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Abstract

Memory, additional information beyond the001
training of large language models (LLMs), is002
crucial to various real-world applications, such003
as personal assistant. The two mainstream solu-004
tions to incorporate memory into the generation005
process are long-context LLMs and retrieval-006
augmented generation (RAG). In this paper, we007
first systematically compare these two types of008
solutions on three renovated/new datasets and009
show that (1) long-context solutions, although010
more expensive, shall be easier to capture the011
big picture and better answer queries which re-012
quire considering the memory as a whole; and013
(2) when the queries concern specific informa-014
tion, RAG solutions shall be more competitive015
especially when the keywords can be explic-016
itly matched. Therefore, we propose a novel017
method RAG-Tuned-LLM which fine-tunes a018
relative small (e.g., 7B) LLM using the data019
generated following the RAG principles, so020
it can combine the advantages of both solu-021
tions. Extensive experiments on three datasets022
demonstrate that RAG-Tuned-LLM can beat023
long-context LLMs and RAG methods across a024
wide range of query types.025

1 Introduction026

Memory, additional information beyond the train-027

ing of large language models (LLMs), is crucial to028

various real-world applications, such as personal029

assistant (Mai et al., 2023). The most intuitive030

solution to enable long memory into the genera-031

tion process is long-context LLM, for example,032

128K-token GPT-4o (Achiam et al., 2023), 1M-or033

10M-token Gemini 1.5 (Reid et al., 2024), or an034

LLM with “unlimited” context lengths by length035

extrapolation (Peng et al., 2023; Xiao et al., 2023;036

Han et al., 2023; Zhang et al., 2024a) and posi-037

tion bias (Liu et al., 2024; Peysakhovich and Lerer,038

2023; An et al., 2024). Retrieval-augmented gen-039

eration (RAG) (Lewis et al., 2020; Kočiskỳ et al.,040

2018; Pang et al., 2022; Trivedi et al., 2022; Edge041

et al., 2024) is another popular approach to incorpo- 042

rate memory in a plug-in manner: a retriever identi- 043

fies a small number of query-relevant contexts from 044

a large corpus, and then feeds them into an LLM 045

to answer the query. Compared with long-context 046

LLMs, RAG’s serving cost is more affordable, and 047

therefore, RAG is potentially more popular than 048

long-context LLMs in real-world applications. 049

In this paper, we first systematically compare 050

these two types of methods on three renovated/new 051

datasets. We start with two public datasets, namely 052

news articles (Tang and Yang, 2024) and podcast 053

transcripts (Scott, 2024), following the general 054

ideas mentioned in Edge et al. (2024) to gener- 055

ate queries and references. On these two datasets, 056

we use the entire corpus as the memory. We cate- 057

gorize the queries into two types, local and global. 058

Specifically, local queries target specific informa- 059

tion and concrete answers from small chunks of 060

memory. Global queries, on the other hand, re- 061

quire considering memory as a whole to generate 062

high-level answers. We further introduce a new 063

proprietary dataset containing journaling articles 064

and user-provided local/global queries and their 065

expected answers from our journaling app 1 066

Intuitively, (1) long-context solutions, although 067

more expensive, shall be easier to capture the 068

big picture and better answer global queries; and 069

(2) when the queries concern local information, 070

RAG solutions shall be more competitive espe- 071

cially when the keywords can be explicitly matched. 072

Based on these three datasets, we run competitions 073

between a vanilla RAG (Lewis et al., 2020) and 074

Gemini 1.5 (Reid et al., 2024), with the win rate 075

results shown in Table 2, confirming our intuitions. 076

It is worth mentioning that RAG surpasses long- 077

context LLMs when handling local queries, yet 078

underperforms in addressing global ones. 079

Following our findings, we propose a novel 080

1The app name is masked for the blind review purpose.
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Depending on your interests, 

I've found the movie Her to be 

perfect for you.

Document RAG Method LLM RAG-Tuned-LLMTraining Data

`

Please recommend a 

movie for me.

GraphRAGVanillaRAG

Query：There are three books, namely Steve Jobs, Little Prince, and The Three-Body 

Problem, which one should be my first choice?

Answer: I find you’re interested in tech topics and AI technology, and you’ve mentioned 

Steve Jobs in previous notes you’ve recorded. So, Steve Jobs might be the perfect book 

for you.

Figure 1: Overview of our RAG-Tuned-LLM method. Stage 1: RAG provides the foundation for synthesizing
training data (query-answer pairs) for fine-tuning. Stage 2: The synthesized data is used to fine-tune a large language
model (LLM) via LoRA. Stage 3: Inference is performed exclusively with LLM-native memory, eliminating the
need for external memory. The RAG-Tuned-LLM combines the strengths of LLM-native solutions and RAG
methods.

LLM-native method RAG-Tuned-LLM which fine-081

tunes a relatively small (e.g., 7B) LLM using the082

data generated following the RAG principles, so083

it can combine the advantages of RAG and long-084

context solutions. We call it LLM-native because it085

maintains the same speed as directly prompting an086

LLM with only the question –— without requiring087

long contexts or retrieval from a knowledge base.088

It enables the LLM to parameterize knowledge in a089

way that allows it to maintain contextual coherence090

and handle different types of queries more naturally091

and efficiently. Specifically, as illustrated in Fig-092

ure 1, we follow the GraphRAG (Edge et al., 2024)093

principles to extract useful information from plain094

text documents. We then generate data from both095

local and global perspectives: (1) local data syn-096

thesis concentrates on generating content-specific097

query and answer pairs, and (2) global data synthe-098

sis focuses on producing query-answer pairs that099

integrate insights across entities and relationships.100

And finally, we employ the widely adopted LoRA101

technique (Hu et al., 2021) to fine-tune the LLM.102

Our experiments then demonstrate that RAG-103

Tuned-LLM can beat long-context LLMs and RAG104

methods on both local and global queries, and fur-105

ther case studies show that RAG-Tuned-LLM ex-106

cels in providing insightful and user-friendly re-107

sponses. Our codes will be released to the public108

at Github upon acceptance.109

Our contributions are summarized as follows.110

• We create three datasets with local and global111

queries with their references, and then system-112

atically compare LLM-native and (vanilla) RAG113

solutions, showing their respective unique advan- 114

tages. It is worth mentioning that on one dataset, 115

both the queries and references are manually cre- 116

ated by human users. 117

• We follow the comparison results and propose 118

a novel LLM-native method RAG-Tuned-LLM 119

to combine the advantages of RAG and long- 120

context solutions. 121

• Extensive experiments on three datasets demon- 122

strate that RAG-Tuned-LLM can indeed outper- 123

form long-context LLMs and (advanced) RAG 124

methods on both local and global queries. 125

2 Long-context vs. RAG 126

To motivate our work, we systematically compare 127

long-context and RAG solutions and discuss their 128

respect strengths in this section. 129

2.1 Settings 130

Datasets. We consider three datasets for compar- 131

ison, as detailed in Table 1. For the two public 132

datasets—News articles (Tang and Yang, 2024) 133

and Podcast transcripts (Scott, 2024)—we follow 134

Edge et al. (2024) to generate 125 local queries and 135

125 global queries for each, along with their cor- 136

responding references. The Journaling dataset, 137

newly introduced by us, is proprietary and de- 138

rived from our journaling app. It contains 45 local 139

queries and 15 global queries designed by users, ac- 140

companied by their expected answers. Users were 141

informed to craft queries aimed at complex and 142

nuanced scenarios, prioritizing reasoning capabili- 143

ties over simple retrieval. It is designed to robustly 144
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Table 1: Dataset statistics. Memory refers to the raw
texts that will be utilized as additional information
for answering queries. Evaluation queries are split into
local and global partitions according to their scopes.

Dataset Memory Evaluation Queries

# Docs # Tokens Global Local Avg Tokens

Podcast 66 832K 125 125 22.30
News 609 1214K 125 125 22.02

Journaling 538 230K 45 15 39.57

evaluate models’ ability to handle intricate reason-145

ing tasks in diverse real-world scenarios. It extends146

beyond basic fact retrieval to assess how well mod-147

els can retrieve specific details while performing148

higher-order reasoning. Please refer to Table 1 for149

detailed statistics.150

Methods. For the long-context LLM, we choose151

Gemini-1.5-pro-001 due to its remarkable 2-152

million-token context window, which stands out153

as one of the longest among widely recognized154

and authoritative LLMs. This extensive context ca-155

pacity sufficiently accommodates our experimental156

needs without requiring truncation. For the RAG157

methods, we implement VanillaRAG using stan-158

dard embedding and reranking techniques from159

the Langchain framework 2. Specifically, Vanil-160

laRAG employs the text-embedding-ada-002161

model for initial chunk retrieval, selecting the top-162

10 most relevant chunks. These chunks are then163

refined using Cohere’s rerank-english-v3.0164

model, which filters the 10 chunks down to 3.165

We use GPT-4o-mini3 considering the cost effi-166

ciency and performance. By incorporating both167

embedding-based recall and reranking, this method168

serves as a strong RAG solution.169

2.2 Evaluation Metrics170

We design our evaluation criteria to ensure that171

the generated answers are not only accurate but172

also practically helpful for real-world applications,173

such as personal assistants. We refer to the attribute174

perspectives in (Li et al., 2024a) and ranking prior-175

itization in (Wang et al., 2024) as:176

• Helpful assesses the precision, contextual rel-177

evance, and practical value of the response in178

effectively addressing the query.179

2LangChain: https://www.langchain.com/
3Our small-scale experiment shows that GPT-4o-mini as

the language model for answer generation in VanillaRAG
delivers comparable performance with significantly lower cost
than GPT-4o.

Table 2: Wining rates of Gemini-1.5 over VanillaRAG
on local and global queries across three datasets using
the four introduced metrics. Values exceeding 50%
indicate that Gemini-1.5 outperforms VanillaRAG.

Dataset Metric Local Global Overall

Podcast

Helpful 81.60% 86.40% 84.00%
Rich 87.20% 90.40% 88.80%
Insightful 90.40% 90.40% 90.40%
User-Friendly 85.60% 88.80% 87.20%

Overall 86.20% 89.00% 87.60%

News

Helpful 46.40% 56.60% 51.20%
Rich 48.80% 56.80% 52.80%
Insightful 49.60% 58.40% 54.00%
User-Friendly 46.40% 58.40% 52.40%

Overall 47.80% 57.55% 52.60%

Journaling

Helpful 53.33% 93.33% 83.33%
Rich 46.67% 88.80% 80.00%
Insightful 53.33% 91.11% 81.67%
User-Friendly 53.33% 93.33% 83.33%

Overall 51.67% 91.64% 82.08%

• Rich measures the comprehensiveness, depth, 180

and diversity of perspectives of the response. 181

• Insightful evaluates the profundity of under- 182

standing and the uniqueness of insights offered. 183

• User-Friendly focuses on the clarity, coherence, 184

and accessibility of the response. 185

In Table 2, we additionally report an “overall” met- 186

ric, calculated as the average performance across 187

the aforementioned four metrics. More detailed 188

explanations of these metrics are deferred to Ap- 189

pendix B. 190

We evaluate responses from two competitors on 191

various queries and compute the winning rate of 192

one method over the other. We adopt an LLM as 193

the judge, comparing the two answers based on the 194

target metric, the query, and a reference answer. 195

The reference answer, meticulously crafted and 196

verified, provides a solid foundation for the LLM’s 197

comparison. To mitigate stochastic variability, this 198

evaluation process is repeated multiple times. No- 199

tably, in our experiments, we observed comparable 200

judging performance between GPT-4o-mini and 201

GPT-4o. For cost efficiency, we report results using 202

GPT-4o-mini. After aligning the LLM’s evalua- 203

tions with human assessments, we found a concor- 204

dance rate of 86%, which is high enough for fair 205

comparison, with 215 out of 250 cases exhibiting 206

agreement. Considering the cost and insights from 207

GraphRAG, we believe that the size of this test set 208

is quite convincing. 209
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Table 3: Graph statistics for the three datasets. The Graph Statics columns summarize the number of extracted
entities, relations, and communities. The Synthesized SFT Data columns detail the number of generated queries,
average query token count, and average answer token count.

Graph Statistics Our Synthesized SFT Data

Dataset Entities Relations Communities # of Queries Avg Query Tokens Avg Answer Tokens

Podcast 5,182 8,631 837 54,627 23.29 264.04
News 17,877 26,208 3,534 155,896 23.54 273.19

Journaling 2,930 3,751 547 18,355 36.46 562.60

2.3 Results210

We present the winning rates of the long-context211

LLM compared to VanillaRAG in Table 2. The212

data reveals that the long-context solution, though213

more expensive, consistently achieves markedly su-214

perior performance on global queries. Conversely,215

for local queries, the advantages of long-context so-216

lutions diminish significantly. Notably, in the news217

dataset, VanillaRAG outperforms its counterpart218

across all four evaluation metrics. This aligns with219

our intuition that RAG is particularly advantageous220

for extracting fine-grained information needed for221

local queries, whereas long-context solutions excel222

in addressing global queries that demand a com-223

prehensive understanding of memory. The above224

results indicate that, similar to the findings of AI-225

native memory (Shang et al., 2024), although RAG226

and long-context LLMs can access the correct an-227

swer within the provided context, they do not al-228

ways produce the correct response.229

3 Our RAG-Tuned-LLM230

Building on our findings, we propose a novel LLM-231

native approach named RAG-Tuned-LLM, which232

fine-tunes a relatively small (e.g., 7B) LLM us-233

ing the data synthesized following RAG principles,234

thereby harnessing the strengths of both RAG and235

long-context solutions. In this section, we first pro-236

vide an overview of our approach, followed by a237

detailed exposition of the global and local data syn-238

thesis processes, as well as the fine-tuning stage of239

the language model.240

3.1 Overview241

As illustrated in Figure 1, the key idea of RAG-242

Tuned-LLM is to synthesize high-quality data fol-243

lowing RAG principles and tuning them into the244

LLM parameters. The data synthesis strategy is245

designed to ensure the final tuned model to be ver-246

satile and context-aware.247

In our implementation, we particularly choose248

GraphRAG (Edge et al., 2024), as it is a recent ad- 249

vanced RAG method capable of constructing hierar- 250

chical memory. We focus on crafting query-answer 251

pairs from text units, entities, and relationships. 252

Specifically, we generate data from both local and 253

global perspectives: (1) local data synthesis con- 254

centrates on generating content-specific query and 255

answer pairs, and (2) global data synthesis focuses 256

on producing query and answer pairs that integrate 257

insights across entities and relationships. 258

Table 3 presents detailed statistics of the synthe- 259

sized data, offering insights into the graph struc- 260

ture constructed by GraphRAG, including the num- 261

ber of entities, relations, and communities. Addi- 262

tionally, Table 3 also summarizes the synthesized 263

SFT Data, detailing the number of queries, average 264

query token count, and average answer token count. 265

With the synthesized data, fine-tuning the LLM be- 266

comes a natural progression, where we utilize the 267

widely adopted LoRA technique (Hu et al., 2021). 268

Next, we will delve into the details of each com- 269

ponent of the proposed RAG-Tuned-LLM method, 270

namely the local and global data synthesis strategy, 271

as well as the fine-tuning process for the LLM. 272

3.2 Global Data Synthesis 273

Building upon the GraphRAG constructed graph, 274

the global data synthesis process can be divided 275

into two parts, based on the graph components 276

used, namely entity-based data synthesis and 277

relationship-based data synthesis. 278

Entity-based Data Synthesis. For each entity, 279

we craft a description using meticulously designed 280

templates tailored to the entity type, such as a per- 281

son, event, or object. These templates facilitate the 282

creation of natural and engaging questions, prompt- 283

ing the model to examine the role of the entity 284

within a broader context during the subsequent 285

query-and-answer pair generation phase. In prac- 286

tice, to ensure detailed and coherent answers, we 287

adopt the chain-of-thought (CoT) reasoning frame- 288
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Figure 2: Overview of the data synthesis process
used in RAG-Tuned-LLM. Global data synthesis com-
prises entity-based and relationship-based data synthe-
sis, which generates query-answer pairs through the in-
tegration of templates and LLMs. Local data synthesis
generates query-answer pairs using text units enriched
by entries and relationships, along with LLMs.

work (Wei et al., 2022), resulting in more compre-289

hensive and accurate responses. Specifically, the290

approach comprises the following three key steps:291

1. Restating the context: Commence the response292

by concisely summarizing the situation or topic,293

ensuring a seamless flow and clarity, so that294

the answer remains coherent and contextually295

grounded.296

2. Integrating entity description: Merge essen-297

tial details about the entity with pertinent in-298

formation from the broader context, crafting a299

more nuanced and insightful answer that adds300

depth and relevance.301

3. Constructing a detailed answer: Offer a thor-302

ough and detailed explanation, typically ranging303

from 300 to 500 words, to comprehensively ad-304

dress the query, making use of all the available305

relevant information.306

Moreover, to enhance clarity, we employ sub-307

headings and bullet points to organize the content.308

This structured approach ensures that the gener-309

ated questions and answers effectively capture both310

specific details and the broader context.311

Relationship-based Data Synthesis. In a man-312

ner similar to entity-based data synthesis, we utilize313

relationship-specific templates to generate queries314

that delve into how entities interact. By merg-315

ing entity and relationship-based queries with CoT316

reasoning-generated answers, the model can better317

understand both detailed insights and broader per-318

spectives. Figure 2 depicts the overall global data319

synthesis process.320

3.3 Local Data Synthesis 321

Local data synthesis involves generating queries 322

from text units that encompass multiple entities 323

and relationships, with an emphasis on local de- 324

tails. These text units offer the context needed to 325

craft queries that investigate specific, localized as- 326

pects of the entities or relationships. The process 327

includes: 328

1. Assessing local information: The text units 329

is examined to identify the pertinent entities 330

or relationships, concentrating on the specific 331

details within the given context. 332

2. Generating context-specific queries: Queries 333

are crafted based on the roles of these entities or 334

relationships within the localized context, using 335

the text units as the immediate reference. 336

These localized queries focus on specific inter- 337

actions or characteristics within the text, providing 338

detailed insights into the smaller components of 339

the data. As Figure 2 shows, integrating local and 340

global data produces the final SFT dataset, with 341

the entire data synthesis process adhering to RAG 342

principles. 343

3.4 LM tuning 344

The combination of entity-based, relationship- 345

based, and localized context-based query-answer 346

pair generation facilitates fine-tuning an LLM to 347

natively embody the memory extracted through 348

GraphRAG, i.e., LLM-native memory, thereby 349

combining the strengths of both RAG and LLM- 350

native solutions (e.g., long-context LLMs). 351

While full fine-tuning (Lv et al., 2023) generally 352

achieves a higher performance ceiling, it demands 353

significantly more computational resources and ex- 354

tensive training data. Furthermore, full fine-tuning 355

may compromise the base model’s generalization 356

ability. Given the relatively small-scale fine-tuning 357

data, we adopt LoRA, a widely used PEFT (Ding 358

et al., 2023) method, to parameterize a base LLM 359

with the memory generated via RAG methods. 360

4 Experiments 361

4.1 Experimental Setup 362

Datasets and Evaluation Metrics. We consider 363

the three datasets introduced in Section 2, namely 364

News, Podcast, and Journaling. Detailed statistics 365

and characteristics of these datasets are provided 366

in Table1. Evaluation metrics are also in consis- 367

tent with the four introduced in Section 2, namely 368

helpful, rich, insightful and user-friendly. 369
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Table 4: Winning rates (averaged across four evaluation metrics) of our RAG-Tuned-LLM compared to VanillaRAG,
GraphRAG, Long-context LLM, and Normal SFT on the Podcast, News, and Journaling datasets. Local and Global
refer to different evaluation contexts. For comparison, the check mark indicates the characteristics employed by
each method. Winning rates exceeding 50% confirm that our RAG-Tuned-LLM outperforms all the compared
methods.

Methods Podcast News Journaling
Type RAG Principle LLM-Native Parameterized Memory Local Global Local Global Local Global

VanillaRAG " % % 94.80% 96.20% 94.60% 95.80% 81.67% 95.56%
Long-context LLM % " % 65.60% 67.60% 94.00% 95.60% 66.67% 73.33%

Normal SFT % " " 100.00% 100.00% 100.00% 100.00% 100.00% 100.00%
Averaged GraphRAG " % % 57.95% 57.95% 56.35% 57.41% 51.67% 59.31%

RAG-Tuned-LLM (Ours) " " " N/A N/A N/A N/A N/A N/A

Compared Methods. To investigate the supe-370

riority of our proposed RAG-Tuned-LLM, we371

compare it with other four methods, i.e., Vanil-372

laRAG, GraphRAG, Long-Context LLM, and373

Normal SFT. For VanillaRAG and the long-374

context LLM, we adopt the configurations detailed375

in Section 2, utilizing GPT-4o-mini with plain doc-376

uments as external memory for VanillaRAG and377

Gemini-1.5-pro-001 for the long-context LLM.378

GraphRAG is a recently advanced RAG technique,379

which can generate responses leveraging four hier-380

archical graph community information integration381

strategies, ranging from high-level to fine-grained,382

labeled C0 to C3:383

• C0 employs root-level community summaries.384

• C1 employs sub-communities of C0 but still high-385

level community summaries.386

• C2 employs intermediate-level community sum-387

maries.388

• C3 employs low-level community summaries.389

The language model for GraphRAG is also set to390

GPT-4o-mini. For the normal SFT method, we fol-391

low (Jiang et al., 2024) to transform raw data into392

query-answer pairs for finetune an LLM, adopting393

the same setting as RAG-Tuned-LLM, i,e., select-394

ing Qwen-2-7B-instruct (Bai et al., 2023a) as395

the base model, and employ a LoRA with its rank396

r = 64 for parameterizing the model’s memory.397

It is important to note that all methods are fun-398

damentally provided with the same dataset, albeit399

processed in different formats.400

Training Configurations. In the training pro-401

cess, we adopt a cosine learning rate scheduler,402

with a maximum learning rate of 1 × 10−4, and403

set the total number of fine-tuning epochs to 3. To404

ensure more stable results, we set the decoding405

temperature to 0 during inference.406

4.2 Superiority of RAG-Tuned-LLM 407

Table 4 summarize the winning rate of our pro- 408

posed RAG-Tuned-LLM against other four com- 409

pared methods. Our key point is that RAG- 410

Tuned-LLM can effectively handles both local and 411

global queries simultaneously, while others can not. 412

Therefore, we report the average result across four 413

evaluation metrics and focus on the overall result 414

regarding different query types. Moreover, for sim- 415

plity of our interpretation and comparison, we also 416

average the results of four different GraphRAG lev- 417

els, i.e., C0 to C3, and you can refer to Table 6 and 418

7 in Appendix for detailed results. 419

From the results, it is evident that our RAG- 420

Tuned-LLM outperforms all competitors in ad- 421

dressing both local and global problems, with its 422

superiority being particularly pronounced when 423

compared to VanillaRAG, long-context LLM, and 424

Normal SFT. We attribute the success to the fact 425

that the RAG data enables the model to obtain fine- 426

grained factual information for the problem, while 427

the tuning of the memory to be LLM-native pro- 428

vides a deeper, more global understanding of the 429

issue. Furthermore, from the comparison with nor- 430

mal SFT, we can find that though given the same 431

external memory, the formulation of the training 432

data synthesis has a great influence on the model 433

performance. GraphRAG emerges as the most com- 434

petitive baseline, likely due to its incorporation of 435

both fine-grained and high-level information in its 436

responses. The graph it generates includes both 437

abstract and varied levels of information, while the 438

RAG approach retains the advantage of relevant 439

information integration when generating responses. 440

However, GraphRAG still inherits the conventional 441

limitation of RAG, relying on external data sources 442

for its responses. We argue that parameterizing the 443

memory to be LLM-native is more effective than 444

retrieval-based approaches. By integrating relevant 445

6



Local Global Both

Lo
ca

l
Gl

ob
al

Bo
th

56.4 40.8

43.2 35.6

59.2 64.4

(a) Performance on local queries.
Local Global Both

Lo
ca

l
Gl

ob
al

Bo
th

56.4 40.8

43.2 35.6

59.2 64.4

(b) Performance on global queries.35

40

45

50

55

60

65

70

Co
lo

r S
ca

le
30

35

40

45

50

55

60

65

70

Co
lo

r S
ca

le

Figure 3: The comparison among RAG-Tuned-LLM
models trained with different synthesized data types,
i.e., local split, global split, and both. We evaluate the
models on local and global queries separately to ablate
the effect of training data.

information directly into the model’s parameters,446

the LLM can generate more coherent and contextu-447

ally aware responses without the need to repeatedly448

access external sources, ultimately improving both449

the efficiency and quality of the answers.450

4.3 Ablation Studies on the Training Data451

Recall that our goal is for RAG-Tuned-LLM to ex-452

cel at both local and global queries. Therefore, our453

data synthesis strategy also consists of two parts:454

local and global data synthesis. In this section, we455

will investigate how the type of training data influ-456

ences the model’s performance. Specifically, we457

consider three scenarios in the Podcast transcripts458

dataset: LLM tuning with local data only, global459

data only, and both local and global data combined.460

In order to better understand the effects of local461

and global data, we evaluate the tuned model sep-462

arately on local and global queries. The winning463

rates of one training data type against another are464

illustrated in Figure 3.465

As we can observe in the figure, models tuned466

with local data perform better on local queries than467

those tuned with global data, and vice versa. When468

both local and global data are combined, the model469

achieves the best results on both local and global470

queries. This highlights the benefit of using diverse471

training data types, enhancing the model’s robust-472

ness and generalization. These ablation studies also473

demonstrate the profound impact that training data474

has on the performance of a deep learning model.475

4.4 Evaluation of Generalization Capability476

Since RAG-Tuned-LLM can be understood as train-477

ing and testing within a fixed knowledge domain,478

it is natural for us to evaluate the model’s general-479

ization ability. We divide generalization into two480

Table 5: Zero-shot performance comparison between
the original base model and our RAG-Tuned-LLM
across three distinct capabilities.

Dataset Capability Original Model RAG-Tuned-LLM

MMLU English 80.80% 73.50%
GSM8K Mathematics 63.66% 61.72%

HumanEval Coding 57.90% 56.70%

aspects: (1) the ability to answer unseen queries 481

within the same knowledge domain and (2) the 482

model’s general capability beyond the given do- 483

main. For the first aspect, our test queries are gen- 484

erated using methods significantly different from 485

those used for the training data, meaning that the 486

test results inherently reflect the model’s ability to 487

answer out-of-training-distribution queries within 488

the domain. Therefore, the following evaluation 489

will primarily focus on the second aspect. 490

To illustrate the generalization capability beyond 491

the given domain, we compare its zero-shot perfor- 492

mance with that of the original base model across 493

three widely recognized large-scale benchmarks: 494

MMLU (Hendrycks et al., 2020), GSM8K (Cobbe 495

et al., 2021), and HumanEval (Chen et al., 2021). 496

Specifically, we utilize the model fine-tuned on 497

News articles, as it encompasses the largest volume 498

of training tokens. The experimental results sum- 499

marized in Table 5 reveal that RAG-Tuned-LLM 500

incurs only a slight degradation in performance 501

compared to the original base model, thereby un- 502

derscoring its robust generalization capability. 503

5 Related Works 504

5.1 Retrieval Augment Generation 505

Pre-trained language models, such as Qwen (Bai 506

et al., 2023b) and Llama (Touvron et al., 2023a), 507

have shown impressive query-answering capabili- 508

ties. However, they face limitations when tasked 509

with problems requiring knowledge beyond their 510

training data. Retrieval-augmented generation 511

(RAG) (Lewis et al., 2020) provides a solution by 512

retrieving relevant information from an external 513

knowledge base. While RAG has proven to be 514

practical and effective, traditional RAG systems 515

can only retrieve raw corpus related to the query, 516

without broader comprehension. As a result, ab- 517

stract queries such as those asking for high-level 518

insights or overarching understandings often lead 519

to suboptimal answers. To overcome these limi- 520

tations, GraphRAG (Edge et al., 2024) has been 521

introduced. Specifically, GraphRAG constructs a 522
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knowledge graph using an LLM, enabling it to523

provide hierarchical information that range from524

specific, detailed facts to more global, abstract in-525

sights, leveraging the knowledge graph for a more526

comprehensive understanding527

5.2 Long-context LLM528

Long-context LLMs are designed to handle tasks529

that involve processing extended sequences of text,530

addressing a significant limitation of traditional531

LLMs, which typically operate with fixed, limited532

context windows. For example, GPT-4o (Achiam533

et al., 2023) offers a context window of up to 128K534

tokens, while Gemini 1.5 (Reid et al., 2024) can535

manage up to 1M or 10M tokens. Furthermore, var-536

ious studies have sought to push the boundaries of537

these context windows, suggesting models capable538

of "unlimited" context lengths through innovations539

such as length extrapolation (Peng et al., 2023;540

Xiao et al., 2023; Han et al., 2023; Zhang et al.,541

2024a) and position bias adjustments (Liu et al.,542

2024; Peysakhovich and Lerer, 2023; An et al.,543

2024). Long-context LLMs, in principle, possess544

the potential to offer more refined abstraction abili-545

ties and a deeper, more nuanced understanding of546

global context compared to RAG methods. Yet,547

as highlighted by Hsieh et al. (2024); Shang et al.548

(2024), the context may surpass the constraints549

of the LLM’s context window, which is typically550

much narrower than reported, leading to the inad-551

vertent loss of crucial information amid an expan-552

sive sea of text.553

5.3 Fine-Tuning LLMs554

To incrementally expand the knowledge of a pre-555

trained LLM or to align it with human preferences,556

fine-tuning stands as one of the most prevalent557

approaches, encompassing methods such as su-558

pervised fine-tuning (SFT), reinforcement learn-559

ing from human feedback (RLHF) (Ouyang et al.,560

2022), and direct preference optimization (DPO)561

(Rafailov et al., 2024). Despite their effective-562

ness, these techniques are notably annotation-563

heavy and computationally intensive, rendering the564

fine-tuning of an LLM using these methods pro-565

hibitively costly. To circumvent the extensive com-566

putational demands of full fine-tuning, which can567

reach into tens of billions, numerous parameter-568

efficient fine-tuning (PEFT) methods have been569

explored, including BitFit (Zaken et al., 2021),570

adapter (Houlsby et al., 2019), and Lora (Hu et al.,571

2021). In this paper, we primarily employ a LoRA572

to fine-tune a RAG-Tuned-LLM. Methodologically, 573

RAFT (Zhang et al., 2024b) is the closest to our 574

approach, as it explores the potential integration of 575

RAG and fine-tuning. However, there are two fun- 576

damental differences between our work and RAFT: 577

First, the model we train is not intended for use 578

in the generation stage of RAG, making our objec- 579

tives fundamentally different; Second, our training 580

data does not include deliberately introduced noise, 581

which distinguishes our approach significantly in 582

terms of methodology. 583

6 Conclusion and Future Work 584

In this paper, we validate RAG’s fine-grained re- 585

trieval abilities and the global abstraction strengths 586

of LLM-native solutions. However, RAG lacks 587

holistic understanding, and long-context models 588

tend to lose key information over extended con- 589

texts. We integrate these strengths of both RAG 590

and LLM-native solutions by fine-tuning an LLM 591

within an RAG framework for data generation. 592

This work is the first to explore LLM and RAG 593

integration within a unified framework, bridging 594

open-domain and domain-specific query-answering 595

tasks. Our RAG-Tuned LLM, equipped with LLM- 596

native memory, outperforms both standard RAG 597

methods and long-context LLMs across diverse 598

datasets, demonstrating superior performance in 599

handling hierarchical queries. 600

Future Work. Building on this study, several 601

future directions are worth exploring to further val- 602

idate and enhance our proposed method. First, we 603

plan to extend RAG-Tuned-LLM to more diverse 604

datasets and domains, enabling us to evaluate its 605

generalizability across different tasks, including 606

complex challenges like multi-hop reasoning and 607

multi-modal query-answering. This will provide a 608

clearer understanding of RAG-Tuned-LLM’s effec- 609

tiveness in both open-domain and domain-specific 610

contexts. Additionally, we will experiment with 611

various foundational models (e.g., the Llama se- 612

ries (Touvron et al., 2023a,b)), evaluating RAG- 613

Tuned-LLM’s adaptability to different architectures 614

and model scales. This will highlight the trade- 615

offs between model size, computational efficiency, 616

and performance when combining RAG and LLM- 617

native methods. 618
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Limitations619

While our proposed method, RAG-Tuned-LLM,620

demonstrates substantial advantages over long-621

context LLMs and RAG in handling both global622

and local queries, we recognize two key limitations623

that warrant further investigation. First, although624

LLM-as-a-judge is a widely adopted evaluation ap-625

proach (Li et al., 2024b), the metrics we utilized626

remain relatively domain-specific—suitable for ap-627

plications like personal assistants but less adaptable628

to general-purpose language models. Enhancing629

the robustness and generalizability of our evalua-630

tion framework is imperative. Second, although we631

have validated our method’s robustness and gener-632

alization to some extent (e.g., in English, mathemat-633

ics, and coding capabilities), broader exploration634

such as in the realms of multi-modal and multi-hop635

reasoning tasks remains insufficient.636
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A Definition of Global and Local Queries837

A notable innovation in our query generation838

method lies in the differentiation between global839

and local queries, akin to the approach used in840

GraphRAG, but with a more pronounced emphasis841

on user-driven tasks. Particularly, we define local842

and global queries as follows:843

• Global Queries: Global queries are crafted to844

elicit high-level, interpretive responses that re-845

quire the user to consider the dataset in its en-846

tirety. They address overarching trends, themes,847

and insights that emerge from the data, steering848

the user toward macro-level analysis. Therefore,849

global query synthesis demands multiple dataset850

chunks, ensuring that the user engages with the851

dataset holistically, rather than fixating on spe-852

cific details.853

• Local Queries: Local queries are retrieval-854

oriented, aiming to direct the user toward specific855

pieces of information within the dataset. Each856

query is designed to be answerable by referenc-857

ing a particular section or chunk of the data, pro-858

moting a detailed and focused analysis. Local859

queries necessitate precision in information re-860

trieval and cater to users seeking clear, concrete861

answers to more narrowly defined questions.862

By categorizing the queries into these two types, we863

ensure that the evaluation of RAG systems encom-864

passes both granular detail retrieval and broader865

sensemaking tasks, thereby offering a more com-866

prehensive assessment of the system’s capability to867

engage with the dataset at multiple levels.868

B Explaination of Evaluation Metrics869

• Helpful: This metric evaluates the accuracy and870

reliability of the answer in relation to the posed871

query. It examines whether the answer directly872

addresses the query and delivers useful, relevant873

information. Answers that exhibit clear correct-874

ness and offer valuable content receive higher875

scores on this metric.876

• Rich: This metric evaluates the variety and depth877

of the content provided in the answer. An an-878

swer that explores multiple perspectives or of-879

fers detailed explanations from different angles880

is deemed more diverse and rich. It emphasizes881

comprehensiveness and the ability to present a882

nuanced understanding of the dataset or topic.883

• Insightful: This metric measures the depth of un-884

derstanding demonstrated in the answer. Insight-885

ful responses reflect a profound comprehension886

of the subject matter and may offer thoughtful 887

or original insights that transcend surface-level 888

retrieval. Answers that meaningfully synthesize 889

data to provide novel or perceptive interpretations 890

receive higher ratings. 891

• User-Friendly: This metric assesses the clar- 892

ity, readability, and organization of the response. 893

An answer that is well-structured, concise, and 894

easily comprehensible will score higher. This 895

metric ensures that even complex responses re- 896

main accessible and understandable to the target 897

audience, striking a balance between depth and 898

usability. 899

C Results of Local and Global Subsets 900

Table 4 in the main body of the paper only sum- 901

marizes the averaged results across four evaluation 902

metrics and four distinct levels of GraphRAG re- 903

sponses. In this section, we provide more detailed 904

results for each metric and each level of GraphRAG 905

responses. Table 6 and 7 shows the winning rates 906

of our RAG-Tuned-LLM over GraphRAG (C0 to 907

C3), Long-context LLM, VanillaRAG, and normal 908

SFT on local and global queries, respectively. The 909

results demonstrate that our RAG-Tuned-LLM gen- 910

erally outperforms all the compared methods across 911

all metrics. 912

D Exampls of RAG-Tuned-LLM vs. 913

GraphRAG 914

As shown in Table 6 and 7, GraphRAG is the 915

strongest competitor among the four methods com- 916

pared. Therefore, we present two concrete exam- 917

ples to qualitatively demonstrate the superiority of 918

RAG-Tuned-LLM over GraphRAG, beyond numer- 919

ical performance, as shown in Figure 4 and 5. 920
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Table 6: Winning rates (%) of our RAG-Tuned-LLM over GraphRAG (C0 to C3), Long-context LLM, VanillaRAG,
and Normal SFT across four evaluation metrics on local queries.

Dataset Metric GraphRAG C0 GraphRAG C1 GraphRAG C2 GraphRAG C3 Long-Context LLM VanillaRAG Normal SFT

Podcast

Helpful 56.80 53.60 52.00 52.80 65.60 95.20 100.00
Rich 52.80 49.60 47.20 48.00 59.20 96.00 100.00

Insightful 59.20 54.40 50.40 51.20 60.00 99.20 100.00
User-Friendly 80.00 76.00 72.00 71.20 77.60 88.80 100.00

News

Helpful 52.00 52.80 49.60 50.40 95.20 95.20 100.00
Rich 50.40 49.60 45.60 46.40 94.40 99.20 100.00

Insightful 56.00 55.20 51.20 51.20 96.00 99.20 100.00
User-Friendly 78.40 73.60 70.40 68.80 90.40 84.80 100.00

LPM

Helpful 53.33 46.67 46.67 46.67 60.00 73.33 100.00
Rich 46.67 53.33 46.67 46.67 66.67 86.67 100.00

Insightful 66.67 60.00 53.33 60.00 73.33 86.67 100.00
User-Friendly 53.33 46.67 53.33 46.67 66.67 80.00 100.00

Table 7: Winning rates (%) of our RAG-Tuned-LLM over GraphRAG (C0 to C3), Long-context LLM, VanillaRAG,
and Normal SFT across four evaluation metrics on global queries.

Dataset Metric GraphRAG C0 GraphRAG C1 GraphRAG C2 GraphRAG C3 Long-Context LLM VanillaRAG Normal SFT

Podcast

Helpful 54.40 55.20 52.80 52.00 68.00 97.60 100.00
Rich 52.00 49.60 47.20 45.60 61.60 97.60 100.00

Insightful 59.20 52.80 53.60 50.40 62.40 99.20 100.00
User-Friendly 82.40 76.80 73.60 69.60 78.40 90.40 100.00

News

Helpful 52.80 53.60 51.20 52.00 96.80 98.40 100.00
Rich 51.20 48.80 46.40 46.60 96.00 99.20 100.00

Insightful 56.80 56.00 52.00 52.00 97.60 100.00 100.00
User-Friendly 79.20 73.60 71.20 68.80 92.00 85.60 100.00

LPM

Helpful 57.78 55.56 55.56 53.33 64.44 93.33 100.00
Rich 55.56 57.78 57.78 55.56 73.33 100.00 100.00

Insightful 68.89 68.89 64.44 68.89 82.22 100.00 100.00
User-Friendly 57.78 57.78 57.78 55.56 73.33 88.89 100.00
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Figure 4: A concrete example (Case 1) from the News dataset illustrating the superiority of RAG-Tuned-LLM
compared to GraphRAG.

Case 1

Query: What is the expected release date of Britney Spears’ memoir?

GraphRAG C3 Answer: Britney Spears’ highly anticipated memoir, titled The Woman in Me,
is set to be released on October 24, 2023. This memoir is expected to delve into significant
moments in her life, including her experiences with fame, motherhood, and the impact of her
conservatorship, which has been a focal point of public interest and discussion.

The memoir is described as a candid account of her life, providing insights into her personal
struggles and triumphs, and is anticipated to resonate deeply with her fans and the general public
alike.

RAG-Tuned-LLM Answer: Britney Spears’ memoir, titled The Woman in Me, is anticipated
to be released on October 24, 2023. This highly anticipated book is set to delve into her life
experiences and challenges, particularly focusing on her conservatorship, a defining aspect of her
public persona for many years. The memoir promises to provide readers with an intimate look at
her journey through fame, personal struggles, and the complexities of her relationships, including
her marriage to Sam Asghari.

Following a tumultuous period marked by the conservatorship, which was finally terminated
in November 2021, Britney’s memoir comes at a pivotal moment in her life. The end of the
conservatorship allowed her to regain control over her life and career, offering her a sense of
newfound freedom. In interviews, she has expressed sadness about the loss of her childhood home,
describing it as a place where she felt most like herself. This emotional context adds depth to her
narrative, as she explores themes of identity, resilience, and the impact of fame on her personal
relationships.

The memoir is not merely a recounting of events; it is also a reflection on her personal growth
and the lessons she has learned along the way. Britney has been open about her struggles with
mental health and the pressures of public life, making her story relatable to many who have faced
similar challenges. The memoir is also expected to offer insights into her relationship with Sam
Asghari, whom she married in June 2022. Their marriage ended in July 2023, adding another layer
of complexity to her story.

Overall, The Woman in Me is poised to be a significant literary work, capturing the essence
of Britney Spears’ life and offering readers a chance to understand her perspective on
fame, motherhood, and her quest for autonomy. As the release date approaches, there is grow-
ing anticipation about how Britney will share her story and what new revelations may come to light.
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Figure 5: A concrete example (Case 2) from the News dataset illustrating the superiority of RAG-Tuned-LLM
compared to GraphRAG.

Case2

Query: How many counts of fraud and money laundering is Sam Bankman-Fried (SBF) facing in
his trial?

GraphRAG C3 Answer: Sam Bankman-Fried (SBF) is facing a total of seven counts related to
his trial, which include charges of fraud and conspiracy. Specifically, these charges encompass
wire fraud and money laundering, among other allegations tied to the operations of FTX and the
misappropriation of customer funds.

The trial has garnered significant attention due to the serious nature of these allegations, which are
considered some of the largest financial frauds in recent history.

RAG-Tuned-LLM Answer: In the ongoing trial of Sam Bankman-Fried, commonly referred to as
SBF, he is facing serious legal charges that include multiple counts of fraud and money laundering.
The context surrounding this trial is quite significant, as it has garnered considerable attention due
to the collapse of FTX, a cryptocurrency exchange that was once valued at an impressive $32
billion before its downfall. This dramatic shift in fortune has led to a high-profile legal battle that
has captured the interest of both the public and legal experts alike.

The trial itself is set against a backdrop of allegations that SBF engaged in fraudulent activities
while managing FTX and its affiliated trading firm, Alameda Research. Specifically, the
prosecution claims that SBF orchestrated a scheme that misappropriated customer funds,
leading to substantial financial losses for investors and customers. The prosecution’s case is
expected to unfold over several weeks, with the government presenting evidence that will detail
how SBF allegedly misled investors and customers about the safety and management of their assets.

As part of the trial proceedings, SBF has entered a plea of not guilty, which indicates his intent to
contest the charges against him. The defense’s strategy will likely revolve around challenging
the prosecution’s narrative and presenting arguments that could potentially exonerate him.
However, the prosecution’s case is bolstered by the testimony of key witnesses, including former
associates and industry experts who can provide insight into the operations of FTX and the broader
implications of the alleged fraud.

In summary, Sam Bankman-Fried is facing multiple counts of fraud and money laundering in his
trial, which is a critical juncture for both him and the cryptocurrency industry as a whole. The
outcome of this trial could have far-reaching consequences, not only for SBF but also for regulatory
frameworks governing cryptocurrency exchanges moving forward. As the trial progresses, it will
be essential to monitor how the evidence presented impacts the jury’s perception and ultimately
influences the verdict.
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