sification tasks, which assign a class label to the 228

entire input token sequence. In sequence classifi- 229

cation, the user instruction I specifies pre-defined 230

class labels as multiple choices, which is a com- 231

monly adopted format in instruction-tuning (Chung 232

et al., 2022). The system output O is always one or 233

more multi-choice options. In DC, the medical text 234

X is the document. In RE, X is the corresponding 235

medical text snippet with labeled named entities. 236

In NLI, X is a pair of a premise and a hypothesis. 237

In QA, user instruction I involves the task question, 238

and X is the corresponding medical text. 239

STS is a sequence regression task, which as- 240

signs a numeric score to the entire input. In this 241

study, we explore the widely researched task of 242

sequence regression: calculating the semantic text 243

similarity (STS) score between two sentences. Due 244

to the inherent ability of LLMs to generate text, we 245

approach this regression task as an ordinal classifi- 246

cation task through a similar multi-QA format as 247

sequence classification. In the user instruction I 248

of STS, the STS scores correspond to the scoring 249

criteria from the original publication, and are pre- 250

sented as multi-choice options. The STS example 251

can be found in Table 1. 252

3.3 MNLU-Instruct dataset 253

Focusing on the 7 medical NLU tasks outlined in 254

Table 1, we construct the instruction-tuning dataset, 255

MNLU-Instruct, through intensively searching for 256

publicly available clinical and biomedical NLU 257

datasets outside of BLUE and BLURB. To bet- 258

ter assess the generalizability of our proposed sys- 259

tem, we intentionally avoid adding any QA datasets 260

to the MNLU-Instruct dataset, using QA tasks as 261

2Tasks such as NER are often treated as sequence labeling
tasks in the NLP field (He et al., 2020). In this work, we refer
to them as Token classification tasks for consistency with the
BLURB (Gu et al., 2021).
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Task Input prompt Example output
NER/
ETE

Extract all relevant medical named entities from the medical text below.
Focus on identifying following entities: {type1}, {type2}, ... . {text}

Chemical: None
Disease: Azotemia ... infection

EAE What is the {type} attribute of the {trigger} ‘{span}’ in the medical
text below? {text} Disease - Anatomy: neck...hand

EAC What is the {type} attribute of the {trigger} ‘{span}’ in the medical
text below? {text} {options} Disease - Assertion: (A) present

DC Which options best describe cancer hallmark from the medical text
below? {text} {options} (A) Cellular energetics

RE What is the relation between the{type1} entity ‘{span1}’ and the
{type2} entity ‘{span2}’ from the medical text below? {text} {options} (C) ‘stress’ causes ‘headache’.

QA {question} {text} {options} (B) LPS is a microbial product.

NLI What is the relation between the premise and hypothesis?
Premise: {premise}. Hypothesis: {hypothesis} {options} (C) Contradicts

STS How similar are the two sentences below?
Sentence 1: {sentence1}. Sentence 2: {sentence2}. {options}

(A) The two sentences are on
different topics (score 0).

Table 1: The task-agnostic prompt format for 7 medical NLU tasks: named entity recognition (NER), event
extraction (EE), document classification (DC), relation extraction (RE), multi-choice question-answering (QA),
natural language inference (NLI), and semantic text similarity (STS). Event trigger extraction (ETE), event argument
extraction (EAE), and event argument classification (EAC) are all components of the EE task. Variables inside {}
are derived from each dataset instance.

novel tasks specifically for assessment purposes.262

Instead, beyond NLU tasks, we additionally incor-263

porate three medical summarization tasks, which264

require similar text summarization and understand-265

ing abilities as the QA tasks. Meanwhile, Given266

the limited availability of public medical datasets267

for NLI and STS, we incorporate datasets from the268

general domain, including SNLI, Multi-NLI, and269

SIS-B. As a result, we derive the MNLU-Instruct270

dataset with the train splits from 33 publicly avail-271

able datasets shown in Table 2.272

We construct the NLU input-output pairs in273

MNLU-Instruct through the task-agnostic prompt-274

ing strategy shown in Table 1, which directly adapts275

pre-defined label names from the original publica-276

tions. We additionally expand abbreviated label277

names, i.e., from ‘GENERIF’ to ‘Gene reference278

into a function (function of a gene)’. To increase279

the variability of MNLU-Instruct, for every NLU280

input-output pair, we randomly shuffle the order281

of task labels. Specifically, token labels in token282

classification tasks and multi-choice options in se-283

quence classification and regression tasks are ran-284

domly shuffled. When train splits are unavailable285

or datasets have very few input-output pairs, we uti-286

lize the entire datasets for training. The complete287

dataset labels, prompts, and statistics can be found288

in Appendix A.1.289

3.4 BioMistral-NLU system development290

We hypothesize that instruction-tuning on a diverse,291

yet relevant set of tasks improves the generalizabil-292

ity of LLMs on medical NLU tasks. To verify this293

hypothesis, we fine-tune a high-performing med- 294

ical LLM on MNLU-Instruct and evaluate it in a 295

zero-shot setting. 296

We chose BioMistral-7B-DARE as our baseline 297

system, which is the state-of-the-art open-source 298

LLM on multiple medical QA tasks. For simplic- 299

ity, we refer to BioMistral-7B-DARE as BioMis- 300

tral in this work. We fine-tune BioMistral with 301

full parameters on MNLU-Instruct, resulting in 302

BioMistral-NLU-FT. However, fine-tuning LLMs 303

in specialized domains can potentially degrade their 304

original generalization ability across broader tasks 305

(Ainsworth et al., 2022). To mitigate this risk and 306

preserve the versatility of the original BioMistral, 307

we utilize DARE (Yu et al., 2023), as suggested 308

by Labrak et al. (2024). This approach integrates 309

model parameters from BioMistral-NLU-FT and 310

BioMistral, without additional training, and creates 311

the merged system BioMistral-NLU. 312

The experiment is conducted using the 313

alignment-handbook3 package. Based on the 314

engineering judgment recommended by the 315

alignment-handbook GitHub discussion, we set 316

the number of epochs to 3, the batch size to 16, 317

and configured the learning rate to 2e-04 with a 318

warmup ratio of 0.1, using 4 A100 GPUs. The 319

rest hyperparameters are the same as the default 320

configurations by the alignment-handbook. For 321

inference, we use the vllm package4 and set the 322

temperature to 0. 323

3https://github.com/huggingface/alignment-handbook
4https://github.com/vllm-project/vllm

4



Task Datasets used for instruction-tuning

NER

i2b2 2006DeID (Uzuner et al., 2007), i2b2 2011Coreference (Uzuner et al., 2012),
i2b2 2012Temporal (Sun et al., 2013), i2b2 2014 DeID (Stubbs and Uzuner, 2015),
GENIA (Yu et al., 2020), linnaeus (Kocaman and Talby, 2021), tmVar (Wei et al., 2018),
DrugProt (Miranda-Escalada et al., 2023), BioRed (Luo et al., 2022a),
GNorm (Morgan et al., 2008), NLM-Gene (Islamaj et al., 2021),
ClinicalIE (Agrawal et al., 2022), BC4CHEMD (Kocaman and Talby, 2021),
PubMed PICO (Jin and Szolovits, 2018), PICO-Data (Nguyen et al., 2017)

EE i2b2 2009Medication (Uzuner et al., 2010), i2b2 2018ADE (Henry et al., 2020),
n2c2 2022SDoH (Lybarger et al., 2023),

DC
i2b2 2006Smoking (Uzuner et al., 2008), i2b2 2008Obesity (Uzuner, 2009),
n2c2 2018 (Stubbs et al., 2019), 2024 SemEval Task 2 (Jullien et al., 2024),
TrialStop (Razuvayevskaya et al., 2023), MTSamples (MTS, 2023)

RE
i2b2 2011Coreference (Uzuner et al., 2012), i2b2 2012Temporal (Sun et al., 2013),
EUADR (van Mulligen et al., 2012), DrugProt (Miranda-Escalada et al., 2023),
BioRed (Luo et al., 2022a)

NLI BioNLI (Bastan et al., 2022), SNLI (Bowman et al., 2015), Multi-NLI (Williams et al., 2018)
STS SIS-B (Wang et al., 2018)
Summ PubMedSum (Cohan et al., 2018), CDSR (Guo et al., 2021), AciDemo (Yim et al., 2023)

Table 2: The MNLU-Instruct dataset, which is used for fine-tuning: NLU and summarization datasets and tasks
curated from existing open-source medical corpora.

4 Experiment setup324

In this section, we will introduce our evaluation325

datasets, evaluation metrics, and comparative sys-326

tems.327

4.1 Evaluation datasets328

We evaluate BioMistral-NLU in a zero-shot setting329

using BLURB and BLUE. Due to the sensitivity330

in deploying clinical-note-based corpora, we ex-331

clude the two inaccessible datasets from BLUE,332

ShARe/CLEF (Suominen et al., 2013) and Med-333

STS (Wang et al., 2020). Some datasets are in-334

cluded in both benchmarks evaluated, resulting in335

a total of 7 tasks and 15 unique datasets evalu-336

ated. We developed the evaluation datasets by uti-337

lizing the unified prompt format outlined in Table 1;338

the entity types and multi-choice options for those339

datasets are shown in Table 3 and 4. The example340

prompts can be found in the Appendix A.1.

Dataset Named entities
BC2GM Gene
BC5-chemical Chemical
BC5-disease Disease
NCBI-disease Disease
JNLPBA Protein, Cell type, RNA, Cell line, DNA
EBM PICO Interventions, Participants, Outcomes

Table 3: NER datasets used in the evaluation.
341

4.2 Evaluation metrics342

For consistency with prior studies, we utilize the343

same evaluation criteria from BLUE (Peng et al.,344

Task Dataset Multi-choice options
DC HoC 10 cancer hallmarks

QA PubMedQA yes / maybe / no
BioASQ yes / no

RE

GAD 2 gene-disease relations
DDI 4 drug-drug interactions
ChemProt 5 chemical-protein relations
i2b2-2010 8 medical problem relations

NLI MedNLI entails / neutral / contradicts
STS BioSSES 5 similarity score definitions

Table 4: Sequence classification and regression datasets
used in the evaluation.

2019) and BLURB (Gu et al., 2021). Token classi- 345

fication tasks are evaluated using F1 scores, either 346

at the token or entity level. When class labels are 347

balanced like in NLI and QA, sequence classifi- 348

cation tasks are evaluated using accuracy. When 349

class labels are imbalanced, like in RE, sequence 350

classification tasks are evaluated using F1. For the 351

sequence regression task, STS, system outputs are 352

converted to numerical integer scores and evaluated 353

based on Pearson correlation. 354

4.3 Comparative systems 355

We compare our proposed system, BioMistral- 356

NLU, with our baseline, BioMistral, as well as 357

other high-performing systems. 358

Open-source LLMs: BioMistral and Llama-3- 359

8B (at Meta, 2024). In our controlled experiments, 360

we evaluate open-source LLMs using our proposed 361

unified prompting formats, shown in Table 1. The 362
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evaluation is conducted in a zero-shot setting, ex-363

cept for NER datasets. Because our desired token364

classification output prompt format is less common365

during those open-source LLMs’ instruction tuning366

phase, we additionally incorporate an explanation367

for the output formats and two random few-shot368

examples from the corresponding training set in369

each task. More details about the prompts and few-370

shot sample selection can be found in the Appendix371

A.2.372

Proprietary LLMs: ChatGPT (Cha, 2022) and373

GPT-4 (Achiam et al., 2023). We reference prior374

research that evaluates these proprietary LLMs on375

BLURB (Chen et al., 2023; Feng et al., 2024).376

Note that ChatGPT’s performance is reported un-377

der one-shot ICL, while GPT-4’s performance is378

based on randomly selected few-shot examples for379

NER tasks and zero-shot for other tasks. Addition-380

ally, their prompts are strategically optimized for381

each dataset, resulting in competitive systems.382

Task- and dataset-specific fine-tuned LM: BERT-383

FT. To better understand the gap between gener-384

alized foundation LLMs and in-domain fine-tuned385

systems, we refer to the reported performance of386

BERT-based systems by the BLUE (Peng et al.,387

2019) and BLURB (Gu et al., 2021) benchmarks.388

For each dataset, a BERT-FT system is fine-tuned389

on its corresponding train split.390

5 Results391

Following the practice in BLURB (Gu et al.,392

2021), we average system performance across393

datasets for an overview. As shown in Table 5,394

BioMistral-NLU outperforms the baseline BioMis-395

tral with an increase in the macro average score of396

19.7 for BLURB and 16.7 for BLUE. Meanwhile,397

BioMistral-NLU outperforms the proprietary mod-398

els, achieving an increase in the macro average399

score of 9.0 over ChatGPT, and 2.7 over GPT-4 for400

BLURB.Our results demonstrate that instruction-401

tuning on diverse medical NLU tasks using our402

unified format effectively improves the LLMs’ gen-403

eralizability to unseen NLU datasets. In this sec-404

tion, we will analyze the results and characterize405

the gaps between the systems.406

5.1 Comparison across systems407

Comparing BioMistral-NLU with the baseline408

BioMistral, we observe an average performance409

increase of 33.7 for NER tasks and 8.2 for other410

tasks. This difference may originate from the411

instruct-tuning phase of BioMistral. While the 412

NER task might be less frequent during BioMis- 413

tral’s instruction-tuning phase, the other tasks uti- 414

lize a QA prompting strategy and are likely similar 415

to some of BioMistral’s instruction-tuning tasks. 416

This necessitates instruction-tuning on a wider va- 417

riety of NLU tasks to improve the LLM’s general- 418

izability. 419

Comparing BioMistral-NLU with proprietary 420

LLMs in the BLURB benchmark, we observe that 421

BioMistral-NLU has an average F1 score of 9.7 422

higher than GPT-4 across NER tasks. However, 423

for other BLURB tasks, BioMistral-NLU has an 424

average score of 2.0 higher than ChatGPT and 5.4 425

lower than GPT-4. Given that GPT-4 is signifi- 426

cantly larger in terms of parameter size and has 427

been instruction-tuned on much more diverse cor- 428

pora, its superior generalization ability for other 429

tasks involving more complex reasoning is consis- 430

tent with the empirical scaling law (Kaplan et al., 431

2020; Chung et al., 2022). 432

Compared with the dataset-specific BERT-FT 433

systems, we observe that BioMistral-NLU has an 434

average performance gap of 20.3 in BLURB and 435

26.3 in BLUE. This disparity might be due to the 436

ambiguity in medical NLU tasks, where disagree- 437

ments are common even among human annotators 438

following the same instructions (?Oortwijn et al., 439

2021). To tackle such ambiguity, for each dataset, 440

the BERT-FT system requires finetuning on the 441

corresponding train split using extensive annotated 442

data. In contrast, BioMistral-NLU uses simpli- 443

fied task definitions from input prompts. It is chal- 444

lenging for generalized LLMs using ICL to match 445

BERT-FT’s performance. 446

5.2 Error analysis 447

We observe that for NER tasks, a major source of 448

error for BioMistral-NLU is the nuanced task of ac- 449

curately identifying exact named entity boundaries. 450

For example, in the BC2GM gene NER dataset, 451

the predicted named entity is ‘Id - 1’, whereas the 452

gold named entity is ‘mouse Id - 1’. To better 453

understand the prevalence of this discrepancy, we 454

evaluate the 5 NER datasets using a relaxed cri- 455

terion, where two named entities are considered 456

equivalent if their spans overlap. Using this relaxed 457

criterion, we observe an average improvement of 458

15.5 in F1 across the 5 NER datasets from the orig- 459

inal entity-level F1. 460

In all RE tasks, BioMistral-NLU demonstrates 461

recall rates that are 10 to 70 points higher than its 462
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Task Evaluation
Metric Dataset

# test
ins-
tances

In-domain Generalized LLMs with zero- or few-shot ICL
BERT-FT
(Peng et al., 2019)
(Gu et al., 2021)

Chat
-GPT

(Chen et al., 2023)

GPT-4
(Feng et al., 2024)

Llama
-3-8B

BioMistral
Baseline Ours

NER
Entity-
level F1

BC2GM† 6,322 84.5 37.5 54.6 12.6 34.1 61.5
BC5-chemical†∗ 5,385 93.3 60.3 78.2 52.5 45.0 89.9
BC5-disease†∗ 4,424 85.6 51.8 63.9 38.7 33.7 67.0
NCBI-disease† 955 89.1 50.5 66.0 33.5 39.9 61.8
JNLPBA† 8,657 79.1 41.3 45.4 33.3 25.6 64.4

Token-
level F1

EBM PICO† 24,474 73.4 55.6 33.5 20.2 19.6 55.3

DC F1 HoC†∗ 315 81.5 51.2 62.5 23.1 47.3 63.8

QA Acc
PubMedQA† 500 60.2 76.5 70.6 71.0 72.0 70.2
BioASQ† 263 94.8 88.6 85.7 78.7 74.9 86.7

RE F1

GAD† 534 84.0 52.4 51.5 55.6 55.0 58.5
DDI†∗ 5,761 82.4 51.6 37.7 13.2 10.0 13.0
ChemProt†∗ 14,744 77.2 34.2 37.6 35.2 28.6 38.1
i2b2-2010∗ 6,292 76.4 - - 38.9 30.9 41.8

NLI Acc MedNLI∗ 1,422 73.5 - - 49.1 49.3 57.5

STS
Pearson

Corr
BioSSES†∗ 20 92.3 42.8 89.3 67.9 69.1 80.8

Overall
Macro
average

BLURB† - 82.9 53.4 59.7 41.2 42.7 62.4
BLUE∗ - 82.8 - - 39.8 39.2 56.5

Table 5: Our proposed system, BioMistral-NLU’s zero-shot performance on 15 unseen medical NLU datasets from
2 benchmarks: BLURB (labeled by †) and BLUE (labeled by ∗). Bold indicates superior performance over the
BioMistra-7B and Llama-3-8B, which utilize the same, dataset-agnostic prompts as BioMistral-NLU. Underline
indicates better performance over the ChatGPT and GPT-4 ICL, which utilize dataset-specific prompts.

precision, suggesting a tendency to identify many463

false positive relationships. One major source of464

these false positives is the occurrence of interac-465

tions between entities, which do not fit into any of466

the pre-defined relation categories of interest. As467

a result, BioMistral-NLU assigns a wrong relation468

label instead of recognizing no relation.469

In the sequence regression dataset, BioSSES,470

BioMistral-NLU tends to predict intermediate sim-471

ilarity scores (such as scores of 2 or 3) rather than472

extreme scores (0, 1, 4, or 5).473

6 Discussion474

We have demonstrated that instruction-tuning on475

diverse medical NLU tasks can enhance LLMs’476

downstream generalization to unseen medical NLU477

datasets in a zero-shot setting. In this section, we478

will evaluate the impact of instruction dataset com-479

position, focusing on two components: instruction-480

tuning tasks and domains.481

6.1 Impact of instruction-tuning tasks482

We aim to assess the impact of instruction-tuning483

task selection from two perspectives: (1) its rele-484

vance to downstream tasks and (2) its task diversity.485

Focusing on these two perspectives, we fine-tune486

the baseline system, BioMistral, with different sub-487

sets of tasks used to build BioMistral-NLU. We 488

evaluate the fine-tuned system on the 4 RE datasets 489

from Table 5 in a zero-shot setting, and compare the 490

macro-average F1 scores across the 4 RE datasets. 491

To study the impact of task relevance, we first 492

construct two instruction-tuning setups: (1) with 493

the RE task (w/ RE) and (2) with the DC task (w/o 494

RE). We chose the DC task because DC employs 495

a similar QA prompting format to RE and it con- 496

tains 6 diverse datasets from Table 2. To study 497

the impact of task diversity, besides DC and RE, 498

we additionally include 2 and 4 more randomly 499

selected tasks from Table 2. More specifically, our 500

experiment settings are: 501

1. w/ RE: 502

(a) 1 task: RE 503

(b) 3 tasks: RE, NLI, NER 504

(c) 5 tasks: RE, NLI, NER, EE, STS 505

2. w/o RE: 506

(a) 1 task: DC 507

(b) 3 tasks: DC, NLI, NER 508

(c) 5 tasks: DC, NLI, NER, EE, STS 509

All fine-tuning experiments are controlled by 510

using a fixed number of 50,000 data instances and 511

running for three epochs. We maintain an equal 512

number of instances for each task (i.e., 50,000/k 513

instances per task when fine-tuning with k tasks), 514
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and randomly sample fine-tuning instances from515

all datasets within the same task.516

Figure 2: Average zero-shot performance on the 4 RE
datasets, after instruction-tuning on 50k instances.

After BioMistral is fine-tuned with the same517

number of instances, we observe the following518

from Figure 2: (1) Overall, setting 1 (with RE)519

consistently outperforms setting 2 (without RE),520

due to its relevance to the RE datasets used in521

downstream evaluation; (2) In both settings, sys-522

tem performance increases with the number of fine-523

tuning tasks, demonstrating the benefits of fine-524

tuning with multiple tasks; (3) When fine-tuning525

on a single task, whether fine-tuning improves sys-526

tem performance on downstream tasks depends527

on the similarity between fine-tuning task and the528

downstream task.529

6.2 Impact of instruction-tuning domain530

After demonstrating the benefits of diverse531

instruction-tuning tasks, we now examine individ-532

ual tasks. Note that the BLUE benchmark includes533

both biomedical and clinical datasets: biomedi-534

cal data comes from scientific publications, while535

clinical data consists of semi-structured clinical536

notes from patients (Wu and Liu, 2011). In this537

section, we assess how domain selection affects538

downstream generalizability.539

We follow a similar experimental setup as de-540

scribed in Section 6.1, fine-tuning BioMistral for541

three epochs over 25,000 data instances. The fine-542

tuned system is evaluated on six biomedical NER543

datasets from Table 5 in a zero-shot setting, using544

macro average F1 scores. The instruction-tuning545

NER datasets from MNLU-Instruct 5 are divided546

into biomedical and clinical splits. Our experi-547

ments include fine-tuning on a single split (BioMed548

/ Clinical) and both splits (Both). We addition-549

ally combine single splits or include additional in-550

stances, creating a similar experiment setting with551

50k instances. We use the 2-shot BioMistral de-552

scribed in Section 4.3 as the baseline system.553

5We also include event triggers as named entities.

Figure 3: Average zero-shot performance on 6 biomedi-
cal NER datasets, when finetuned on different domains.

From Figure 3, we observe the following: (1) 554

Instruction-tuning on the BioMed domain alone 555

consistently outperforms tuning on the Clinical do- 556

main alone when using the same number of in- 557

stances. (2) Compared to the baseline, instruction- 558

tuning on the Clinical domain negatively impacts 559

downstream performance on the BioMed domain. 560

(3) Combining instances from both domains im- 561

proves downstream generalizability to the BioMed 562

domain, even with the same total number of in- 563

stances. (4) Increasing the number of instances 564

from the BioMed or Both domains improves perfor- 565

mance, whereas more instances from the Clinical 566

domain alone decrease performance. 567

7 Conclusion 568

In this work, we introduce a unified prompting 569

format for 7 important medical NLU tasks, and 570

develop an instruction-tuning dataset based on pub- 571

licly available clinical and biomedical corpora. Our 572

experiment demonstrates that fine-tuning across di- 573

verse medical NLU datasets improves the system’s 574

generalizability in a zero-shot setting with dataset- 575

agnostic prompt tuning. Our ablation study under- 576

scores the necessity for instruction tuning across 577

diverse medical NLU tasks, including domain- 578

specific lexicon and common biomedical tasks. 579

Our future work will focus on further improving 580

the generalized LLM’s zero-shot performance on 581

medical NLU tasks and narrowing its gap to in- 582

domain fine-tuned systems. Because LLMs often 583

struggle to adhere to in-context annotation guide- 584

lines (Zhang et al., 2023a), our future work will 585

focus on integrating nuanced task descriptions from 586

annotation guidelines into both the fine-tuning and 587

inference stages (Sainz et al., 2023). Future work 588

could also involve a self-verification step (Gero 589

et al., 2023) or using a knowledge base as augmen- 590

tation (Lewis et al., 2020) to reduce false positives 591

in the sequence classification tasks. 592
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Limitation593

Our experiments demonstrate the effectiveness of594

our proposed unified and dataset-agnostic prompt-595

ing strategy for medical NLU tasks. However, we596

acknowledge that there may be other alternative597

unified prompting strategies that could also be ef-598

fective. We plan to evaluate the impact of different599

prompting formats in instruction tuning for medical600

NLU tasks.601

In the medical field, the term “medical domain"602

typically encompasses both biomedical and clini-603

cal domains. Our work is primarily evaluated on604

biomedical datasets due to the sensitivity and in-605

accessibility of clinical datasets. We plan to col-606

laborate with our home institution to gain access607

to real-world clinical datasets, and further evaluate608

and validate our proposed system in more diverse609

and realistic clinical settings.610
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A Appendices 1019

A.1 Unified Prompt Format 1020

Utilizing the unified prompt format outlined in Ta- 1021

ble 1, we developed (1) the MNLU-Instruct dataset 1022

based on the collection of datasets detailed in Table 1023

6; and (2) the evaluation dataset from BLUE and 1024

BLURB utilizing the labels from Table 3 and 4. In 1025

this section, we provide detailed information on 1026

dataset creation and examples of the input-output 1027

format for each task type. 1028

A.1.1 Named entity recognition (NER) 1029

We conduct NER at the sentence level, because 1030

most NER datasets comprise pre-split sentences. 1031
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For NER datasets where the medical text is an en-1032

tire document, we use the SpaCy tokenizer6 to split1033

the document into sentences.1034

Below is an example of the NER input-output1035

pair. The example is from the n2c2 2022 dataset1036

(Lybarger et al., 2023), a shared task focused on ex-1037

tracting social determinants of health from clinical1038

notes.1039

- NER Input -
Extract all relevant medical named entities faith-1040

fully from the medical text below. Focus on identi-1041

fying the following entities: Living status, Tobacco,1042

Drug, Employment, Alcohol.1043

Medical text: Denies any IV drug use or any1044

recreational drug use.1045

- NER Output -
Living status: None1046

Tobacco: None1047

Drug: IV drug use ... recreational drug use1048

Employment: None1049

Alcohol: None1050

A.1.2 Event extraction (EE)1051

The EE task is composed of event trigger extrac-1052

tion (ETE), event argument extraction (EAE), and1053

event argument classification (EAC). ETE uses the1054

same prompting formats as NER. In EAE and EAC,1055

we additionally include two adjacent sentences to1056

provide more context information. Below are ex-1057

amples of the EAE and EAC input-output pairs1058

from the n2c2 2022 dataset (Lybarger et al., 2023)1059

- EAE Input -
According to the medical text, what is the1060

Method attribute of the Drug event ‘IV drug use’1061

in the medical text below? Extract the attribute1062

faithfully from the medical text.1063

Medical text: ... Currently admits to five drinks1064

of alcohol per week. Denies any IV drug use or any1065

recreational drug use. Divorced with no children.1066

...1067

- EAE Output -
Drug - Method: IV1068

- EAC Input -
According to the medical text, what is the Status1069

time attribute of the Drug event ‘IV drug use’ in1070

the medical text below? Choose from the following1071

options.1072

Medical text: ... Currently admits to five drinks1073

of alcohol per week. Denies any IV drug use or any1074

recreational drug use. Divorced with no children.1075

...1076

6https://spacy.io/api/sentencizer

Options: (A) none (B) past (C) future (D) current 1077

- EAC Output -
Drug - Status time: (A) none 1078

A.1.3 Document classification (DC) 1079

Our document classification task involves classify- 1080

ing a document or sentence into one or multiple 1081

pre-defined categories. 1082

In the i2b2 2006Smoke (Uzuner et al., 2008) and 1083

i2b2 2008 (Uzuner, 2009) dataset, where the input 1084

document is a lengthy clinical note, we first deploy 1085

BioMistral to summarize the document. We use 1086

the prompt format, ’Summarize the {type} from 1087

the following clinical note.’, where type is the cor- 1088

responding DC type label, such as smoking status 1089

or asthma status. 1090

The MTSamples dataset aims to classify a med- 1091

ical report into one of 48 medical specialties or 1092

domains (MTS, 2023). The large number of possi- 1093

ble categories results in lengthy prompts. Instead, 1094

in each instance, we include the correct category 1095

along with 12 randomly selected negative cate- 1096

gories in our prompts for more efficient training. 1097

Below is an example of the DC input-output pair 1098

from the TrialStop dataset (Razuvayevskaya et al., 1099

2023). 1100

- DC Input -
According to the medical text below, which 1101

options best describe reason to stop the study? 1102

Choose from the following options. Multiple op- 1103

tions can be true. 1104

Medical text: 13 of 15 patients recruited.Study 1105

patients responded with no safety signals. Recruit- 1106

ment’s slow, timely end of study necessary to keep 1107

development timelines. 1108

Options: (A) Insufficient enrollment (B) Logis- 1109

tics resources (C) Business administrative (D) In- 1110

sufficient data (E) Endpoint met (F) Negative (G) 1111

Study success (H) Regulatory (I) Interim analy- 1112

sis (J) Ethical reason (K) Invalid reason (L) Study 1113

design (M) No context (N) Another study (O) 1114

Covid19 1115

- DC output -
(A) Insufficient enrollment (C) Business admin- 1116

istrative 1117

A.1.4 Relation extraction (RE) 1118

The RE task focuses on classifying the relation be- 1119

tween any possible entity pairs within the same 1120

sentence. We adapt the relation labels from the 1121

original publications into descriptive language. We 1122

additionally include two adjacent sentences to pro- 1123
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vide more context information. Below is an exam-1124

ple from the i2b2 2011 for coreference resolution1125

on clinical named entities (Uzuner et al., 2012):1126

- RE Input -
According to the Medical text below, what is1127

the co-reference relationship between the Person1128

entity ‘Mr. Andersen’ and the Person entity ‘who’?1129

Choose from the following options.1130

Medical text: ... History of Present Illness: Mr.1131

Andersen is a 71-year-old male with worsening1132

anginal symptoms who underwent catheterization1133

that showed severe three-vessel disease. He is pre-1134

senting for revascularization . ... Options: (A) ‘Mr.1135

Andersen’ refers to ‘who’ (B) None of the above.1136

- RE Output -
(A) ‘Mr. Andersen’ refers to ‘who’1137

A.1.5 Multi-choice Question-answering (QA)1138

The QA task aims to answer a research question1139

regarding the medical text within a pre-defined1140

answer set. The PubMedQA dataset consists of1141

research questions about PubMed abstracts, with1142

answers categorized as yes, no, or maybe (Jin et al.,1143

2019). The BioASQ includes biomedical questions1144

with answers classified as yes or no (Tsatsaronis1145

et al., 2015).1146

Directly applying our sequence classification1147

prompt format for the QA task results in single-1148

word multi-choice answers like yes or no. Instead,1149

we transform the single-word options into descrip-1150

tive sentences so that the QA output format is more1151

straight-forward. We utilize one-shot learning with1152

BioMistral to combine the question and each an-1153

swer into a single statement. The one-shot example1154

is randomly chosen from the PubMedQA train split,1155

and the example output is written by human.1156

Below is an example of the QA input-output1157

pair from the PubMedQA dataset, with descriptive1158

multi-choice options.1159

- QA Input -
According to the medical literature below, Is1160

there a connection between sublingual varices and1161

hypertension? Choose from the following options.1162

Only one option can be true.1163

Medical literature: BACKGROUND: Sublingual1164

varices have earlier been related to ageing, smoking1165

and cardiovascular disease. The aim of this study1166

was to investigate whether sublingual varices are1167

related to presence of ...1168

Options: (A) The answer is not mentioned in1169

the text (maybe). (B) There is a connection be-1170

tween sublingual varices and hypertension (yes).1171

(C) There is not a connection between sublingual 1172

varices and hypertension (no). 1173

- QA Output -
(B) There is a connection between sublingual 1174

varices and hypertension (yes). 1175

A.1.6 Natural language inference (NLI) 1176

The NLI task utilizes a similar multi-choice prompt 1177

format to other sequence classification tasks. Be- 1178

low is an example from the BioNLI dataset (Bastan 1179

et al., 2022) 1180

- NLI Input -
What is the relationship of the hypothesis with 1181

respect to the premise? Choose from the following 1182

options. 1183

Premise: The administration of heparin with 1184

or without ACTH significantly decreased hepatic 1185

cholesterol content in catfish. In serum, heparin 1186

alone produced first hypercholesterolemia which 1187

was followed by hypocholesterolemia whereas it 1188

potentiated hypercholesterolemic action of ACTH 1189

three hours after administration. 1190

Hypothesis: It is concluded that heparin inhibits 1191

the cholesterol-lowering action of ACTH in catfish. 1192

Options: (A) neutral (B) entailment (C) contra- 1193

diction 1194

- NLI Output -
(C) contradiction 1195

A.1.7 Semantic text similarity (STS) 1196

We adapt the scoring criteria from the original 1197

publications and translate the numerical similar- 1198

ity scores into a descriptive sentences. Below is 1199

an example from the STS-B dataset (Wang et al., 1200

2018) 1201

- STS Input -
How similar are the two sentences below? 1202

Choose from the following options. 1203

Sentence 1: A plane is taking off. 1204

Sentence 2: An air plane is taking off. 1205

Options: (A) The two sentences are completely 1206

dissimilar. (B) The two sentences are not equiva- 1207

lent, but are on the same topic. (C) The two sen- 1208

tences are not equivalent, but share some details 1209

(D) The two sentences are roughly equivalent, but 1210

some important information differs / missing. (E) 1211

The two sentences are mostly equivalent, but some 1212

unimportant details differ. (F) The two sentences 1213

are completely or mostly equivalent, as they mean 1214

the same thing. 1215

- STS Output -
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(F) The two sentences are completely or mostly1216

equivalent, as they mean the same thing.1217

A.1.8 Natural language generation (NLG)1218

We focus on the abstractive summarization task1219

from NLG. Although abstractive summarization is1220

different from our focus on NLU, it also requires1221

in-depth document understanding, and thus we be-1222

lieve it can help improve NLU performance. We1223

include three NLG datasets in the MNLU-Instruct:1224

PubMedSum (Cohan et al., 2018), CDSR (Guo1225

et al., 2021), and AciDemo (Yim et al., 2023). Pub-1226

MedSum has the input as the complete PubMed1227

articles and the output as their abstracts. CDSR is1228

a text simplification task that translates domain-1229

specialized summaries into lay-user summaries.1230

AciDemo is a task that summarizes doctor-patient1231

dialogues into clinical note sections. Because the1232

PubMedSum and AciDemo documents can be very1233

lengthy, we only include instances with less than1234

800 words. Additionally, we restrict the output in1235

PubMedSum to be at most half of its corresponding1236

input word count to ensure that the PubMedSum1237

splits contain high-quality summaries.1238

Below is an example from the AciDemo dataset.1239

- NLG Input -
Summarize the relevant medical information1240

from a dialogue between a doctor and a patient.1241

The summary should be the objective exam section1242

from the clinical note. Output None if no relevant1243

information is found.1244

Dialogue:[doctor] hi alan , how are you ?1245

[patient] hi , good to see you .1246

[doctor] good to see you as well . are you ready1247

to get started ?1248

[patient] ...1249

- NLG Output -
PHYSICAL EXAMINATION1250

Neck: Supple.1251

No jugular venous distension.1252

Respiratory: Slight expiratory wheezing bilater-1253

ally.1254

Cardiovascular: Regular rate and rhythm. No1255

murmurs.1256

Musculoskeletal: Trace edema in the bilateral1257

lower extremities.1258

A.2 Baseline system with ICL for NER tasks1259

Generalized LLMs do not automatically extract1260

named entities in a unified format. To avoid con-1261

founding factors from different output formats1262

and simplify NER evaluation, we utilize the same1263

NER input-output format as described in Appendix 1264

A.1.1. Additionally, we include a descriptive para- 1265

graph at the beginning of the input prompt to spec- 1266

ify the output format: “Your answer should use 1267

the following format, with one entity type per line. 1268

The span refers to the original text span from the 1269

Medical text. Output None if there is no such span. 1270

Use ‘...’ to separate multiple spans.” 1271

We also include two in-context examples to en- 1272

sure the baseline system adheres to the desired 1273

output format. For each inference query, the 2-shot 1274

examples are randomly selected from the training 1275

split of each dataset. We ensure the outputs from 1276

the 2-shot examples are different from each other, 1277

to prevent bias towards a specific extraction re- 1278

sponse. 1279
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Task dataset # instances Labels

NER

i2b2 2006DeID 5,608 Location, ID, Date, Hospital, Doctor, Contact, Name, Age
i2b2 2011 25,689 Person, Treatment, Test, Problem

i2b2 2012 7,446 Test, Problem, Frequency, Time, Date, Occurrence, Treatment,
Duration, Clinical department

i2b2 2014 52,462 ID, Contact, Age, Name, Location, Profession, Date
GENIA 15,023 RNA, DNA, Cell type, Protein, Cell line
linnaeus 11,935 Species

tmVar 5,351 Cell Line, SNP, Gene, Protein Mutation, Protein Allele, Species
DNA Allele, DNA Mutation, Other Mutation, Acid Change,

DrugProt 17,274 Organism Taxon, Disease Or Phenotypic Feature, Cell Line,
Gene Or Gene Product, Sequence Variant, Chemical

BioRed 13,706 Chemical, Gene
GNorm 4,006 Family Name, Domain Motif, Gene

NLM-Gene 5,048 Gene, Gene reference into function (function of a gene), Domain,
Steroidogenic acute regulatory protein (a protein coding gene)

ClinicalIE_Med 105 Route, Duration, Reason, Dosage, Frequency, Medication
ClinicalIE_Status 105 Neither medications, Discontinued medications, Active medications
BC4CHEMD 30,682 Chemical
PubMed PICO 1,961 Species, Comparator, Outcome, Intervention, Strain, Induction
PICO-Data 36,224 Participants, Intervention, Outcome

EE
i2b2 2009 117,446 Medication (Dosage, Route, Frequency, Duration, Reason, Context)
i2b2 2018 155,716 Drug, ADE (Strength, Frequency, Reason, Form, Route, Dosage)

n2c2 2022 36,359 Alcohol, Drug, Tobacco, Employment, Living
(time, duration, history, type, amount, frequency)

DC

i2b2 2006Smoke 398 Current smoker/Past smoker/Non-smoker/Unknown
i2b2 2008 17,242 10 obesity commodities (Asthma, Depression, ...)
n2c2 2018 2,626 Different selection criteria for 13 cohorts (Abdominal, English, ...)
2024 SemEval2 1,700 Adverse Events, Eligibility, Results, Intervention
TrialStop 3,747 17 reasons to stop a study (Study staff moved, Another study, ...)
MTSamples 3,206 48 medical specialties or domains (Bariatrics, Nephrology, ...)

RE

i2b2 2011 25,689 Refers to

i2b2 2012 7,446
Ends by, Happens during, Happens before and overlap, Begins by,
Happens before, Happens simultaneously with, Happens after,
Overlaps with,

EUADR 318 Gene-disease association

DrugProt 35,624
Antagonist, Agonist, Indirect upregulator, Part of, Agonist activator,
Substrate, Activator, Inhibitor, Direct regulator, Agonist inhibitor,
Product of, Substrate product of, Indirect downregulator

BioRed 4,328 Drug interaction, Positive correlation, Cotreatment, Comparison,
Bind, Conversion, Association, Negative correlation

NLI
Multi-NLI 785,404 Entailment, Contradiction, Neutral
SNLI 1,098,734 Entailment, Contradiction, Neutral
BioNLI 23,704 Entailment, Contradiction, Neutral

STS SIS-B 11,018 6 similarity scales

NLG
PubMedSum 1,407 Article summarization
CDSR 436 Article simplication
AciDemo 204 Dialogue to note summarization

Table 6: Task labels and number of instances in the MNLU-Instruct datasets. For EE tasks, labels inside () refer to
event arguments.
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