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Abstract

Large language models (LLMs) such as Chat-
GPT are fine-tuned on large and diverse
instruction-following corpora, and can gener-
alize to new tasks. However, those instruction-
tuned LLMs often perform poorly in special-
ized medical natural language understanding
(NLU) tasks that require domain knowledge,
granular text comprehension, and structured
data extraction. To bridge the gap, we: (1) pro-
pose a unified prompting format for 7 impor-
tant NLU tasks (2) curate an instruction-tuning
dataset, MNLU-Instruct, utilizing diverse exist-
ing open-source medical NLU corpora, and (3)
develop BioMistral-NLU, a generalizable medi-
cal NLU model, through fine-tuning BioMistral
on MNLU-Instruct. We evaluate BioMistral-
NLU in a zero-shot setting, across 6 important
NLU tasks, from two widely adopted medical
NLU benchmarks: BLUE and BLURB. Our ex-
periments show that our BioMistral-NLU out-
performs the original BioMistral, as well as
the proprietary LLMs - ChatGPT and GPT-4.
Our dataset-agnostic prompting strategy and
instruction tuning step over diverse NLU tasks
enhance LLMs’ generalizability across diverse
medical NLU tasks. Our ablation experiments
show that instruction-tuning on a wider vari-
ety of tasks, even when the total number of
training instances remains constant, enhances
downstream zero-shot generalization. !

1 Introduction

Fine-tuning large language models (LLMs) on a
diverse collection of instruction-following datasets
enables LLMs to generalize across a wide range
of new tasks in a zero- or few-shot setting (Chung
et al., 2022; Chowdhery et al., 2023; Touvron et al.,
2023). Following this instruction fine-tuning phase,
medical foundation LLMs (Zhang et al., 2024; Saab
et al., 2024) have demonstrated great performance

'We plan to release our code and the instruction-tuned
system upon acceptance of this work.
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Figure 1: Instruction-tuning dataset (MNLU-Instruct),
system development, and downstream evaluation for
BioMistral-NLU.

in various medical tasks, which require in-depth
medical domain knowledge and logical reasoning
ability (Nori et al., 2023), such as medical ex-
ams (Nori et al., 2023), common sense reasoning
(Labrak et al., 2024; Han et al., 2023) and diagnos-
tic reasoning (Saab et al., 2024). This generaliz-
ability is particularly crucial for tasks with limited
annotated data, where fine-tuning is infeasible.

Despite their superior generalizability in some
areas, instruction-tuned LL.Ms can underperform
smaller-scale, fine-tuned language models, in some
specialized medical natural language understand-
ing (NLU) tasks. These tasks require the model to
understand, interpret, and respond to human lan-
guage meaningfully (Wang et al., 2018). Examples
of medical NLU tasks include information extrac-
tion (Xie et al., 2024; Hu et al., 2023) and sentence
classification (Chen et al., 2024). The performance
gap may be because the current foundation LLMs’
instruction-tuning phase focuses primarily on nat-
ural language generation (NLG) tasks that allow
for free-text, unconstrained outputs (Chung et al.,
2022). Although many NLG tasks require com-
plex logical reasoning, these skills do not directly
translate to nuanced NLU tasks.



To bridge this gap, we propose a unified prompt-
ing format for 7 important NLU tasks, employ-
ing span extraction and multi-choice question-
answering (QA). Utilizing this unified format,
we create an instruction-tuning dataset, MNLU-
Instruct, from diverse existing open-source medi-
cal NLU corpora. We fine-tune a high-performing
biomedical LLM, BioMistral (Labrak et al., 2024)
on MNLU-Instruct, resulting in a new, generaliz-
able medical NLU model we call BioMistral-NLU.
We evaluate the generalizability of BioMistral-
NLU, using zero-shot, dataset-agnostic prompts,
on two widely adopted benchmark datasets: the
Biomedical Language Understanding Evaluation
(BLUE) (Peng et al., 2019) and the Biomedical
Language Understanding and Reasoning Bench-
mark (BLURB) (Gu et al., 2021). Collectively,
the benchmarks include 15 biomedical datasets
with 6 important NLU task categories, across both
clinical and biomedical domains.In our evaluation,
BioMistral-NLU outperforms the original BioMis-
tral, as well as ChatGPT, and GPT-4 on the macro
average across all tasks. Our result demonstrated
that instruction-tuning on diverse medical NLU
datasets using our unified format is an effective
approach to improving the generalizability on med-
ical NLU.

2 Related work

2.1 Medical NLU

Within this broad category of medical NLU, there
is extensive research on specific NLU tasks in
clinical and biomedical domains, such as Informa-
tion Extraction (IE) and Document Classification
(DC) (Wu et al., 2020). To develop a comprehen-
sive understanding of medical NLU, previous re-
search curates two NLU benchmark datasets: the
Biomedical Language Understanding Evaluation
(BLUE) (Peng et al., 2019) and the Biomedical Lan-
guage Understanding and Reasoning Benchmark
(BLURB) (Gu et al., 2021). These two benchmarks
encompass multiple important medical NLU tasks
and are widely adopted to evaluate various LLMs
for their medical NLU capabilities (Feng et al.,
2024; Wang et al., 2023b; Chen et al., 2023).
Previous studies explore the ability of task-
agnostic LLMs to perform medical NLU tasks. For
example, Agrawal et al. (2022) demonstrate LLMs’
potential for clinical NLU tasks through few-shot
in-context learning (ICL). Hu et al. (2023) evaluate
ChatGPT on two clinical NER datasets, represent-

ing a subset of NLU tasks. Wang et al. (2023b)
propose a novel prompting strategy for multiple
clinical NLU tasks using proprietary LLMs such
as ChatGPT (Cha, 2022) and GPT-4 (Achiam et al.,
2023). However, they only evaluate the LLMs on
a few samples from each task within the BLUE
benchmark. Similarly, Chen et al. (2023) and
Feng et al. (2024) systematically evaluate multi-
ple LLMs using the BLURB benchmark (Gu et al.,
2021). Although ChatGPT and GPT-4 outperform
other LLMs, they considerably underperform the
in-domain fine-tuned systems. This performance
gap highlights the need for the development of
more generalized systems for medical NLU.

2.2 Instruction tuning for Medical NLU

Instruction tuning involves fine-tuning a pre-trained
LM on a diverse collection of instruction-following
tasks and thus enables the LM to understand and
follow natural language instructions, and gener-
alize to previously unseen tasks in zero-shot and
few-shot settings (Chung et al., 2022; Ouyang et al.,
2022). Instruction-tuning datasets typically encom-
pass a wide range of natural language processing
(NLP) tasks presented in an instructional format,
including reasoning, question-answering, dialogue,
and summarization (Zhang et al., 2023b). Utilizing
instruction tuning, previous research has developed
systems focused on generalizing to a limited subset
of NLU tasks in the general domain, such as IE
tasks (Wang et al., 2023a; Jiao et al., 2023; Sainz
et al., 2023; Wang et al., 2022; Lu et al., 2022) and
more specific Named Entity Recognition (NER)
(Zhou et al., 2023; Zhao et al., 2024).

Several previous studies aim to adapt instruction-
tuning to the medical domain, with a major fo-
cus on dialogue-based chatbots, such as ChatDoc-
tor (Yunxiang et al., 2023) and MedAlpaca (Han
et al., 2023). Other medical foundation LLMs, like
MedGemini (Saab et al., 2024) and Taiyi (Luo et al.,
2024), show potential for diverse NLU tasks but
lack comprehensive evaluation. Previous system
development has often focused on a limited sub-
set of medical NLU tasks. For example, Luo et al.
(2022b) explore Table QA; Zhao et al. (2024) fo-
cused on NER; Rohanian et al. (2023) focused on
QA, IE, and text generation; However, the appli-
cation of these models to other NLU tasks, such
as sentence similarity and natural language infer-
ence, has not yet been explored. To the best of our
knowledge, there is no comprehensive system de-
velopment and evaluation across all medical NLU



tasks for their generalizability. Therefore, in this
work, we aim to bridge this gap by evaluating our
proposed system in a zero-shot setting using two
widely adopted benchmarks, encompassing 7 im-
portant medical NLU tasks.

3 Methods

In this section, we will introduce the task formula-
tion, and outline the three-step approach to creating
our generalized LLM across medical NLU tasks.

3.1 Task formulation

We reformulate the NLU problem as text gener-
ation tasks. Our learning objective M for the
medical NLU system is defined by the function
M : (I,X,T) — O. Specifically, given a user
instruction I, associated medical text X, and NLU
task labels 7', the model M is instructed to output
the system output O, where I, X, T, O correspond
to sequences of tokens.

We reference the NLU task definitions by Gu
et al. (2021) in the BLURB benchmark and group
the most common NLU tasks into three categories:
(1) token classification, (2) sequence classification,
and (3) sequence regression.

3.2 Unified Medical NLU format

Building on prior research outlined in Section 2.1,
we develop our unified NLU format that focuses
on seven critical NLU tasks. This unified format
simplifies evaluation across diverse NLU task out-
puts, and potentially facilitates knowledge transfer
when the system is fine-tuned for a wider range of
NLU tasks. Six of these NLU tasks are directly
adapted from the BLUE and BLURB benchmarks,
including named entity recognition (NER), docu-
ment classification (DC), relation extraction (RE),
multi-choice question-answering (QA), natural lan-
guage inference (NLI), and semantic text similar-
ity (STS). We also incorporate event extraction
(EE), which is extensively researched in the medi-
cal domain (Frisoni et al., 2021). In EE, each event
consists of a trigger and multiple arguments that
characterize the event. The event trigger extrac-
tion (ETE) and event argument extraction (EAE)
can be considered as NER. The event argument
classification (EAC) classifies the event argument
into a subtype, and can be considered as sequence
classification. Table 1 demonstrates the example
input-output format for each medical NLU task.
NER, ETE, and EAE are token classification
tasks, which assign a class label to each token in

the input sequence 2. In token classification, the in-
put includes the user instruction I with pre-defined
token labels, and the target text 7". In the output O,
each line includes all the token annotations associ-
ated with a specific label. Each line starts with a
class label, followed by the corresponding positive
tokens in the order they appear in X. Continuous
positive tokens are grouped into text spans (enti-
ties), separated by “...”. If no tokens are classified
as entities, the O is “None”. More specifically,
NER classifies each token as a possible named en-
tity.

EAC, DC, RE, QA, and NLI are sequence clas-
sification tasks, which assign a class label to the
entire input token sequence. In sequence classifi-
cation, the user instruction [ specifies pre-defined
class labels as multiple choices, which is a com-
monly adopted format in instruction-tuning (Chung
et al., 2022). The system output O is always one or
more multi-choice options. In DC, the medical text
X is the document. In RE, X is the corresponding
medical text snippet with labeled named entities.
In NLI, X is a pair of a premise and a hypothesis.
In QA, user instruction [ involves the task question,
and X is the corresponding medical text.

STS is a sequence regression task, which as-
signs a numeric score to the entire input. In this
study, we explore the widely researched task of
sequence regression: calculating the semantic text
similarity (STS) score between two sentences. Due
to the inherent ability of LLMs to generate text, we
approach this regression task as an ordinal classifi-
cation task through a similar multi-QA format as
sequence classification. In the user instruction 7
of STS, the STS scores correspond to the scoring
criteria from the original publication, and are pre-
sented as multi-choice options. The STS example
can be found in Table 1.

3.3 MNLU-Instruct dataset

Focusing on the 7 medical NLU tasks outlined in
Table 1, we construct the instruction-tuning dataset,
MNLU-Instruct, through intensively searching for
publicly available clinical and biomedical NLU
datasets outside of BLUE and BLURB. To bet-
ter assess the generalizability of our proposed sys-
tem, we intentionally avoid adding any QA datasets
to the MNLU-Instruct dataset, using QA tasks as

“Tasks such as NER are often treated as sequence labeling
tasks in the NLP field (He et al., 2020). In this work, we refer
to them as Token classification tasks for consistency with the
BLURB (Gu et al., 2021).



Task  Input prompt Example output

NER/  Extract all relevant medical named entities from the medical text below. Chemical: None

ETE Focus on identifying following entities: {type1}, {typez2}, ... . {text} Disease: Azotemia ... infection

EAE What is the {type} attribute of the {¢trigger} ‘{span}’ in the medical Disease - Anatomy: neck...hand
text below? {rext}

EAC What is the {type} attrl})ute of the {trigger} ‘{span}’ in the medical Disease - Assertion: (A) present
text below? {text} {options}

DC Which options best. describe cancer hallmark from the medical text (A) Cellular energetics
below? {text} {options}

RE What is the relation between the{type; } entity ‘{spani}’ and the (C) “stress’ causes ‘headache”.

{type2} entity ‘{spans}’ from the medical text below? {text} {options}

QA {question} {text} {options}

(B) LPS is a microbial product.

NLI

What is the relation between the premise and hypothesis?
Premise: {premise}. Hypothesis: {hypothesis} {options}

(C) Contradicts

STS How similar are the two sentences below?

Sentence 1: {sentence; }. Sentence 2: {sentencez}. {options}

(A) The two sentences are on
different topics (score 0).

Table 1: The task-agnostic prompt format for 7 medical NLU tasks: named entity recognition (NER), event
extraction (EE), document classification (DC), relation extraction (RE), multi-choice question-answering (QA),
natural language inference (NLI), and semantic text similarity (STS). Event trigger extraction (ETE), event argument
extraction (EAE), and event argument classification (EAC) are all components of the EE task. Variables inside { }

are derived from each dataset instance.

novel tasks specifically for assessment purposes.
Instead, beyond NLU tasks, we additionally incor-
porate three medical summarization tasks, which
require similar text summarization and understand-
ing abilities as the QA tasks. Meanwhile, Given
the limited availability of public medical datasets
for NLI and STS, we incorporate datasets from the
general domain, including SNLI, Multi-NLI, and
SIS-B. As a result, we derive the MNLU-Instruct
dataset with the train splits from 33 publicly avail-
able datasets shown in Table 2.

We construct the NLU input-output pairs in
MNLU-Instruct through the task-agnostic prompt-
ing strategy shown in Table 1, which directly adapts
pre-defined label names from the original publica-
tions. We additionally expand abbreviated label
names, i.e., from ‘GENERIF’ to ‘Gene reference
into a function (function of a gene)’. To increase
the variability of MNLU-Instruct, for every NLU
input-output pair, we randomly shuffle the order
of task labels. Specifically, token labels in token
classification tasks and multi-choice options in se-
quence classification and regression tasks are ran-
domly shuffled. When train splits are unavailable
or datasets have very few input-output pairs, we uti-
lize the entire datasets for training. The complete
dataset labels, prompts, and statistics can be found
in Appendix A.1.

3.4 BioMistral-NLU system development

We hypothesize that instruction-tuning on a diverse,
yet relevant set of tasks improves the generalizabil-
ity of LLMs on medical NLU tasks. To verify this

hypothesis, we fine-tune a high-performing med-
ical LLM on MNLU-Instruct and evaluate it in a
zero-shot setting.

We chose BioMistral-7B-DARE as our baseline
system, which is the state-of-the-art open-source
LLM on multiple medical QA tasks. For simplic-
ity, we refer to BioMistral-7B-DARE as BioMis-
tral in this work. We fine-tune BioMistral with
full parameters on MNLU-Instruct, resulting in
BioMistral-NLU-FT. However, fine-tuning LLMs
in specialized domains can potentially degrade their
original generalization ability across broader tasks
(Ainsworth et al., 2022). To mitigate this risk and
preserve the versatility of the original BioMistral,
we utilize DARE (Yu et al., 2023), as suggested
by Labrak et al. (2024). This approach integrates
model parameters from BioMistral-NLU-FT and
BioMistral, without additional training, and creates
the merged system BioMistral-NLU.

The experiment is conducted using the
alignment-handbook® package. Based on the
engineering judgment recommended by the
alignment-handbook GitHub discussion, we set
the number of epochs to 3, the batch size to 16,
and configured the learning rate to 2e-04 with a
warmup ratio of 0.1, using 4 A100 GPUs. The
rest hyperparameters are the same as the default
configurations by the alignment-handbook. For
inference, we use the vllm package* and set the
temperature to 0.

3https://github.com/huggingface/alignment-handbook
*https://github.com/vllm-project/vlim



Task

Datasets used for instruction-tuning

12b2 2006DelID (Uzuner et al., 2007), 12b2 2011Coreference (Uzuner et al., 2012),
i2b2 2012Temporal (Sun et al., 2013), i2b2 2014 DelD (Stubbs and Uzuner, 2015),
GENIA (Yu et al., 2020), linnaeus (Kocaman and Talby, 2021), tmVar (Wei et al., 2018),

NER

DrugProt (Miranda-Escalada et al., 2023), BioRed (Luo et al., 2022a),

GNorm (Morgan et al., 2008), NLM-Gene (Islamaj et al., 2021),
ClinicallE (Agrawal et al., 2022), BC4ACHEMD (Kocaman and Talby, 2021),
PubMed PICO (Jin and Szolovits, 2018), PICO-Data (Nguyen et al., 2017)

EE 122 20228DoH (Lybarger et al., 2023),

12b2 2009Medication (Uzuner et al., 2010), i2b2 2018 ADE (Henry et al., 2020),

12b2 2006Smoking (Uzuner et al., 2008), i2b2 20080besity (Uzuner, 2009),

DC

n2c2 2018 (Stubbs et al., 2019), 2024 SemEval Task 2 (Jullien et al., 2024),

TrialStop (Razuvayevskaya et al., 2023), MTSamples (MTS, 2023)

12b2 2011Coreference (Uzuner et al., 2012), i12b2 2012Temporal (Sun et al., 2013),

RE
BioRed (Luo et al., 2022a)

EUADR (van Mulligen et al., 2012), DrugProt (Miranda-Escalada et al., 2023),

NLI

BioNLI (Bastan et al., 2022), SNLI (Bowman et al., 2015), Multi-NLI (Williams et al., 2018)

STS SIS-B (Wang et al., 2018)

Summ

PubMedSum (Cohan et al., 2018), CDSR (Guo et al., 2021), AciDemo (Yim et al., 2023)

Table 2: The MNLU-Instruct dataset, which is used for fine-tuning: NLU and summarization datasets and tasks

curated from existing open-source medical corpora.

4 Experiment setup

In this section, we will introduce our evaluation
datasets, evaluation metrics, and comparative sys-
tems.

4.1 Evaluation datasets

We evaluate BioMistral-NLU in a zero-shot setting
using BLURB and BLUE. Due to the sensitivity
in deploying clinical-note-based corpora, we ex-
clude the two inaccessible datasets from BLUE,
ShARe/CLEF (Suominen et al., 2013) and Med-
STS (Wang et al., 2020). Some datasets are in-
cluded in both benchmarks evaluated, resulting in
a total of 7 tasks and 15 unique datasets evalu-
ated. We developed the evaluation datasets by uti-
lizing the unified prompt format outlined in Table 1;
the entity types and multi-choice options for those
datasets are shown in Table 3 and 4. The example
prompts can be found in the Appendix A.1.

Dataset Named entities
BC2GM Gene
BC5-chemical Chemical
BC5-disease Disease
NCBI-disease  Disease

JNLPBA Protein, Cell type, RNA, Cell line, DNA

EBM PICO Interventions, Participants, Outcomes

Table 3: NER datasets used in the evaluation.

4.2 Evaluation metrics

For consistency with prior studies, we utilize the
same evaluation criteria from BLUE (Peng et al.,

Task Dataset Multi-choice options
DC HoC 10 cancer hallmarks
QA PubMedQA  yes/maybe / no
BioASQ yes / no
GAD 2 gene-disease relations
RE DDI 4 drug-drug interactions
ChemProt 5 chemical-protein relations
i2b2-2010 8 medical problem relations
NLI  MedNLI entails / neutral / contradicts
STS  BioSSES 5 similarity score definitions

Table 4: Sequence classification and regression datasets
used in the evaluation.

2019) and BLURB (Gu et al., 2021). Token classi-
fication tasks are evaluated using F1 scores, either
at the token or entity level. When class labels are
balanced like in NLI and QA, sequence classifi-
cation tasks are evaluated using accuracy. When
class labels are imbalanced, like in RE, sequence
classification tasks are evaluated using F1. For the
sequence regression task, STS, system outputs are
converted to numerical integer scores and evaluated
based on Pearson correlation.

4.3 Comparative systems

We compare our proposed system, BioMistral-
NLU, with our baseline, BioMistral, as well as
other high-performing systems.

Open-source LLMs: BioMistral and Llama-3-
8B (at Meta, 2024). In our controlled experiments,
we evaluate open-source LLMs using our proposed
unified prompting formats, shown in Table 1. The



evaluation is conducted in a zero-shot setting, ex-
cept for NER datasets. Because our desired token
classification output prompt format is less common
during those open-source LLMs’ instruction tuning
phase, we additionally incorporate an explanation
for the output formats and two random few-shot
examples from the corresponding training set in
each task. More details about the prompts and few-
shot sample selection can be found in the Appendix
A2

Proprietary LLMs: ChatGPT (Cha, 2022) and
GPT-4 (Achiam et al., 2023). We reference prior
research that evaluates these proprietary LLMs on
BLURB (Chen et al., 2023; Feng et al., 2024).
Note that ChatGPT’s performance is reported un-
der one-shot ICL, while GPT-4’s performance is
based on randomly selected few-shot examples for
NER tasks and zero-shot for other tasks. Addition-
ally, their prompts are strategically optimized for
each dataset, resulting in competitive systems.
Task- and dataset-specific fine-tuned LM: BERT-
FT. To better understand the gap between gener-
alized foundation LLMs and in-domain fine-tuned
systems, we refer to the reported performance of
BERT-based systems by the BLUE (Peng et al.,
2019) and BLURB (Gu et al., 2021) benchmarks.
For each dataset, a BERT-FT system is fine-tuned
on its corresponding train split.

5 Results

Following the practice in BLURB (Gu et al.,
2021), we average system performance across
datasets for an overview. As shown in Table 5,
BioMistral-NLU outperforms the baseline BioMis-
tral with an increase in the macro average score of
19.7 for BLURB and 16.7 for BLUE. Meanwhile,
BioMistral-NLU outperforms the proprietary mod-
els, achieving an increase in the macro average
score of 9.0 over ChatGPT, and 2.7 over GPT-4 for
BLURB.Our results demonstrate that instruction-
tuning on diverse medical NLU tasks using our
unified format effectively improves the LLMs’ gen-
eralizability to unseen NLU datasets. In this sec-
tion, we will analyze the results and characterize
the gaps between the systems.

5.1 Comparison across systems

Comparing BioMistral-NLU with the baseline
BioMistral, we observe an average performance
increase of 33.7 for NER tasks and 8.2 for other
tasks. This difference may originate from the

instruct-tuning phase of BioMistral. While the
NER task might be less frequent during BioMis-
tral’s instruction-tuning phase, the other tasks uti-
lize a QA prompting strategy and are likely similar
to some of BioMistral’s instruction-tuning tasks.
This necessitates instruction-tuning on a wider va-
riety of NLU tasks to improve the LLM’s general-
izability.

Comparing BioMistral-NLU with proprietary
LLMs in the BLURB benchmark, we observe that
BioMistral-NLU has an average F1 score of 9.7
higher than GPT-4 across NER tasks. However,
for other BLURB tasks, BioMistral-NLU has an
average score of 2.0 higher than ChatGPT and 5.4
lower than GPT-4. Given that GPT-4 is signifi-
cantly larger in terms of parameter size and has
been instruction-tuned on much more diverse cor-
pora, its superior generalization ability for other
tasks involving more complex reasoning is consis-
tent with the empirical scaling law (Kaplan et al.,
2020; Chung et al., 2022).

Compared with the dataset-specific BERT-FT
systems, we observe that BioMistral-NLU has an
average performance gap of 20.3 in BLURB and
26.3 in BLUE. This disparity might be due to the
ambiguity in medical NLU tasks, where disagree-
ments are common even among human annotators
following the same instructions (?Oortwijn et al.,
2021). To tackle such ambiguity, for each dataset,
the BERT-FT system requires finetuning on the
corresponding train split using extensive annotated
data. In contrast, BioMistral-NLU uses simpli-
fied task definitions from input prompts. It is chal-
lenging for generalized LLMs using ICL to match
BERT-FT’s performance.

5.2 Error analysis

We observe that for NER tasks, a major source of
error for BioMistral-NLU is the nuanced task of ac-
curately identifying exact named entity boundaries.
For example, in the BC2GM gene NER dataset,
the predicted named entity is ‘Id - 1°, whereas the
gold named entity is ‘mouse Id - 1’. To better
understand the prevalence of this discrepancy, we
evaluate the 5 NER datasets using a relaxed cri-
terion, where two named entities are considered
equivalent if their spans overlap. Using this relaxed
criterion, we observe an average improvement of
15.5 in F1 across the 5 NER datasets from the orig-
inal entity-level F1.

In all RE tasks, BioMistral-NLU demonstrates
recall rates that are 10 to 70 points higher than its



Evaluation #test In-domain Generalized LLMs with zero- or few-shot ICL

Task Metric Dataset ins- EEB’II‘ZI::I}‘ Chat 4 Llama BioMistral
tances  (Guecah2020 | chmaa. sy (FeEetas229 | 388 " Baseline Ours
BC2GMT 6,322 84.5 37.5 54.6 12.6 34.1 61.5
Entity- BCS—chemical * 5,385 93.3 60.3 78.2 52.5 45.0 89.9
NER level F1 BC5-disease’™ 4,424 85.6 51.8 63.9 38.7 33.7 67.0
NCBI-disease 955 89.1 50.5 66.0 33.5 39.9 61.8
JNLPBA 8,657 79.1 41.3 454 333 25.6 64.4
Token  ppnMpicot 24474 734 55.6 335 | 202 196 553

level F1

DC F1 HoCT* 315 81.5 51.2 62.5 23.1 47.3 63.8
QA Acc PubMedQAT 500 60.2 76.5 70.6 71.0 72.0 70.2
BioASQ 263 94.8 88.6 85.7 78.7 74.9 86.7
GAD 534 84.0 52.4 51.5 55.6 55.0 58.5
RE Fl DDI'™ 5,761 82.4 51.6 37.7 13.2 10.0 13.0
ChemProt'™ 14,744 77.2 34.2 37.6 352 28.6 38.1
i2b2-2010* 6,292 76.4 - - 38.9 30.9 41.8
NLI Acc MedNLI* 1,422 73.5 - - 49.1 49.3 57.5
STS Pecagf;’“ BioSSES'* 20 92.3 428 893 | 679 691 808
Overall Macro BLURB' - 82.9 53.4 59.7 41.2 427 62.4
average BLUE* - 82.8 - - 39.8 39.2 56.5

Table 5: Our proposed system, BioMistral-NLU’s zero-shot performance on 15 unseen medical NLU datasets from
2 benchmarks: BLURB (labeled by ) and BLUE (labeled by *). Bold indicates superior performance over the
BioMistra-7B and Llama-3-8B, which utilize the same, dataset-agnostic prompts as BioMistral-NLU. Underline
indicates better performance over the ChatGPT and GPT-4 ICL, which utilize dataset-specific prompts.

precision, suggesting a tendency to identify many
false positive relationships. One major source of
these false positives is the occurrence of interac-
tions between entities, which do not fit into any of
the pre-defined relation categories of interest. As
a result, BioMistral-NLU assigns a wrong relation
label instead of recognizing no relation.

In the sequence regression dataset, BioSSES,
BioMistral-NLU tends to predict intermediate sim-
ilarity scores (such as scores of 2 or 3) rather than
extreme scores (0, 1, 4, or 5).

6 Discussion

We have demonstrated that instruction-tuning on
diverse medical NLU tasks can enhance LLMs’
downstream generalization to unseen medical NLU
datasets in a zero-shot setting. In this section, we
will evaluate the impact of instruction dataset com-
position, focusing on two components: instruction-
tuning tasks and domains.

6.1 Impact of instruction-tuning tasks

We aim to assess the impact of instruction-tuning
task selection from two perspectives: (1) its rele-
vance to downstream tasks and (2) its task diversity.
Focusing on these two perspectives, we fine-tune
the baseline system, BioMistral, with different sub-

sets of tasks used to build BioMistral-NLU. We
evaluate the fine-tuned system on the 4 RE datasets
from Table 5 in a zero-shot setting, and compare the
macro-average F1 scores across the 4 RE datasets.

To study the impact of task relevance, we first
construct two instruction-tuning setups: (1) with
the RE task (w/ RE) and (2) with the DC task (w/o
RE). We chose the DC task because DC employs
a similar QA prompting format to RE and it con-
tains 6 diverse datasets from Table 2. To study
the impact of task diversity, besides DC and RE,
we additionally include 2 and 4 more randomly
selected tasks from Table 2. More specifically, our
experiment settings are:

1. w/ RE:

(a) 1 task: RE

(b) 3 tasks: RE, NLI, NER

(c) 5tasks: RE, NLI, NER, EE, STS
2. w/o RE:

(a) 1 task: DC

(b) 3 tasks: DC, NLI, NER

(c) 5tasks: DC, NLI, NER, EE, STS

All fine-tuning experiments are controlled by
using a fixed number of 50,000 data instances and
running for three epochs. We maintain an equal
number of instances for each task (i.e., 50,000/k
instances per task when fine-tuning with k tasks),



and randomly sample fine-tuning instances from
all datasets within the same task.
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Figure 2: Average zero-shot performance on the 4 RE
datasets, after instruction-tuning on 50k instances.

After BioMistral is fine-tuned with the same
number of instances, we observe the following
from Figure 2: (1) Overall, setting 1 (with RE)
consistently outperforms setting 2 (without RE),
due to its relevance to the RE datasets used in
downstream evaluation; (2) In both settings, sys-
tem performance increases with the number of fine-
tuning tasks, demonstrating the benefits of fine-
tuning with multiple tasks; (3) When fine-tuning
on a single task, whether fine-tuning improves sys-
tem performance on downstream tasks depends
on the similarity between fine-tuning task and the
downstream task.

6.2 Impact of instruction-tuning domain

After demonstrating the benefits of diverse
instruction-tuning tasks, we now examine individ-
ual tasks. Note that the BLUE benchmark includes
both biomedical and clinical datasets: biomedi-
cal data comes from scientific publications, while
clinical data consists of semi-structured clinical
notes from patients (Wu and Liu, 2011). In this
section, we assess how domain selection affects
downstream generalizability.

We follow a similar experimental setup as de-
scribed in Section 6.1, fine-tuning BioMistral for
three epochs over 25,000 data instances. The fine-
tuned system is evaluated on six biomedical NER
datasets from Table 5 in a zero-shot setting, using
macro average F1 scores. The instruction-tuning
NER datasets from MNLU-Instruct > are divided
into biomedical and clinical splits. Our experi-
ments include fine-tuning on a single split (BioMed
/ Clinical) and both splits (Both). We addition-
ally combine single splits or include additional in-
stances, creating a similar experiment setting with
50k instances. We use the 2-shot BioMistral de-
scribed in Section 4.3 as the baseline system.

>We also include event triggers as named entities.

70 BioMed

Clinical

~ 60
% Both
g 50 —Baseline
[}
>
< 40

30

25k 50k
# instruction-tuning instances

Figure 3: Average zero-shot performance on 6 biomedi-
cal NER datasets, when finetuned on different domains.

From Figure 3, we observe the following: (1)
Instruction-tuning on the BioMed domain alone
consistently outperforms tuning on the Clinical do-
main alone when using the same number of in-
stances. (2) Compared to the baseline, instruction-
tuning on the Clinical domain negatively impacts
downstream performance on the BioMed domain.
(3) Combining instances from both domains im-
proves downstream generalizability to the BioMed
domain, even with the same total number of in-
stances. (4) Increasing the number of instances
from the BioMed or Both domains improves perfor-
mance, whereas more instances from the Clinical
domain alone decrease performance.

7 Conclusion

In this work, we introduce a unified prompting
format for 7 important medical NLU tasks, and
develop an instruction-tuning dataset based on pub-
licly available clinical and biomedical corpora. Our
experiment demonstrates that fine-tuning across di-
verse medical NLU datasets improves the system’s
generalizability in a zero-shot setting with dataset-
agnostic prompt tuning. Our ablation study under-
scores the necessity for instruction tuning across
diverse medical NLU tasks, including domain-
specific lexicon and common biomedical tasks.

Our future work will focus on further improving
the generalized LLM’s zero-shot performance on
medical NLU tasks and narrowing its gap to in-
domain fine-tuned systems. Because LLMs often
struggle to adhere to in-context annotation guide-
lines (Zhang et al., 2023a), our future work will
focus on integrating nuanced task descriptions from
annotation guidelines into both the fine-tuning and
inference stages (Sainz et al., 2023). Future work
could also involve a self-verification step (Gero
et al., 2023) or using a knowledge base as augmen-
tation (Lewis et al., 2020) to reduce false positives
in the sequence classification tasks.



Limitation

Our experiments demonstrate the effectiveness of
our proposed unified and dataset-agnostic prompt-
ing strategy for medical NLU tasks. However, we
acknowledge that there may be other alternative
unified prompting strategies that could also be ef-
fective. We plan to evaluate the impact of different
prompting formats in instruction tuning for medical
NLU tasks.

In the medical field, the term “medical domain"
typically encompasses both biomedical and clini-
cal domains. Our work is primarily evaluated on
biomedical datasets due to the sensitivity and in-
accessibility of clinical datasets. We plan to col-
laborate with our home institution to gain access
to real-world clinical datasets, and further evaluate
and validate our proposed system in more diverse
and realistic clinical settings.
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A Appendices

A.1 Unified Prompt Format

Utilizing the unified prompt format outlined in Ta-
ble 1, we developed (1) the MNLU-Instruct dataset
based on the collection of datasets detailed in Table
6; and (2) the evaluation dataset from BLUE and
BLURSB utilizing the labels from Table 3 and 4. In
this section, we provide detailed information on
dataset creation and examples of the input-output
format for each task type.

A.1.1 Named entity recognition (NER)

We conduct NER at the sentence level, because
most NER datasets comprise pre-split sentences.


http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
http://aclweb.org/anthology/N18-1101
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279
https://arxiv.org/abs/2308.03279

For NER datasets where the medical text is an en-
tire document, we use the SpaCy tokenizer® to split
the document into sentences.

Below is an example of the NER input-output
pair. The example is from the n2c2 2022 dataset
(Lybarger et al., 2023), a shared task focused on ex-
tracting social determinants of health from clinical
notes.

- NER Input -

Extract all relevant medical named entities faith-
fully from the medical text below. Focus on identi-
fying the following entities: Living status, Tobacco,
Drug, Employment, Alcohol.

Medical text: Denies any IV drug use or any
recreational drug use.

- NER Output -

Living status: None

Tobacco: None

Drug: IV drug use ... recreational drug use

Employment: None

Alcohol: None

A.1.2 Event extraction (EE)

The EE task is composed of event trigger extrac-
tion (ETE), event argument extraction (EAE), and
event argument classification (EAC). ETE uses the
same prompting formats as NER. In EAE and EAC,
we additionally include two adjacent sentences to
provide more context information. Below are ex-
amples of the EAE and EAC input-output pairs
from the n2c2 2022 dataset (Lybarger et al., 2023)
- EAE Input -

According to the medical text, what is the
Method attribute of the Drug event ‘IV drug use’
in the medical text below? Extract the attribute
faithfully from the medical text.

Medical text: ... Currently admits to five drinks
of alcohol per week. Denies any IV drug use or any
recreational drug use. Divorced with no children.

- EAE Output -

Drug - Method: IV

- EAC Input -

According to the medical text, what is the Status
time attribute of the Drug event ‘IV drug use’ in
the medical text below? Choose from the following
options.

Medical text: ... Currently admits to five drinks
of alcohol per week. Denies any IV drug use or any
recreational drug use. Divorced with no children.

®https://spacy.io/api/sentencizer
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Options: (A) none (B) past (C) future (D) current
- EAC Output -
Drug - Status time: (A) none

A.1.3 Document classification (DC)

Our document classification task involves classify-
ing a document or sentence into one or multiple
pre-defined categories.

In the i2b2 2006Smoke (Uzuner et al., 2008) and
12b2 2008 (Uzuner, 2009) dataset, where the input
document is a lengthy clinical note, we first deploy
BioMistral to summarize the document. We use
the prompt format, *Summarize the {type} from
the following clinical note.”, where fype is the cor-
responding DC type label, such as smoking status
or asthma status.

The MTSamples dataset aims to classify a med-
ical report into one of 48 medical specialties or
domains (MTS, 2023). The large number of possi-
ble categories results in lengthy prompts. Instead,
in each instance, we include the correct category
along with 12 randomly selected negative cate-
gories in our prompts for more efficient training.

Below is an example of the DC input-output pair
from the TrialStop dataset (Razuvayevskaya et al.,
2023).

- DC Input -

According to the medical text below, which
options best describe reason to stop the study?
Choose from the following options. Multiple op-
tions can be true.

Medical text: 13 of 15 patients recruited.Study
patients responded with no safety signals. Recruit-
ment’s slow, timely end of study necessary to keep
development timelines.

Options: (A) Insufficient enrollment (B) Logis-
tics resources (C) Business administrative (D) In-
sufficient data (E) Endpoint met (F) Negative (G)
Study success (H) Regulatory (I) Interim analy-
sis (J) Ethical reason (K) Invalid reason (L) Study
design (M) No context (N) Another study (O)
Covid19

- DC output -

(A) Insufficient enrollment (C) Business admin-

istrative

A.1.4 Relation extraction (RE)

The RE task focuses on classifying the relation be-
tween any possible entity pairs within the same
sentence. We adapt the relation labels from the
original publications into descriptive language. We
additionally include two adjacent sentences to pro-



vide more context information. Below is an exam-
ple from the i2b2 2011 for coreference resolution
on clinical named entities (Uzuner et al., 2012):

- RE Input -

According to the Medical text below, what is
the co-reference relationship between the Person
entity ‘Mr. Andersen’ and the Person entity ‘who’?
Choose from the following options.

Medical text: ... History of Present Illness: Mr.
Andersen is a 71-year-old male with worsening
anginal symptoms who underwent catheterization
that showed severe three-vessel disease. He is pre-
senting for revascularization . ... Options: (A) ‘Mr.
Andersen’ refers to ‘who’ (B) None of the above.

- RE Output -
(A) ‘Mr. Andersen’ refers to ‘who’

A.1.5 Multi-choice Question-answering (QA)

The QA task aims to answer a research question
regarding the medical text within a pre-defined
answer set. The PubMedQA dataset consists of
research questions about PubMed abstracts, with
answers categorized as yes, no, or maybe (Jin et al.,
2019). The BioASQ includes biomedical questions
with answers classified as yes or no (Tsatsaronis
et al., 2015).

Directly applying our sequence classification
prompt format for the QA task results in single-
word multi-choice answers like yes or no. Instead,
we transform the single-word options into descrip-
tive sentences so that the QA output format is more
straight-forward. We utilize one-shot learning with
BioMistral to combine the question and each an-
swer into a single statement. The one-shot example
is randomly chosen from the PubMedQA train split,
and the example output is written by human.

Below is an example of the QA input-output
pair from the PubMedQA dataset, with descriptive
multi-choice options.

- QA Input -

According to the medical literature below, Is
there a connection between sublingual varices and
hypertension? Choose from the following options.
Only one option can be true.

Medical literature: BACKGROUND: Sublingual
varices have earlier been related to ageing, smoking
and cardiovascular disease. The aim of this study
was to investigate whether sublingual varices are
related to presence of ...

Options: (A) The answer is not mentioned in
the text (maybe). (B) There is a connection be-
tween sublingual varices and hypertension (yes).
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(C) There is not a connection between sublingual
varices and hypertension (o).
- QA Output -
(B) There is a connection between sublingual
varices and hypertension (yes).

A.1.6 Natural language inference (NLI)

The NLI task utilizes a similar multi-choice prompt
format to other sequence classification tasks. Be-
low is an example from the BioNLI dataset (Bastan
et al., 2022)

- NLI Input -

What is the relationship of the hypothesis with
respect to the premise? Choose from the following
options.

Premise: The administration of heparin with
or without ACTH significantly decreased hepatic
cholesterol content in catfish. In serum, heparin
alone produced first hypercholesterolemia which
was followed by hypocholesterolemia whereas it
potentiated hypercholesterolemic action of ACTH
three hours after administration.

Hypothesis: It is concluded that heparin inhibits
the cholesterol-lowering action of ACTH in catfish.

Options: (A) neutral (B) entailment (C) contra-
diction

- NLI Output -

(C) contradiction

A.1.7 Semantic text similarity (STS)

We adapt the scoring criteria from the original
publications and translate the numerical similar-
ity scores into a descriptive sentences. Below is
an example from the STS-B dataset (Wang et al.,
2018)

- STS Input -

How similar are the two sentences below?
Choose from the following options.

Sentence 1: A plane is taking off.

Sentence 2: An air plane is taking off.

Options: (A) The two sentences are completely
dissimilar. (B) The two sentences are not equiva-
lent, but are on the same topic. (C) The two sen-
tences are not equivalent, but share some details
(D) The two sentences are roughly equivalent, but
some important information differs / missing. (E)
The two sentences are mostly equivalent, but some
unimportant details differ. (F) The two sentences
are completely or mostly equivalent, as they mean
the same thing.

- STS Output -



(F) The two sentences are completely or mostly
equivalent, as they mean the same thing.

A.1.8 Natural language generation (NLG)

We focus on the abstractive summarization task
from NLG. Although abstractive summarization is
different from our focus on NLU, it also requires
in-depth document understanding, and thus we be-
lieve it can help improve NLU performance. We
include three NLG datasets in the MNLU-Instruct:
PubMedSum (Cohan et al., 2018), CDSR (Guo
etal., 2021), and AciDemo (Yim et al., 2023). Pub-
MedSum has the input as the complete PubMed
articles and the output as their abstracts. CDSR is
a text simplification task that translates domain-
specialized summaries into lay-user summaries.
AciDemo is a task that summarizes doctor-patient
dialogues into clinical note sections. Because the
PubMedSum and AciDemo documents can be very
lengthy, we only include instances with less than
800 words. Additionally, we restrict the output in
PubMedSum to be at most half of its corresponding
input word count to ensure that the PubMedSum
splits contain high-quality summaries.

Below is an example from the AciDemo dataset.

- NLG Input -

Summarize the relevant medical information
from a dialogue between a doctor and a patient.
The summary should be the objective exam section
from the clinical note. Output None if no relevant
information is found.

Dialogue:[doctor] hi alan , how are you ?

[patient] hi , good to see you .

[doctor] good to see you as well . are you ready
to get started ?

[patient] ...

- NLG Output -

PHYSICAL EXAMINATION

Neck: Supple.

No jugular venous distension.

Respiratory: Slight expiratory wheezing bilater-
ally.

Cardiovascular: Regular rate and rhythm. No
murmurs.

Musculoskeletal: Trace edema in the bilateral
lower extremities.

A.2 Baseline system with ICL for NER tasks

Generalized LLMs do not automatically extract
named entities in a unified format. To avoid con-
founding factors from different output formats
and simplify NER evaluation, we utilize the same
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NER input-output format as described in Appendix
A.1.1. Additionally, we include a descriptive para-
graph at the beginning of the input prompt to spec-
ify the output format: “Your answer should use
the following format, with one entity type per line.
The span refers to the original text span from the
Medical text. Output None if there is no such span.
Use ‘...’ to separate multiple spans.”

We also include two in-context examples to en-
sure the baseline system adheres to the desired
output format. For each inference query, the 2-shot
examples are randomly selected from the training
split of each dataset. We ensure the outputs from
the 2-shot examples are different from each other,
to prevent bias towards a specific extraction re-
sponse.



Task dataset # instances Labels
12b2 2006DelD 5,608  Location, ID, Date, Hospital, Doctor, Contact, Name, Age
12b2 2011 25,689  Person, Treatment, Test, Problem
2b2 2012 7.446 Test, I.Droblerp,.Frequency, Time, Date, Occurrence, Treatment,
Duration, Clinical department
12b2 2014 52,462 1D, Contact, Age, Name, Location, Profession, Date
GENIA 15,023 RNA, DNA, Cell type, Protein, Cell line
linnaeus 11,935  Species
Cell Line, SNP, Gene, Protein Mutation, Protein Allele, Species
NER  tmVar 5,351 DNA Allele, DNA Mutation, Other Mutation, Acid Changpe,
Organism Taxon, Disease Or Phenotypic Feature, Cell Line,
DrugProt 17,274 Gene Or Gene Product, Sequence Variant, Chemical
BioRed 13,706  Chemical, Gene
GNorm 4,006 Family Name, Domain Motif, Gene
NLM-Gene 5.048 (S}ene3 Gene .reference into function (function of a ger}e), Domain,
teroidogenic acute regulatory protein (a protein coding gene)
ClinicallE_Med 105 Route, Duration, Reason, Dosage, Frequency, Medication
ClinicallE_Status 105 Neither medications, Discontinued medications, Active medications
BC4CHEMD 30,682 Chemical
PubMed PICO 1,961  Species, Comparator, Outcome, Intervention, Strain, Induction
PICO-Data 36,224  Participants, Intervention, Outcome
12b2 2009 117,446  Medication (Dosage, Route, Frequency, Duration, Reason, Context)
EE 12b2 2018 155,716  Drug, ADE (Strength, Frequency, Reason, Form, Route, Dosage)
12c2 2022 36.359 A'lcohol, Dmg, Tqbacco, Employment, Living
(time, duration, history, type, amount, frequency)
12b2 2006Smoke 398  Current smoker/Past smoker/Non-smoker/Unknown
12b2 2008 17,242 10 obesity commodities (Asthma, Depression, ...)
DC n2c2 2018 2,626  Different selection criteria for 13 cohorts (Abdominal, English, ...)
2024 SemEval2 1,700  Adverse Events, Eligibility, Results, Intervention
TrialStop 3,747 17 reasons to stop a study (Study staff moved, Another study, ...)
MTSamples 3,206 48 medical specialties or domains (Bariatrics, Nephrology, ...)
12b2 2011 25,689  Refers to
Ends by, Happens during, Happens before and overlap, Begins by,
RE i2b2 2012 7,446  Happens before, Happens simultaneously with, Happens after,
Overlaps with,
EUADR 318 Gene-disease association
Antagonist, Agonist, Indirect upregulator, Part of, Agonist activator,
DrugProt 35,624  Substrate, Activator, Inhibitor, Direct regulator, Agonist inhibitor,
Product of, Substrate product of, Indirect downregulator
BioRed 4328 Dmg interactign, Positivc? clorrelation,.Cotreatmerilt, Comparison,
Bind, Conversion, Association, Negative correlation
Multi-NLI 785,404  Entailment, Contradiction, Neutral
NLI SNLI 1,098,734  Entailment, Contradiction, Neutral
BioNLI 23,704  Entailment, Contradiction, Neutral
STS SIS-B 11,018 6 similarity scales
PubMedSum 1,407  Article summarization
NLG CDSR 436 Article simplication
AciDemo 204 Dialogue to note summarization

Table 6: Task labels and number of instances in the MNLU-Instruct datasets. For EE tasks, labels inside () refer to
event arguments.
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