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Abstract

Gridworlds have been long-utilised in AI research, particularly in reinforcement1

learning, as they provide simple yet scalable models for many real-world applica-2

tions such as robot navigation, emergent behaviour, and operations research. We3

initiate a study of gridworlds using the mathematical framework of reconfigurable4

systems and state complexes due to Abrams, Ghrist & Peterson. State complexes5

represent all possible configurations of a system as a single geometric space, thus6

making them conducive to study using geometric, topological, or combinatorial7

methods. The main contribution of this work is a modification to the original8

Abrams, Ghrist & Peterson setup which we introduce to capture agent braiding and9

thereby more naturally represent the topology of gridworlds. With this modification,10

the state complexes may exhibit geometric defects (failure of Gromov’s Link Condi-11

tion). Serendipitously, we discover these failures occur exactly where undesirable12

or dangerous states appear in the gridworld. Our results therefore provide a novel13

method for seeking guaranteed safety limitations in discrete task environments14

with single or multiple agents, and offer useful safety information (in geometric15

and topological forms) for incorporation in or analysis of machine learning sys-16

tems. More broadly, our work introduces tools from geometric group theory and17

combinatorics to the AI community and demonstrates a proof-of-concept for this18

geometric viewpoint of the task domain through the example of simple gridworld19

environments.20

1 Introduction21

The notion of a state (or configuration/phase) space is commonly used in mathematics and physics to22

represent all the possible states of a given system as a single geometric (or topological) object. This23

perspective provides a bridge which allows for tools from geometry and topology to be applied to24

the system of concern. Moreover, certain features of a given system are reflected by some geometric25

aspects of the associated state space (such as gravitational force being captured by curvature in26

spacetime). Thus, insights into the structure of the original system can be gleaned by reformulating27

them in geometric terms.28

In discrete settings, state spaces are typically represented by graphs or their higher dimensional29

analogues such as simplicial complexes or cube complexes. Abrams, Ghrist & Peterson’s state30

complexes [AG04, GP07] provide a general framework for representing discrete reconfigurable31

systems as non-positively curved (NPC) cube complexes, giving access to a wealth of mathematical32

and computational benefits via efficient optimisation algorithms guided by geometric insight [AOS12].33

These have been used to develop efficient algorithms for robotic motion planning [ABY14, ABCG17]34

and self-reconfiguration of modular robots [LR10]. NPC cube complexes also possess rich hyperplane35

structures which geometrically capture binary classification [CN05, Wis12, Sag14]. However, their36

broader utility to fields like artificial intelligence (AI) has until now been relatively unexplored.37
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Our main contribution is the first application of this geometric approach (of using state complexes)38

to the setting of multi-agent gridworlds. We introduce a natural modification to the state complex39

appropriate to the setting of gridworlds (to capture the braiding or relative movements of agents);40

however, this can lead to state complexes which are no longer NPC. Nevertheless, by applying41

Gromov’s Link Condition, we completely characterise when positive curvature occurs in our new42

state complexes, and relate this to features of the gridworlds (see Theorem 5.2). Serendipitously,43

we discover that the states where Gromov’s Link Condition fails are those in which agents can44

potentially collide. In other words, collision-detection is naturally embedded into the intrinsic45

geometry of the system. Current approaches to collision-detection and navigation during multi-46

agent navigation often rely on modelling and predicting collisions based on large training datasets47

[KFGE19, FLLP20, QZC+21] or by explicitly modelling physical movements [KIU21]. However,48

our approach is purely geometric, requires no training, and can accommodate many conceivable types49

of actions and inter-actions, not just simple movements.50

Our work relates to a growing body of research aimed towards understanding, from a geometric51

perspective, how deep learning methods transform input data into decisions, memories, or actions52

[HR17, LAG+20, SPG+21, AVBP21, SMK11]. However, such studies do not usually incorporate53

the geometry of the originating domain or task in a substantial way, before applying or investigating54

the performance of learning algorithms – and even fewer do so for multi-agent systems. One possible55

reason for this is a lack of known suitable tools. Our experimental and theoretical results show there56

is a wealth of geometric information available in (even very simple) task domains, which is accessible57

using tools from geometric group theory and combinatorics.58

2 State complex of a gridworld59

Figure 1: A 3 × 3 grid-
world with one agent (a
koala) and one object (a
beach ball).

A gridworld is a two-dimensional, flat array of cells arranged in a grid,60

much like a chess or checker board. Each cell can be occupied or un-61

occupied. A cell may be occupied, in our setting, by one and only62

one freely-moving agent or movable object. Other gridworlds may in-63

clude rewards, punishments, buttons, doors, locks, keys, checkpoints,64

dropbears, etc., much like many basic video games. Gridworlds have65

been a long-utilised setting in AI research, particularly reinforcement66

learning, since they are simple yet scalable in size and sophistication67

[DSHLKT20, WKK20]. They also offer clear analogies to many real-68

world applications or questions, such as robot navigation [HHA21], emer-69

gent behaviour [KAP20], and operations research [LSS+21]. For these70

reasons, gridworlds have also been developed for formally specifying71

problems in AI safety [LMK+17].72

A state of a gridworld can be encoded by assigning each cell a label. In73

the example shown in Figure 1, these labels are shown for an agent, an74

object, and empty floor. A change in the state, such as an agent moving75

from one cell to an adjacent empty cell, can be encoded by relabelling the76

cells involved. This perspective allows us to take advantage of the notion of reconfigurable systems77

as introduced by Abrams, Ghrist & Peterson [AG04, GP07].78

More formally, consider a graph G and a set A of labels. A state is a function s : V (G) → A, i.e. an79

assignment of a label to each vertex of G. A possible relabelling is encoded using a generator ϕ; this80

comprises the following data:81

• a subgraph SUP (ϕ) ⊆ G called the support;82

• a subgraph TR(ϕ) ⊆ SUP (ϕ) called the trace; and83

• an unordered pair of local states84

uloc
0 , uloc

1 : V (SUP (ϕ)) → A

that agree on V (SUP (ϕ))− V (TR(ϕ)) but differ on V (TR(ϕ)).85

A generator ϕ is admissible at a state s if s|SUP (ϕ) = uloc
0 (or uloc

1 ), in other words, if the assignment86

of labels to V (SUP (ϕ)) given by s completely matches the labelling from (exactly) one of the two87
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local states. If this holds, we may apply ϕ to the state s to obtain a new state ϕ[s] given by88

ϕ[s](v) :=

{
uloc
1 (v), v ∈ V (TR(ϕ))

s(v), otherwise.

This has the effect of relabelling the vertices in (and only in) TR(ϕ) to match the other local state89

of ϕ. Since the local states are unordered, if ϕ is admissible at s then it is also admissible at ϕ[s];90

moreover, ϕ[ϕ[s]] = s.91

Definition 2.1 (Reconfigurable system [AG04, GP07]). A reconfigurable system on a graph G with92

a set of labels A consists of a set of generators together with a set of states closed under the action of93

admissible generators.94

Configurations and their reconfigurations can be used to construct a state graph (or transition graph),95

which represents all possible states and transitions between these states in a reconfigurable system.96

More formally:97

Definition 2.2 (State graph). The state graph S(1) associated to a reconfigurable system has as its98

vertices the set of all states, with edges connecting pairs of states differing by a single generator.99

Let us now return our attention to gridworlds. We define a graph G to have vertices corresponding to100

the cells of a gridworld, with two vertices declared adjacent in G exactly when they correspond to101

neighbouring cells (i.e. they share a common side). Our set of labels is chosen to be102

A = {‘agent’, ‘object’, ‘floor’}.

We do not distinguish between multiple instances of the same label. We consider two generators:103

• Push/Pull. An agent adjacent to an object is allowed to push/pull the object if there is an104

unoccupied floor cell straight in front of the object/straight behind the agent; and105

• Move. An agent is allowed to move to a neighbouring unoccupied floor cell.106

These two generators have the effect of enabling agents to at any time move in any direction not107

blocked by objects or other agents, and for agents to push or pull objects within the environment into108

any configuration if there is sufficient room to move. For both types of generators, the trace coincides109

with the support. For the Push/Pull generator, the support is a row or column of three contiguous110

cells, whereas for the Move generator, the support is a pair of neighbouring cells. A simple example111

of a state graph, together with the local states for the two generator types, is shown in Figure 2.112

Figure 2: An example 1× 5 gridworld with one agent and one object with two generators – Push/Pull
and Move – and the resulting state graph. In the state graph, edge colours indicate the generator type
which relabels the gridworld.

In a typical reconfigurable system, there may be many admissible generators at a given state s. If the113

trace of an admissible generator ϕ1 is disjoint from the support of another admissible generator ϕ2,114

then ϕ2 remains admissible at ϕ1[s]. This is because the relabelling by ϕ1 does not interfere with115
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the labels on SUP (ϕ2). More generally, a set of admissible generators {ϕ1, . . . , ϕn} at a state s116

commutes if SUP (ϕi)∩ TR(ϕj) = ∅ for all i ̸= j. When this holds, these generators can be applied117

independently of one another, and the resulting state does not depend on the order in which they are118

applied. A simple example of this in the context of gridworlds is a large room with n agents spread119

sufficiently far apart to allow for independent simultaneous movement.120

Figure 3: State complex of a 2× 2 gridworld with
two agents. Shading indicates squares attached to
the surrounding 4–cycles.

Abrams, Ghrist & Peterson represent this mutual121

commutativity by adding higher dimensional122

cubes to the state graph to form a cube com-123

plex called the state complex. We give an infor-124

mal definition here, and refer to their papers for125

the precise formulation [AG04, GP07]. Further126

background on cube complexes can be found127

in [Wis12, Sag14]. If {ϕ1, . . . , ϕn} is a set of128

commuting admissible generators at a state s129

then there are 2n states that can be obtained130

by applying any subset of these generators to s.131

These 2n states form the vertices of an n–cube132

in the state complex. Each n–cube is bounded133

by 2n faces, where each face is an (n−1)–cube:134

by disallowing a generator ϕi, we obtain a pair135

of faces corresponding to those states (in the136

given n–cube) that agree with one of the two137

respective local states of ϕi on SUP (ϕi).138

Definition 2.3 (State complex). The state complex S of a reconfigurable system is the cube complex139

constructed from the state graph S(1) by inductively adding cubes as follows: whenever there is a140

set of 2n states related by a set of n admissible commuting generators, we add an n–cube so that its141

vertices correspond to the given states, and so that its 2n boundary faces are identified with all the142

possible (n − 1)–cubes obtained by disallowing a generator. In particular, every cube is uniquely143

determined by its vertices.144

In our gridworlds setting, each generator involves exactly one agent. This means commuting145

generators can only occur if there are multiple agents. A simple example of a state complex for146

two agents in a 2× 2 room is shown in Figure 3. Note that there are six embedded 4–cycles in the147

state graph, however, only two of these are filled in by squares: these correspond to independent148

movements of the agents, either both horizontally or both vertically.149

3 Exploring gridworlds with state complexes150

To compute the state complex of a (finite) gridworld, we first initialise an empty graph G and an151

empty ‘to-do’ list L. As input, we take a chosen state of the gridworld to form the first vertex of G152

and also the first entry on L. The state complex is computed according to a breadth-first search by153

repeatedly applying the following:154

• Let v be the first entry on L. List all admissible generators at v. For each such generator ϕ:155

– If ϕ[v] already appears as a vertex of G, add an edge between v and ϕ[v] (if it does not156

already exist).157

– If ϕ[v] does not appear in G, add it as a new vertex to G and add an edge connecting it158

to v. Append ϕ[v] to the end of L.159

• Remove v from L.160

The process terminates when L is empty. The output is the graph G. When L is empty, we have161

fully explored all possible states that can be reached from the initial state. It may be possible that162

the true state graph is disconnected, in which case the above algorithm will only return a connected163

component G. For our purposes, we shall limit our study to systems with connected state graphs.164

From the state graph, we construct the state complex by first finding all 4–cycles in the state graph.165

Then, by examining the states involved, we can determine whether a given 4–cycle bounds a square166

representing a pair of commuting moves.167
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To visualise the state complex, we first draw the state graph using the Kamada–Kawai force-directed168

algorithm [KK89] which attempts to draw edges to have similar length. We then shade the region(s)169

enclosed by 4–cycles representing commuting moves. For ease of visual interpretation in our figures,170

we do not also shade higher-dimensional cubes, although such cubes are noticeable and can be easily171

computed and visualised if desired.172

Figure 4: State complex (left) of a 3× 3 gridworld with
one agent and one object (right). The darker vertex
in the state complex represents the state shown in the
gridworld state on the right. Edges in the state complex
are coloured according to their generator – orange for
Push/Pull and maroon for Move. Grey circles which
group states where the ball is static have been added to
illustrate the different scales of geometry.

Constructing and analysing state com-173

plexes of gridworlds is in and of itself an in-174

teresting and useful way of exploring their175

intrinsic geometry. For example, Figure 4176

shows the state complex of a 3 × 3 grid-177

world with one agent and one object. The178

state complex reveals two scales of geom-179

etry: larger ‘blobs’ of states organised in180

a 3 × 3 grid, representing the location of181

the object; and, within each blob, copies182

of the room’s remaining empty space, in183

which the agent may walk around and ap-184

proach the object to Push/Pull. Each 12–185

cycle ‘petal’ represents a 12–step choreog-186

raphy wherein the agent pushes and pulls187

the object around in a 4–cycle in the grid-188

world. In this example, the state complex is189

the state graph, since there are no possible190

commuting moves.191

The examples discussed thus far all have192

planar state graphs. Planarity does not hold193

in general – indeed, the n–cube graph for194

n ≥ 4 is non-planar, and a state graph can contain n–cubes if the gridworld has n agents and sufficient195

space to move around. It is tempting to think that the state complex of a gridworld with more agents196

should therefore look quite different to one with fewer agents. However, Figure 5 shows this may197

not always be the case: there is a symmetry induced by swapping all ‘agent’ labels with ‘floor’198

labels.199

Figure 5: State complex (centre) of a 3× 3 gridworld with three agents (left) and six agents (right).
They share the same state complex due to the ‘agent’↔ ‘floor’ label inversion symmetry.

4 Dancing with myself200

The state complex of a gridworld with n agents can be thought of as a discrete analogue of the201

configuration space of n points on the 2D–plane. However, there is a problem with this analogy:202

there can be ‘holes’ created by 4–cycles in the state complex where a single agent walks in a small203

square-shaped dance by itself, as shown in Figure 6.204

The presence of these holes would suggest something meaningful about the underlying gridworld’s205

intrinsic topology, e.g., something obstructing the agent’s movement at that location in the gridworld206

that the agent must move around. In reality, the environment is essentially a (discretised) 2D–plane207

with nothing blocking the agent from traversing those locations. Indeed, these ‘holes’ are uninteresting208
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Figure 6: State complex of a 2× 2 gridworld with one agent under the original definition of Abrams,
Ghrist & Peterson [AG04, GP07] (left) and with our modification (right). The blue shading is a filled
in square indicating a dance.

topological quirks which arise due to the representation of the gridworld as a graph. We therefore209

deviate from the original definition of state complexes by Abrams, Ghrist & Peterson [AG04, GP07]210

and choose to fill in these ‘dance’ 4–cycles with squares.1211

Formally, we define a dance δ to comprise the following data:212

• the support SUP (δ) given by a 2× 2 subgrid in the gridworld,213

• four local states defined on SUP (δ), each consisting of exactly one agent label and three214

floor labels, and215

• four Move generators, each of which transitions between two of the four local states (as in216

Figure 6).217

We say that δ is admissible at a state s if s|SUP (δ) agrees with one of the four local states of δ.218

Moreover, these four local states are precisely the states that can be reached when we apply some219

combination of the four constituent Moves. We do not define the trace of a dance, however, we may220

view the trace of each of the four constituent Moves as subgraphs of SUP (δ).221

The notion of commutativity can be extended to incorporate dancing. Suppose that we have a set222

{ϕ1, . . . , ϕl, δ1, . . . , δm} of l admissible generators and m admissible dances at a state s. We say223

that this set commutes if the supports of its elements are pairwise disjoint. When this holds, there224

are 2l+2m possible states that can be obtained by applying some combination of the generators and225

dances to s: there are two choices of local state for each ϕi, and four for each δj . We capture this226

extended notion of commutativity by attaching additional cubes to the state complex to form our227

modified state complex.228

Definition 4.1 (Modified state complex). The modified state complex S ′ of a gridworld is the cube229

complex obtained by filling in the state graph S(1) with higher dimensional cubes whenever there230

is a set of commuting moves or dances. Specifically, whenever a set of 2l+2m states are related by231

a commuting set of l generators and m dances, we add an n–cube having the given set of states232

as its vertices, where n = l + 2m. Each of the 2n faces of such an n–cube is identified with an233

(n− 1)–cube obtained by either disallowing a generator ϕi and choosing one of its two local states,234

or replacing a dance δj with one of its four constituent Moves.235

Our modification removes uninteresting topology. This can be observed by examining 4–cycles in S ′.236

On the one hand, some 4–cycles are trivial (they can be ‘filled in’): dancing-with-myself 4–cycles,237

and commuting moves (two agents moving back and forth) 4–cycles (which were trivial under the238

original definition). These represent trivial movements of agents relative to one another. On the other239

hand, there is a non-trivial 4–cycle in the state complex for two agents in a 2× 2 room, as can be seen240

in the centre of Figure 3 (here, no dancing is possible so the modified state complex is the same as the241

original). This 4–cycle represents the two agents moving half a ‘revolution’ relative to one another –242

1Ghrist and Peterson themselves ask if there could be better ways to complete the state graph to a higher-
dimensional object with better properties (Question 6.4 in [GP07]).

6



indeed, performing this twice would give a full revolution. (There are three other non-trivial 4–cycles,243

topologically equivalent to this central one, that also achieve the half-revolution.)244

In a more topological sense2, by filling in such squares and higher dimensional cubes, our state245

complexes capture the non-trivial, essential relative movements of the agents. This can be used246

to study the braiding or mixing of agents, and also allows us to consider path-homotopic paths as247

‘essentially’ the same. One immediate difference this creates with the original state complexes is a248

loss of symmetries like those shown in Figure 5, since there is no label inversion for a dance when249

other agents are crowding the dance-floor.250

5 Gromov’s Link Condition251

The central geometric characteristic of Abrams, Ghrist, & Peterson’s state complexes is that they252

are non-positively curved (NPC). Indeed, this local geometric condition is conducive for developing253

efficient algorithms for computing geodesics. However, with our modified state complexes, this NPC254

geometry is no longer guaranteed – we test for this on a vertex-by-vertex basis using a classical255

geometric result due to Gromov (see also Theorem 5.20 of [BH99] and [Sag14]).256

Theorem 5.1 (Gromov’s Link Condition [Gro87]). A finite-dimensional cube complex is NPC if and257

only if the link of every vertex is a flag simplicial complex.258

Figure 7: The two situations which lead to failure of Gro-
mov’s Link Condition in multi-agent gridworlds. Maroon
arrows indicate admissible moves and blue squares indi-
cate admissible dances. Note that in the links (bottom
row), the triangle is missing in the left example, while
the (solid) tetrahedron is missing in the right (however,
all 2D faces are present). This is due to the respective
collections of moves and dances failing to commute – an
agent interrupts the other’s dance (left) or two dances
collide (right).

We provide a brief mathematical back-259

ground on cube complexes and the finer260

details of Gromov’s Link Condition in Ap-261

pendix A.1. For our current purposes, it is262

sufficient to know that under the Abrams,263

Ghrist & Peterson setup, if v is a state in S264

then the vertices of its link lk(v) represent265

the possible admissible generators at v.266

Since cubes in S are associated with com-267

muting sets of generators, each simplex in268

lk(v) represents a set of commuting gener-269

ators. Gromov’s Link Condition for lk(v)270

can be reinterpreted as follows: whenever271

a set of admissible generators is pairwise272

commutative, then it is setwise commuta-273

tive. Using this, it is straightforward for274

Abrams, Ghrist & Peterson to verify that275

this always holds for their state complexes276

(see Theorem 4.4 of [GP07]).277

For our modified states complexes, the sit-278

uation is not as straightforward. The key279

issue is that our cubes do not only arise280

from commuting generators – we must281

take dances into account. Indeed, when282

attempting to prove that Gromov’s Link283

Condition holds, we discovered some very284

simple gridworlds where it actually fails;285

see Figure 7 and Appendix A.4.286

Failure of the Link Condition can indicate287

available moves at some state that cannot be safely performed simultaneously and independently288

without risking collisions between labels. Another interpretation of positive curvature in this context289

is something akin to what real-time computer strategy games call ‘fog of war’ (distance-dependent290

limiting of observations which extends from the player-controlled agents), and more specifically291

the viewable distance from an agent’s line-of-sight. Such fog makes AI systems operating in such292

environments particularly challenging, although remarkable success has been achieved in games like293

StarCraft [VBC+19].294

2By considering the fundamental group.
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Despite this apparent drawback, we nevertheless show that Figure 7 accounts for all the possible295

failures of Gromov’s Link Condition in the setting of agent-only gridworlds3.296

Theorem 5.2 (Gromov’s Link Condition in the modified state complex). Let v be a vertex in the297

modified state complex S ′ of an agent-only gridworld. Then298

• lk(v) satisfies Gromov’s Link Condition if and only if it has no empty 2–simplices nor299

3–simplices4, and300

• if lk(v) fails Gromov’s Link Condition then there exist a pair of agents whose positions301

differ by either a knight move or a 2–step bishop move (as in Figure 7).302

We provide a proof in Appendix A.2. Consequently, if the Link Condition fails at all, it must fail at303

dimension 2 or 3. This can be interpreted as saying that we only need a bounded amount of foresight304

to detect potential collisions: under fog-of-war, each agent needs a line-of-sight of only four moves.305

Positive curvature could indicate collisions between any specified labels (e.g., objects), however, for306

this interpretation to be valid we would need to carefully identify which other potential cycles in the307

state complex ought to be filled in. Doing this in a ‘natural’ way is in itself a non-trivial task, and is308

the subject of further investigation.309

6 Experiments and applications310

Although our main contribution is theoretical, we conduct some small initial experiments to demon-311

strate the type of information which can be captured in the geometry and topology (see Appendix312

A.4). To run these experiments, we developed and used a custom Python-based tool (detailed in313

Appendix A.3). Our focus on small rooms is largely expository, i.e., they are the simplest non-trivial314

examples illustrating the key features we want to isolate, and naturally reoccur in all larger rooms.315

Our intention is also to demonstrate a combinatorial explosion in the number of states. We don’t316

recommend constructing the entire state complex in practical applications (indeed, to implement317

addition of integers on a computer, it is infeasible and unnecessary to construct all integers).318

Remark 6.1. By a simple counting argument, one can deduce the total number of states in a gridworld.319

For an agent-only gridworld with n cells and k agents, there is a total of
(
n
k

)
states. If there are n320

cells, k agents, and j objects, then there are
(
n
k

)(
n−k
j

)
states. Thus, even for a moderately sized321

10× 10 room with 50 agents, there are
(
100
50

)
≈ 1.008× 1029 vertices in the state complex.322

By Theorem 5.2, checking if lk(v) satisfies Gromov’s Link Condition requires computing the link323

only up to dimension 3 and then checking whether it is a flag complex; if not, we count the number324

of empty simplices. Checking this for a given vertex in the state complex is not too computationally325

demanding, however when a state complex has many vertices it becomes more difficult. In practical326

applications, such as calculating collision-avoiding navigation routes, it is – again, by Theorem327

5.2 – only necessary to construct a small local subcomplex. But perhaps even more importantly, to328

detect potential collisions between agents, it is not even necessary to construct lk(v), since Theorem329

5.2 provides a computational shortcut: just check for supports of knight or two-step bishop moves330

between agents.331

By using Gromov’s Link Condition, we can identify a precise measure of how far ahead agents ought332

to look in order to safely proceed without fear of collisions. Appendix A.4 gives a summary analysis333

of a 3× 3 room with varying numbers of agents. We noticed several symmetries. Commuting moves334

and the number of states have a symmetry about 4.5 agents (due to the label-inversion symmetry as335

previously illustrated in Figure 5). However, curiously, the number of dances has a symmetry about336

3.5 agents. This difference leads to the asymmetrical distribution of positive curvature and failures337

of Gromov’s Link Condition – which, while maximal for 3 agents as a proportion of total states,338

exhibited the highest mean failure rate for 4 agents.339

3While writing this paper, the first author was involved in two scooter accidents – collisions involving only
agents (luckily without serious injury). So, while this class of gridworlds is strictly smaller than those also
involving objects or other labels, it is by no means an unimportant one. If only the scooters had Gromov’s Link
Condition checkers!

4In other words, if there are no “hollow” triangles or tetrahedra like those in Figure 7.
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This shows that, heuristically, we expect most states to satisfy NPC (see Appendix A.4), and so340

existing greedy algorithms [AOS12] for calculating geodesics will work well in most situations.341

However, to implement an efficient, collision-free path-finding algorithm in our modified state342

complexes, we need to add an additional check. Specifically, when we are near a potentially343

dangerous state, we should implement a predefined ‘detour’ to avoid the collision, which can be done344

on a local basis using the identified supports which lead to positive curvature (as in Figure 7).345

7 Conclusions and future directions346

This study presents novel applications of tools from geometric group theory and combinatorics to the347

AI research community, opening new ways for recasting and analysing AI problems as geometric ones.348

Using these tools, we show an example of how the intrinsic geometry of a task space serendipitously349

embeds safety information and makes it possible to determine how far ahead in time an AI system350

needs to observe to be guaranteed of avoiding dangerous actions.351

Leike et al. [LMK+17] show deep reinforcement learning agents cannot solve many AI safety prob-352

lems specified on gridworlds, e.g., minimising unwanted side-effects or ensuring robustness to agent353

self-modification. Having described the agent-only case in this study, there is now ripe opportunity to354

account for positive curvature or other geometric features arising due to other labels or generators355

(actions) present in specified AI safety problems, e.g., agents pushing/pulling objects, pressing356

buttons, modifying their form or behaviour, rewards/punishments, opening/unlocking doors, etc.. By357

considering directed modified state complexes, irreversible actions can be captured by “invariant358

subcomplexes” (i.e., you can’t escape from them), allowing geometric study of the tree/flowchart of359

irreversible actions and related recurrence/transience. Braiding can be used to study route planning,360

back-tracking, cooperation, assembly, and topological entropy in congestion [Ghr09]. Numerous361

extensions are possible, allowing us to study and geometrically represent further problems with a362

view to developing efficient, geometrically-inspired local algorithms without the need for training.363

Do learning algorithms already implement such geometrically-inspired algorithms, the related ge-364

ometry, or approximations thereof? To find out, we are investigating how modified state complexes365

map to learned internal representations of neural networks trained to predict multi-agent gridworld366

dynamics. This mapping connects the geometry and topology of a task space directly to optimisation367

procedures and learning trajectories in latent representation spaces, highlighting unexpected topologi-368

cal and geometric differences and opportunities for deeper insight and improvement of optimisation369

procedures, in the spirit of [NZL20, ZZ22]. We can also compare biological optimisation processes370

and internal representations of allocentric and egocentric navigation [Bur06, GHP+22], and how this371

interacts with the position of other agents [DJ18, SB20].372

From a more mathematical perspective, state complexes of gridworlds give rise to an interesting class373

of geometric spaces. It would be worthwhile to investigate their geometric and topological properties374

to more deeply understand various aspects of multi-agent gridworlds. For example, for a gridworld375

with n agents in a sufficiently large room, we hypothesise that the modified state complex should be376

a classifying space for the n–strand braid group. This is clearly false when the room is packed full of377

agents (in which case the state complex is a single point), so it may be fruitful to determine if there is378

some ‘critical’ density at which a topological transition occurs.379

Using the failure of Gromov’s Link Condition in an essential way appears to be a relatively unexplored380

approach. Indeed, much of the mathematical literature concerning cube complexes focusses on381

showing that the Link Condition always holds. To our knowledge, the only other works which go382

against this trend are [AG04], in which failure detects global disconnection of a metamorphic system,383

and [BDT19], where failure detects non-trivial loops on topological surfaces. It would be interesting384

to explore cube complexes arising in other settings where failure captures critical information.385

A limitation of our work is that we have so far only explored very simple AI environments. Further386

work is needed to expand the framework and results to more general, sophisticated, and real-world387

environments. For this reason, although our work provides new geometric perspectives, data,388

and potential algorithms for an important AI safety issue, we caution against hasty real-world389

implementation of the main results. To avoid potential negative societal impacts, it would still be390

important to perform rigorous checks and tests in application domains, since our results do not391

directly extend to situations beyond which the stated assumptions hold.392

9



References393

[ABCG17] Federico Ardila, Hanner Bastidas, Cesar Ceballos, and John Guo, The configuration space of a394

robotic arm in a tunnel, SIAM Journal on Discrete Mathematics 31 (2017), no. 4, 2675–2702.395

[ABY14] Federico Ardila, Tia Baker, and Rika Yatchak, Moving robots efficiently using the combinatorics396

of CAT(0) cubical complexes, SIAM Journal on Discrete Mathematics 28 (2014), no. 2, 986–397

1007.398

[AG04] Aaron Abrams and Robert Ghrist, State complexes for metamorphic robots, The International399

Journal of Robotics Research 23 (2004), no. 7-8, 811–826.400

[AOS12] Federico Ardila, Megan Owen, and Seth Sullivant, Geodesics in CAT(0) cubical complexes,401

Adv. in Appl. Math. 48 (2012), no. 1, 142–163.402

[AVBP21] Karen Archer, Nicola Catenacci Volpi, Franziska Bröker, and Daniel Polani, A space of goals:403

the cognitive geometry of informationally bounded agents, arXiv:2111.03699, 2021.404

[BDT19] Mark C. Bell, Valentina Disarlo, and Robert Tang, Cubical geometry in the polygonalisation405

complex, Math. Proc. Cambridge Philos. Soc. 167 (2019), no. 1, 1–22.406

[BH99] Martin R. Bridson and André Haefliger, Metric spaces of non-positive curvature, Grundlehren407

der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol.408

319, Springer-Verlag, Berlin, 1999.409

[Bur06] Neil Burgess, Spatial memory: how egocentric and allocentric combine, Trends in Cognitive410

Sciences 10 (2006), no. 12, 551–557.411

[CN05] Indira Chatterji and Graham Niblo, From wall spaces to CAT(0) cube complexes, International412

Journal of Algebra and Computation 15 (2005), no. 05n06, 875–885.413

[DJ18] É. Duvelle and K.J. Jeffery, Social spaces: Place cells represent the locations of others, Current414

Biology 28 (2018), no. 6, R271–R273.415

[DSHLKT20] Felipe Leno Da Silva, Pablo Hernandez-Leal, Bilal Kartal, and Matthew E. Taylor, Uncertainty-416

aware action advising for deep reinforcement learning agents, Proceedings of the AAAI Confer-417

ence on Artificial Intelligence 34 (2020), no. 04, 5792–5799.418

[FLLP20] Tingxiang Fan, Pinxin Long, Wenxi Liu, and Jia Pan, Distributed multi-robot collision avoidance419

via deep reinforcement learning for navigation in complex scenarios, The International Journal420

of Robotics Research 39 (2020), no. 7, 856–892.421

[GHP+22] Richard J. Gardner, Erik Hermansen, Marius Pachitariu, Yoram Burak, Nils A. Baas, Benjamin A.422

Dunn, May-Britt Moser, and Edvard I. Moser, Toroidal topology of population activity in grid423

cells, Nature 602 (2022), no. 7895, 123–128.424

[Ghr09] Robert Ghrist, Configuration spaces, braids, and robotics, pp. 263–304, World Scientific Pub-425

lishing, 2009.426

[GP07] R. Ghrist and V. Peterson, The geometry and topology of reconfiguration, Advances in Applied427

Mathematics 38 (2007), no. 3, 302–323.428

[Gro87] M. Gromov, Hyperbolic groups, Essays in Group Theory (S. M. Gersten, ed.), Springer New429

York, New York, NY, 1987, pp. 75–263.430

[HHA21] Victoria J. Hodge, Richard Hawkins, and Rob Alexander, Deep reinforcement learning for drone431

navigation using sensor data, Neural Computing and Applications 33 (2021), no. 6, 2015–2033.432

[HR17] Michael Hauser and Asok Ray, Principles of Riemannian geometry in neural networks, Advances433

in Neural Information Processing Systems (I. Guyon, U. V. Luxburg, S. Bengio, H. Wallach,434

R. Fergus, S. Vishwanathan, and R. Garnett, eds.), vol. 30, Curran Associates, Inc., 2017.435

[KAP20] Ivana Kajic, Eser Aygün, and Doina Precup, Learning to cooperate: Emergent communication in436

multi-agent navigation, 42nd Annual Virtual Meeting of the Cognitive Science Society (CogSci437

2020), 2020.438

[KFGE19] Zac Kenton, Angelos Filos, Yarin Gal, and Owain Evans, Generalizing from a few environments439

in safety-critical reinforcement learning, Safe Machine Learning workshop at ICLR (2019), 1–9.440

[KIU21] Takeshi Kano, Mayuko Iwamoto, and Daishin Ueyama, Decentralised control of multiple441

mobile agents for quick, smooth, and safe movement, Physica A: Statistical Mechanics and its442

Applications 572 (2021), 125898.443

[KK89] Tomihisa Kamada and Satoru Kawai, An algorithm for drawing general undirected graphs,444

Information Processing Letters 31 (1989), no. 1, 7–15.445

[LAG+20] Na Lei, Dongsheng An, Yang Guo, Kehua Su, Shixia Liu, Zhongxuan Luo, Shing-Tung Yau,446

and Xianfeng Gu, A geometric understanding of deep learning, Engineering 6 (2020), no. 3,447

361–374.448

10

https://arxiv.org/abs/2111.03699


[LMK+17] Jan Leike, Miljan Martic, Victoria Krakovna, Pedro A. Ortega, Tom Everitt, Andrew Lefrancq,449

Laurent Orseau, and Shane Legg, AI safety gridworlds, arXiv:1711.09883, 2017.450

[LR10] Tom Larkworthy and Subramanian Ramamoorthy, An efficient algorithm for self-reconfiguration451

planning in a modular robot, 2010 IEEE International Conference on Robotics and Automation,452

2010, pp. 5139–5146.453

[LSS+21] Florian Laurent, Manuel Schneider, Christian Scheller, Jeremy Watson, Jiaoyang Li, Zhe Chen,454

Yi Zheng, Shao-Hung Chan, Konstantin Makhnev, Oleg Svidchenko, Vladimir Egorov, Dmitry455

Ivanov, Aleksei Shpilman, Evgenija Spirovska, Oliver Tanevski, Aleksandar Nikov, Ramon456

Grunder, David Galevski, Jakov Mitrovski, and Sharada Mohanty, Flatland competition 2020:457

MAPF and MARL for efficient train coordination on a grid world, pp. 275–301, PMLR, 08 2021.458

[NZL20] Gregory Naitzat, Andrey Zhitnikov, and Lek-Heng Lim, Topology of deep neural networks,459

Journal of Machine Learning Research 21 (2020), no. 184, 1–40.460

[QZC+21] Zengyi Qin, Kaiqing Zhang, Yuxiao Chen, Jingkai Chen, and Chuchu Fan, Learning safe multi-461

agent control with decentralized neural barrier certificates, International Conference on Learning462

Representations, 2021.463

[Sag14] Michah Sageev, CAT(0) cube complexes and groups, Geometric group theory, IAS/Park City464

Math. Ser., vol. 21, Amer. Math. Soc., Providence, RI, 2014, pp. 7–54.465

[SB20] Christina J. Sutherland and David K. Bilkey, Hippocampal coding of conspecific position, Brain466

Research 1745 (2020), 146920.467

[SMK11] Jeremy Stober, Risto Miikkulainen, and Benjamin Kuipers, Learning geometry from sensorimotor468

experience, 2011 IEEE International Conference on Development and Learning (ICDL), vol. 2,469

2011, pp. 1–6.470

[SPG+21] Cory Stephenson, Suchismita Padhy, Abhinav Ganesh, Yue Hui, Hanlin Tang, and SueYeon471

Chung, On the geometry of generalization and memorization in deep neural networks, Interna-472

tional Conference on Learning Representations, 2021.473

[VBC+19] Oriol Vinyals, Igor Babuschkin, Wojciech M Czarnecki, Michaël Mathieu, Andrew Dudzik,474

Junyoung Chung, David H Choi, Richard Powell, Timo Ewalds, Petko Georgiev, Junhyuk Oh,475

Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang, Laurent Sifre, Trevor Cai, John P476

Agapiou, Max Jaderberg, Alexander S Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin477

Dalibard, David Budden, Yury Sulsky, James Molloy, Tom L Paine, Caglar Gulcehre, Ziyu Wang,478

Tobias Pfaff, Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,479

Oliver Smith, Tom Schaul, Timothy Lillicrap, Koray Kavukcuoglu, Demis Hassabis, Chris Apps,480

and David Silver, Grandmaster level in StarCraft II using multi-agent reinforcement learning,481

Nature 575 (2019), no. 7782, 350–354.482

[Wis12] Daniel T. Wise, From riches to raags: 3-manifolds, right-angled Artin groups, and cubical geom-483

etry, CBMS Regional Conference Series in Mathematics, vol. 117, Published for the Conference484

Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society,485

Providence, RI, 2012.486

[WKK20] Vikram Waradpande, Daniel Kudenko, and Megha Khosla, Deep reinforcement learning with487

graph-based state representations, arXiv:2004.13965, 2020.488

[ZZ22] Yang Zhao and Hao Zhang, Quantitative performance assessment of CNN units via topological489

entropy calculation, International Conference on Learning Representations, 2022.490

11

https://arxiv.org/abs/1711.09883
https://arxiv.org/abs/2004.13965


Checklist491

1. For all authors...492

(a) Do the main claims made in the abstract and introduction accurately reflect the paper’s493

contributions and scope? [Yes]494

(b) Did you describe the limitations of your work? [Yes]495

(c) Did you discuss any potential negative societal impacts of your work? [Yes]496

(d) Have you read the ethics review guidelines and ensured that your paper conforms to497

them? [Yes]498

2. If you are including theoretical results...499

(a) Did you state the full set of assumptions of all theoretical results? [Yes]500

(b) Did you include complete proofs of all theoretical results? [Yes] see Appendix A.2501

3. If you ran experiments...502

(a) Did you include the code, data, and instructions needed to reproduce the main experi-503

mental results (either in the supplemental material or as a URL)? [Yes] and we will504

provide a link to the publicly-hosted code for community usage upon acceptance (see505

Appendix A.3)506

(b) Did you specify all the training details (e.g., data splits, hyperparameters, how they507

were chosen)? [N/A]508

(c) Did you report error bars (e.g., with respect to the random seed after running experi-509

ments multiple times)? [N/A]510

(d) Did you include the total amount of compute and the type of resources used (e.g., type511

of GPUs, internal cluster, or cloud provider)? [Yes] see Appendix A.3512

4. If you are using existing assets (e.g., code, data, models) or curating/releasing new assets...513

(a) If your work uses existing assets, did you cite the creators? [N/A]514

(b) Did you mention the license of the assets? [N/A]515

(c) Did you include any new assets either in the supplemental material or as a URL? [N/A]516

517

(d) Did you discuss whether and how consent was obtained from people whose data you’re518

using/curating? [N/A]519

(e) Did you discuss whether the data you are using/curating contains personally identifiable520

information or offensive content? [N/A]521

5. If you used crowdsourcing or conducted research with human subjects...522

(a) Did you include the full text of instructions given to participants and screenshots, if523

applicable? [N/A]524

(b) Did you describe any potential participant risks, with links to Institutional Review525

Board (IRB) approvals, if applicable? [N/A]526

(c) Did you include the estimated hourly wage paid to participants and the total amount527

spent on participant compensation? [N/A]528

12


	Introduction
	State complex of a gridworld
	Exploring gridworlds with state complexes
	Dancing with myself
	Gromov's Link Condition
	Experiments and applications
	Conclusions and future directions

